perf/x86: Fix event/group validation
[sfrench/cifs-2.6.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
27 #include <linux/device.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
34 #include <asm/mmu_context.h>
35 #include <asm/tlbflush.h>
36 #include <asm/timer.h>
37 #include <asm/desc.h>
38 #include <asm/ldt.h>
39
40 #include "perf_event.h"
41
42 struct x86_pmu x86_pmu __read_mostly;
43
44 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
45         .enabled = 1,
46 };
47
48 struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
49
50 u64 __read_mostly hw_cache_event_ids
51                                 [PERF_COUNT_HW_CACHE_MAX]
52                                 [PERF_COUNT_HW_CACHE_OP_MAX]
53                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
54 u64 __read_mostly hw_cache_extra_regs
55                                 [PERF_COUNT_HW_CACHE_MAX]
56                                 [PERF_COUNT_HW_CACHE_OP_MAX]
57                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58
59 /*
60  * Propagate event elapsed time into the generic event.
61  * Can only be executed on the CPU where the event is active.
62  * Returns the delta events processed.
63  */
64 u64 x86_perf_event_update(struct perf_event *event)
65 {
66         struct hw_perf_event *hwc = &event->hw;
67         int shift = 64 - x86_pmu.cntval_bits;
68         u64 prev_raw_count, new_raw_count;
69         int idx = hwc->idx;
70         s64 delta;
71
72         if (idx == INTEL_PMC_IDX_FIXED_BTS)
73                 return 0;
74
75         /*
76          * Careful: an NMI might modify the previous event value.
77          *
78          * Our tactic to handle this is to first atomically read and
79          * exchange a new raw count - then add that new-prev delta
80          * count to the generic event atomically:
81          */
82 again:
83         prev_raw_count = local64_read(&hwc->prev_count);
84         rdpmcl(hwc->event_base_rdpmc, new_raw_count);
85
86         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
87                                         new_raw_count) != prev_raw_count)
88                 goto again;
89
90         /*
91          * Now we have the new raw value and have updated the prev
92          * timestamp already. We can now calculate the elapsed delta
93          * (event-)time and add that to the generic event.
94          *
95          * Careful, not all hw sign-extends above the physical width
96          * of the count.
97          */
98         delta = (new_raw_count << shift) - (prev_raw_count << shift);
99         delta >>= shift;
100
101         local64_add(delta, &event->count);
102         local64_sub(delta, &hwc->period_left);
103
104         return new_raw_count;
105 }
106
107 /*
108  * Find and validate any extra registers to set up.
109  */
110 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
111 {
112         struct hw_perf_event_extra *reg;
113         struct extra_reg *er;
114
115         reg = &event->hw.extra_reg;
116
117         if (!x86_pmu.extra_regs)
118                 return 0;
119
120         for (er = x86_pmu.extra_regs; er->msr; er++) {
121                 if (er->event != (config & er->config_mask))
122                         continue;
123                 if (event->attr.config1 & ~er->valid_mask)
124                         return -EINVAL;
125                 /* Check if the extra msrs can be safely accessed*/
126                 if (!er->extra_msr_access)
127                         return -ENXIO;
128
129                 reg->idx = er->idx;
130                 reg->config = event->attr.config1;
131                 reg->reg = er->msr;
132                 break;
133         }
134         return 0;
135 }
136
137 static atomic_t active_events;
138 static DEFINE_MUTEX(pmc_reserve_mutex);
139
140 #ifdef CONFIG_X86_LOCAL_APIC
141
142 static bool reserve_pmc_hardware(void)
143 {
144         int i;
145
146         for (i = 0; i < x86_pmu.num_counters; i++) {
147                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
148                         goto perfctr_fail;
149         }
150
151         for (i = 0; i < x86_pmu.num_counters; i++) {
152                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
153                         goto eventsel_fail;
154         }
155
156         return true;
157
158 eventsel_fail:
159         for (i--; i >= 0; i--)
160                 release_evntsel_nmi(x86_pmu_config_addr(i));
161
162         i = x86_pmu.num_counters;
163
164 perfctr_fail:
165         for (i--; i >= 0; i--)
166                 release_perfctr_nmi(x86_pmu_event_addr(i));
167
168         return false;
169 }
170
171 static void release_pmc_hardware(void)
172 {
173         int i;
174
175         for (i = 0; i < x86_pmu.num_counters; i++) {
176                 release_perfctr_nmi(x86_pmu_event_addr(i));
177                 release_evntsel_nmi(x86_pmu_config_addr(i));
178         }
179 }
180
181 #else
182
183 static bool reserve_pmc_hardware(void) { return true; }
184 static void release_pmc_hardware(void) {}
185
186 #endif
187
188 static bool check_hw_exists(void)
189 {
190         u64 val, val_fail, val_new= ~0;
191         int i, reg, reg_fail, ret = 0;
192         int bios_fail = 0;
193
194         /*
195          * Check to see if the BIOS enabled any of the counters, if so
196          * complain and bail.
197          */
198         for (i = 0; i < x86_pmu.num_counters; i++) {
199                 reg = x86_pmu_config_addr(i);
200                 ret = rdmsrl_safe(reg, &val);
201                 if (ret)
202                         goto msr_fail;
203                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
204                         bios_fail = 1;
205                         val_fail = val;
206                         reg_fail = reg;
207                 }
208         }
209
210         if (x86_pmu.num_counters_fixed) {
211                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
212                 ret = rdmsrl_safe(reg, &val);
213                 if (ret)
214                         goto msr_fail;
215                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
216                         if (val & (0x03 << i*4)) {
217                                 bios_fail = 1;
218                                 val_fail = val;
219                                 reg_fail = reg;
220                         }
221                 }
222         }
223
224         /*
225          * Read the current value, change it and read it back to see if it
226          * matches, this is needed to detect certain hardware emulators
227          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
228          */
229         reg = x86_pmu_event_addr(0);
230         if (rdmsrl_safe(reg, &val))
231                 goto msr_fail;
232         val ^= 0xffffUL;
233         ret = wrmsrl_safe(reg, val);
234         ret |= rdmsrl_safe(reg, &val_new);
235         if (ret || val != val_new)
236                 goto msr_fail;
237
238         /*
239          * We still allow the PMU driver to operate:
240          */
241         if (bios_fail) {
242                 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
243                 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
244         }
245
246         return true;
247
248 msr_fail:
249         printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
250         printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
251                 boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
252                 reg, val_new);
253
254         return false;
255 }
256
257 static void hw_perf_event_destroy(struct perf_event *event)
258 {
259         if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
260                 release_pmc_hardware();
261                 release_ds_buffers();
262                 mutex_unlock(&pmc_reserve_mutex);
263         }
264 }
265
266 void hw_perf_lbr_event_destroy(struct perf_event *event)
267 {
268         hw_perf_event_destroy(event);
269
270         /* undo the lbr/bts event accounting */
271         x86_del_exclusive(x86_lbr_exclusive_lbr);
272 }
273
274 static inline int x86_pmu_initialized(void)
275 {
276         return x86_pmu.handle_irq != NULL;
277 }
278
279 static inline int
280 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
281 {
282         struct perf_event_attr *attr = &event->attr;
283         unsigned int cache_type, cache_op, cache_result;
284         u64 config, val;
285
286         config = attr->config;
287
288         cache_type = (config >>  0) & 0xff;
289         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
290                 return -EINVAL;
291
292         cache_op = (config >>  8) & 0xff;
293         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
294                 return -EINVAL;
295
296         cache_result = (config >> 16) & 0xff;
297         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
298                 return -EINVAL;
299
300         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
301
302         if (val == 0)
303                 return -ENOENT;
304
305         if (val == -1)
306                 return -EINVAL;
307
308         hwc->config |= val;
309         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
310         return x86_pmu_extra_regs(val, event);
311 }
312
313 /*
314  * Check if we can create event of a certain type (that no conflicting events
315  * are present).
316  */
317 int x86_add_exclusive(unsigned int what)
318 {
319         int ret = -EBUSY, i;
320
321         if (atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what]))
322                 return 0;
323
324         mutex_lock(&pmc_reserve_mutex);
325         for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++)
326                 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
327                         goto out;
328
329         atomic_inc(&x86_pmu.lbr_exclusive[what]);
330         ret = 0;
331
332 out:
333         mutex_unlock(&pmc_reserve_mutex);
334         return ret;
335 }
336
337 void x86_del_exclusive(unsigned int what)
338 {
339         atomic_dec(&x86_pmu.lbr_exclusive[what]);
340 }
341
342 int x86_setup_perfctr(struct perf_event *event)
343 {
344         struct perf_event_attr *attr = &event->attr;
345         struct hw_perf_event *hwc = &event->hw;
346         u64 config;
347
348         if (!is_sampling_event(event)) {
349                 hwc->sample_period = x86_pmu.max_period;
350                 hwc->last_period = hwc->sample_period;
351                 local64_set(&hwc->period_left, hwc->sample_period);
352         }
353
354         if (attr->type == PERF_TYPE_RAW)
355                 return x86_pmu_extra_regs(event->attr.config, event);
356
357         if (attr->type == PERF_TYPE_HW_CACHE)
358                 return set_ext_hw_attr(hwc, event);
359
360         if (attr->config >= x86_pmu.max_events)
361                 return -EINVAL;
362
363         /*
364          * The generic map:
365          */
366         config = x86_pmu.event_map(attr->config);
367
368         if (config == 0)
369                 return -ENOENT;
370
371         if (config == -1LL)
372                 return -EINVAL;
373
374         /*
375          * Branch tracing:
376          */
377         if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
378             !attr->freq && hwc->sample_period == 1) {
379                 /* BTS is not supported by this architecture. */
380                 if (!x86_pmu.bts_active)
381                         return -EOPNOTSUPP;
382
383                 /* BTS is currently only allowed for user-mode. */
384                 if (!attr->exclude_kernel)
385                         return -EOPNOTSUPP;
386
387                 /* disallow bts if conflicting events are present */
388                 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
389                         return -EBUSY;
390
391                 event->destroy = hw_perf_lbr_event_destroy;
392         }
393
394         hwc->config |= config;
395
396         return 0;
397 }
398
399 /*
400  * check that branch_sample_type is compatible with
401  * settings needed for precise_ip > 1 which implies
402  * using the LBR to capture ALL taken branches at the
403  * priv levels of the measurement
404  */
405 static inline int precise_br_compat(struct perf_event *event)
406 {
407         u64 m = event->attr.branch_sample_type;
408         u64 b = 0;
409
410         /* must capture all branches */
411         if (!(m & PERF_SAMPLE_BRANCH_ANY))
412                 return 0;
413
414         m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
415
416         if (!event->attr.exclude_user)
417                 b |= PERF_SAMPLE_BRANCH_USER;
418
419         if (!event->attr.exclude_kernel)
420                 b |= PERF_SAMPLE_BRANCH_KERNEL;
421
422         /*
423          * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
424          */
425
426         return m == b;
427 }
428
429 int x86_pmu_hw_config(struct perf_event *event)
430 {
431         if (event->attr.precise_ip) {
432                 int precise = 0;
433
434                 /* Support for constant skid */
435                 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
436                         precise++;
437
438                         /* Support for IP fixup */
439                         if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
440                                 precise++;
441                 }
442
443                 if (event->attr.precise_ip > precise)
444                         return -EOPNOTSUPP;
445         }
446         /*
447          * check that PEBS LBR correction does not conflict with
448          * whatever the user is asking with attr->branch_sample_type
449          */
450         if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
451                 u64 *br_type = &event->attr.branch_sample_type;
452
453                 if (has_branch_stack(event)) {
454                         if (!precise_br_compat(event))
455                                 return -EOPNOTSUPP;
456
457                         /* branch_sample_type is compatible */
458
459                 } else {
460                         /*
461                          * user did not specify  branch_sample_type
462                          *
463                          * For PEBS fixups, we capture all
464                          * the branches at the priv level of the
465                          * event.
466                          */
467                         *br_type = PERF_SAMPLE_BRANCH_ANY;
468
469                         if (!event->attr.exclude_user)
470                                 *br_type |= PERF_SAMPLE_BRANCH_USER;
471
472                         if (!event->attr.exclude_kernel)
473                                 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
474                 }
475         }
476
477         if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
478                 event->attach_state |= PERF_ATTACH_TASK_DATA;
479
480         /*
481          * Generate PMC IRQs:
482          * (keep 'enabled' bit clear for now)
483          */
484         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
485
486         /*
487          * Count user and OS events unless requested not to
488          */
489         if (!event->attr.exclude_user)
490                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
491         if (!event->attr.exclude_kernel)
492                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
493
494         if (event->attr.type == PERF_TYPE_RAW)
495                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
496
497         if (event->attr.sample_period && x86_pmu.limit_period) {
498                 if (x86_pmu.limit_period(event, event->attr.sample_period) >
499                                 event->attr.sample_period)
500                         return -EINVAL;
501         }
502
503         return x86_setup_perfctr(event);
504 }
505
506 /*
507  * Setup the hardware configuration for a given attr_type
508  */
509 static int __x86_pmu_event_init(struct perf_event *event)
510 {
511         int err;
512
513         if (!x86_pmu_initialized())
514                 return -ENODEV;
515
516         err = 0;
517         if (!atomic_inc_not_zero(&active_events)) {
518                 mutex_lock(&pmc_reserve_mutex);
519                 if (atomic_read(&active_events) == 0) {
520                         if (!reserve_pmc_hardware())
521                                 err = -EBUSY;
522                         else
523                                 reserve_ds_buffers();
524                 }
525                 if (!err)
526                         atomic_inc(&active_events);
527                 mutex_unlock(&pmc_reserve_mutex);
528         }
529         if (err)
530                 return err;
531
532         event->destroy = hw_perf_event_destroy;
533
534         event->hw.idx = -1;
535         event->hw.last_cpu = -1;
536         event->hw.last_tag = ~0ULL;
537
538         /* mark unused */
539         event->hw.extra_reg.idx = EXTRA_REG_NONE;
540         event->hw.branch_reg.idx = EXTRA_REG_NONE;
541
542         return x86_pmu.hw_config(event);
543 }
544
545 void x86_pmu_disable_all(void)
546 {
547         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
548         int idx;
549
550         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
551                 u64 val;
552
553                 if (!test_bit(idx, cpuc->active_mask))
554                         continue;
555                 rdmsrl(x86_pmu_config_addr(idx), val);
556                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
557                         continue;
558                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
559                 wrmsrl(x86_pmu_config_addr(idx), val);
560         }
561 }
562
563 static void x86_pmu_disable(struct pmu *pmu)
564 {
565         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
566
567         if (!x86_pmu_initialized())
568                 return;
569
570         if (!cpuc->enabled)
571                 return;
572
573         cpuc->n_added = 0;
574         cpuc->enabled = 0;
575         barrier();
576
577         x86_pmu.disable_all();
578 }
579
580 void x86_pmu_enable_all(int added)
581 {
582         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
583         int idx;
584
585         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
586                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
587
588                 if (!test_bit(idx, cpuc->active_mask))
589                         continue;
590
591                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
592         }
593 }
594
595 static struct pmu pmu;
596
597 static inline int is_x86_event(struct perf_event *event)
598 {
599         return event->pmu == &pmu;
600 }
601
602 /*
603  * Event scheduler state:
604  *
605  * Assign events iterating over all events and counters, beginning
606  * with events with least weights first. Keep the current iterator
607  * state in struct sched_state.
608  */
609 struct sched_state {
610         int     weight;
611         int     event;          /* event index */
612         int     counter;        /* counter index */
613         int     unassigned;     /* number of events to be assigned left */
614         unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
615 };
616
617 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
618 #define SCHED_STATES_MAX        2
619
620 struct perf_sched {
621         int                     max_weight;
622         int                     max_events;
623         struct event_constraint **constraints;
624         struct sched_state      state;
625         int                     saved_states;
626         struct sched_state      saved[SCHED_STATES_MAX];
627 };
628
629 /*
630  * Initialize interator that runs through all events and counters.
631  */
632 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
633                             int num, int wmin, int wmax)
634 {
635         int idx;
636
637         memset(sched, 0, sizeof(*sched));
638         sched->max_events       = num;
639         sched->max_weight       = wmax;
640         sched->constraints      = constraints;
641
642         for (idx = 0; idx < num; idx++) {
643                 if (constraints[idx]->weight == wmin)
644                         break;
645         }
646
647         sched->state.event      = idx;          /* start with min weight */
648         sched->state.weight     = wmin;
649         sched->state.unassigned = num;
650 }
651
652 static void perf_sched_save_state(struct perf_sched *sched)
653 {
654         if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
655                 return;
656
657         sched->saved[sched->saved_states] = sched->state;
658         sched->saved_states++;
659 }
660
661 static bool perf_sched_restore_state(struct perf_sched *sched)
662 {
663         if (!sched->saved_states)
664                 return false;
665
666         sched->saved_states--;
667         sched->state = sched->saved[sched->saved_states];
668
669         /* continue with next counter: */
670         clear_bit(sched->state.counter++, sched->state.used);
671
672         return true;
673 }
674
675 /*
676  * Select a counter for the current event to schedule. Return true on
677  * success.
678  */
679 static bool __perf_sched_find_counter(struct perf_sched *sched)
680 {
681         struct event_constraint *c;
682         int idx;
683
684         if (!sched->state.unassigned)
685                 return false;
686
687         if (sched->state.event >= sched->max_events)
688                 return false;
689
690         c = sched->constraints[sched->state.event];
691         /* Prefer fixed purpose counters */
692         if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
693                 idx = INTEL_PMC_IDX_FIXED;
694                 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
695                         if (!__test_and_set_bit(idx, sched->state.used))
696                                 goto done;
697                 }
698         }
699         /* Grab the first unused counter starting with idx */
700         idx = sched->state.counter;
701         for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
702                 if (!__test_and_set_bit(idx, sched->state.used))
703                         goto done;
704         }
705
706         return false;
707
708 done:
709         sched->state.counter = idx;
710
711         if (c->overlap)
712                 perf_sched_save_state(sched);
713
714         return true;
715 }
716
717 static bool perf_sched_find_counter(struct perf_sched *sched)
718 {
719         while (!__perf_sched_find_counter(sched)) {
720                 if (!perf_sched_restore_state(sched))
721                         return false;
722         }
723
724         return true;
725 }
726
727 /*
728  * Go through all unassigned events and find the next one to schedule.
729  * Take events with the least weight first. Return true on success.
730  */
731 static bool perf_sched_next_event(struct perf_sched *sched)
732 {
733         struct event_constraint *c;
734
735         if (!sched->state.unassigned || !--sched->state.unassigned)
736                 return false;
737
738         do {
739                 /* next event */
740                 sched->state.event++;
741                 if (sched->state.event >= sched->max_events) {
742                         /* next weight */
743                         sched->state.event = 0;
744                         sched->state.weight++;
745                         if (sched->state.weight > sched->max_weight)
746                                 return false;
747                 }
748                 c = sched->constraints[sched->state.event];
749         } while (c->weight != sched->state.weight);
750
751         sched->state.counter = 0;       /* start with first counter */
752
753         return true;
754 }
755
756 /*
757  * Assign a counter for each event.
758  */
759 int perf_assign_events(struct event_constraint **constraints, int n,
760                         int wmin, int wmax, int *assign)
761 {
762         struct perf_sched sched;
763
764         perf_sched_init(&sched, constraints, n, wmin, wmax);
765
766         do {
767                 if (!perf_sched_find_counter(&sched))
768                         break;  /* failed */
769                 if (assign)
770                         assign[sched.state.event] = sched.state.counter;
771         } while (perf_sched_next_event(&sched));
772
773         return sched.state.unassigned;
774 }
775 EXPORT_SYMBOL_GPL(perf_assign_events);
776
777 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
778 {
779         struct event_constraint *c;
780         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
781         struct perf_event *e;
782         int i, wmin, wmax, unsched = 0;
783         struct hw_perf_event *hwc;
784
785         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
786
787         if (x86_pmu.start_scheduling)
788                 x86_pmu.start_scheduling(cpuc);
789
790         for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
791                 cpuc->event_constraint[i] = NULL;
792                 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
793                 cpuc->event_constraint[i] = c;
794
795                 wmin = min(wmin, c->weight);
796                 wmax = max(wmax, c->weight);
797         }
798
799         /*
800          * fastpath, try to reuse previous register
801          */
802         for (i = 0; i < n; i++) {
803                 hwc = &cpuc->event_list[i]->hw;
804                 c = cpuc->event_constraint[i];
805
806                 /* never assigned */
807                 if (hwc->idx == -1)
808                         break;
809
810                 /* constraint still honored */
811                 if (!test_bit(hwc->idx, c->idxmsk))
812                         break;
813
814                 /* not already used */
815                 if (test_bit(hwc->idx, used_mask))
816                         break;
817
818                 __set_bit(hwc->idx, used_mask);
819                 if (assign)
820                         assign[i] = hwc->idx;
821         }
822
823         /* slow path */
824         if (i != n) {
825                 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
826                                              wmax, assign);
827         }
828
829         /*
830          * In case of success (unsched = 0), mark events as committed,
831          * so we do not put_constraint() in case new events are added
832          * and fail to be scheduled
833          *
834          * We invoke the lower level commit callback to lock the resource
835          *
836          * We do not need to do all of this in case we are called to
837          * validate an event group (assign == NULL)
838          */
839         if (!unsched && assign) {
840                 for (i = 0; i < n; i++) {
841                         e = cpuc->event_list[i];
842                         e->hw.flags |= PERF_X86_EVENT_COMMITTED;
843                         if (x86_pmu.commit_scheduling)
844                                 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
845                 }
846         }
847
848         if (!assign || unsched) {
849
850                 for (i = 0; i < n; i++) {
851                         e = cpuc->event_list[i];
852                         /*
853                          * do not put_constraint() on comitted events,
854                          * because they are good to go
855                          */
856                         if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
857                                 continue;
858
859                         /*
860                          * release events that failed scheduling
861                          */
862                         if (x86_pmu.put_event_constraints)
863                                 x86_pmu.put_event_constraints(cpuc, e);
864                 }
865         }
866
867         if (x86_pmu.stop_scheduling)
868                 x86_pmu.stop_scheduling(cpuc);
869
870         return unsched ? -EINVAL : 0;
871 }
872
873 /*
874  * dogrp: true if must collect siblings events (group)
875  * returns total number of events and error code
876  */
877 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
878 {
879         struct perf_event *event;
880         int n, max_count;
881
882         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
883
884         /* current number of events already accepted */
885         n = cpuc->n_events;
886
887         if (is_x86_event(leader)) {
888                 if (n >= max_count)
889                         return -EINVAL;
890                 cpuc->event_list[n] = leader;
891                 n++;
892         }
893         if (!dogrp)
894                 return n;
895
896         list_for_each_entry(event, &leader->sibling_list, group_entry) {
897                 if (!is_x86_event(event) ||
898                     event->state <= PERF_EVENT_STATE_OFF)
899                         continue;
900
901                 if (n >= max_count)
902                         return -EINVAL;
903
904                 cpuc->event_list[n] = event;
905                 n++;
906         }
907         return n;
908 }
909
910 static inline void x86_assign_hw_event(struct perf_event *event,
911                                 struct cpu_hw_events *cpuc, int i)
912 {
913         struct hw_perf_event *hwc = &event->hw;
914
915         hwc->idx = cpuc->assign[i];
916         hwc->last_cpu = smp_processor_id();
917         hwc->last_tag = ++cpuc->tags[i];
918
919         if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
920                 hwc->config_base = 0;
921                 hwc->event_base = 0;
922         } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
923                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
924                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
925                 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
926         } else {
927                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
928                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
929                 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
930         }
931 }
932
933 static inline int match_prev_assignment(struct hw_perf_event *hwc,
934                                         struct cpu_hw_events *cpuc,
935                                         int i)
936 {
937         return hwc->idx == cpuc->assign[i] &&
938                 hwc->last_cpu == smp_processor_id() &&
939                 hwc->last_tag == cpuc->tags[i];
940 }
941
942 static void x86_pmu_start(struct perf_event *event, int flags);
943
944 static void x86_pmu_enable(struct pmu *pmu)
945 {
946         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
947         struct perf_event *event;
948         struct hw_perf_event *hwc;
949         int i, added = cpuc->n_added;
950
951         if (!x86_pmu_initialized())
952                 return;
953
954         if (cpuc->enabled)
955                 return;
956
957         if (cpuc->n_added) {
958                 int n_running = cpuc->n_events - cpuc->n_added;
959                 /*
960                  * apply assignment obtained either from
961                  * hw_perf_group_sched_in() or x86_pmu_enable()
962                  *
963                  * step1: save events moving to new counters
964                  */
965                 for (i = 0; i < n_running; i++) {
966                         event = cpuc->event_list[i];
967                         hwc = &event->hw;
968
969                         /*
970                          * we can avoid reprogramming counter if:
971                          * - assigned same counter as last time
972                          * - running on same CPU as last time
973                          * - no other event has used the counter since
974                          */
975                         if (hwc->idx == -1 ||
976                             match_prev_assignment(hwc, cpuc, i))
977                                 continue;
978
979                         /*
980                          * Ensure we don't accidentally enable a stopped
981                          * counter simply because we rescheduled.
982                          */
983                         if (hwc->state & PERF_HES_STOPPED)
984                                 hwc->state |= PERF_HES_ARCH;
985
986                         x86_pmu_stop(event, PERF_EF_UPDATE);
987                 }
988
989                 /*
990                  * step2: reprogram moved events into new counters
991                  */
992                 for (i = 0; i < cpuc->n_events; i++) {
993                         event = cpuc->event_list[i];
994                         hwc = &event->hw;
995
996                         if (!match_prev_assignment(hwc, cpuc, i))
997                                 x86_assign_hw_event(event, cpuc, i);
998                         else if (i < n_running)
999                                 continue;
1000
1001                         if (hwc->state & PERF_HES_ARCH)
1002                                 continue;
1003
1004                         x86_pmu_start(event, PERF_EF_RELOAD);
1005                 }
1006                 cpuc->n_added = 0;
1007                 perf_events_lapic_init();
1008         }
1009
1010         cpuc->enabled = 1;
1011         barrier();
1012
1013         x86_pmu.enable_all(added);
1014 }
1015
1016 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1017
1018 /*
1019  * Set the next IRQ period, based on the hwc->period_left value.
1020  * To be called with the event disabled in hw:
1021  */
1022 int x86_perf_event_set_period(struct perf_event *event)
1023 {
1024         struct hw_perf_event *hwc = &event->hw;
1025         s64 left = local64_read(&hwc->period_left);
1026         s64 period = hwc->sample_period;
1027         int ret = 0, idx = hwc->idx;
1028
1029         if (idx == INTEL_PMC_IDX_FIXED_BTS)
1030                 return 0;
1031
1032         /*
1033          * If we are way outside a reasonable range then just skip forward:
1034          */
1035         if (unlikely(left <= -period)) {
1036                 left = period;
1037                 local64_set(&hwc->period_left, left);
1038                 hwc->last_period = period;
1039                 ret = 1;
1040         }
1041
1042         if (unlikely(left <= 0)) {
1043                 left += period;
1044                 local64_set(&hwc->period_left, left);
1045                 hwc->last_period = period;
1046                 ret = 1;
1047         }
1048         /*
1049          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1050          */
1051         if (unlikely(left < 2))
1052                 left = 2;
1053
1054         if (left > x86_pmu.max_period)
1055                 left = x86_pmu.max_period;
1056
1057         if (x86_pmu.limit_period)
1058                 left = x86_pmu.limit_period(event, left);
1059
1060         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1061
1062         /*
1063          * The hw event starts counting from this event offset,
1064          * mark it to be able to extra future deltas:
1065          */
1066         local64_set(&hwc->prev_count, (u64)-left);
1067
1068         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1069
1070         /*
1071          * Due to erratum on certan cpu we need
1072          * a second write to be sure the register
1073          * is updated properly
1074          */
1075         if (x86_pmu.perfctr_second_write) {
1076                 wrmsrl(hwc->event_base,
1077                         (u64)(-left) & x86_pmu.cntval_mask);
1078         }
1079
1080         perf_event_update_userpage(event);
1081
1082         return ret;
1083 }
1084
1085 void x86_pmu_enable_event(struct perf_event *event)
1086 {
1087         if (__this_cpu_read(cpu_hw_events.enabled))
1088                 __x86_pmu_enable_event(&event->hw,
1089                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1090 }
1091
1092 /*
1093  * Add a single event to the PMU.
1094  *
1095  * The event is added to the group of enabled events
1096  * but only if it can be scehduled with existing events.
1097  */
1098 static int x86_pmu_add(struct perf_event *event, int flags)
1099 {
1100         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1101         struct hw_perf_event *hwc;
1102         int assign[X86_PMC_IDX_MAX];
1103         int n, n0, ret;
1104
1105         hwc = &event->hw;
1106
1107         n0 = cpuc->n_events;
1108         ret = n = collect_events(cpuc, event, false);
1109         if (ret < 0)
1110                 goto out;
1111
1112         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1113         if (!(flags & PERF_EF_START))
1114                 hwc->state |= PERF_HES_ARCH;
1115
1116         /*
1117          * If group events scheduling transaction was started,
1118          * skip the schedulability test here, it will be performed
1119          * at commit time (->commit_txn) as a whole.
1120          */
1121         if (cpuc->group_flag & PERF_EVENT_TXN)
1122                 goto done_collect;
1123
1124         ret = x86_pmu.schedule_events(cpuc, n, assign);
1125         if (ret)
1126                 goto out;
1127         /*
1128          * copy new assignment, now we know it is possible
1129          * will be used by hw_perf_enable()
1130          */
1131         memcpy(cpuc->assign, assign, n*sizeof(int));
1132
1133 done_collect:
1134         /*
1135          * Commit the collect_events() state. See x86_pmu_del() and
1136          * x86_pmu_*_txn().
1137          */
1138         cpuc->n_events = n;
1139         cpuc->n_added += n - n0;
1140         cpuc->n_txn += n - n0;
1141
1142         ret = 0;
1143 out:
1144         return ret;
1145 }
1146
1147 static void x86_pmu_start(struct perf_event *event, int flags)
1148 {
1149         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1150         int idx = event->hw.idx;
1151
1152         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1153                 return;
1154
1155         if (WARN_ON_ONCE(idx == -1))
1156                 return;
1157
1158         if (flags & PERF_EF_RELOAD) {
1159                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1160                 x86_perf_event_set_period(event);
1161         }
1162
1163         event->hw.state = 0;
1164
1165         cpuc->events[idx] = event;
1166         __set_bit(idx, cpuc->active_mask);
1167         __set_bit(idx, cpuc->running);
1168         x86_pmu.enable(event);
1169         perf_event_update_userpage(event);
1170 }
1171
1172 void perf_event_print_debug(void)
1173 {
1174         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1175         u64 pebs, debugctl;
1176         struct cpu_hw_events *cpuc;
1177         unsigned long flags;
1178         int cpu, idx;
1179
1180         if (!x86_pmu.num_counters)
1181                 return;
1182
1183         local_irq_save(flags);
1184
1185         cpu = smp_processor_id();
1186         cpuc = &per_cpu(cpu_hw_events, cpu);
1187
1188         if (x86_pmu.version >= 2) {
1189                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1190                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1191                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1192                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1193
1194                 pr_info("\n");
1195                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1196                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1197                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1198                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1199                 if (x86_pmu.pebs_constraints) {
1200                         rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1201                         pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1202                 }
1203                 if (x86_pmu.lbr_nr) {
1204                         rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1205                         pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1206                 }
1207         }
1208         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1209
1210         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1211                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1212                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1213
1214                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1215
1216                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1217                         cpu, idx, pmc_ctrl);
1218                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1219                         cpu, idx, pmc_count);
1220                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1221                         cpu, idx, prev_left);
1222         }
1223         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1224                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1225
1226                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1227                         cpu, idx, pmc_count);
1228         }
1229         local_irq_restore(flags);
1230 }
1231
1232 void x86_pmu_stop(struct perf_event *event, int flags)
1233 {
1234         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1235         struct hw_perf_event *hwc = &event->hw;
1236
1237         if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1238                 x86_pmu.disable(event);
1239                 cpuc->events[hwc->idx] = NULL;
1240                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1241                 hwc->state |= PERF_HES_STOPPED;
1242         }
1243
1244         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1245                 /*
1246                  * Drain the remaining delta count out of a event
1247                  * that we are disabling:
1248                  */
1249                 x86_perf_event_update(event);
1250                 hwc->state |= PERF_HES_UPTODATE;
1251         }
1252 }
1253
1254 static void x86_pmu_del(struct perf_event *event, int flags)
1255 {
1256         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1257         int i;
1258
1259         /*
1260          * event is descheduled
1261          */
1262         event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1263
1264         /*
1265          * If we're called during a txn, we don't need to do anything.
1266          * The events never got scheduled and ->cancel_txn will truncate
1267          * the event_list.
1268          *
1269          * XXX assumes any ->del() called during a TXN will only be on
1270          * an event added during that same TXN.
1271          */
1272         if (cpuc->group_flag & PERF_EVENT_TXN)
1273                 return;
1274
1275         /*
1276          * Not a TXN, therefore cleanup properly.
1277          */
1278         x86_pmu_stop(event, PERF_EF_UPDATE);
1279
1280         for (i = 0; i < cpuc->n_events; i++) {
1281                 if (event == cpuc->event_list[i])
1282                         break;
1283         }
1284
1285         if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1286                 return;
1287
1288         /* If we have a newly added event; make sure to decrease n_added. */
1289         if (i >= cpuc->n_events - cpuc->n_added)
1290                 --cpuc->n_added;
1291
1292         if (x86_pmu.put_event_constraints)
1293                 x86_pmu.put_event_constraints(cpuc, event);
1294
1295         /* Delete the array entry. */
1296         while (++i < cpuc->n_events) {
1297                 cpuc->event_list[i-1] = cpuc->event_list[i];
1298                 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1299         }
1300         --cpuc->n_events;
1301
1302         perf_event_update_userpage(event);
1303 }
1304
1305 int x86_pmu_handle_irq(struct pt_regs *regs)
1306 {
1307         struct perf_sample_data data;
1308         struct cpu_hw_events *cpuc;
1309         struct perf_event *event;
1310         int idx, handled = 0;
1311         u64 val;
1312
1313         cpuc = this_cpu_ptr(&cpu_hw_events);
1314
1315         /*
1316          * Some chipsets need to unmask the LVTPC in a particular spot
1317          * inside the nmi handler.  As a result, the unmasking was pushed
1318          * into all the nmi handlers.
1319          *
1320          * This generic handler doesn't seem to have any issues where the
1321          * unmasking occurs so it was left at the top.
1322          */
1323         apic_write(APIC_LVTPC, APIC_DM_NMI);
1324
1325         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1326                 if (!test_bit(idx, cpuc->active_mask)) {
1327                         /*
1328                          * Though we deactivated the counter some cpus
1329                          * might still deliver spurious interrupts still
1330                          * in flight. Catch them:
1331                          */
1332                         if (__test_and_clear_bit(idx, cpuc->running))
1333                                 handled++;
1334                         continue;
1335                 }
1336
1337                 event = cpuc->events[idx];
1338
1339                 val = x86_perf_event_update(event);
1340                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1341                         continue;
1342
1343                 /*
1344                  * event overflow
1345                  */
1346                 handled++;
1347                 perf_sample_data_init(&data, 0, event->hw.last_period);
1348
1349                 if (!x86_perf_event_set_period(event))
1350                         continue;
1351
1352                 if (perf_event_overflow(event, &data, regs))
1353                         x86_pmu_stop(event, 0);
1354         }
1355
1356         if (handled)
1357                 inc_irq_stat(apic_perf_irqs);
1358
1359         return handled;
1360 }
1361
1362 void perf_events_lapic_init(void)
1363 {
1364         if (!x86_pmu.apic || !x86_pmu_initialized())
1365                 return;
1366
1367         /*
1368          * Always use NMI for PMU
1369          */
1370         apic_write(APIC_LVTPC, APIC_DM_NMI);
1371 }
1372
1373 static int
1374 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1375 {
1376         u64 start_clock;
1377         u64 finish_clock;
1378         int ret;
1379
1380         if (!atomic_read(&active_events))
1381                 return NMI_DONE;
1382
1383         start_clock = sched_clock();
1384         ret = x86_pmu.handle_irq(regs);
1385         finish_clock = sched_clock();
1386
1387         perf_sample_event_took(finish_clock - start_clock);
1388
1389         return ret;
1390 }
1391 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1392
1393 struct event_constraint emptyconstraint;
1394 struct event_constraint unconstrained;
1395
1396 static int
1397 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1398 {
1399         unsigned int cpu = (long)hcpu;
1400         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1401         int i, ret = NOTIFY_OK;
1402
1403         switch (action & ~CPU_TASKS_FROZEN) {
1404         case CPU_UP_PREPARE:
1405                 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1406                         cpuc->kfree_on_online[i] = NULL;
1407                 if (x86_pmu.cpu_prepare)
1408                         ret = x86_pmu.cpu_prepare(cpu);
1409                 break;
1410
1411         case CPU_STARTING:
1412                 if (x86_pmu.cpu_starting)
1413                         x86_pmu.cpu_starting(cpu);
1414                 break;
1415
1416         case CPU_ONLINE:
1417                 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1418                         kfree(cpuc->kfree_on_online[i]);
1419                         cpuc->kfree_on_online[i] = NULL;
1420                 }
1421                 break;
1422
1423         case CPU_DYING:
1424                 if (x86_pmu.cpu_dying)
1425                         x86_pmu.cpu_dying(cpu);
1426                 break;
1427
1428         case CPU_UP_CANCELED:
1429         case CPU_DEAD:
1430                 if (x86_pmu.cpu_dead)
1431                         x86_pmu.cpu_dead(cpu);
1432                 break;
1433
1434         default:
1435                 break;
1436         }
1437
1438         return ret;
1439 }
1440
1441 static void __init pmu_check_apic(void)
1442 {
1443         if (cpu_has_apic)
1444                 return;
1445
1446         x86_pmu.apic = 0;
1447         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1448         pr_info("no hardware sampling interrupt available.\n");
1449
1450         /*
1451          * If we have a PMU initialized but no APIC
1452          * interrupts, we cannot sample hardware
1453          * events (user-space has to fall back and
1454          * sample via a hrtimer based software event):
1455          */
1456         pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1457
1458 }
1459
1460 static struct attribute_group x86_pmu_format_group = {
1461         .name = "format",
1462         .attrs = NULL,
1463 };
1464
1465 /*
1466  * Remove all undefined events (x86_pmu.event_map(id) == 0)
1467  * out of events_attr attributes.
1468  */
1469 static void __init filter_events(struct attribute **attrs)
1470 {
1471         struct device_attribute *d;
1472         struct perf_pmu_events_attr *pmu_attr;
1473         int i, j;
1474
1475         for (i = 0; attrs[i]; i++) {
1476                 d = (struct device_attribute *)attrs[i];
1477                 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1478                 /* str trumps id */
1479                 if (pmu_attr->event_str)
1480                         continue;
1481                 if (x86_pmu.event_map(i))
1482                         continue;
1483
1484                 for (j = i; attrs[j]; j++)
1485                         attrs[j] = attrs[j + 1];
1486
1487                 /* Check the shifted attr. */
1488                 i--;
1489         }
1490 }
1491
1492 /* Merge two pointer arrays */
1493 static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1494 {
1495         struct attribute **new;
1496         int j, i;
1497
1498         for (j = 0; a[j]; j++)
1499                 ;
1500         for (i = 0; b[i]; i++)
1501                 j++;
1502         j++;
1503
1504         new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1505         if (!new)
1506                 return NULL;
1507
1508         j = 0;
1509         for (i = 0; a[i]; i++)
1510                 new[j++] = a[i];
1511         for (i = 0; b[i]; i++)
1512                 new[j++] = b[i];
1513         new[j] = NULL;
1514
1515         return new;
1516 }
1517
1518 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
1519                           char *page)
1520 {
1521         struct perf_pmu_events_attr *pmu_attr = \
1522                 container_of(attr, struct perf_pmu_events_attr, attr);
1523         u64 config = x86_pmu.event_map(pmu_attr->id);
1524
1525         /* string trumps id */
1526         if (pmu_attr->event_str)
1527                 return sprintf(page, "%s", pmu_attr->event_str);
1528
1529         return x86_pmu.events_sysfs_show(page, config);
1530 }
1531
1532 EVENT_ATTR(cpu-cycles,                  CPU_CYCLES              );
1533 EVENT_ATTR(instructions,                INSTRUCTIONS            );
1534 EVENT_ATTR(cache-references,            CACHE_REFERENCES        );
1535 EVENT_ATTR(cache-misses,                CACHE_MISSES            );
1536 EVENT_ATTR(branch-instructions,         BRANCH_INSTRUCTIONS     );
1537 EVENT_ATTR(branch-misses,               BRANCH_MISSES           );
1538 EVENT_ATTR(bus-cycles,                  BUS_CYCLES              );
1539 EVENT_ATTR(stalled-cycles-frontend,     STALLED_CYCLES_FRONTEND );
1540 EVENT_ATTR(stalled-cycles-backend,      STALLED_CYCLES_BACKEND  );
1541 EVENT_ATTR(ref-cycles,                  REF_CPU_CYCLES          );
1542
1543 static struct attribute *empty_attrs;
1544
1545 static struct attribute *events_attr[] = {
1546         EVENT_PTR(CPU_CYCLES),
1547         EVENT_PTR(INSTRUCTIONS),
1548         EVENT_PTR(CACHE_REFERENCES),
1549         EVENT_PTR(CACHE_MISSES),
1550         EVENT_PTR(BRANCH_INSTRUCTIONS),
1551         EVENT_PTR(BRANCH_MISSES),
1552         EVENT_PTR(BUS_CYCLES),
1553         EVENT_PTR(STALLED_CYCLES_FRONTEND),
1554         EVENT_PTR(STALLED_CYCLES_BACKEND),
1555         EVENT_PTR(REF_CPU_CYCLES),
1556         NULL,
1557 };
1558
1559 static struct attribute_group x86_pmu_events_group = {
1560         .name = "events",
1561         .attrs = events_attr,
1562 };
1563
1564 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1565 {
1566         u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1567         u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1568         bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1569         bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1570         bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1571         bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1572         ssize_t ret;
1573
1574         /*
1575         * We have whole page size to spend and just little data
1576         * to write, so we can safely use sprintf.
1577         */
1578         ret = sprintf(page, "event=0x%02llx", event);
1579
1580         if (umask)
1581                 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1582
1583         if (edge)
1584                 ret += sprintf(page + ret, ",edge");
1585
1586         if (pc)
1587                 ret += sprintf(page + ret, ",pc");
1588
1589         if (any)
1590                 ret += sprintf(page + ret, ",any");
1591
1592         if (inv)
1593                 ret += sprintf(page + ret, ",inv");
1594
1595         if (cmask)
1596                 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1597
1598         ret += sprintf(page + ret, "\n");
1599
1600         return ret;
1601 }
1602
1603 static int __init init_hw_perf_events(void)
1604 {
1605         struct x86_pmu_quirk *quirk;
1606         int err;
1607
1608         pr_info("Performance Events: ");
1609
1610         switch (boot_cpu_data.x86_vendor) {
1611         case X86_VENDOR_INTEL:
1612                 err = intel_pmu_init();
1613                 break;
1614         case X86_VENDOR_AMD:
1615                 err = amd_pmu_init();
1616                 break;
1617         default:
1618                 err = -ENOTSUPP;
1619         }
1620         if (err != 0) {
1621                 pr_cont("no PMU driver, software events only.\n");
1622                 return 0;
1623         }
1624
1625         pmu_check_apic();
1626
1627         /* sanity check that the hardware exists or is emulated */
1628         if (!check_hw_exists())
1629                 return 0;
1630
1631         pr_cont("%s PMU driver.\n", x86_pmu.name);
1632
1633         x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1634
1635         for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1636                 quirk->func();
1637
1638         if (!x86_pmu.intel_ctrl)
1639                 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1640
1641         perf_events_lapic_init();
1642         register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1643
1644         unconstrained = (struct event_constraint)
1645                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1646                                    0, x86_pmu.num_counters, 0, 0);
1647
1648         x86_pmu_format_group.attrs = x86_pmu.format_attrs;
1649
1650         if (x86_pmu.event_attrs)
1651                 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1652
1653         if (!x86_pmu.events_sysfs_show)
1654                 x86_pmu_events_group.attrs = &empty_attrs;
1655         else
1656                 filter_events(x86_pmu_events_group.attrs);
1657
1658         if (x86_pmu.cpu_events) {
1659                 struct attribute **tmp;
1660
1661                 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1662                 if (!WARN_ON(!tmp))
1663                         x86_pmu_events_group.attrs = tmp;
1664         }
1665
1666         pr_info("... version:                %d\n",     x86_pmu.version);
1667         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1668         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1669         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1670         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1671         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1672         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1673
1674         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1675         perf_cpu_notifier(x86_pmu_notifier);
1676
1677         return 0;
1678 }
1679 early_initcall(init_hw_perf_events);
1680
1681 static inline void x86_pmu_read(struct perf_event *event)
1682 {
1683         x86_perf_event_update(event);
1684 }
1685
1686 /*
1687  * Start group events scheduling transaction
1688  * Set the flag to make pmu::enable() not perform the
1689  * schedulability test, it will be performed at commit time
1690  */
1691 static void x86_pmu_start_txn(struct pmu *pmu)
1692 {
1693         perf_pmu_disable(pmu);
1694         __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1695         __this_cpu_write(cpu_hw_events.n_txn, 0);
1696 }
1697
1698 /*
1699  * Stop group events scheduling transaction
1700  * Clear the flag and pmu::enable() will perform the
1701  * schedulability test.
1702  */
1703 static void x86_pmu_cancel_txn(struct pmu *pmu)
1704 {
1705         __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1706         /*
1707          * Truncate collected array by the number of events added in this
1708          * transaction. See x86_pmu_add() and x86_pmu_*_txn().
1709          */
1710         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1711         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1712         perf_pmu_enable(pmu);
1713 }
1714
1715 /*
1716  * Commit group events scheduling transaction
1717  * Perform the group schedulability test as a whole
1718  * Return 0 if success
1719  *
1720  * Does not cancel the transaction on failure; expects the caller to do this.
1721  */
1722 static int x86_pmu_commit_txn(struct pmu *pmu)
1723 {
1724         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1725         int assign[X86_PMC_IDX_MAX];
1726         int n, ret;
1727
1728         n = cpuc->n_events;
1729
1730         if (!x86_pmu_initialized())
1731                 return -EAGAIN;
1732
1733         ret = x86_pmu.schedule_events(cpuc, n, assign);
1734         if (ret)
1735                 return ret;
1736
1737         /*
1738          * copy new assignment, now we know it is possible
1739          * will be used by hw_perf_enable()
1740          */
1741         memcpy(cpuc->assign, assign, n*sizeof(int));
1742
1743         cpuc->group_flag &= ~PERF_EVENT_TXN;
1744         perf_pmu_enable(pmu);
1745         return 0;
1746 }
1747 /*
1748  * a fake_cpuc is used to validate event groups. Due to
1749  * the extra reg logic, we need to also allocate a fake
1750  * per_core and per_cpu structure. Otherwise, group events
1751  * using extra reg may conflict without the kernel being
1752  * able to catch this when the last event gets added to
1753  * the group.
1754  */
1755 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1756 {
1757         kfree(cpuc->shared_regs);
1758         kfree(cpuc);
1759 }
1760
1761 static struct cpu_hw_events *allocate_fake_cpuc(void)
1762 {
1763         struct cpu_hw_events *cpuc;
1764         int cpu = raw_smp_processor_id();
1765
1766         cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1767         if (!cpuc)
1768                 return ERR_PTR(-ENOMEM);
1769
1770         /* only needed, if we have extra_regs */
1771         if (x86_pmu.extra_regs) {
1772                 cpuc->shared_regs = allocate_shared_regs(cpu);
1773                 if (!cpuc->shared_regs)
1774                         goto error;
1775         }
1776         cpuc->is_fake = 1;
1777         return cpuc;
1778 error:
1779         free_fake_cpuc(cpuc);
1780         return ERR_PTR(-ENOMEM);
1781 }
1782
1783 /*
1784  * validate that we can schedule this event
1785  */
1786 static int validate_event(struct perf_event *event)
1787 {
1788         struct cpu_hw_events *fake_cpuc;
1789         struct event_constraint *c;
1790         int ret = 0;
1791
1792         fake_cpuc = allocate_fake_cpuc();
1793         if (IS_ERR(fake_cpuc))
1794                 return PTR_ERR(fake_cpuc);
1795
1796         c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
1797
1798         if (!c || !c->weight)
1799                 ret = -EINVAL;
1800
1801         if (x86_pmu.put_event_constraints)
1802                 x86_pmu.put_event_constraints(fake_cpuc, event);
1803
1804         free_fake_cpuc(fake_cpuc);
1805
1806         return ret;
1807 }
1808
1809 /*
1810  * validate a single event group
1811  *
1812  * validation include:
1813  *      - check events are compatible which each other
1814  *      - events do not compete for the same counter
1815  *      - number of events <= number of counters
1816  *
1817  * validation ensures the group can be loaded onto the
1818  * PMU if it was the only group available.
1819  */
1820 static int validate_group(struct perf_event *event)
1821 {
1822         struct perf_event *leader = event->group_leader;
1823         struct cpu_hw_events *fake_cpuc;
1824         int ret = -EINVAL, n;
1825
1826         fake_cpuc = allocate_fake_cpuc();
1827         if (IS_ERR(fake_cpuc))
1828                 return PTR_ERR(fake_cpuc);
1829         /*
1830          * the event is not yet connected with its
1831          * siblings therefore we must first collect
1832          * existing siblings, then add the new event
1833          * before we can simulate the scheduling
1834          */
1835         n = collect_events(fake_cpuc, leader, true);
1836         if (n < 0)
1837                 goto out;
1838
1839         fake_cpuc->n_events = n;
1840         n = collect_events(fake_cpuc, event, false);
1841         if (n < 0)
1842                 goto out;
1843
1844         fake_cpuc->n_events = n;
1845
1846         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1847
1848 out:
1849         free_fake_cpuc(fake_cpuc);
1850         return ret;
1851 }
1852
1853 static int x86_pmu_event_init(struct perf_event *event)
1854 {
1855         struct pmu *tmp;
1856         int err;
1857
1858         switch (event->attr.type) {
1859         case PERF_TYPE_RAW:
1860         case PERF_TYPE_HARDWARE:
1861         case PERF_TYPE_HW_CACHE:
1862                 break;
1863
1864         default:
1865                 return -ENOENT;
1866         }
1867
1868         err = __x86_pmu_event_init(event);
1869         if (!err) {
1870                 /*
1871                  * we temporarily connect event to its pmu
1872                  * such that validate_group() can classify
1873                  * it as an x86 event using is_x86_event()
1874                  */
1875                 tmp = event->pmu;
1876                 event->pmu = &pmu;
1877
1878                 if (event->group_leader != event)
1879                         err = validate_group(event);
1880                 else
1881                         err = validate_event(event);
1882
1883                 event->pmu = tmp;
1884         }
1885         if (err) {
1886                 if (event->destroy)
1887                         event->destroy(event);
1888         }
1889
1890         if (ACCESS_ONCE(x86_pmu.attr_rdpmc))
1891                 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
1892
1893         return err;
1894 }
1895
1896 static void refresh_pce(void *ignored)
1897 {
1898         if (current->mm)
1899                 load_mm_cr4(current->mm);
1900 }
1901
1902 static void x86_pmu_event_mapped(struct perf_event *event)
1903 {
1904         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1905                 return;
1906
1907         if (atomic_inc_return(&current->mm->context.perf_rdpmc_allowed) == 1)
1908                 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1909 }
1910
1911 static void x86_pmu_event_unmapped(struct perf_event *event)
1912 {
1913         if (!current->mm)
1914                 return;
1915
1916         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1917                 return;
1918
1919         if (atomic_dec_and_test(&current->mm->context.perf_rdpmc_allowed))
1920                 on_each_cpu_mask(mm_cpumask(current->mm), refresh_pce, NULL, 1);
1921 }
1922
1923 static int x86_pmu_event_idx(struct perf_event *event)
1924 {
1925         int idx = event->hw.idx;
1926
1927         if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
1928                 return 0;
1929
1930         if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
1931                 idx -= INTEL_PMC_IDX_FIXED;
1932                 idx |= 1 << 30;
1933         }
1934
1935         return idx + 1;
1936 }
1937
1938 static ssize_t get_attr_rdpmc(struct device *cdev,
1939                               struct device_attribute *attr,
1940                               char *buf)
1941 {
1942         return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
1943 }
1944
1945 static ssize_t set_attr_rdpmc(struct device *cdev,
1946                               struct device_attribute *attr,
1947                               const char *buf, size_t count)
1948 {
1949         unsigned long val;
1950         ssize_t ret;
1951
1952         ret = kstrtoul(buf, 0, &val);
1953         if (ret)
1954                 return ret;
1955
1956         if (val > 2)
1957                 return -EINVAL;
1958
1959         if (x86_pmu.attr_rdpmc_broken)
1960                 return -ENOTSUPP;
1961
1962         if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
1963                 /*
1964                  * Changing into or out of always available, aka
1965                  * perf-event-bypassing mode.  This path is extremely slow,
1966                  * but only root can trigger it, so it's okay.
1967                  */
1968                 if (val == 2)
1969                         static_key_slow_inc(&rdpmc_always_available);
1970                 else
1971                         static_key_slow_dec(&rdpmc_always_available);
1972                 on_each_cpu(refresh_pce, NULL, 1);
1973         }
1974
1975         x86_pmu.attr_rdpmc = val;
1976
1977         return count;
1978 }
1979
1980 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
1981
1982 static struct attribute *x86_pmu_attrs[] = {
1983         &dev_attr_rdpmc.attr,
1984         NULL,
1985 };
1986
1987 static struct attribute_group x86_pmu_attr_group = {
1988         .attrs = x86_pmu_attrs,
1989 };
1990
1991 static const struct attribute_group *x86_pmu_attr_groups[] = {
1992         &x86_pmu_attr_group,
1993         &x86_pmu_format_group,
1994         &x86_pmu_events_group,
1995         NULL,
1996 };
1997
1998 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
1999 {
2000         if (x86_pmu.sched_task)
2001                 x86_pmu.sched_task(ctx, sched_in);
2002 }
2003
2004 void perf_check_microcode(void)
2005 {
2006         if (x86_pmu.check_microcode)
2007                 x86_pmu.check_microcode();
2008 }
2009 EXPORT_SYMBOL_GPL(perf_check_microcode);
2010
2011 static struct pmu pmu = {
2012         .pmu_enable             = x86_pmu_enable,
2013         .pmu_disable            = x86_pmu_disable,
2014
2015         .attr_groups            = x86_pmu_attr_groups,
2016
2017         .event_init             = x86_pmu_event_init,
2018
2019         .event_mapped           = x86_pmu_event_mapped,
2020         .event_unmapped         = x86_pmu_event_unmapped,
2021
2022         .add                    = x86_pmu_add,
2023         .del                    = x86_pmu_del,
2024         .start                  = x86_pmu_start,
2025         .stop                   = x86_pmu_stop,
2026         .read                   = x86_pmu_read,
2027
2028         .start_txn              = x86_pmu_start_txn,
2029         .cancel_txn             = x86_pmu_cancel_txn,
2030         .commit_txn             = x86_pmu_commit_txn,
2031
2032         .event_idx              = x86_pmu_event_idx,
2033         .sched_task             = x86_pmu_sched_task,
2034         .task_ctx_size          = sizeof(struct x86_perf_task_context),
2035 };
2036
2037 void arch_perf_update_userpage(struct perf_event *event,
2038                                struct perf_event_mmap_page *userpg, u64 now)
2039 {
2040         struct cyc2ns_data *data;
2041
2042         userpg->cap_user_time = 0;
2043         userpg->cap_user_time_zero = 0;
2044         userpg->cap_user_rdpmc =
2045                 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2046         userpg->pmc_width = x86_pmu.cntval_bits;
2047
2048         if (!sched_clock_stable())
2049                 return;
2050
2051         data = cyc2ns_read_begin();
2052
2053         /*
2054          * Internal timekeeping for enabled/running/stopped times
2055          * is always in the local_clock domain.
2056          */
2057         userpg->cap_user_time = 1;
2058         userpg->time_mult = data->cyc2ns_mul;
2059         userpg->time_shift = data->cyc2ns_shift;
2060         userpg->time_offset = data->cyc2ns_offset - now;
2061
2062         /*
2063          * cap_user_time_zero doesn't make sense when we're using a different
2064          * time base for the records.
2065          */
2066         if (event->clock == &local_clock) {
2067                 userpg->cap_user_time_zero = 1;
2068                 userpg->time_zero = data->cyc2ns_offset;
2069         }
2070
2071         cyc2ns_read_end(data);
2072 }
2073
2074 /*
2075  * callchain support
2076  */
2077
2078 static int backtrace_stack(void *data, char *name)
2079 {
2080         return 0;
2081 }
2082
2083 static void backtrace_address(void *data, unsigned long addr, int reliable)
2084 {
2085         struct perf_callchain_entry *entry = data;
2086
2087         perf_callchain_store(entry, addr);
2088 }
2089
2090 static const struct stacktrace_ops backtrace_ops = {
2091         .stack                  = backtrace_stack,
2092         .address                = backtrace_address,
2093         .walk_stack             = print_context_stack_bp,
2094 };
2095
2096 void
2097 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
2098 {
2099         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2100                 /* TODO: We don't support guest os callchain now */
2101                 return;
2102         }
2103
2104         perf_callchain_store(entry, regs->ip);
2105
2106         dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
2107 }
2108
2109 static inline int
2110 valid_user_frame(const void __user *fp, unsigned long size)
2111 {
2112         return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2113 }
2114
2115 static unsigned long get_segment_base(unsigned int segment)
2116 {
2117         struct desc_struct *desc;
2118         int idx = segment >> 3;
2119
2120         if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2121                 if (idx > LDT_ENTRIES)
2122                         return 0;
2123
2124                 if (idx > current->active_mm->context.size)
2125                         return 0;
2126
2127                 desc = current->active_mm->context.ldt;
2128         } else {
2129                 if (idx > GDT_ENTRIES)
2130                         return 0;
2131
2132                 desc = raw_cpu_ptr(gdt_page.gdt);
2133         }
2134
2135         return get_desc_base(desc + idx);
2136 }
2137
2138 #ifdef CONFIG_COMPAT
2139
2140 #include <asm/compat.h>
2141
2142 static inline int
2143 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2144 {
2145         /* 32-bit process in 64-bit kernel. */
2146         unsigned long ss_base, cs_base;
2147         struct stack_frame_ia32 frame;
2148         const void __user *fp;
2149
2150         if (!test_thread_flag(TIF_IA32))
2151                 return 0;
2152
2153         cs_base = get_segment_base(regs->cs);
2154         ss_base = get_segment_base(regs->ss);
2155
2156         fp = compat_ptr(ss_base + regs->bp);
2157         while (entry->nr < PERF_MAX_STACK_DEPTH) {
2158                 unsigned long bytes;
2159                 frame.next_frame     = 0;
2160                 frame.return_address = 0;
2161
2162                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2163                 if (bytes != 0)
2164                         break;
2165
2166                 if (!valid_user_frame(fp, sizeof(frame)))
2167                         break;
2168
2169                 perf_callchain_store(entry, cs_base + frame.return_address);
2170                 fp = compat_ptr(ss_base + frame.next_frame);
2171         }
2172         return 1;
2173 }
2174 #else
2175 static inline int
2176 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
2177 {
2178     return 0;
2179 }
2180 #endif
2181
2182 void
2183 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
2184 {
2185         struct stack_frame frame;
2186         const void __user *fp;
2187
2188         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2189                 /* TODO: We don't support guest os callchain now */
2190                 return;
2191         }
2192
2193         /*
2194          * We don't know what to do with VM86 stacks.. ignore them for now.
2195          */
2196         if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2197                 return;
2198
2199         fp = (void __user *)regs->bp;
2200
2201         perf_callchain_store(entry, regs->ip);
2202
2203         if (!current->mm)
2204                 return;
2205
2206         if (perf_callchain_user32(regs, entry))
2207                 return;
2208
2209         while (entry->nr < PERF_MAX_STACK_DEPTH) {
2210                 unsigned long bytes;
2211                 frame.next_frame             = NULL;
2212                 frame.return_address = 0;
2213
2214                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
2215                 if (bytes != 0)
2216                         break;
2217
2218                 if (!valid_user_frame(fp, sizeof(frame)))
2219                         break;
2220
2221                 perf_callchain_store(entry, frame.return_address);
2222                 fp = frame.next_frame;
2223         }
2224 }
2225
2226 /*
2227  * Deal with code segment offsets for the various execution modes:
2228  *
2229  *   VM86 - the good olde 16 bit days, where the linear address is
2230  *          20 bits and we use regs->ip + 0x10 * regs->cs.
2231  *
2232  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2233  *          to figure out what the 32bit base address is.
2234  *
2235  *    X32 - has TIF_X32 set, but is running in x86_64
2236  *
2237  * X86_64 - CS,DS,SS,ES are all zero based.
2238  */
2239 static unsigned long code_segment_base(struct pt_regs *regs)
2240 {
2241         /*
2242          * For IA32 we look at the GDT/LDT segment base to convert the
2243          * effective IP to a linear address.
2244          */
2245
2246 #ifdef CONFIG_X86_32
2247         /*
2248          * If we are in VM86 mode, add the segment offset to convert to a
2249          * linear address.
2250          */
2251         if (regs->flags & X86_VM_MASK)
2252                 return 0x10 * regs->cs;
2253
2254         if (user_mode(regs) && regs->cs != __USER_CS)
2255                 return get_segment_base(regs->cs);
2256 #else
2257         if (user_mode(regs) && !user_64bit_mode(regs) &&
2258             regs->cs != __USER32_CS)
2259                 return get_segment_base(regs->cs);
2260 #endif
2261         return 0;
2262 }
2263
2264 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2265 {
2266         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2267                 return perf_guest_cbs->get_guest_ip();
2268
2269         return regs->ip + code_segment_base(regs);
2270 }
2271
2272 unsigned long perf_misc_flags(struct pt_regs *regs)
2273 {
2274         int misc = 0;
2275
2276         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2277                 if (perf_guest_cbs->is_user_mode())
2278                         misc |= PERF_RECORD_MISC_GUEST_USER;
2279                 else
2280                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2281         } else {
2282                 if (user_mode(regs))
2283                         misc |= PERF_RECORD_MISC_USER;
2284                 else
2285                         misc |= PERF_RECORD_MISC_KERNEL;
2286         }
2287
2288         if (regs->flags & PERF_EFLAGS_EXACT)
2289                 misc |= PERF_RECORD_MISC_EXACT_IP;
2290
2291         return misc;
2292 }
2293
2294 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2295 {
2296         cap->version            = x86_pmu.version;
2297         cap->num_counters_gp    = x86_pmu.num_counters;
2298         cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2299         cap->bit_width_gp       = x86_pmu.cntval_bits;
2300         cap->bit_width_fixed    = x86_pmu.cntval_bits;
2301         cap->events_mask        = (unsigned int)x86_pmu.events_maskl;
2302         cap->events_mask_len    = x86_pmu.events_mask_len;
2303 }
2304 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);