Merge branch 'x86-mce-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / x86 / kernel / hpet.c
1 #include <linux/clocksource.h>
2 #include <linux/clockchips.h>
3 #include <linux/interrupt.h>
4 #include <linux/sysdev.h>
5 #include <linux/delay.h>
6 #include <linux/errno.h>
7 #include <linux/slab.h>
8 #include <linux/hpet.h>
9 #include <linux/init.h>
10 #include <linux/cpu.h>
11 #include <linux/pm.h>
12 #include <linux/io.h>
13
14 #include <asm/fixmap.h>
15 #include <asm/i8253.h>
16 #include <asm/hpet.h>
17
18 #define HPET_MASK                       CLOCKSOURCE_MASK(32)
19
20 /* FSEC = 10^-15
21    NSEC = 10^-9 */
22 #define FSEC_PER_NSEC                   1000000L
23
24 #define HPET_DEV_USED_BIT               2
25 #define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
26 #define HPET_DEV_VALID                  0x8
27 #define HPET_DEV_FSB_CAP                0x1000
28 #define HPET_DEV_PERI_CAP               0x2000
29
30 #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
31
32 /*
33  * HPET address is set in acpi/boot.c, when an ACPI entry exists
34  */
35 unsigned long                           hpet_address;
36 u8                                      hpet_blockid; /* OS timer block num */
37 u8                                      hpet_msi_disable;
38 u8                                      hpet_readback_cmp;
39
40 #ifdef CONFIG_PCI_MSI
41 static unsigned long                    hpet_num_timers;
42 #endif
43 static void __iomem                     *hpet_virt_address;
44
45 struct hpet_dev {
46         struct clock_event_device       evt;
47         unsigned int                    num;
48         int                             cpu;
49         unsigned int                    irq;
50         unsigned int                    flags;
51         char                            name[10];
52 };
53
54 inline unsigned int hpet_readl(unsigned int a)
55 {
56         return readl(hpet_virt_address + a);
57 }
58
59 static inline void hpet_writel(unsigned int d, unsigned int a)
60 {
61         writel(d, hpet_virt_address + a);
62 }
63
64 #ifdef CONFIG_X86_64
65 #include <asm/pgtable.h>
66 #endif
67
68 static inline void hpet_set_mapping(void)
69 {
70         hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
71 #ifdef CONFIG_X86_64
72         __set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
73 #endif
74 }
75
76 static inline void hpet_clear_mapping(void)
77 {
78         iounmap(hpet_virt_address);
79         hpet_virt_address = NULL;
80 }
81
82 /*
83  * HPET command line enable / disable
84  */
85 static int boot_hpet_disable;
86 int hpet_force_user;
87 static int hpet_verbose;
88
89 static int __init hpet_setup(char *str)
90 {
91         if (str) {
92                 if (!strncmp("disable", str, 7))
93                         boot_hpet_disable = 1;
94                 if (!strncmp("force", str, 5))
95                         hpet_force_user = 1;
96                 if (!strncmp("verbose", str, 7))
97                         hpet_verbose = 1;
98         }
99         return 1;
100 }
101 __setup("hpet=", hpet_setup);
102
103 static int __init disable_hpet(char *str)
104 {
105         boot_hpet_disable = 1;
106         return 1;
107 }
108 __setup("nohpet", disable_hpet);
109
110 static inline int is_hpet_capable(void)
111 {
112         return !boot_hpet_disable && hpet_address;
113 }
114
115 /*
116  * HPET timer interrupt enable / disable
117  */
118 static int hpet_legacy_int_enabled;
119
120 /**
121  * is_hpet_enabled - check whether the hpet timer interrupt is enabled
122  */
123 int is_hpet_enabled(void)
124 {
125         return is_hpet_capable() && hpet_legacy_int_enabled;
126 }
127 EXPORT_SYMBOL_GPL(is_hpet_enabled);
128
129 static void _hpet_print_config(const char *function, int line)
130 {
131         u32 i, timers, l, h;
132         printk(KERN_INFO "hpet: %s(%d):\n", function, line);
133         l = hpet_readl(HPET_ID);
134         h = hpet_readl(HPET_PERIOD);
135         timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
136         printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
137         l = hpet_readl(HPET_CFG);
138         h = hpet_readl(HPET_STATUS);
139         printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
140         l = hpet_readl(HPET_COUNTER);
141         h = hpet_readl(HPET_COUNTER+4);
142         printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
143
144         for (i = 0; i < timers; i++) {
145                 l = hpet_readl(HPET_Tn_CFG(i));
146                 h = hpet_readl(HPET_Tn_CFG(i)+4);
147                 printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
148                        i, l, h);
149                 l = hpet_readl(HPET_Tn_CMP(i));
150                 h = hpet_readl(HPET_Tn_CMP(i)+4);
151                 printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
152                        i, l, h);
153                 l = hpet_readl(HPET_Tn_ROUTE(i));
154                 h = hpet_readl(HPET_Tn_ROUTE(i)+4);
155                 printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
156                        i, l, h);
157         }
158 }
159
160 #define hpet_print_config()                                     \
161 do {                                                            \
162         if (hpet_verbose)                                       \
163                 _hpet_print_config(__FUNCTION__, __LINE__);     \
164 } while (0)
165
166 /*
167  * When the hpet driver (/dev/hpet) is enabled, we need to reserve
168  * timer 0 and timer 1 in case of RTC emulation.
169  */
170 #ifdef CONFIG_HPET
171
172 static void hpet_reserve_msi_timers(struct hpet_data *hd);
173
174 static void hpet_reserve_platform_timers(unsigned int id)
175 {
176         struct hpet __iomem *hpet = hpet_virt_address;
177         struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
178         unsigned int nrtimers, i;
179         struct hpet_data hd;
180
181         nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
182
183         memset(&hd, 0, sizeof(hd));
184         hd.hd_phys_address      = hpet_address;
185         hd.hd_address           = hpet;
186         hd.hd_nirqs             = nrtimers;
187         hpet_reserve_timer(&hd, 0);
188
189 #ifdef CONFIG_HPET_EMULATE_RTC
190         hpet_reserve_timer(&hd, 1);
191 #endif
192
193         /*
194          * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
195          * is wrong for i8259!) not the output IRQ.  Many BIOS writers
196          * don't bother configuring *any* comparator interrupts.
197          */
198         hd.hd_irq[0] = HPET_LEGACY_8254;
199         hd.hd_irq[1] = HPET_LEGACY_RTC;
200
201         for (i = 2; i < nrtimers; timer++, i++) {
202                 hd.hd_irq[i] = (readl(&timer->hpet_config) &
203                         Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
204         }
205
206         hpet_reserve_msi_timers(&hd);
207
208         hpet_alloc(&hd);
209
210 }
211 #else
212 static void hpet_reserve_platform_timers(unsigned int id) { }
213 #endif
214
215 /*
216  * Common hpet info
217  */
218 static unsigned long hpet_period;
219
220 static void hpet_legacy_set_mode(enum clock_event_mode mode,
221                           struct clock_event_device *evt);
222 static int hpet_legacy_next_event(unsigned long delta,
223                            struct clock_event_device *evt);
224
225 /*
226  * The hpet clock event device
227  */
228 static struct clock_event_device hpet_clockevent = {
229         .name           = "hpet",
230         .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
231         .set_mode       = hpet_legacy_set_mode,
232         .set_next_event = hpet_legacy_next_event,
233         .shift          = 32,
234         .irq            = 0,
235         .rating         = 50,
236 };
237
238 static void hpet_stop_counter(void)
239 {
240         unsigned long cfg = hpet_readl(HPET_CFG);
241         cfg &= ~HPET_CFG_ENABLE;
242         hpet_writel(cfg, HPET_CFG);
243 }
244
245 static void hpet_reset_counter(void)
246 {
247         hpet_writel(0, HPET_COUNTER);
248         hpet_writel(0, HPET_COUNTER + 4);
249 }
250
251 static void hpet_start_counter(void)
252 {
253         unsigned int cfg = hpet_readl(HPET_CFG);
254         cfg |= HPET_CFG_ENABLE;
255         hpet_writel(cfg, HPET_CFG);
256 }
257
258 static void hpet_restart_counter(void)
259 {
260         hpet_stop_counter();
261         hpet_reset_counter();
262         hpet_start_counter();
263 }
264
265 static void hpet_resume_device(void)
266 {
267         force_hpet_resume();
268 }
269
270 static void hpet_resume_counter(struct clocksource *cs)
271 {
272         hpet_resume_device();
273         hpet_restart_counter();
274 }
275
276 static void hpet_enable_legacy_int(void)
277 {
278         unsigned int cfg = hpet_readl(HPET_CFG);
279
280         cfg |= HPET_CFG_LEGACY;
281         hpet_writel(cfg, HPET_CFG);
282         hpet_legacy_int_enabled = 1;
283 }
284
285 static void hpet_legacy_clockevent_register(void)
286 {
287         /* Start HPET legacy interrupts */
288         hpet_enable_legacy_int();
289
290         /*
291          * The mult factor is defined as (include/linux/clockchips.h)
292          *  mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h)
293          * hpet_period is in units of femtoseconds (per cycle), so
294          *  mult/2^shift = cyc/ns = 10^6/hpet_period
295          *  mult = (10^6 * 2^shift)/hpet_period
296          *  mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period
297          */
298         hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC,
299                                       hpet_period, hpet_clockevent.shift);
300         /* Calculate the min / max delta */
301         hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
302                                                            &hpet_clockevent);
303         /* 5 usec minimum reprogramming delta. */
304         hpet_clockevent.min_delta_ns = 5000;
305
306         /*
307          * Start hpet with the boot cpu mask and make it
308          * global after the IO_APIC has been initialized.
309          */
310         hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
311         clockevents_register_device(&hpet_clockevent);
312         global_clock_event = &hpet_clockevent;
313         printk(KERN_DEBUG "hpet clockevent registered\n");
314 }
315
316 static int hpet_setup_msi_irq(unsigned int irq);
317
318 static void hpet_set_mode(enum clock_event_mode mode,
319                           struct clock_event_device *evt, int timer)
320 {
321         unsigned int cfg, cmp, now;
322         uint64_t delta;
323
324         switch (mode) {
325         case CLOCK_EVT_MODE_PERIODIC:
326                 hpet_stop_counter();
327                 delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
328                 delta >>= evt->shift;
329                 now = hpet_readl(HPET_COUNTER);
330                 cmp = now + (unsigned int) delta;
331                 cfg = hpet_readl(HPET_Tn_CFG(timer));
332                 /* Make sure we use edge triggered interrupts */
333                 cfg &= ~HPET_TN_LEVEL;
334                 cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
335                        HPET_TN_SETVAL | HPET_TN_32BIT;
336                 hpet_writel(cfg, HPET_Tn_CFG(timer));
337                 hpet_writel(cmp, HPET_Tn_CMP(timer));
338                 udelay(1);
339                 /*
340                  * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
341                  * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
342                  * bit is automatically cleared after the first write.
343                  * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
344                  * Publication # 24674)
345                  */
346                 hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
347                 hpet_start_counter();
348                 hpet_print_config();
349                 break;
350
351         case CLOCK_EVT_MODE_ONESHOT:
352                 cfg = hpet_readl(HPET_Tn_CFG(timer));
353                 cfg &= ~HPET_TN_PERIODIC;
354                 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
355                 hpet_writel(cfg, HPET_Tn_CFG(timer));
356                 break;
357
358         case CLOCK_EVT_MODE_UNUSED:
359         case CLOCK_EVT_MODE_SHUTDOWN:
360                 cfg = hpet_readl(HPET_Tn_CFG(timer));
361                 cfg &= ~HPET_TN_ENABLE;
362                 hpet_writel(cfg, HPET_Tn_CFG(timer));
363                 break;
364
365         case CLOCK_EVT_MODE_RESUME:
366                 if (timer == 0) {
367                         hpet_enable_legacy_int();
368                 } else {
369                         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
370                         hpet_setup_msi_irq(hdev->irq);
371                         disable_irq(hdev->irq);
372                         irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
373                         enable_irq(hdev->irq);
374                 }
375                 hpet_print_config();
376                 break;
377         }
378 }
379
380 static int hpet_next_event(unsigned long delta,
381                            struct clock_event_device *evt, int timer)
382 {
383         u32 cnt;
384
385         cnt = hpet_readl(HPET_COUNTER);
386         cnt += (u32) delta;
387         hpet_writel(cnt, HPET_Tn_CMP(timer));
388
389         /*
390          * We need to read back the CMP register on certain HPET
391          * implementations (ATI chipsets) which seem to delay the
392          * transfer of the compare register into the internal compare
393          * logic. With small deltas this might actually be too late as
394          * the counter could already be higher than the compare value
395          * at that point and we would wait for the next hpet interrupt
396          * forever. We found out that reading the CMP register back
397          * forces the transfer so we can rely on the comparison with
398          * the counter register below.
399          *
400          * That works fine on those ATI chipsets, but on newer Intel
401          * chipsets (ICH9...) this triggers due to an erratum: Reading
402          * the comparator immediately following a write is returning
403          * the old value.
404          *
405          * We restrict the read back to the affected ATI chipsets (set
406          * by quirks) and also run it with hpet=verbose for debugging
407          * purposes.
408          */
409         if (hpet_readback_cmp || hpet_verbose) {
410                 u32 cmp = hpet_readl(HPET_Tn_CMP(timer));
411
412                 if (cmp != cnt)
413                         printk_once(KERN_WARNING
414                             "hpet: compare register read back failed.\n");
415         }
416
417         return (s32)(hpet_readl(HPET_COUNTER) - cnt) >= 0 ? -ETIME : 0;
418 }
419
420 static void hpet_legacy_set_mode(enum clock_event_mode mode,
421                         struct clock_event_device *evt)
422 {
423         hpet_set_mode(mode, evt, 0);
424 }
425
426 static int hpet_legacy_next_event(unsigned long delta,
427                         struct clock_event_device *evt)
428 {
429         return hpet_next_event(delta, evt, 0);
430 }
431
432 /*
433  * HPET MSI Support
434  */
435 #ifdef CONFIG_PCI_MSI
436
437 static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
438 static struct hpet_dev  *hpet_devs;
439
440 void hpet_msi_unmask(unsigned int irq)
441 {
442         struct hpet_dev *hdev = get_irq_data(irq);
443         unsigned int cfg;
444
445         /* unmask it */
446         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
447         cfg |= HPET_TN_FSB;
448         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
449 }
450
451 void hpet_msi_mask(unsigned int irq)
452 {
453         unsigned int cfg;
454         struct hpet_dev *hdev = get_irq_data(irq);
455
456         /* mask it */
457         cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
458         cfg &= ~HPET_TN_FSB;
459         hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
460 }
461
462 void hpet_msi_write(unsigned int irq, struct msi_msg *msg)
463 {
464         struct hpet_dev *hdev = get_irq_data(irq);
465
466         hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
467         hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
468 }
469
470 void hpet_msi_read(unsigned int irq, struct msi_msg *msg)
471 {
472         struct hpet_dev *hdev = get_irq_data(irq);
473
474         msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
475         msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
476         msg->address_hi = 0;
477 }
478
479 static void hpet_msi_set_mode(enum clock_event_mode mode,
480                                 struct clock_event_device *evt)
481 {
482         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
483         hpet_set_mode(mode, evt, hdev->num);
484 }
485
486 static int hpet_msi_next_event(unsigned long delta,
487                                 struct clock_event_device *evt)
488 {
489         struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
490         return hpet_next_event(delta, evt, hdev->num);
491 }
492
493 static int hpet_setup_msi_irq(unsigned int irq)
494 {
495         if (arch_setup_hpet_msi(irq, hpet_blockid)) {
496                 destroy_irq(irq);
497                 return -EINVAL;
498         }
499         return 0;
500 }
501
502 static int hpet_assign_irq(struct hpet_dev *dev)
503 {
504         unsigned int irq;
505
506         irq = create_irq();
507         if (!irq)
508                 return -EINVAL;
509
510         set_irq_data(irq, dev);
511
512         if (hpet_setup_msi_irq(irq))
513                 return -EINVAL;
514
515         dev->irq = irq;
516         return 0;
517 }
518
519 static irqreturn_t hpet_interrupt_handler(int irq, void *data)
520 {
521         struct hpet_dev *dev = (struct hpet_dev *)data;
522         struct clock_event_device *hevt = &dev->evt;
523
524         if (!hevt->event_handler) {
525                 printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
526                                 dev->num);
527                 return IRQ_HANDLED;
528         }
529
530         hevt->event_handler(hevt);
531         return IRQ_HANDLED;
532 }
533
534 static int hpet_setup_irq(struct hpet_dev *dev)
535 {
536
537         if (request_irq(dev->irq, hpet_interrupt_handler,
538                         IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
539                         dev->name, dev))
540                 return -1;
541
542         disable_irq(dev->irq);
543         irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
544         enable_irq(dev->irq);
545
546         printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
547                          dev->name, dev->irq);
548
549         return 0;
550 }
551
552 /* This should be called in specific @cpu */
553 static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
554 {
555         struct clock_event_device *evt = &hdev->evt;
556         uint64_t hpet_freq;
557
558         WARN_ON(cpu != smp_processor_id());
559         if (!(hdev->flags & HPET_DEV_VALID))
560                 return;
561
562         if (hpet_setup_msi_irq(hdev->irq))
563                 return;
564
565         hdev->cpu = cpu;
566         per_cpu(cpu_hpet_dev, cpu) = hdev;
567         evt->name = hdev->name;
568         hpet_setup_irq(hdev);
569         evt->irq = hdev->irq;
570
571         evt->rating = 110;
572         evt->features = CLOCK_EVT_FEAT_ONESHOT;
573         if (hdev->flags & HPET_DEV_PERI_CAP)
574                 evt->features |= CLOCK_EVT_FEAT_PERIODIC;
575
576         evt->set_mode = hpet_msi_set_mode;
577         evt->set_next_event = hpet_msi_next_event;
578         evt->shift = 32;
579
580         /*
581          * The period is a femto seconds value. We need to calculate the
582          * scaled math multiplication factor for nanosecond to hpet tick
583          * conversion.
584          */
585         hpet_freq = 1000000000000000ULL;
586         do_div(hpet_freq, hpet_period);
587         evt->mult = div_sc((unsigned long) hpet_freq,
588                                       NSEC_PER_SEC, evt->shift);
589         /* Calculate the max delta */
590         evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt);
591         /* 5 usec minimum reprogramming delta. */
592         evt->min_delta_ns = 5000;
593
594         evt->cpumask = cpumask_of(hdev->cpu);
595         clockevents_register_device(evt);
596 }
597
598 #ifdef CONFIG_HPET
599 /* Reserve at least one timer for userspace (/dev/hpet) */
600 #define RESERVE_TIMERS 1
601 #else
602 #define RESERVE_TIMERS 0
603 #endif
604
605 static void hpet_msi_capability_lookup(unsigned int start_timer)
606 {
607         unsigned int id;
608         unsigned int num_timers;
609         unsigned int num_timers_used = 0;
610         int i;
611
612         if (hpet_msi_disable)
613                 return;
614
615         if (boot_cpu_has(X86_FEATURE_ARAT))
616                 return;
617         id = hpet_readl(HPET_ID);
618
619         num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
620         num_timers++; /* Value read out starts from 0 */
621         hpet_print_config();
622
623         hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
624         if (!hpet_devs)
625                 return;
626
627         hpet_num_timers = num_timers;
628
629         for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
630                 struct hpet_dev *hdev = &hpet_devs[num_timers_used];
631                 unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
632
633                 /* Only consider HPET timer with MSI support */
634                 if (!(cfg & HPET_TN_FSB_CAP))
635                         continue;
636
637                 hdev->flags = 0;
638                 if (cfg & HPET_TN_PERIODIC_CAP)
639                         hdev->flags |= HPET_DEV_PERI_CAP;
640                 hdev->num = i;
641
642                 sprintf(hdev->name, "hpet%d", i);
643                 if (hpet_assign_irq(hdev))
644                         continue;
645
646                 hdev->flags |= HPET_DEV_FSB_CAP;
647                 hdev->flags |= HPET_DEV_VALID;
648                 num_timers_used++;
649                 if (num_timers_used == num_possible_cpus())
650                         break;
651         }
652
653         printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
654                 num_timers, num_timers_used);
655 }
656
657 #ifdef CONFIG_HPET
658 static void hpet_reserve_msi_timers(struct hpet_data *hd)
659 {
660         int i;
661
662         if (!hpet_devs)
663                 return;
664
665         for (i = 0; i < hpet_num_timers; i++) {
666                 struct hpet_dev *hdev = &hpet_devs[i];
667
668                 if (!(hdev->flags & HPET_DEV_VALID))
669                         continue;
670
671                 hd->hd_irq[hdev->num] = hdev->irq;
672                 hpet_reserve_timer(hd, hdev->num);
673         }
674 }
675 #endif
676
677 static struct hpet_dev *hpet_get_unused_timer(void)
678 {
679         int i;
680
681         if (!hpet_devs)
682                 return NULL;
683
684         for (i = 0; i < hpet_num_timers; i++) {
685                 struct hpet_dev *hdev = &hpet_devs[i];
686
687                 if (!(hdev->flags & HPET_DEV_VALID))
688                         continue;
689                 if (test_and_set_bit(HPET_DEV_USED_BIT,
690                         (unsigned long *)&hdev->flags))
691                         continue;
692                 return hdev;
693         }
694         return NULL;
695 }
696
697 struct hpet_work_struct {
698         struct delayed_work work;
699         struct completion complete;
700 };
701
702 static void hpet_work(struct work_struct *w)
703 {
704         struct hpet_dev *hdev;
705         int cpu = smp_processor_id();
706         struct hpet_work_struct *hpet_work;
707
708         hpet_work = container_of(w, struct hpet_work_struct, work.work);
709
710         hdev = hpet_get_unused_timer();
711         if (hdev)
712                 init_one_hpet_msi_clockevent(hdev, cpu);
713
714         complete(&hpet_work->complete);
715 }
716
717 static int hpet_cpuhp_notify(struct notifier_block *n,
718                 unsigned long action, void *hcpu)
719 {
720         unsigned long cpu = (unsigned long)hcpu;
721         struct hpet_work_struct work;
722         struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
723
724         switch (action & 0xf) {
725         case CPU_ONLINE:
726                 INIT_DELAYED_WORK_ON_STACK(&work.work, hpet_work);
727                 init_completion(&work.complete);
728                 /* FIXME: add schedule_work_on() */
729                 schedule_delayed_work_on(cpu, &work.work, 0);
730                 wait_for_completion(&work.complete);
731                 destroy_timer_on_stack(&work.work.timer);
732                 break;
733         case CPU_DEAD:
734                 if (hdev) {
735                         free_irq(hdev->irq, hdev);
736                         hdev->flags &= ~HPET_DEV_USED;
737                         per_cpu(cpu_hpet_dev, cpu) = NULL;
738                 }
739                 break;
740         }
741         return NOTIFY_OK;
742 }
743 #else
744
745 static int hpet_setup_msi_irq(unsigned int irq)
746 {
747         return 0;
748 }
749 static void hpet_msi_capability_lookup(unsigned int start_timer)
750 {
751         return;
752 }
753
754 #ifdef CONFIG_HPET
755 static void hpet_reserve_msi_timers(struct hpet_data *hd)
756 {
757         return;
758 }
759 #endif
760
761 static int hpet_cpuhp_notify(struct notifier_block *n,
762                 unsigned long action, void *hcpu)
763 {
764         return NOTIFY_OK;
765 }
766
767 #endif
768
769 /*
770  * Clock source related code
771  */
772 static cycle_t read_hpet(struct clocksource *cs)
773 {
774         return (cycle_t)hpet_readl(HPET_COUNTER);
775 }
776
777 #ifdef CONFIG_X86_64
778 static cycle_t __vsyscall_fn vread_hpet(void)
779 {
780         return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0);
781 }
782 #endif
783
784 static struct clocksource clocksource_hpet = {
785         .name           = "hpet",
786         .rating         = 250,
787         .read           = read_hpet,
788         .mask           = HPET_MASK,
789         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
790         .resume         = hpet_resume_counter,
791 #ifdef CONFIG_X86_64
792         .vread          = vread_hpet,
793 #endif
794 };
795
796 static int hpet_clocksource_register(void)
797 {
798         u64 start, now;
799         u64 hpet_freq;
800         cycle_t t1;
801
802         /* Start the counter */
803         hpet_restart_counter();
804
805         /* Verify whether hpet counter works */
806         t1 = hpet_readl(HPET_COUNTER);
807         rdtscll(start);
808
809         /*
810          * We don't know the TSC frequency yet, but waiting for
811          * 200000 TSC cycles is safe:
812          * 4 GHz == 50us
813          * 1 GHz == 200us
814          */
815         do {
816                 rep_nop();
817                 rdtscll(now);
818         } while ((now - start) < 200000UL);
819
820         if (t1 == hpet_readl(HPET_COUNTER)) {
821                 printk(KERN_WARNING
822                        "HPET counter not counting. HPET disabled\n");
823                 return -ENODEV;
824         }
825
826         /*
827          * The definition of mult is (include/linux/clocksource.h)
828          * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc
829          * so we first need to convert hpet_period to ns/cyc units:
830          *  mult/2^shift = ns/cyc = hpet_period/10^6
831          *  mult = (hpet_period * 2^shift)/10^6
832          *  mult = (hpet_period << shift)/FSEC_PER_NSEC
833          */
834
835         /* Need to convert hpet_period (fsec/cyc) to cyc/sec:
836          *
837          * cyc/sec = FSEC_PER_SEC/hpet_period(fsec/cyc)
838          * cyc/sec = (FSEC_PER_NSEC * NSEC_PER_SEC)/hpet_period
839          */
840         hpet_freq = FSEC_PER_NSEC * NSEC_PER_SEC;
841         do_div(hpet_freq, hpet_period);
842         clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
843
844         return 0;
845 }
846
847 /**
848  * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
849  */
850 int __init hpet_enable(void)
851 {
852         unsigned int id;
853         int i;
854
855         if (!is_hpet_capable())
856                 return 0;
857
858         hpet_set_mapping();
859
860         /*
861          * Read the period and check for a sane value:
862          */
863         hpet_period = hpet_readl(HPET_PERIOD);
864
865         /*
866          * AMD SB700 based systems with spread spectrum enabled use a
867          * SMM based HPET emulation to provide proper frequency
868          * setting. The SMM code is initialized with the first HPET
869          * register access and takes some time to complete. During
870          * this time the config register reads 0xffffffff. We check
871          * for max. 1000 loops whether the config register reads a non
872          * 0xffffffff value to make sure that HPET is up and running
873          * before we go further. A counting loop is safe, as the HPET
874          * access takes thousands of CPU cycles. On non SB700 based
875          * machines this check is only done once and has no side
876          * effects.
877          */
878         for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
879                 if (i == 1000) {
880                         printk(KERN_WARNING
881                                "HPET config register value = 0xFFFFFFFF. "
882                                "Disabling HPET\n");
883                         goto out_nohpet;
884                 }
885         }
886
887         if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
888                 goto out_nohpet;
889
890         /*
891          * Read the HPET ID register to retrieve the IRQ routing
892          * information and the number of channels
893          */
894         id = hpet_readl(HPET_ID);
895         hpet_print_config();
896
897 #ifdef CONFIG_HPET_EMULATE_RTC
898         /*
899          * The legacy routing mode needs at least two channels, tick timer
900          * and the rtc emulation channel.
901          */
902         if (!(id & HPET_ID_NUMBER))
903                 goto out_nohpet;
904 #endif
905
906         if (hpet_clocksource_register())
907                 goto out_nohpet;
908
909         if (id & HPET_ID_LEGSUP) {
910                 hpet_legacy_clockevent_register();
911                 return 1;
912         }
913         return 0;
914
915 out_nohpet:
916         hpet_clear_mapping();
917         hpet_address = 0;
918         return 0;
919 }
920
921 /*
922  * Needs to be late, as the reserve_timer code calls kalloc !
923  *
924  * Not a problem on i386 as hpet_enable is called from late_time_init,
925  * but on x86_64 it is necessary !
926  */
927 static __init int hpet_late_init(void)
928 {
929         int cpu;
930
931         if (boot_hpet_disable)
932                 return -ENODEV;
933
934         if (!hpet_address) {
935                 if (!force_hpet_address)
936                         return -ENODEV;
937
938                 hpet_address = force_hpet_address;
939                 hpet_enable();
940         }
941
942         if (!hpet_virt_address)
943                 return -ENODEV;
944
945         if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
946                 hpet_msi_capability_lookup(2);
947         else
948                 hpet_msi_capability_lookup(0);
949
950         hpet_reserve_platform_timers(hpet_readl(HPET_ID));
951         hpet_print_config();
952
953         if (hpet_msi_disable)
954                 return 0;
955
956         if (boot_cpu_has(X86_FEATURE_ARAT))
957                 return 0;
958
959         for_each_online_cpu(cpu) {
960                 hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
961         }
962
963         /* This notifier should be called after workqueue is ready */
964         hotcpu_notifier(hpet_cpuhp_notify, -20);
965
966         return 0;
967 }
968 fs_initcall(hpet_late_init);
969
970 void hpet_disable(void)
971 {
972         if (is_hpet_capable() && hpet_virt_address) {
973                 unsigned int cfg = hpet_readl(HPET_CFG);
974
975                 if (hpet_legacy_int_enabled) {
976                         cfg &= ~HPET_CFG_LEGACY;
977                         hpet_legacy_int_enabled = 0;
978                 }
979                 cfg &= ~HPET_CFG_ENABLE;
980                 hpet_writel(cfg, HPET_CFG);
981         }
982 }
983
984 #ifdef CONFIG_HPET_EMULATE_RTC
985
986 /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
987  * is enabled, we support RTC interrupt functionality in software.
988  * RTC has 3 kinds of interrupts:
989  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
990  *    is updated
991  * 2) Alarm Interrupt - generate an interrupt at a specific time of day
992  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
993  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
994  * (1) and (2) above are implemented using polling at a frequency of
995  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
996  * overhead. (DEFAULT_RTC_INT_FREQ)
997  * For (3), we use interrupts at 64Hz or user specified periodic
998  * frequency, whichever is higher.
999  */
1000 #include <linux/mc146818rtc.h>
1001 #include <linux/rtc.h>
1002 #include <asm/rtc.h>
1003
1004 #define DEFAULT_RTC_INT_FREQ    64
1005 #define DEFAULT_RTC_SHIFT       6
1006 #define RTC_NUM_INTS            1
1007
1008 static unsigned long hpet_rtc_flags;
1009 static int hpet_prev_update_sec;
1010 static struct rtc_time hpet_alarm_time;
1011 static unsigned long hpet_pie_count;
1012 static u32 hpet_t1_cmp;
1013 static u32 hpet_default_delta;
1014 static u32 hpet_pie_delta;
1015 static unsigned long hpet_pie_limit;
1016
1017 static rtc_irq_handler irq_handler;
1018
1019 /*
1020  * Check that the hpet counter c1 is ahead of the c2
1021  */
1022 static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1023 {
1024         return (s32)(c2 - c1) < 0;
1025 }
1026
1027 /*
1028  * Registers a IRQ handler.
1029  */
1030 int hpet_register_irq_handler(rtc_irq_handler handler)
1031 {
1032         if (!is_hpet_enabled())
1033                 return -ENODEV;
1034         if (irq_handler)
1035                 return -EBUSY;
1036
1037         irq_handler = handler;
1038
1039         return 0;
1040 }
1041 EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1042
1043 /*
1044  * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1045  * and does cleanup.
1046  */
1047 void hpet_unregister_irq_handler(rtc_irq_handler handler)
1048 {
1049         if (!is_hpet_enabled())
1050                 return;
1051
1052         irq_handler = NULL;
1053         hpet_rtc_flags = 0;
1054 }
1055 EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1056
1057 /*
1058  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1059  * is not supported by all HPET implementations for timer 1.
1060  *
1061  * hpet_rtc_timer_init() is called when the rtc is initialized.
1062  */
1063 int hpet_rtc_timer_init(void)
1064 {
1065         unsigned int cfg, cnt, delta;
1066         unsigned long flags;
1067
1068         if (!is_hpet_enabled())
1069                 return 0;
1070
1071         if (!hpet_default_delta) {
1072                 uint64_t clc;
1073
1074                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1075                 clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1076                 hpet_default_delta = clc;
1077         }
1078
1079         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1080                 delta = hpet_default_delta;
1081         else
1082                 delta = hpet_pie_delta;
1083
1084         local_irq_save(flags);
1085
1086         cnt = delta + hpet_readl(HPET_COUNTER);
1087         hpet_writel(cnt, HPET_T1_CMP);
1088         hpet_t1_cmp = cnt;
1089
1090         cfg = hpet_readl(HPET_T1_CFG);
1091         cfg &= ~HPET_TN_PERIODIC;
1092         cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1093         hpet_writel(cfg, HPET_T1_CFG);
1094
1095         local_irq_restore(flags);
1096
1097         return 1;
1098 }
1099 EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1100
1101 /*
1102  * The functions below are called from rtc driver.
1103  * Return 0 if HPET is not being used.
1104  * Otherwise do the necessary changes and return 1.
1105  */
1106 int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1107 {
1108         if (!is_hpet_enabled())
1109                 return 0;
1110
1111         hpet_rtc_flags &= ~bit_mask;
1112         return 1;
1113 }
1114 EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1115
1116 int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1117 {
1118         unsigned long oldbits = hpet_rtc_flags;
1119
1120         if (!is_hpet_enabled())
1121                 return 0;
1122
1123         hpet_rtc_flags |= bit_mask;
1124
1125         if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1126                 hpet_prev_update_sec = -1;
1127
1128         if (!oldbits)
1129                 hpet_rtc_timer_init();
1130
1131         return 1;
1132 }
1133 EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1134
1135 int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1136                         unsigned char sec)
1137 {
1138         if (!is_hpet_enabled())
1139                 return 0;
1140
1141         hpet_alarm_time.tm_hour = hrs;
1142         hpet_alarm_time.tm_min = min;
1143         hpet_alarm_time.tm_sec = sec;
1144
1145         return 1;
1146 }
1147 EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1148
1149 int hpet_set_periodic_freq(unsigned long freq)
1150 {
1151         uint64_t clc;
1152
1153         if (!is_hpet_enabled())
1154                 return 0;
1155
1156         if (freq <= DEFAULT_RTC_INT_FREQ)
1157                 hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1158         else {
1159                 clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1160                 do_div(clc, freq);
1161                 clc >>= hpet_clockevent.shift;
1162                 hpet_pie_delta = clc;
1163                 hpet_pie_limit = 0;
1164         }
1165         return 1;
1166 }
1167 EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1168
1169 int hpet_rtc_dropped_irq(void)
1170 {
1171         return is_hpet_enabled();
1172 }
1173 EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1174
1175 static void hpet_rtc_timer_reinit(void)
1176 {
1177         unsigned int cfg, delta;
1178         int lost_ints = -1;
1179
1180         if (unlikely(!hpet_rtc_flags)) {
1181                 cfg = hpet_readl(HPET_T1_CFG);
1182                 cfg &= ~HPET_TN_ENABLE;
1183                 hpet_writel(cfg, HPET_T1_CFG);
1184                 return;
1185         }
1186
1187         if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1188                 delta = hpet_default_delta;
1189         else
1190                 delta = hpet_pie_delta;
1191
1192         /*
1193          * Increment the comparator value until we are ahead of the
1194          * current count.
1195          */
1196         do {
1197                 hpet_t1_cmp += delta;
1198                 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1199                 lost_ints++;
1200         } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1201
1202         if (lost_ints) {
1203                 if (hpet_rtc_flags & RTC_PIE)
1204                         hpet_pie_count += lost_ints;
1205                 if (printk_ratelimit())
1206                         printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1207                                 lost_ints);
1208         }
1209 }
1210
1211 irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1212 {
1213         struct rtc_time curr_time;
1214         unsigned long rtc_int_flag = 0;
1215
1216         hpet_rtc_timer_reinit();
1217         memset(&curr_time, 0, sizeof(struct rtc_time));
1218
1219         if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1220                 get_rtc_time(&curr_time);
1221
1222         if (hpet_rtc_flags & RTC_UIE &&
1223             curr_time.tm_sec != hpet_prev_update_sec) {
1224                 if (hpet_prev_update_sec >= 0)
1225                         rtc_int_flag = RTC_UF;
1226                 hpet_prev_update_sec = curr_time.tm_sec;
1227         }
1228
1229         if (hpet_rtc_flags & RTC_PIE &&
1230             ++hpet_pie_count >= hpet_pie_limit) {
1231                 rtc_int_flag |= RTC_PF;
1232                 hpet_pie_count = 0;
1233         }
1234
1235         if (hpet_rtc_flags & RTC_AIE &&
1236             (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1237             (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1238             (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1239                         rtc_int_flag |= RTC_AF;
1240
1241         if (rtc_int_flag) {
1242                 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1243                 if (irq_handler)
1244                         irq_handler(rtc_int_flag, dev_id);
1245         }
1246         return IRQ_HANDLED;
1247 }
1248 EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1249 #endif