Merge branches 'x86-build-for-linus', 'x86-cleanups-for-linus' and 'x86-debug-for...
[sfrench/cifs-2.6.git] / arch / x86 / kernel / cpu / mcheck / mce.c
1 /*
2  * Machine check handler.
3  *
4  * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
5  * Rest from unknown author(s).
6  * 2004 Andi Kleen. Rewrote most of it.
7  * Copyright 2008 Intel Corporation
8  * Author: Andi Kleen
9  */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/thread_info.h>
14 #include <linux/capability.h>
15 #include <linux/miscdevice.h>
16 #include <linux/ratelimit.h>
17 #include <linux/kallsyms.h>
18 #include <linux/rcupdate.h>
19 #include <linux/kobject.h>
20 #include <linux/uaccess.h>
21 #include <linux/kdebug.h>
22 #include <linux/kernel.h>
23 #include <linux/percpu.h>
24 #include <linux/string.h>
25 #include <linux/device.h>
26 #include <linux/syscore_ops.h>
27 #include <linux/delay.h>
28 #include <linux/ctype.h>
29 #include <linux/sched.h>
30 #include <linux/sysfs.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/kmod.h>
35 #include <linux/poll.h>
36 #include <linux/nmi.h>
37 #include <linux/cpu.h>
38 #include <linux/smp.h>
39 #include <linux/fs.h>
40 #include <linux/mm.h>
41 #include <linux/debugfs.h>
42 #include <linux/irq_work.h>
43 #include <linux/export.h>
44
45 #include <asm/processor.h>
46 #include <asm/mce.h>
47 #include <asm/msr.h>
48
49 #include "mce-internal.h"
50
51 static DEFINE_MUTEX(mce_chrdev_read_mutex);
52
53 #define rcu_dereference_check_mce(p) \
54         rcu_dereference_index_check((p), \
55                               rcu_read_lock_sched_held() || \
56                               lockdep_is_held(&mce_chrdev_read_mutex))
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/mce.h>
60
61 #define SPINUNIT 100    /* 100ns */
62
63 DEFINE_PER_CPU(unsigned, mce_exception_count);
64
65 struct mce_bank *mce_banks __read_mostly;
66
67 struct mca_config mca_cfg __read_mostly = {
68         .bootlog  = -1,
69         /*
70          * Tolerant levels:
71          * 0: always panic on uncorrected errors, log corrected errors
72          * 1: panic or SIGBUS on uncorrected errors, log corrected errors
73          * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
74          * 3: never panic or SIGBUS, log all errors (for testing only)
75          */
76         .tolerant = 1,
77         .monarch_timeout = -1
78 };
79
80 /* User mode helper program triggered by machine check event */
81 static unsigned long            mce_need_notify;
82 static char                     mce_helper[128];
83 static char                     *mce_helper_argv[2] = { mce_helper, NULL };
84
85 static DECLARE_WAIT_QUEUE_HEAD(mce_chrdev_wait);
86
87 static DEFINE_PER_CPU(struct mce, mces_seen);
88 static int                      cpu_missing;
89
90 /* CMCI storm detection filter */
91 static DEFINE_PER_CPU(unsigned long, mce_polled_error);
92
93 /*
94  * MCA banks polled by the period polling timer for corrected events.
95  * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
96  */
97 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
98         [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
99 };
100
101 /*
102  * MCA banks controlled through firmware first for corrected errors.
103  * This is a global list of banks for which we won't enable CMCI and we
104  * won't poll. Firmware controls these banks and is responsible for
105  * reporting corrected errors through GHES. Uncorrected/recoverable
106  * errors are still notified through a machine check.
107  */
108 mce_banks_t mce_banks_ce_disabled;
109
110 static DEFINE_PER_CPU(struct work_struct, mce_work);
111
112 static void (*quirk_no_way_out)(int bank, struct mce *m, struct pt_regs *regs);
113
114 /*
115  * CPU/chipset specific EDAC code can register a notifier call here to print
116  * MCE errors in a human-readable form.
117  */
118 ATOMIC_NOTIFIER_HEAD(x86_mce_decoder_chain);
119
120 /* Do initial initialization of a struct mce */
121 void mce_setup(struct mce *m)
122 {
123         memset(m, 0, sizeof(struct mce));
124         m->cpu = m->extcpu = smp_processor_id();
125         rdtscll(m->tsc);
126         /* We hope get_seconds stays lockless */
127         m->time = get_seconds();
128         m->cpuvendor = boot_cpu_data.x86_vendor;
129         m->cpuid = cpuid_eax(1);
130         m->socketid = cpu_data(m->extcpu).phys_proc_id;
131         m->apicid = cpu_data(m->extcpu).initial_apicid;
132         rdmsrl(MSR_IA32_MCG_CAP, m->mcgcap);
133 }
134
135 DEFINE_PER_CPU(struct mce, injectm);
136 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
137
138 /*
139  * Lockless MCE logging infrastructure.
140  * This avoids deadlocks on printk locks without having to break locks. Also
141  * separate MCEs from kernel messages to avoid bogus bug reports.
142  */
143
144 static struct mce_log mcelog = {
145         .signature      = MCE_LOG_SIGNATURE,
146         .len            = MCE_LOG_LEN,
147         .recordlen      = sizeof(struct mce),
148 };
149
150 void mce_log(struct mce *mce)
151 {
152         unsigned next, entry;
153         int ret = 0;
154
155         /* Emit the trace record: */
156         trace_mce_record(mce);
157
158         ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, mce);
159         if (ret == NOTIFY_STOP)
160                 return;
161
162         mce->finished = 0;
163         wmb();
164         for (;;) {
165                 entry = rcu_dereference_check_mce(mcelog.next);
166                 for (;;) {
167
168                         /*
169                          * When the buffer fills up discard new entries.
170                          * Assume that the earlier errors are the more
171                          * interesting ones:
172                          */
173                         if (entry >= MCE_LOG_LEN) {
174                                 set_bit(MCE_OVERFLOW,
175                                         (unsigned long *)&mcelog.flags);
176                                 return;
177                         }
178                         /* Old left over entry. Skip: */
179                         if (mcelog.entry[entry].finished) {
180                                 entry++;
181                                 continue;
182                         }
183                         break;
184                 }
185                 smp_rmb();
186                 next = entry + 1;
187                 if (cmpxchg(&mcelog.next, entry, next) == entry)
188                         break;
189         }
190         memcpy(mcelog.entry + entry, mce, sizeof(struct mce));
191         wmb();
192         mcelog.entry[entry].finished = 1;
193         wmb();
194
195         mce->finished = 1;
196         set_bit(0, &mce_need_notify);
197 }
198
199 static void drain_mcelog_buffer(void)
200 {
201         unsigned int next, i, prev = 0;
202
203         next = ACCESS_ONCE(mcelog.next);
204
205         do {
206                 struct mce *m;
207
208                 /* drain what was logged during boot */
209                 for (i = prev; i < next; i++) {
210                         unsigned long start = jiffies;
211                         unsigned retries = 1;
212
213                         m = &mcelog.entry[i];
214
215                         while (!m->finished) {
216                                 if (time_after_eq(jiffies, start + 2*retries))
217                                         retries++;
218
219                                 cpu_relax();
220
221                                 if (!m->finished && retries >= 4) {
222                                         pr_err("skipping error being logged currently!\n");
223                                         break;
224                                 }
225                         }
226                         smp_rmb();
227                         atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
228                 }
229
230                 memset(mcelog.entry + prev, 0, (next - prev) * sizeof(*m));
231                 prev = next;
232                 next = cmpxchg(&mcelog.next, prev, 0);
233         } while (next != prev);
234 }
235
236
237 void mce_register_decode_chain(struct notifier_block *nb)
238 {
239         atomic_notifier_chain_register(&x86_mce_decoder_chain, nb);
240         drain_mcelog_buffer();
241 }
242 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
243
244 void mce_unregister_decode_chain(struct notifier_block *nb)
245 {
246         atomic_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
247 }
248 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
249
250 static void print_mce(struct mce *m)
251 {
252         int ret = 0;
253
254         pr_emerg(HW_ERR "CPU %d: Machine Check Exception: %Lx Bank %d: %016Lx\n",
255                m->extcpu, m->mcgstatus, m->bank, m->status);
256
257         if (m->ip) {
258                 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
259                         !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
260                                 m->cs, m->ip);
261
262                 if (m->cs == __KERNEL_CS)
263                         print_symbol("{%s}", m->ip);
264                 pr_cont("\n");
265         }
266
267         pr_emerg(HW_ERR "TSC %llx ", m->tsc);
268         if (m->addr)
269                 pr_cont("ADDR %llx ", m->addr);
270         if (m->misc)
271                 pr_cont("MISC %llx ", m->misc);
272
273         pr_cont("\n");
274         /*
275          * Note this output is parsed by external tools and old fields
276          * should not be changed.
277          */
278         pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
279                 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
280                 cpu_data(m->extcpu).microcode);
281
282         /*
283          * Print out human-readable details about the MCE error,
284          * (if the CPU has an implementation for that)
285          */
286         ret = atomic_notifier_call_chain(&x86_mce_decoder_chain, 0, m);
287         if (ret == NOTIFY_STOP)
288                 return;
289
290         pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
291 }
292
293 #define PANIC_TIMEOUT 5 /* 5 seconds */
294
295 static atomic_t mce_paniced;
296
297 static int fake_panic;
298 static atomic_t mce_fake_paniced;
299
300 /* Panic in progress. Enable interrupts and wait for final IPI */
301 static void wait_for_panic(void)
302 {
303         long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
304
305         preempt_disable();
306         local_irq_enable();
307         while (timeout-- > 0)
308                 udelay(1);
309         if (panic_timeout == 0)
310                 panic_timeout = mca_cfg.panic_timeout;
311         panic("Panicing machine check CPU died");
312 }
313
314 static void mce_panic(char *msg, struct mce *final, char *exp)
315 {
316         int i, apei_err = 0;
317
318         if (!fake_panic) {
319                 /*
320                  * Make sure only one CPU runs in machine check panic
321                  */
322                 if (atomic_inc_return(&mce_paniced) > 1)
323                         wait_for_panic();
324                 barrier();
325
326                 bust_spinlocks(1);
327                 console_verbose();
328         } else {
329                 /* Don't log too much for fake panic */
330                 if (atomic_inc_return(&mce_fake_paniced) > 1)
331                         return;
332         }
333         /* First print corrected ones that are still unlogged */
334         for (i = 0; i < MCE_LOG_LEN; i++) {
335                 struct mce *m = &mcelog.entry[i];
336                 if (!(m->status & MCI_STATUS_VAL))
337                         continue;
338                 if (!(m->status & MCI_STATUS_UC)) {
339                         print_mce(m);
340                         if (!apei_err)
341                                 apei_err = apei_write_mce(m);
342                 }
343         }
344         /* Now print uncorrected but with the final one last */
345         for (i = 0; i < MCE_LOG_LEN; i++) {
346                 struct mce *m = &mcelog.entry[i];
347                 if (!(m->status & MCI_STATUS_VAL))
348                         continue;
349                 if (!(m->status & MCI_STATUS_UC))
350                         continue;
351                 if (!final || memcmp(m, final, sizeof(struct mce))) {
352                         print_mce(m);
353                         if (!apei_err)
354                                 apei_err = apei_write_mce(m);
355                 }
356         }
357         if (final) {
358                 print_mce(final);
359                 if (!apei_err)
360                         apei_err = apei_write_mce(final);
361         }
362         if (cpu_missing)
363                 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
364         if (exp)
365                 pr_emerg(HW_ERR "Machine check: %s\n", exp);
366         if (!fake_panic) {
367                 if (panic_timeout == 0)
368                         panic_timeout = mca_cfg.panic_timeout;
369                 panic(msg);
370         } else
371                 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
372 }
373
374 /* Support code for software error injection */
375
376 static int msr_to_offset(u32 msr)
377 {
378         unsigned bank = __this_cpu_read(injectm.bank);
379
380         if (msr == mca_cfg.rip_msr)
381                 return offsetof(struct mce, ip);
382         if (msr == MSR_IA32_MCx_STATUS(bank))
383                 return offsetof(struct mce, status);
384         if (msr == MSR_IA32_MCx_ADDR(bank))
385                 return offsetof(struct mce, addr);
386         if (msr == MSR_IA32_MCx_MISC(bank))
387                 return offsetof(struct mce, misc);
388         if (msr == MSR_IA32_MCG_STATUS)
389                 return offsetof(struct mce, mcgstatus);
390         return -1;
391 }
392
393 /* MSR access wrappers used for error injection */
394 static u64 mce_rdmsrl(u32 msr)
395 {
396         u64 v;
397
398         if (__this_cpu_read(injectm.finished)) {
399                 int offset = msr_to_offset(msr);
400
401                 if (offset < 0)
402                         return 0;
403                 return *(u64 *)((char *)&__get_cpu_var(injectm) + offset);
404         }
405
406         if (rdmsrl_safe(msr, &v)) {
407                 WARN_ONCE(1, "mce: Unable to read msr %d!\n", msr);
408                 /*
409                  * Return zero in case the access faulted. This should
410                  * not happen normally but can happen if the CPU does
411                  * something weird, or if the code is buggy.
412                  */
413                 v = 0;
414         }
415
416         return v;
417 }
418
419 static void mce_wrmsrl(u32 msr, u64 v)
420 {
421         if (__this_cpu_read(injectm.finished)) {
422                 int offset = msr_to_offset(msr);
423
424                 if (offset >= 0)
425                         *(u64 *)((char *)&__get_cpu_var(injectm) + offset) = v;
426                 return;
427         }
428         wrmsrl(msr, v);
429 }
430
431 /*
432  * Collect all global (w.r.t. this processor) status about this machine
433  * check into our "mce" struct so that we can use it later to assess
434  * the severity of the problem as we read per-bank specific details.
435  */
436 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
437 {
438         mce_setup(m);
439
440         m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
441         if (regs) {
442                 /*
443                  * Get the address of the instruction at the time of
444                  * the machine check error.
445                  */
446                 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
447                         m->ip = regs->ip;
448                         m->cs = regs->cs;
449
450                         /*
451                          * When in VM86 mode make the cs look like ring 3
452                          * always. This is a lie, but it's better than passing
453                          * the additional vm86 bit around everywhere.
454                          */
455                         if (v8086_mode(regs))
456                                 m->cs |= 3;
457                 }
458                 /* Use accurate RIP reporting if available. */
459                 if (mca_cfg.rip_msr)
460                         m->ip = mce_rdmsrl(mca_cfg.rip_msr);
461         }
462 }
463
464 /*
465  * Simple lockless ring to communicate PFNs from the exception handler with the
466  * process context work function. This is vastly simplified because there's
467  * only a single reader and a single writer.
468  */
469 #define MCE_RING_SIZE 16        /* we use one entry less */
470
471 struct mce_ring {
472         unsigned short start;
473         unsigned short end;
474         unsigned long ring[MCE_RING_SIZE];
475 };
476 static DEFINE_PER_CPU(struct mce_ring, mce_ring);
477
478 /* Runs with CPU affinity in workqueue */
479 static int mce_ring_empty(void)
480 {
481         struct mce_ring *r = &__get_cpu_var(mce_ring);
482
483         return r->start == r->end;
484 }
485
486 static int mce_ring_get(unsigned long *pfn)
487 {
488         struct mce_ring *r;
489         int ret = 0;
490
491         *pfn = 0;
492         get_cpu();
493         r = &__get_cpu_var(mce_ring);
494         if (r->start == r->end)
495                 goto out;
496         *pfn = r->ring[r->start];
497         r->start = (r->start + 1) % MCE_RING_SIZE;
498         ret = 1;
499 out:
500         put_cpu();
501         return ret;
502 }
503
504 /* Always runs in MCE context with preempt off */
505 static int mce_ring_add(unsigned long pfn)
506 {
507         struct mce_ring *r = &__get_cpu_var(mce_ring);
508         unsigned next;
509
510         next = (r->end + 1) % MCE_RING_SIZE;
511         if (next == r->start)
512                 return -1;
513         r->ring[r->end] = pfn;
514         wmb();
515         r->end = next;
516         return 0;
517 }
518
519 int mce_available(struct cpuinfo_x86 *c)
520 {
521         if (mca_cfg.disabled)
522                 return 0;
523         return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
524 }
525
526 static void mce_schedule_work(void)
527 {
528         if (!mce_ring_empty())
529                 schedule_work(&__get_cpu_var(mce_work));
530 }
531
532 DEFINE_PER_CPU(struct irq_work, mce_irq_work);
533
534 static void mce_irq_work_cb(struct irq_work *entry)
535 {
536         mce_notify_irq();
537         mce_schedule_work();
538 }
539
540 static void mce_report_event(struct pt_regs *regs)
541 {
542         if (regs->flags & (X86_VM_MASK|X86_EFLAGS_IF)) {
543                 mce_notify_irq();
544                 /*
545                  * Triggering the work queue here is just an insurance
546                  * policy in case the syscall exit notify handler
547                  * doesn't run soon enough or ends up running on the
548                  * wrong CPU (can happen when audit sleeps)
549                  */
550                 mce_schedule_work();
551                 return;
552         }
553
554         irq_work_queue(&__get_cpu_var(mce_irq_work));
555 }
556
557 /*
558  * Read ADDR and MISC registers.
559  */
560 static void mce_read_aux(struct mce *m, int i)
561 {
562         if (m->status & MCI_STATUS_MISCV)
563                 m->misc = mce_rdmsrl(MSR_IA32_MCx_MISC(i));
564         if (m->status & MCI_STATUS_ADDRV) {
565                 m->addr = mce_rdmsrl(MSR_IA32_MCx_ADDR(i));
566
567                 /*
568                  * Mask the reported address by the reported granularity.
569                  */
570                 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
571                         u8 shift = MCI_MISC_ADDR_LSB(m->misc);
572                         m->addr >>= shift;
573                         m->addr <<= shift;
574                 }
575         }
576 }
577
578 DEFINE_PER_CPU(unsigned, mce_poll_count);
579
580 /*
581  * Poll for corrected events or events that happened before reset.
582  * Those are just logged through /dev/mcelog.
583  *
584  * This is executed in standard interrupt context.
585  *
586  * Note: spec recommends to panic for fatal unsignalled
587  * errors here. However this would be quite problematic --
588  * we would need to reimplement the Monarch handling and
589  * it would mess up the exclusion between exception handler
590  * and poll hander -- * so we skip this for now.
591  * These cases should not happen anyways, or only when the CPU
592  * is already totally * confused. In this case it's likely it will
593  * not fully execute the machine check handler either.
594  */
595 void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
596 {
597         struct mce m;
598         int i;
599
600         this_cpu_inc(mce_poll_count);
601
602         mce_gather_info(&m, NULL);
603
604         for (i = 0; i < mca_cfg.banks; i++) {
605                 if (!mce_banks[i].ctl || !test_bit(i, *b))
606                         continue;
607
608                 m.misc = 0;
609                 m.addr = 0;
610                 m.bank = i;
611                 m.tsc = 0;
612
613                 barrier();
614                 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
615                 if (!(m.status & MCI_STATUS_VAL))
616                         continue;
617
618                 this_cpu_write(mce_polled_error, 1);
619                 /*
620                  * Uncorrected or signalled events are handled by the exception
621                  * handler when it is enabled, so don't process those here.
622                  *
623                  * TBD do the same check for MCI_STATUS_EN here?
624                  */
625                 if (!(flags & MCP_UC) &&
626                     (m.status & (mca_cfg.ser ? MCI_STATUS_S : MCI_STATUS_UC)))
627                         continue;
628
629                 mce_read_aux(&m, i);
630
631                 if (!(flags & MCP_TIMESTAMP))
632                         m.tsc = 0;
633                 /*
634                  * Don't get the IP here because it's unlikely to
635                  * have anything to do with the actual error location.
636                  */
637                 if (!(flags & MCP_DONTLOG) && !mca_cfg.dont_log_ce)
638                         mce_log(&m);
639
640                 /*
641                  * Clear state for this bank.
642                  */
643                 mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
644         }
645
646         /*
647          * Don't clear MCG_STATUS here because it's only defined for
648          * exceptions.
649          */
650
651         sync_core();
652 }
653 EXPORT_SYMBOL_GPL(machine_check_poll);
654
655 /*
656  * Do a quick check if any of the events requires a panic.
657  * This decides if we keep the events around or clear them.
658  */
659 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
660                           struct pt_regs *regs)
661 {
662         int i, ret = 0;
663
664         for (i = 0; i < mca_cfg.banks; i++) {
665                 m->status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
666                 if (m->status & MCI_STATUS_VAL) {
667                         __set_bit(i, validp);
668                         if (quirk_no_way_out)
669                                 quirk_no_way_out(i, m, regs);
670                 }
671                 if (mce_severity(m, mca_cfg.tolerant, msg) >= MCE_PANIC_SEVERITY)
672                         ret = 1;
673         }
674         return ret;
675 }
676
677 /*
678  * Variable to establish order between CPUs while scanning.
679  * Each CPU spins initially until executing is equal its number.
680  */
681 static atomic_t mce_executing;
682
683 /*
684  * Defines order of CPUs on entry. First CPU becomes Monarch.
685  */
686 static atomic_t mce_callin;
687
688 /*
689  * Check if a timeout waiting for other CPUs happened.
690  */
691 static int mce_timed_out(u64 *t)
692 {
693         /*
694          * The others already did panic for some reason.
695          * Bail out like in a timeout.
696          * rmb() to tell the compiler that system_state
697          * might have been modified by someone else.
698          */
699         rmb();
700         if (atomic_read(&mce_paniced))
701                 wait_for_panic();
702         if (!mca_cfg.monarch_timeout)
703                 goto out;
704         if ((s64)*t < SPINUNIT) {
705                 if (mca_cfg.tolerant <= 1)
706                         mce_panic("Timeout synchronizing machine check over CPUs",
707                                   NULL, NULL);
708                 cpu_missing = 1;
709                 return 1;
710         }
711         *t -= SPINUNIT;
712 out:
713         touch_nmi_watchdog();
714         return 0;
715 }
716
717 /*
718  * The Monarch's reign.  The Monarch is the CPU who entered
719  * the machine check handler first. It waits for the others to
720  * raise the exception too and then grades them. When any
721  * error is fatal panic. Only then let the others continue.
722  *
723  * The other CPUs entering the MCE handler will be controlled by the
724  * Monarch. They are called Subjects.
725  *
726  * This way we prevent any potential data corruption in a unrecoverable case
727  * and also makes sure always all CPU's errors are examined.
728  *
729  * Also this detects the case of a machine check event coming from outer
730  * space (not detected by any CPUs) In this case some external agent wants
731  * us to shut down, so panic too.
732  *
733  * The other CPUs might still decide to panic if the handler happens
734  * in a unrecoverable place, but in this case the system is in a semi-stable
735  * state and won't corrupt anything by itself. It's ok to let the others
736  * continue for a bit first.
737  *
738  * All the spin loops have timeouts; when a timeout happens a CPU
739  * typically elects itself to be Monarch.
740  */
741 static void mce_reign(void)
742 {
743         int cpu;
744         struct mce *m = NULL;
745         int global_worst = 0;
746         char *msg = NULL;
747         char *nmsg = NULL;
748
749         /*
750          * This CPU is the Monarch and the other CPUs have run
751          * through their handlers.
752          * Grade the severity of the errors of all the CPUs.
753          */
754         for_each_possible_cpu(cpu) {
755                 int severity = mce_severity(&per_cpu(mces_seen, cpu),
756                                             mca_cfg.tolerant,
757                                             &nmsg);
758                 if (severity > global_worst) {
759                         msg = nmsg;
760                         global_worst = severity;
761                         m = &per_cpu(mces_seen, cpu);
762                 }
763         }
764
765         /*
766          * Cannot recover? Panic here then.
767          * This dumps all the mces in the log buffer and stops the
768          * other CPUs.
769          */
770         if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3)
771                 mce_panic("Fatal Machine check", m, msg);
772
773         /*
774          * For UC somewhere we let the CPU who detects it handle it.
775          * Also must let continue the others, otherwise the handling
776          * CPU could deadlock on a lock.
777          */
778
779         /*
780          * No machine check event found. Must be some external
781          * source or one CPU is hung. Panic.
782          */
783         if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
784                 mce_panic("Machine check from unknown source", NULL, NULL);
785
786         /*
787          * Now clear all the mces_seen so that they don't reappear on
788          * the next mce.
789          */
790         for_each_possible_cpu(cpu)
791                 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
792 }
793
794 static atomic_t global_nwo;
795
796 /*
797  * Start of Monarch synchronization. This waits until all CPUs have
798  * entered the exception handler and then determines if any of them
799  * saw a fatal event that requires panic. Then it executes them
800  * in the entry order.
801  * TBD double check parallel CPU hotunplug
802  */
803 static int mce_start(int *no_way_out)
804 {
805         int order;
806         int cpus = num_online_cpus();
807         u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
808
809         if (!timeout)
810                 return -1;
811
812         atomic_add(*no_way_out, &global_nwo);
813         /*
814          * global_nwo should be updated before mce_callin
815          */
816         smp_wmb();
817         order = atomic_inc_return(&mce_callin);
818
819         /*
820          * Wait for everyone.
821          */
822         while (atomic_read(&mce_callin) != cpus) {
823                 if (mce_timed_out(&timeout)) {
824                         atomic_set(&global_nwo, 0);
825                         return -1;
826                 }
827                 ndelay(SPINUNIT);
828         }
829
830         /*
831          * mce_callin should be read before global_nwo
832          */
833         smp_rmb();
834
835         if (order == 1) {
836                 /*
837                  * Monarch: Starts executing now, the others wait.
838                  */
839                 atomic_set(&mce_executing, 1);
840         } else {
841                 /*
842                  * Subject: Now start the scanning loop one by one in
843                  * the original callin order.
844                  * This way when there are any shared banks it will be
845                  * only seen by one CPU before cleared, avoiding duplicates.
846                  */
847                 while (atomic_read(&mce_executing) < order) {
848                         if (mce_timed_out(&timeout)) {
849                                 atomic_set(&global_nwo, 0);
850                                 return -1;
851                         }
852                         ndelay(SPINUNIT);
853                 }
854         }
855
856         /*
857          * Cache the global no_way_out state.
858          */
859         *no_way_out = atomic_read(&global_nwo);
860
861         return order;
862 }
863
864 /*
865  * Synchronize between CPUs after main scanning loop.
866  * This invokes the bulk of the Monarch processing.
867  */
868 static int mce_end(int order)
869 {
870         int ret = -1;
871         u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
872
873         if (!timeout)
874                 goto reset;
875         if (order < 0)
876                 goto reset;
877
878         /*
879          * Allow others to run.
880          */
881         atomic_inc(&mce_executing);
882
883         if (order == 1) {
884                 /* CHECKME: Can this race with a parallel hotplug? */
885                 int cpus = num_online_cpus();
886
887                 /*
888                  * Monarch: Wait for everyone to go through their scanning
889                  * loops.
890                  */
891                 while (atomic_read(&mce_executing) <= cpus) {
892                         if (mce_timed_out(&timeout))
893                                 goto reset;
894                         ndelay(SPINUNIT);
895                 }
896
897                 mce_reign();
898                 barrier();
899                 ret = 0;
900         } else {
901                 /*
902                  * Subject: Wait for Monarch to finish.
903                  */
904                 while (atomic_read(&mce_executing) != 0) {
905                         if (mce_timed_out(&timeout))
906                                 goto reset;
907                         ndelay(SPINUNIT);
908                 }
909
910                 /*
911                  * Don't reset anything. That's done by the Monarch.
912                  */
913                 return 0;
914         }
915
916         /*
917          * Reset all global state.
918          */
919 reset:
920         atomic_set(&global_nwo, 0);
921         atomic_set(&mce_callin, 0);
922         barrier();
923
924         /*
925          * Let others run again.
926          */
927         atomic_set(&mce_executing, 0);
928         return ret;
929 }
930
931 /*
932  * Check if the address reported by the CPU is in a format we can parse.
933  * It would be possible to add code for most other cases, but all would
934  * be somewhat complicated (e.g. segment offset would require an instruction
935  * parser). So only support physical addresses up to page granuality for now.
936  */
937 static int mce_usable_address(struct mce *m)
938 {
939         if (!(m->status & MCI_STATUS_MISCV) || !(m->status & MCI_STATUS_ADDRV))
940                 return 0;
941         if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
942                 return 0;
943         if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
944                 return 0;
945         return 1;
946 }
947
948 static void mce_clear_state(unsigned long *toclear)
949 {
950         int i;
951
952         for (i = 0; i < mca_cfg.banks; i++) {
953                 if (test_bit(i, toclear))
954                         mce_wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
955         }
956 }
957
958 /*
959  * Need to save faulting physical address associated with a process
960  * in the machine check handler some place where we can grab it back
961  * later in mce_notify_process()
962  */
963 #define MCE_INFO_MAX    16
964
965 struct mce_info {
966         atomic_t                inuse;
967         struct task_struct      *t;
968         __u64                   paddr;
969         int                     restartable;
970 } mce_info[MCE_INFO_MAX];
971
972 static void mce_save_info(__u64 addr, int c)
973 {
974         struct mce_info *mi;
975
976         for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++) {
977                 if (atomic_cmpxchg(&mi->inuse, 0, 1) == 0) {
978                         mi->t = current;
979                         mi->paddr = addr;
980                         mi->restartable = c;
981                         return;
982                 }
983         }
984
985         mce_panic("Too many concurrent recoverable errors", NULL, NULL);
986 }
987
988 static struct mce_info *mce_find_info(void)
989 {
990         struct mce_info *mi;
991
992         for (mi = mce_info; mi < &mce_info[MCE_INFO_MAX]; mi++)
993                 if (atomic_read(&mi->inuse) && mi->t == current)
994                         return mi;
995         return NULL;
996 }
997
998 static void mce_clear_info(struct mce_info *mi)
999 {
1000         atomic_set(&mi->inuse, 0);
1001 }
1002
1003 /*
1004  * The actual machine check handler. This only handles real
1005  * exceptions when something got corrupted coming in through int 18.
1006  *
1007  * This is executed in NMI context not subject to normal locking rules. This
1008  * implies that most kernel services cannot be safely used. Don't even
1009  * think about putting a printk in there!
1010  *
1011  * On Intel systems this is entered on all CPUs in parallel through
1012  * MCE broadcast. However some CPUs might be broken beyond repair,
1013  * so be always careful when synchronizing with others.
1014  */
1015 void do_machine_check(struct pt_regs *regs, long error_code)
1016 {
1017         struct mca_config *cfg = &mca_cfg;
1018         struct mce m, *final;
1019         int i;
1020         int worst = 0;
1021         int severity;
1022         /*
1023          * Establish sequential order between the CPUs entering the machine
1024          * check handler.
1025          */
1026         int order;
1027         /*
1028          * If no_way_out gets set, there is no safe way to recover from this
1029          * MCE.  If mca_cfg.tolerant is cranked up, we'll try anyway.
1030          */
1031         int no_way_out = 0;
1032         /*
1033          * If kill_it gets set, there might be a way to recover from this
1034          * error.
1035          */
1036         int kill_it = 0;
1037         DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1038         DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1039         char *msg = "Unknown";
1040
1041         this_cpu_inc(mce_exception_count);
1042
1043         if (!cfg->banks)
1044                 goto out;
1045
1046         mce_gather_info(&m, regs);
1047
1048         final = &__get_cpu_var(mces_seen);
1049         *final = m;
1050
1051         memset(valid_banks, 0, sizeof(valid_banks));
1052         no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1053
1054         barrier();
1055
1056         /*
1057          * When no restart IP might need to kill or panic.
1058          * Assume the worst for now, but if we find the
1059          * severity is MCE_AR_SEVERITY we have other options.
1060          */
1061         if (!(m.mcgstatus & MCG_STATUS_RIPV))
1062                 kill_it = 1;
1063
1064         /*
1065          * Go through all the banks in exclusion of the other CPUs.
1066          * This way we don't report duplicated events on shared banks
1067          * because the first one to see it will clear it.
1068          */
1069         order = mce_start(&no_way_out);
1070         for (i = 0; i < cfg->banks; i++) {
1071                 __clear_bit(i, toclear);
1072                 if (!test_bit(i, valid_banks))
1073                         continue;
1074                 if (!mce_banks[i].ctl)
1075                         continue;
1076
1077                 m.misc = 0;
1078                 m.addr = 0;
1079                 m.bank = i;
1080
1081                 m.status = mce_rdmsrl(MSR_IA32_MCx_STATUS(i));
1082                 if ((m.status & MCI_STATUS_VAL) == 0)
1083                         continue;
1084
1085                 /*
1086                  * Non uncorrected or non signaled errors are handled by
1087                  * machine_check_poll. Leave them alone, unless this panics.
1088                  */
1089                 if (!(m.status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1090                         !no_way_out)
1091                         continue;
1092
1093                 /*
1094                  * Set taint even when machine check was not enabled.
1095                  */
1096                 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1097
1098                 severity = mce_severity(&m, cfg->tolerant, NULL);
1099
1100                 /*
1101                  * When machine check was for corrected handler don't touch,
1102                  * unless we're panicing.
1103                  */
1104                 if (severity == MCE_KEEP_SEVERITY && !no_way_out)
1105                         continue;
1106                 __set_bit(i, toclear);
1107                 if (severity == MCE_NO_SEVERITY) {
1108                         /*
1109                          * Machine check event was not enabled. Clear, but
1110                          * ignore.
1111                          */
1112                         continue;
1113                 }
1114
1115                 mce_read_aux(&m, i);
1116
1117                 /*
1118                  * Action optional error. Queue address for later processing.
1119                  * When the ring overflows we just ignore the AO error.
1120                  * RED-PEN add some logging mechanism when
1121                  * usable_address or mce_add_ring fails.
1122                  * RED-PEN don't ignore overflow for mca_cfg.tolerant == 0
1123                  */
1124                 if (severity == MCE_AO_SEVERITY && mce_usable_address(&m))
1125                         mce_ring_add(m.addr >> PAGE_SHIFT);
1126
1127                 mce_log(&m);
1128
1129                 if (severity > worst) {
1130                         *final = m;
1131                         worst = severity;
1132                 }
1133         }
1134
1135         /* mce_clear_state will clear *final, save locally for use later */
1136         m = *final;
1137
1138         if (!no_way_out)
1139                 mce_clear_state(toclear);
1140
1141         /*
1142          * Do most of the synchronization with other CPUs.
1143          * When there's any problem use only local no_way_out state.
1144          */
1145         if (mce_end(order) < 0)
1146                 no_way_out = worst >= MCE_PANIC_SEVERITY;
1147
1148         /*
1149          * At insane "tolerant" levels we take no action. Otherwise
1150          * we only die if we have no other choice. For less serious
1151          * issues we try to recover, or limit damage to the current
1152          * process.
1153          */
1154         if (cfg->tolerant < 3) {
1155                 if (no_way_out)
1156                         mce_panic("Fatal machine check on current CPU", &m, msg);
1157                 if (worst == MCE_AR_SEVERITY) {
1158                         /* schedule action before return to userland */
1159                         mce_save_info(m.addr, m.mcgstatus & MCG_STATUS_RIPV);
1160                         set_thread_flag(TIF_MCE_NOTIFY);
1161                 } else if (kill_it) {
1162                         force_sig(SIGBUS, current);
1163                 }
1164         }
1165
1166         if (worst > 0)
1167                 mce_report_event(regs);
1168         mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1169 out:
1170         sync_core();
1171 }
1172 EXPORT_SYMBOL_GPL(do_machine_check);
1173
1174 #ifndef CONFIG_MEMORY_FAILURE
1175 int memory_failure(unsigned long pfn, int vector, int flags)
1176 {
1177         /* mce_severity() should not hand us an ACTION_REQUIRED error */
1178         BUG_ON(flags & MF_ACTION_REQUIRED);
1179         pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1180                "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1181                pfn);
1182
1183         return 0;
1184 }
1185 #endif
1186
1187 /*
1188  * Called in process context that interrupted by MCE and marked with
1189  * TIF_MCE_NOTIFY, just before returning to erroneous userland.
1190  * This code is allowed to sleep.
1191  * Attempt possible recovery such as calling the high level VM handler to
1192  * process any corrupted pages, and kill/signal current process if required.
1193  * Action required errors are handled here.
1194  */
1195 void mce_notify_process(void)
1196 {
1197         unsigned long pfn;
1198         struct mce_info *mi = mce_find_info();
1199         int flags = MF_ACTION_REQUIRED;
1200
1201         if (!mi)
1202                 mce_panic("Lost physical address for unconsumed uncorrectable error", NULL, NULL);
1203         pfn = mi->paddr >> PAGE_SHIFT;
1204
1205         clear_thread_flag(TIF_MCE_NOTIFY);
1206
1207         pr_err("Uncorrected hardware memory error in user-access at %llx",
1208                  mi->paddr);
1209         /*
1210          * We must call memory_failure() here even if the current process is
1211          * doomed. We still need to mark the page as poisoned and alert any
1212          * other users of the page.
1213          */
1214         if (!mi->restartable)
1215                 flags |= MF_MUST_KILL;
1216         if (memory_failure(pfn, MCE_VECTOR, flags) < 0) {
1217                 pr_err("Memory error not recovered");
1218                 force_sig(SIGBUS, current);
1219         }
1220         mce_clear_info(mi);
1221 }
1222
1223 /*
1224  * Action optional processing happens here (picking up
1225  * from the list of faulting pages that do_machine_check()
1226  * placed into the "ring").
1227  */
1228 static void mce_process_work(struct work_struct *dummy)
1229 {
1230         unsigned long pfn;
1231
1232         while (mce_ring_get(&pfn))
1233                 memory_failure(pfn, MCE_VECTOR, 0);
1234 }
1235
1236 #ifdef CONFIG_X86_MCE_INTEL
1237 /***
1238  * mce_log_therm_throt_event - Logs the thermal throttling event to mcelog
1239  * @cpu: The CPU on which the event occurred.
1240  * @status: Event status information
1241  *
1242  * This function should be called by the thermal interrupt after the
1243  * event has been processed and the decision was made to log the event
1244  * further.
1245  *
1246  * The status parameter will be saved to the 'status' field of 'struct mce'
1247  * and historically has been the register value of the
1248  * MSR_IA32_THERMAL_STATUS (Intel) msr.
1249  */
1250 void mce_log_therm_throt_event(__u64 status)
1251 {
1252         struct mce m;
1253
1254         mce_setup(&m);
1255         m.bank = MCE_THERMAL_BANK;
1256         m.status = status;
1257         mce_log(&m);
1258 }
1259 #endif /* CONFIG_X86_MCE_INTEL */
1260
1261 /*
1262  * Periodic polling timer for "silent" machine check errors.  If the
1263  * poller finds an MCE, poll 2x faster.  When the poller finds no more
1264  * errors, poll 2x slower (up to check_interval seconds).
1265  */
1266 static unsigned long check_interval = 5 * 60; /* 5 minutes */
1267
1268 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1269 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1270
1271 static unsigned long mce_adjust_timer_default(unsigned long interval)
1272 {
1273         return interval;
1274 }
1275
1276 static unsigned long (*mce_adjust_timer)(unsigned long interval) =
1277         mce_adjust_timer_default;
1278
1279 static int cmc_error_seen(void)
1280 {
1281         unsigned long *v = &__get_cpu_var(mce_polled_error);
1282
1283         return test_and_clear_bit(0, v);
1284 }
1285
1286 static void mce_timer_fn(unsigned long data)
1287 {
1288         struct timer_list *t = &__get_cpu_var(mce_timer);
1289         unsigned long iv;
1290         int notify;
1291
1292         WARN_ON(smp_processor_id() != data);
1293
1294         if (mce_available(__this_cpu_ptr(&cpu_info))) {
1295                 machine_check_poll(MCP_TIMESTAMP,
1296                                 &__get_cpu_var(mce_poll_banks));
1297                 mce_intel_cmci_poll();
1298         }
1299
1300         /*
1301          * Alert userspace if needed.  If we logged an MCE, reduce the
1302          * polling interval, otherwise increase the polling interval.
1303          */
1304         iv = __this_cpu_read(mce_next_interval);
1305         notify = mce_notify_irq();
1306         notify |= cmc_error_seen();
1307         if (notify) {
1308                 iv = max(iv / 2, (unsigned long) HZ/100);
1309         } else {
1310                 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1311                 iv = mce_adjust_timer(iv);
1312         }
1313         __this_cpu_write(mce_next_interval, iv);
1314         /* Might have become 0 after CMCI storm subsided */
1315         if (iv) {
1316                 t->expires = jiffies + iv;
1317                 add_timer_on(t, smp_processor_id());
1318         }
1319 }
1320
1321 /*
1322  * Ensure that the timer is firing in @interval from now.
1323  */
1324 void mce_timer_kick(unsigned long interval)
1325 {
1326         struct timer_list *t = &__get_cpu_var(mce_timer);
1327         unsigned long when = jiffies + interval;
1328         unsigned long iv = __this_cpu_read(mce_next_interval);
1329
1330         if (timer_pending(t)) {
1331                 if (time_before(when, t->expires))
1332                         mod_timer_pinned(t, when);
1333         } else {
1334                 t->expires = round_jiffies(when);
1335                 add_timer_on(t, smp_processor_id());
1336         }
1337         if (interval < iv)
1338                 __this_cpu_write(mce_next_interval, interval);
1339 }
1340
1341 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
1342 static void mce_timer_delete_all(void)
1343 {
1344         int cpu;
1345
1346         for_each_online_cpu(cpu)
1347                 del_timer_sync(&per_cpu(mce_timer, cpu));
1348 }
1349
1350 static void mce_do_trigger(struct work_struct *work)
1351 {
1352         call_usermodehelper(mce_helper, mce_helper_argv, NULL, UMH_NO_WAIT);
1353 }
1354
1355 static DECLARE_WORK(mce_trigger_work, mce_do_trigger);
1356
1357 /*
1358  * Notify the user(s) about new machine check events.
1359  * Can be called from interrupt context, but not from machine check/NMI
1360  * context.
1361  */
1362 int mce_notify_irq(void)
1363 {
1364         /* Not more than two messages every minute */
1365         static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1366
1367         if (test_and_clear_bit(0, &mce_need_notify)) {
1368                 /* wake processes polling /dev/mcelog */
1369                 wake_up_interruptible(&mce_chrdev_wait);
1370
1371                 if (mce_helper[0])
1372                         schedule_work(&mce_trigger_work);
1373
1374                 if (__ratelimit(&ratelimit))
1375                         pr_info(HW_ERR "Machine check events logged\n");
1376
1377                 return 1;
1378         }
1379         return 0;
1380 }
1381 EXPORT_SYMBOL_GPL(mce_notify_irq);
1382
1383 static int __mcheck_cpu_mce_banks_init(void)
1384 {
1385         int i;
1386         u8 num_banks = mca_cfg.banks;
1387
1388         mce_banks = kzalloc(num_banks * sizeof(struct mce_bank), GFP_KERNEL);
1389         if (!mce_banks)
1390                 return -ENOMEM;
1391
1392         for (i = 0; i < num_banks; i++) {
1393                 struct mce_bank *b = &mce_banks[i];
1394
1395                 b->ctl = -1ULL;
1396                 b->init = 1;
1397         }
1398         return 0;
1399 }
1400
1401 /*
1402  * Initialize Machine Checks for a CPU.
1403  */
1404 static int __mcheck_cpu_cap_init(void)
1405 {
1406         unsigned b;
1407         u64 cap;
1408
1409         rdmsrl(MSR_IA32_MCG_CAP, cap);
1410
1411         b = cap & MCG_BANKCNT_MASK;
1412         if (!mca_cfg.banks)
1413                 pr_info("CPU supports %d MCE banks\n", b);
1414
1415         if (b > MAX_NR_BANKS) {
1416                 pr_warn("Using only %u machine check banks out of %u\n",
1417                         MAX_NR_BANKS, b);
1418                 b = MAX_NR_BANKS;
1419         }
1420
1421         /* Don't support asymmetric configurations today */
1422         WARN_ON(mca_cfg.banks != 0 && b != mca_cfg.banks);
1423         mca_cfg.banks = b;
1424
1425         if (!mce_banks) {
1426                 int err = __mcheck_cpu_mce_banks_init();
1427
1428                 if (err)
1429                         return err;
1430         }
1431
1432         /* Use accurate RIP reporting if available. */
1433         if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1434                 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1435
1436         if (cap & MCG_SER_P)
1437                 mca_cfg.ser = true;
1438
1439         return 0;
1440 }
1441
1442 static void __mcheck_cpu_init_generic(void)
1443 {
1444         enum mcp_flags m_fl = 0;
1445         mce_banks_t all_banks;
1446         u64 cap;
1447         int i;
1448
1449         if (!mca_cfg.bootlog)
1450                 m_fl = MCP_DONTLOG;
1451
1452         /*
1453          * Log the machine checks left over from the previous reset.
1454          */
1455         bitmap_fill(all_banks, MAX_NR_BANKS);
1456         machine_check_poll(MCP_UC | m_fl, &all_banks);
1457
1458         set_in_cr4(X86_CR4_MCE);
1459
1460         rdmsrl(MSR_IA32_MCG_CAP, cap);
1461         if (cap & MCG_CTL_P)
1462                 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1463
1464         for (i = 0; i < mca_cfg.banks; i++) {
1465                 struct mce_bank *b = &mce_banks[i];
1466
1467                 if (!b->init)
1468                         continue;
1469                 wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
1470                 wrmsrl(MSR_IA32_MCx_STATUS(i), 0);
1471         }
1472 }
1473
1474 /*
1475  * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
1476  * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
1477  * Vol 3B Table 15-20). But this confuses both the code that determines
1478  * whether the machine check occurred in kernel or user mode, and also
1479  * the severity assessment code. Pretend that EIPV was set, and take the
1480  * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
1481  */
1482 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
1483 {
1484         if (bank != 0)
1485                 return;
1486         if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
1487                 return;
1488         if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
1489                           MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
1490                           MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
1491                           MCACOD)) !=
1492                          (MCI_STATUS_UC|MCI_STATUS_EN|
1493                           MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
1494                           MCI_STATUS_AR|MCACOD_INSTR))
1495                 return;
1496
1497         m->mcgstatus |= MCG_STATUS_EIPV;
1498         m->ip = regs->ip;
1499         m->cs = regs->cs;
1500 }
1501
1502 /* Add per CPU specific workarounds here */
1503 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1504 {
1505         struct mca_config *cfg = &mca_cfg;
1506
1507         if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1508                 pr_info("unknown CPU type - not enabling MCE support\n");
1509                 return -EOPNOTSUPP;
1510         }
1511
1512         /* This should be disabled by the BIOS, but isn't always */
1513         if (c->x86_vendor == X86_VENDOR_AMD) {
1514                 if (c->x86 == 15 && cfg->banks > 4) {
1515                         /*
1516                          * disable GART TBL walk error reporting, which
1517                          * trips off incorrectly with the IOMMU & 3ware
1518                          * & Cerberus:
1519                          */
1520                         clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1521                 }
1522                 if (c->x86 <= 17 && cfg->bootlog < 0) {
1523                         /*
1524                          * Lots of broken BIOS around that don't clear them
1525                          * by default and leave crap in there. Don't log:
1526                          */
1527                         cfg->bootlog = 0;
1528                 }
1529                 /*
1530                  * Various K7s with broken bank 0 around. Always disable
1531                  * by default.
1532                  */
1533                  if (c->x86 == 6 && cfg->banks > 0)
1534                         mce_banks[0].ctl = 0;
1535
1536                  /*
1537                   * Turn off MC4_MISC thresholding banks on those models since
1538                   * they're not supported there.
1539                   */
1540                  if (c->x86 == 0x15 &&
1541                      (c->x86_model >= 0x10 && c->x86_model <= 0x1f)) {
1542                          int i;
1543                          u64 val, hwcr;
1544                          bool need_toggle;
1545                          u32 msrs[] = {
1546                                 0x00000413, /* MC4_MISC0 */
1547                                 0xc0000408, /* MC4_MISC1 */
1548                          };
1549
1550                          rdmsrl(MSR_K7_HWCR, hwcr);
1551
1552                          /* McStatusWrEn has to be set */
1553                          need_toggle = !(hwcr & BIT(18));
1554
1555                          if (need_toggle)
1556                                  wrmsrl(MSR_K7_HWCR, hwcr | BIT(18));
1557
1558                          for (i = 0; i < ARRAY_SIZE(msrs); i++) {
1559                                  rdmsrl(msrs[i], val);
1560
1561                                  /* CntP bit set? */
1562                                  if (val & BIT_64(62)) {
1563                                         val &= ~BIT_64(62);
1564                                         wrmsrl(msrs[i], val);
1565                                  }
1566                          }
1567
1568                          /* restore old settings */
1569                          if (need_toggle)
1570                                  wrmsrl(MSR_K7_HWCR, hwcr);
1571                  }
1572         }
1573
1574         if (c->x86_vendor == X86_VENDOR_INTEL) {
1575                 /*
1576                  * SDM documents that on family 6 bank 0 should not be written
1577                  * because it aliases to another special BIOS controlled
1578                  * register.
1579                  * But it's not aliased anymore on model 0x1a+
1580                  * Don't ignore bank 0 completely because there could be a
1581                  * valid event later, merely don't write CTL0.
1582                  */
1583
1584                 if (c->x86 == 6 && c->x86_model < 0x1A && cfg->banks > 0)
1585                         mce_banks[0].init = 0;
1586
1587                 /*
1588                  * All newer Intel systems support MCE broadcasting. Enable
1589                  * synchronization with a one second timeout.
1590                  */
1591                 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1592                         cfg->monarch_timeout < 0)
1593                         cfg->monarch_timeout = USEC_PER_SEC;
1594
1595                 /*
1596                  * There are also broken BIOSes on some Pentium M and
1597                  * earlier systems:
1598                  */
1599                 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1600                         cfg->bootlog = 0;
1601
1602                 if (c->x86 == 6 && c->x86_model == 45)
1603                         quirk_no_way_out = quirk_sandybridge_ifu;
1604         }
1605         if (cfg->monarch_timeout < 0)
1606                 cfg->monarch_timeout = 0;
1607         if (cfg->bootlog != 0)
1608                 cfg->panic_timeout = 30;
1609
1610         return 0;
1611 }
1612
1613 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1614 {
1615         if (c->x86 != 5)
1616                 return 0;
1617
1618         switch (c->x86_vendor) {
1619         case X86_VENDOR_INTEL:
1620                 intel_p5_mcheck_init(c);
1621                 return 1;
1622                 break;
1623         case X86_VENDOR_CENTAUR:
1624                 winchip_mcheck_init(c);
1625                 return 1;
1626                 break;
1627         }
1628
1629         return 0;
1630 }
1631
1632 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1633 {
1634         switch (c->x86_vendor) {
1635         case X86_VENDOR_INTEL:
1636                 mce_intel_feature_init(c);
1637                 mce_adjust_timer = mce_intel_adjust_timer;
1638                 break;
1639         case X86_VENDOR_AMD:
1640                 mce_amd_feature_init(c);
1641                 break;
1642         default:
1643                 break;
1644         }
1645 }
1646
1647 static void mce_start_timer(unsigned int cpu, struct timer_list *t)
1648 {
1649         unsigned long iv = check_interval * HZ;
1650
1651         if (mca_cfg.ignore_ce || !iv)
1652                 return;
1653
1654         per_cpu(mce_next_interval, cpu) = iv;
1655
1656         t->expires = round_jiffies(jiffies + iv);
1657         add_timer_on(t, cpu);
1658 }
1659
1660 static void __mcheck_cpu_init_timer(void)
1661 {
1662         struct timer_list *t = &__get_cpu_var(mce_timer);
1663         unsigned int cpu = smp_processor_id();
1664
1665         setup_timer(t, mce_timer_fn, cpu);
1666         mce_start_timer(cpu, t);
1667 }
1668
1669 /* Handle unconfigured int18 (should never happen) */
1670 static void unexpected_machine_check(struct pt_regs *regs, long error_code)
1671 {
1672         pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1673                smp_processor_id());
1674 }
1675
1676 /* Call the installed machine check handler for this CPU setup. */
1677 void (*machine_check_vector)(struct pt_regs *, long error_code) =
1678                                                 unexpected_machine_check;
1679
1680 /*
1681  * Called for each booted CPU to set up machine checks.
1682  * Must be called with preempt off:
1683  */
1684 void mcheck_cpu_init(struct cpuinfo_x86 *c)
1685 {
1686         if (mca_cfg.disabled)
1687                 return;
1688
1689         if (__mcheck_cpu_ancient_init(c))
1690                 return;
1691
1692         if (!mce_available(c))
1693                 return;
1694
1695         if (__mcheck_cpu_cap_init() < 0 || __mcheck_cpu_apply_quirks(c) < 0) {
1696                 mca_cfg.disabled = true;
1697                 return;
1698         }
1699
1700         machine_check_vector = do_machine_check;
1701
1702         __mcheck_cpu_init_generic();
1703         __mcheck_cpu_init_vendor(c);
1704         __mcheck_cpu_init_timer();
1705         INIT_WORK(&__get_cpu_var(mce_work), mce_process_work);
1706         init_irq_work(&__get_cpu_var(mce_irq_work), &mce_irq_work_cb);
1707 }
1708
1709 /*
1710  * mce_chrdev: Character device /dev/mcelog to read and clear the MCE log.
1711  */
1712
1713 static DEFINE_SPINLOCK(mce_chrdev_state_lock);
1714 static int mce_chrdev_open_count;       /* #times opened */
1715 static int mce_chrdev_open_exclu;       /* already open exclusive? */
1716
1717 static int mce_chrdev_open(struct inode *inode, struct file *file)
1718 {
1719         spin_lock(&mce_chrdev_state_lock);
1720
1721         if (mce_chrdev_open_exclu ||
1722             (mce_chrdev_open_count && (file->f_flags & O_EXCL))) {
1723                 spin_unlock(&mce_chrdev_state_lock);
1724
1725                 return -EBUSY;
1726         }
1727
1728         if (file->f_flags & O_EXCL)
1729                 mce_chrdev_open_exclu = 1;
1730         mce_chrdev_open_count++;
1731
1732         spin_unlock(&mce_chrdev_state_lock);
1733
1734         return nonseekable_open(inode, file);
1735 }
1736
1737 static int mce_chrdev_release(struct inode *inode, struct file *file)
1738 {
1739         spin_lock(&mce_chrdev_state_lock);
1740
1741         mce_chrdev_open_count--;
1742         mce_chrdev_open_exclu = 0;
1743
1744         spin_unlock(&mce_chrdev_state_lock);
1745
1746         return 0;
1747 }
1748
1749 static void collect_tscs(void *data)
1750 {
1751         unsigned long *cpu_tsc = (unsigned long *)data;
1752
1753         rdtscll(cpu_tsc[smp_processor_id()]);
1754 }
1755
1756 static int mce_apei_read_done;
1757
1758 /* Collect MCE record of previous boot in persistent storage via APEI ERST. */
1759 static int __mce_read_apei(char __user **ubuf, size_t usize)
1760 {
1761         int rc;
1762         u64 record_id;
1763         struct mce m;
1764
1765         if (usize < sizeof(struct mce))
1766                 return -EINVAL;
1767
1768         rc = apei_read_mce(&m, &record_id);
1769         /* Error or no more MCE record */
1770         if (rc <= 0) {
1771                 mce_apei_read_done = 1;
1772                 /*
1773                  * When ERST is disabled, mce_chrdev_read() should return
1774                  * "no record" instead of "no device."
1775                  */
1776                 if (rc == -ENODEV)
1777                         return 0;
1778                 return rc;
1779         }
1780         rc = -EFAULT;
1781         if (copy_to_user(*ubuf, &m, sizeof(struct mce)))
1782                 return rc;
1783         /*
1784          * In fact, we should have cleared the record after that has
1785          * been flushed to the disk or sent to network in
1786          * /sbin/mcelog, but we have no interface to support that now,
1787          * so just clear it to avoid duplication.
1788          */
1789         rc = apei_clear_mce(record_id);
1790         if (rc) {
1791                 mce_apei_read_done = 1;
1792                 return rc;
1793         }
1794         *ubuf += sizeof(struct mce);
1795
1796         return 0;
1797 }
1798
1799 static ssize_t mce_chrdev_read(struct file *filp, char __user *ubuf,
1800                                 size_t usize, loff_t *off)
1801 {
1802         char __user *buf = ubuf;
1803         unsigned long *cpu_tsc;
1804         unsigned prev, next;
1805         int i, err;
1806
1807         cpu_tsc = kmalloc(nr_cpu_ids * sizeof(long), GFP_KERNEL);
1808         if (!cpu_tsc)
1809                 return -ENOMEM;
1810
1811         mutex_lock(&mce_chrdev_read_mutex);
1812
1813         if (!mce_apei_read_done) {
1814                 err = __mce_read_apei(&buf, usize);
1815                 if (err || buf != ubuf)
1816                         goto out;
1817         }
1818
1819         next = rcu_dereference_check_mce(mcelog.next);
1820
1821         /* Only supports full reads right now */
1822         err = -EINVAL;
1823         if (*off != 0 || usize < MCE_LOG_LEN*sizeof(struct mce))
1824                 goto out;
1825
1826         err = 0;
1827         prev = 0;
1828         do {
1829                 for (i = prev; i < next; i++) {
1830                         unsigned long start = jiffies;
1831                         struct mce *m = &mcelog.entry[i];
1832
1833                         while (!m->finished) {
1834                                 if (time_after_eq(jiffies, start + 2)) {
1835                                         memset(m, 0, sizeof(*m));
1836                                         goto timeout;
1837                                 }
1838                                 cpu_relax();
1839                         }
1840                         smp_rmb();
1841                         err |= copy_to_user(buf, m, sizeof(*m));
1842                         buf += sizeof(*m);
1843 timeout:
1844                         ;
1845                 }
1846
1847                 memset(mcelog.entry + prev, 0,
1848                        (next - prev) * sizeof(struct mce));
1849                 prev = next;
1850                 next = cmpxchg(&mcelog.next, prev, 0);
1851         } while (next != prev);
1852
1853         synchronize_sched();
1854
1855         /*
1856          * Collect entries that were still getting written before the
1857          * synchronize.
1858          */
1859         on_each_cpu(collect_tscs, cpu_tsc, 1);
1860
1861         for (i = next; i < MCE_LOG_LEN; i++) {
1862                 struct mce *m = &mcelog.entry[i];
1863
1864                 if (m->finished && m->tsc < cpu_tsc[m->cpu]) {
1865                         err |= copy_to_user(buf, m, sizeof(*m));
1866                         smp_rmb();
1867                         buf += sizeof(*m);
1868                         memset(m, 0, sizeof(*m));
1869                 }
1870         }
1871
1872         if (err)
1873                 err = -EFAULT;
1874
1875 out:
1876         mutex_unlock(&mce_chrdev_read_mutex);
1877         kfree(cpu_tsc);
1878
1879         return err ? err : buf - ubuf;
1880 }
1881
1882 static unsigned int mce_chrdev_poll(struct file *file, poll_table *wait)
1883 {
1884         poll_wait(file, &mce_chrdev_wait, wait);
1885         if (rcu_access_index(mcelog.next))
1886                 return POLLIN | POLLRDNORM;
1887         if (!mce_apei_read_done && apei_check_mce())
1888                 return POLLIN | POLLRDNORM;
1889         return 0;
1890 }
1891
1892 static long mce_chrdev_ioctl(struct file *f, unsigned int cmd,
1893                                 unsigned long arg)
1894 {
1895         int __user *p = (int __user *)arg;
1896
1897         if (!capable(CAP_SYS_ADMIN))
1898                 return -EPERM;
1899
1900         switch (cmd) {
1901         case MCE_GET_RECORD_LEN:
1902                 return put_user(sizeof(struct mce), p);
1903         case MCE_GET_LOG_LEN:
1904                 return put_user(MCE_LOG_LEN, p);
1905         case MCE_GETCLEAR_FLAGS: {
1906                 unsigned flags;
1907
1908                 do {
1909                         flags = mcelog.flags;
1910                 } while (cmpxchg(&mcelog.flags, flags, 0) != flags);
1911
1912                 return put_user(flags, p);
1913         }
1914         default:
1915                 return -ENOTTY;
1916         }
1917 }
1918
1919 static ssize_t (*mce_write)(struct file *filp, const char __user *ubuf,
1920                             size_t usize, loff_t *off);
1921
1922 void register_mce_write_callback(ssize_t (*fn)(struct file *filp,
1923                              const char __user *ubuf,
1924                              size_t usize, loff_t *off))
1925 {
1926         mce_write = fn;
1927 }
1928 EXPORT_SYMBOL_GPL(register_mce_write_callback);
1929
1930 ssize_t mce_chrdev_write(struct file *filp, const char __user *ubuf,
1931                          size_t usize, loff_t *off)
1932 {
1933         if (mce_write)
1934                 return mce_write(filp, ubuf, usize, off);
1935         else
1936                 return -EINVAL;
1937 }
1938
1939 static const struct file_operations mce_chrdev_ops = {
1940         .open                   = mce_chrdev_open,
1941         .release                = mce_chrdev_release,
1942         .read                   = mce_chrdev_read,
1943         .write                  = mce_chrdev_write,
1944         .poll                   = mce_chrdev_poll,
1945         .unlocked_ioctl         = mce_chrdev_ioctl,
1946         .llseek                 = no_llseek,
1947 };
1948
1949 static struct miscdevice mce_chrdev_device = {
1950         MISC_MCELOG_MINOR,
1951         "mcelog",
1952         &mce_chrdev_ops,
1953 };
1954
1955 static void __mce_disable_bank(void *arg)
1956 {
1957         int bank = *((int *)arg);
1958         __clear_bit(bank, __get_cpu_var(mce_poll_banks));
1959         cmci_disable_bank(bank);
1960 }
1961
1962 void mce_disable_bank(int bank)
1963 {
1964         if (bank >= mca_cfg.banks) {
1965                 pr_warn(FW_BUG
1966                         "Ignoring request to disable invalid MCA bank %d.\n",
1967                         bank);
1968                 return;
1969         }
1970         set_bit(bank, mce_banks_ce_disabled);
1971         on_each_cpu(__mce_disable_bank, &bank, 1);
1972 }
1973
1974 /*
1975  * mce=off Disables machine check
1976  * mce=no_cmci Disables CMCI
1977  * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
1978  * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
1979  * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
1980  *      monarchtimeout is how long to wait for other CPUs on machine
1981  *      check, or 0 to not wait
1982  * mce=bootlog Log MCEs from before booting. Disabled by default on AMD.
1983  * mce=nobootlog Don't log MCEs from before booting.
1984  * mce=bios_cmci_threshold Don't program the CMCI threshold
1985  */
1986 static int __init mcheck_enable(char *str)
1987 {
1988         struct mca_config *cfg = &mca_cfg;
1989
1990         if (*str == 0) {
1991                 enable_p5_mce();
1992                 return 1;
1993         }
1994         if (*str == '=')
1995                 str++;
1996         if (!strcmp(str, "off"))
1997                 cfg->disabled = true;
1998         else if (!strcmp(str, "no_cmci"))
1999                 cfg->cmci_disabled = true;
2000         else if (!strcmp(str, "dont_log_ce"))
2001                 cfg->dont_log_ce = true;
2002         else if (!strcmp(str, "ignore_ce"))
2003                 cfg->ignore_ce = true;
2004         else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2005                 cfg->bootlog = (str[0] == 'b');
2006         else if (!strcmp(str, "bios_cmci_threshold"))
2007                 cfg->bios_cmci_threshold = true;
2008         else if (isdigit(str[0])) {
2009                 get_option(&str, &(cfg->tolerant));
2010                 if (*str == ',') {
2011                         ++str;
2012                         get_option(&str, &(cfg->monarch_timeout));
2013                 }
2014         } else {
2015                 pr_info("mce argument %s ignored. Please use /sys\n", str);
2016                 return 0;
2017         }
2018         return 1;
2019 }
2020 __setup("mce", mcheck_enable);
2021
2022 int __init mcheck_init(void)
2023 {
2024         mcheck_intel_therm_init();
2025
2026         return 0;
2027 }
2028
2029 /*
2030  * mce_syscore: PM support
2031  */
2032
2033 /*
2034  * Disable machine checks on suspend and shutdown. We can't really handle
2035  * them later.
2036  */
2037 static int mce_disable_error_reporting(void)
2038 {
2039         int i;
2040
2041         for (i = 0; i < mca_cfg.banks; i++) {
2042                 struct mce_bank *b = &mce_banks[i];
2043
2044                 if (b->init)
2045                         wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2046         }
2047         return 0;
2048 }
2049
2050 static int mce_syscore_suspend(void)
2051 {
2052         return mce_disable_error_reporting();
2053 }
2054
2055 static void mce_syscore_shutdown(void)
2056 {
2057         mce_disable_error_reporting();
2058 }
2059
2060 /*
2061  * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2062  * Only one CPU is active at this time, the others get re-added later using
2063  * CPU hotplug:
2064  */
2065 static void mce_syscore_resume(void)
2066 {
2067         __mcheck_cpu_init_generic();
2068         __mcheck_cpu_init_vendor(__this_cpu_ptr(&cpu_info));
2069 }
2070
2071 static struct syscore_ops mce_syscore_ops = {
2072         .suspend        = mce_syscore_suspend,
2073         .shutdown       = mce_syscore_shutdown,
2074         .resume         = mce_syscore_resume,
2075 };
2076
2077 /*
2078  * mce_device: Sysfs support
2079  */
2080
2081 static void mce_cpu_restart(void *data)
2082 {
2083         if (!mce_available(__this_cpu_ptr(&cpu_info)))
2084                 return;
2085         __mcheck_cpu_init_generic();
2086         __mcheck_cpu_init_timer();
2087 }
2088
2089 /* Reinit MCEs after user configuration changes */
2090 static void mce_restart(void)
2091 {
2092         mce_timer_delete_all();
2093         on_each_cpu(mce_cpu_restart, NULL, 1);
2094 }
2095
2096 /* Toggle features for corrected errors */
2097 static void mce_disable_cmci(void *data)
2098 {
2099         if (!mce_available(__this_cpu_ptr(&cpu_info)))
2100                 return;
2101         cmci_clear();
2102 }
2103
2104 static void mce_enable_ce(void *all)
2105 {
2106         if (!mce_available(__this_cpu_ptr(&cpu_info)))
2107                 return;
2108         cmci_reenable();
2109         cmci_recheck();
2110         if (all)
2111                 __mcheck_cpu_init_timer();
2112 }
2113
2114 static struct bus_type mce_subsys = {
2115         .name           = "machinecheck",
2116         .dev_name       = "machinecheck",
2117 };
2118
2119 DEFINE_PER_CPU(struct device *, mce_device);
2120
2121 void (*threshold_cpu_callback)(unsigned long action, unsigned int cpu);
2122
2123 static inline struct mce_bank *attr_to_bank(struct device_attribute *attr)
2124 {
2125         return container_of(attr, struct mce_bank, attr);
2126 }
2127
2128 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2129                          char *buf)
2130 {
2131         return sprintf(buf, "%llx\n", attr_to_bank(attr)->ctl);
2132 }
2133
2134 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2135                         const char *buf, size_t size)
2136 {
2137         u64 new;
2138
2139         if (strict_strtoull(buf, 0, &new) < 0)
2140                 return -EINVAL;
2141
2142         attr_to_bank(attr)->ctl = new;
2143         mce_restart();
2144
2145         return size;
2146 }
2147
2148 static ssize_t
2149 show_trigger(struct device *s, struct device_attribute *attr, char *buf)
2150 {
2151         strcpy(buf, mce_helper);
2152         strcat(buf, "\n");
2153         return strlen(mce_helper) + 1;
2154 }
2155
2156 static ssize_t set_trigger(struct device *s, struct device_attribute *attr,
2157                                 const char *buf, size_t siz)
2158 {
2159         char *p;
2160
2161         strncpy(mce_helper, buf, sizeof(mce_helper));
2162         mce_helper[sizeof(mce_helper)-1] = 0;
2163         p = strchr(mce_helper, '\n');
2164
2165         if (p)
2166                 *p = 0;
2167
2168         return strlen(mce_helper) + !!p;
2169 }
2170
2171 static ssize_t set_ignore_ce(struct device *s,
2172                              struct device_attribute *attr,
2173                              const char *buf, size_t size)
2174 {
2175         u64 new;
2176
2177         if (strict_strtoull(buf, 0, &new) < 0)
2178                 return -EINVAL;
2179
2180         if (mca_cfg.ignore_ce ^ !!new) {
2181                 if (new) {
2182                         /* disable ce features */
2183                         mce_timer_delete_all();
2184                         on_each_cpu(mce_disable_cmci, NULL, 1);
2185                         mca_cfg.ignore_ce = true;
2186                 } else {
2187                         /* enable ce features */
2188                         mca_cfg.ignore_ce = false;
2189                         on_each_cpu(mce_enable_ce, (void *)1, 1);
2190                 }
2191         }
2192         return size;
2193 }
2194
2195 static ssize_t set_cmci_disabled(struct device *s,
2196                                  struct device_attribute *attr,
2197                                  const char *buf, size_t size)
2198 {
2199         u64 new;
2200
2201         if (strict_strtoull(buf, 0, &new) < 0)
2202                 return -EINVAL;
2203
2204         if (mca_cfg.cmci_disabled ^ !!new) {
2205                 if (new) {
2206                         /* disable cmci */
2207                         on_each_cpu(mce_disable_cmci, NULL, 1);
2208                         mca_cfg.cmci_disabled = true;
2209                 } else {
2210                         /* enable cmci */
2211                         mca_cfg.cmci_disabled = false;
2212                         on_each_cpu(mce_enable_ce, NULL, 1);
2213                 }
2214         }
2215         return size;
2216 }
2217
2218 static ssize_t store_int_with_restart(struct device *s,
2219                                       struct device_attribute *attr,
2220                                       const char *buf, size_t size)
2221 {
2222         ssize_t ret = device_store_int(s, attr, buf, size);
2223         mce_restart();
2224         return ret;
2225 }
2226
2227 static DEVICE_ATTR(trigger, 0644, show_trigger, set_trigger);
2228 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2229 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2230 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2231
2232 static struct dev_ext_attribute dev_attr_check_interval = {
2233         __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2234         &check_interval
2235 };
2236
2237 static struct dev_ext_attribute dev_attr_ignore_ce = {
2238         __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2239         &mca_cfg.ignore_ce
2240 };
2241
2242 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2243         __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2244         &mca_cfg.cmci_disabled
2245 };
2246
2247 static struct device_attribute *mce_device_attrs[] = {
2248         &dev_attr_tolerant.attr,
2249         &dev_attr_check_interval.attr,
2250         &dev_attr_trigger,
2251         &dev_attr_monarch_timeout.attr,
2252         &dev_attr_dont_log_ce.attr,
2253         &dev_attr_ignore_ce.attr,
2254         &dev_attr_cmci_disabled.attr,
2255         NULL
2256 };
2257
2258 static cpumask_var_t mce_device_initialized;
2259
2260 static void mce_device_release(struct device *dev)
2261 {
2262         kfree(dev);
2263 }
2264
2265 /* Per cpu device init. All of the cpus still share the same ctrl bank: */
2266 static int mce_device_create(unsigned int cpu)
2267 {
2268         struct device *dev;
2269         int err;
2270         int i, j;
2271
2272         if (!mce_available(&boot_cpu_data))
2273                 return -EIO;
2274
2275         dev = kzalloc(sizeof *dev, GFP_KERNEL);
2276         if (!dev)
2277                 return -ENOMEM;
2278         dev->id  = cpu;
2279         dev->bus = &mce_subsys;
2280         dev->release = &mce_device_release;
2281
2282         err = device_register(dev);
2283         if (err) {
2284                 put_device(dev);
2285                 return err;
2286         }
2287
2288         for (i = 0; mce_device_attrs[i]; i++) {
2289                 err = device_create_file(dev, mce_device_attrs[i]);
2290                 if (err)
2291                         goto error;
2292         }
2293         for (j = 0; j < mca_cfg.banks; j++) {
2294                 err = device_create_file(dev, &mce_banks[j].attr);
2295                 if (err)
2296                         goto error2;
2297         }
2298         cpumask_set_cpu(cpu, mce_device_initialized);
2299         per_cpu(mce_device, cpu) = dev;
2300
2301         return 0;
2302 error2:
2303         while (--j >= 0)
2304                 device_remove_file(dev, &mce_banks[j].attr);
2305 error:
2306         while (--i >= 0)
2307                 device_remove_file(dev, mce_device_attrs[i]);
2308
2309         device_unregister(dev);
2310
2311         return err;
2312 }
2313
2314 static void mce_device_remove(unsigned int cpu)
2315 {
2316         struct device *dev = per_cpu(mce_device, cpu);
2317         int i;
2318
2319         if (!cpumask_test_cpu(cpu, mce_device_initialized))
2320                 return;
2321
2322         for (i = 0; mce_device_attrs[i]; i++)
2323                 device_remove_file(dev, mce_device_attrs[i]);
2324
2325         for (i = 0; i < mca_cfg.banks; i++)
2326                 device_remove_file(dev, &mce_banks[i].attr);
2327
2328         device_unregister(dev);
2329         cpumask_clear_cpu(cpu, mce_device_initialized);
2330         per_cpu(mce_device, cpu) = NULL;
2331 }
2332
2333 /* Make sure there are no machine checks on offlined CPUs. */
2334 static void mce_disable_cpu(void *h)
2335 {
2336         unsigned long action = *(unsigned long *)h;
2337         int i;
2338
2339         if (!mce_available(__this_cpu_ptr(&cpu_info)))
2340                 return;
2341
2342         if (!(action & CPU_TASKS_FROZEN))
2343                 cmci_clear();
2344         for (i = 0; i < mca_cfg.banks; i++) {
2345                 struct mce_bank *b = &mce_banks[i];
2346
2347                 if (b->init)
2348                         wrmsrl(MSR_IA32_MCx_CTL(i), 0);
2349         }
2350 }
2351
2352 static void mce_reenable_cpu(void *h)
2353 {
2354         unsigned long action = *(unsigned long *)h;
2355         int i;
2356
2357         if (!mce_available(__this_cpu_ptr(&cpu_info)))
2358                 return;
2359
2360         if (!(action & CPU_TASKS_FROZEN))
2361                 cmci_reenable();
2362         for (i = 0; i < mca_cfg.banks; i++) {
2363                 struct mce_bank *b = &mce_banks[i];
2364
2365                 if (b->init)
2366                         wrmsrl(MSR_IA32_MCx_CTL(i), b->ctl);
2367         }
2368 }
2369
2370 /* Get notified when a cpu comes on/off. Be hotplug friendly. */
2371 static int
2372 mce_cpu_callback(struct notifier_block *nfb, unsigned long action, void *hcpu)
2373 {
2374         unsigned int cpu = (unsigned long)hcpu;
2375         struct timer_list *t = &per_cpu(mce_timer, cpu);
2376
2377         switch (action & ~CPU_TASKS_FROZEN) {
2378         case CPU_ONLINE:
2379                 mce_device_create(cpu);
2380                 if (threshold_cpu_callback)
2381                         threshold_cpu_callback(action, cpu);
2382                 break;
2383         case CPU_DEAD:
2384                 if (threshold_cpu_callback)
2385                         threshold_cpu_callback(action, cpu);
2386                 mce_device_remove(cpu);
2387                 mce_intel_hcpu_update(cpu);
2388                 break;
2389         case CPU_DOWN_PREPARE:
2390                 smp_call_function_single(cpu, mce_disable_cpu, &action, 1);
2391                 del_timer_sync(t);
2392                 break;
2393         case CPU_DOWN_FAILED:
2394                 smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
2395                 mce_start_timer(cpu, t);
2396                 break;
2397         }
2398
2399         if (action == CPU_POST_DEAD) {
2400                 /* intentionally ignoring frozen here */
2401                 cmci_rediscover();
2402         }
2403
2404         return NOTIFY_OK;
2405 }
2406
2407 static struct notifier_block mce_cpu_notifier = {
2408         .notifier_call = mce_cpu_callback,
2409 };
2410
2411 static __init void mce_init_banks(void)
2412 {
2413         int i;
2414
2415         for (i = 0; i < mca_cfg.banks; i++) {
2416                 struct mce_bank *b = &mce_banks[i];
2417                 struct device_attribute *a = &b->attr;
2418
2419                 sysfs_attr_init(&a->attr);
2420                 a->attr.name    = b->attrname;
2421                 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2422
2423                 a->attr.mode    = 0644;
2424                 a->show         = show_bank;
2425                 a->store        = set_bank;
2426         }
2427 }
2428
2429 static __init int mcheck_init_device(void)
2430 {
2431         int err;
2432         int i = 0;
2433
2434         if (!mce_available(&boot_cpu_data)) {
2435                 err = -EIO;
2436                 goto err_out;
2437         }
2438
2439         if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2440                 err = -ENOMEM;
2441                 goto err_out;
2442         }
2443
2444         mce_init_banks();
2445
2446         err = subsys_system_register(&mce_subsys, NULL);
2447         if (err)
2448                 goto err_out_mem;
2449
2450         cpu_notifier_register_begin();
2451         for_each_online_cpu(i) {
2452                 err = mce_device_create(i);
2453                 if (err) {
2454                         /*
2455                          * Register notifier anyway (and do not unreg it) so
2456                          * that we don't leave undeleted timers, see notifier
2457                          * callback above.
2458                          */
2459                         __register_hotcpu_notifier(&mce_cpu_notifier);
2460                         cpu_notifier_register_done();
2461                         goto err_device_create;
2462                 }
2463         }
2464
2465         __register_hotcpu_notifier(&mce_cpu_notifier);
2466         cpu_notifier_register_done();
2467
2468         register_syscore_ops(&mce_syscore_ops);
2469
2470         /* register character device /dev/mcelog */
2471         err = misc_register(&mce_chrdev_device);
2472         if (err)
2473                 goto err_register;
2474
2475         return 0;
2476
2477 err_register:
2478         unregister_syscore_ops(&mce_syscore_ops);
2479
2480 err_device_create:
2481         /*
2482          * We didn't keep track of which devices were created above, but
2483          * even if we had, the set of online cpus might have changed.
2484          * Play safe and remove for every possible cpu, since
2485          * mce_device_remove() will do the right thing.
2486          */
2487         for_each_possible_cpu(i)
2488                 mce_device_remove(i);
2489
2490 err_out_mem:
2491         free_cpumask_var(mce_device_initialized);
2492
2493 err_out:
2494         pr_err("Unable to init device /dev/mcelog (rc: %d)\n", err);
2495
2496         return err;
2497 }
2498 device_initcall_sync(mcheck_init_device);
2499
2500 /*
2501  * Old style boot options parsing. Only for compatibility.
2502  */
2503 static int __init mcheck_disable(char *str)
2504 {
2505         mca_cfg.disabled = true;
2506         return 1;
2507 }
2508 __setup("nomce", mcheck_disable);
2509
2510 #ifdef CONFIG_DEBUG_FS
2511 struct dentry *mce_get_debugfs_dir(void)
2512 {
2513         static struct dentry *dmce;
2514
2515         if (!dmce)
2516                 dmce = debugfs_create_dir("mce", NULL);
2517
2518         return dmce;
2519 }
2520
2521 static void mce_reset(void)
2522 {
2523         cpu_missing = 0;
2524         atomic_set(&mce_fake_paniced, 0);
2525         atomic_set(&mce_executing, 0);
2526         atomic_set(&mce_callin, 0);
2527         atomic_set(&global_nwo, 0);
2528 }
2529
2530 static int fake_panic_get(void *data, u64 *val)
2531 {
2532         *val = fake_panic;
2533         return 0;
2534 }
2535
2536 static int fake_panic_set(void *data, u64 val)
2537 {
2538         mce_reset();
2539         fake_panic = val;
2540         return 0;
2541 }
2542
2543 DEFINE_SIMPLE_ATTRIBUTE(fake_panic_fops, fake_panic_get,
2544                         fake_panic_set, "%llu\n");
2545
2546 static int __init mcheck_debugfs_init(void)
2547 {
2548         struct dentry *dmce, *ffake_panic;
2549
2550         dmce = mce_get_debugfs_dir();
2551         if (!dmce)
2552                 return -ENOMEM;
2553         ffake_panic = debugfs_create_file("fake_panic", 0444, dmce, NULL,
2554                                           &fake_panic_fops);
2555         if (!ffake_panic)
2556                 return -ENOMEM;
2557
2558         return 0;
2559 }
2560 late_initcall(mcheck_debugfs_init);
2561 #endif