Merge tag 'ntb-4.20' of git://github.com/jonmason/ntb
[sfrench/cifs-2.6.git] / arch / x86 / include / asm / mshyperv.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_X86_MSHYPER_H
3 #define _ASM_X86_MSHYPER_H
4
5 #include <linux/types.h>
6 #include <linux/atomic.h>
7 #include <linux/nmi.h>
8 #include <asm/io.h>
9 #include <asm/hyperv-tlfs.h>
10 #include <asm/nospec-branch.h>
11
12 #define VP_INVAL        U32_MAX
13
14 struct ms_hyperv_info {
15         u32 features;
16         u32 misc_features;
17         u32 hints;
18         u32 nested_features;
19         u32 max_vp_index;
20         u32 max_lp_index;
21 };
22
23 extern struct ms_hyperv_info ms_hyperv;
24
25 /*
26  * Generate the guest ID.
27  */
28
29 static inline  __u64 generate_guest_id(__u64 d_info1, __u64 kernel_version,
30                                        __u64 d_info2)
31 {
32         __u64 guest_id = 0;
33
34         guest_id = (((__u64)HV_LINUX_VENDOR_ID) << 48);
35         guest_id |= (d_info1 << 48);
36         guest_id |= (kernel_version << 16);
37         guest_id |= d_info2;
38
39         return guest_id;
40 }
41
42
43 /* Free the message slot and signal end-of-message if required */
44 static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type)
45 {
46         /*
47          * On crash we're reading some other CPU's message page and we need
48          * to be careful: this other CPU may already had cleared the header
49          * and the host may already had delivered some other message there.
50          * In case we blindly write msg->header.message_type we're going
51          * to lose it. We can still lose a message of the same type but
52          * we count on the fact that there can only be one
53          * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages
54          * on crash.
55          */
56         if (cmpxchg(&msg->header.message_type, old_msg_type,
57                     HVMSG_NONE) != old_msg_type)
58                 return;
59
60         /*
61          * Make sure the write to MessageType (ie set to
62          * HVMSG_NONE) happens before we read the
63          * MessagePending and EOMing. Otherwise, the EOMing
64          * will not deliver any more messages since there is
65          * no empty slot
66          */
67         mb();
68
69         if (msg->header.message_flags.msg_pending) {
70                 /*
71                  * This will cause message queue rescan to
72                  * possibly deliver another msg from the
73                  * hypervisor
74                  */
75                 wrmsrl(HV_X64_MSR_EOM, 0);
76         }
77 }
78
79 #define hv_init_timer(timer, tick) \
80         wrmsrl(HV_X64_MSR_STIMER0_COUNT + (2*timer), tick)
81 #define hv_init_timer_config(timer, val) \
82         wrmsrl(HV_X64_MSR_STIMER0_CONFIG + (2*timer), val)
83
84 #define hv_get_simp(val) rdmsrl(HV_X64_MSR_SIMP, val)
85 #define hv_set_simp(val) wrmsrl(HV_X64_MSR_SIMP, val)
86
87 #define hv_get_siefp(val) rdmsrl(HV_X64_MSR_SIEFP, val)
88 #define hv_set_siefp(val) wrmsrl(HV_X64_MSR_SIEFP, val)
89
90 #define hv_get_synic_state(val) rdmsrl(HV_X64_MSR_SCONTROL, val)
91 #define hv_set_synic_state(val) wrmsrl(HV_X64_MSR_SCONTROL, val)
92
93 #define hv_get_vp_index(index) rdmsrl(HV_X64_MSR_VP_INDEX, index)
94
95 #define hv_get_synint_state(int_num, val) \
96         rdmsrl(HV_X64_MSR_SINT0 + int_num, val)
97 #define hv_set_synint_state(int_num, val) \
98         wrmsrl(HV_X64_MSR_SINT0 + int_num, val)
99
100 #define hv_get_crash_ctl(val) \
101         rdmsrl(HV_X64_MSR_CRASH_CTL, val)
102
103 void hyperv_callback_vector(void);
104 void hyperv_reenlightenment_vector(void);
105 #ifdef CONFIG_TRACING
106 #define trace_hyperv_callback_vector hyperv_callback_vector
107 #endif
108 void hyperv_vector_handler(struct pt_regs *regs);
109 void hv_setup_vmbus_irq(void (*handler)(void));
110 void hv_remove_vmbus_irq(void);
111
112 void hv_setup_kexec_handler(void (*handler)(void));
113 void hv_remove_kexec_handler(void);
114 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs));
115 void hv_remove_crash_handler(void);
116
117 /*
118  * Routines for stimer0 Direct Mode handling.
119  * On x86/x64, there are no percpu actions to take.
120  */
121 void hv_stimer0_vector_handler(struct pt_regs *regs);
122 void hv_stimer0_callback_vector(void);
123 int hv_setup_stimer0_irq(int *irq, int *vector, void (*handler)(void));
124 void hv_remove_stimer0_irq(int irq);
125
126 static inline void hv_enable_stimer0_percpu_irq(int irq) {}
127 static inline void hv_disable_stimer0_percpu_irq(int irq) {}
128
129
130 #if IS_ENABLED(CONFIG_HYPERV)
131 extern struct clocksource *hyperv_cs;
132 extern void *hv_hypercall_pg;
133 extern void  __percpu  **hyperv_pcpu_input_arg;
134
135 static inline u64 hv_do_hypercall(u64 control, void *input, void *output)
136 {
137         u64 input_address = input ? virt_to_phys(input) : 0;
138         u64 output_address = output ? virt_to_phys(output) : 0;
139         u64 hv_status;
140
141 #ifdef CONFIG_X86_64
142         if (!hv_hypercall_pg)
143                 return U64_MAX;
144
145         __asm__ __volatile__("mov %4, %%r8\n"
146                              CALL_NOSPEC
147                              : "=a" (hv_status), ASM_CALL_CONSTRAINT,
148                                "+c" (control), "+d" (input_address)
149                              :  "r" (output_address),
150                                 THUNK_TARGET(hv_hypercall_pg)
151                              : "cc", "memory", "r8", "r9", "r10", "r11");
152 #else
153         u32 input_address_hi = upper_32_bits(input_address);
154         u32 input_address_lo = lower_32_bits(input_address);
155         u32 output_address_hi = upper_32_bits(output_address);
156         u32 output_address_lo = lower_32_bits(output_address);
157
158         if (!hv_hypercall_pg)
159                 return U64_MAX;
160
161         __asm__ __volatile__(CALL_NOSPEC
162                              : "=A" (hv_status),
163                                "+c" (input_address_lo), ASM_CALL_CONSTRAINT
164                              : "A" (control),
165                                "b" (input_address_hi),
166                                "D"(output_address_hi), "S"(output_address_lo),
167                                THUNK_TARGET(hv_hypercall_pg)
168                              : "cc", "memory");
169 #endif /* !x86_64 */
170         return hv_status;
171 }
172
173 /* Fast hypercall with 8 bytes of input and no output */
174 static inline u64 hv_do_fast_hypercall8(u16 code, u64 input1)
175 {
176         u64 hv_status, control = (u64)code | HV_HYPERCALL_FAST_BIT;
177
178 #ifdef CONFIG_X86_64
179         {
180                 __asm__ __volatile__(CALL_NOSPEC
181                                      : "=a" (hv_status), ASM_CALL_CONSTRAINT,
182                                        "+c" (control), "+d" (input1)
183                                      : THUNK_TARGET(hv_hypercall_pg)
184                                      : "cc", "r8", "r9", "r10", "r11");
185         }
186 #else
187         {
188                 u32 input1_hi = upper_32_bits(input1);
189                 u32 input1_lo = lower_32_bits(input1);
190
191                 __asm__ __volatile__ (CALL_NOSPEC
192                                       : "=A"(hv_status),
193                                         "+c"(input1_lo),
194                                         ASM_CALL_CONSTRAINT
195                                       : "A" (control),
196                                         "b" (input1_hi),
197                                         THUNK_TARGET(hv_hypercall_pg)
198                                       : "cc", "edi", "esi");
199         }
200 #endif
201                 return hv_status;
202 }
203
204 /* Fast hypercall with 16 bytes of input */
205 static inline u64 hv_do_fast_hypercall16(u16 code, u64 input1, u64 input2)
206 {
207         u64 hv_status, control = (u64)code | HV_HYPERCALL_FAST_BIT;
208
209 #ifdef CONFIG_X86_64
210         {
211                 __asm__ __volatile__("mov %4, %%r8\n"
212                                      CALL_NOSPEC
213                                      : "=a" (hv_status), ASM_CALL_CONSTRAINT,
214                                        "+c" (control), "+d" (input1)
215                                      : "r" (input2),
216                                        THUNK_TARGET(hv_hypercall_pg)
217                                      : "cc", "r8", "r9", "r10", "r11");
218         }
219 #else
220         {
221                 u32 input1_hi = upper_32_bits(input1);
222                 u32 input1_lo = lower_32_bits(input1);
223                 u32 input2_hi = upper_32_bits(input2);
224                 u32 input2_lo = lower_32_bits(input2);
225
226                 __asm__ __volatile__ (CALL_NOSPEC
227                                       : "=A"(hv_status),
228                                         "+c"(input1_lo), ASM_CALL_CONSTRAINT
229                                       : "A" (control), "b" (input1_hi),
230                                         "D"(input2_hi), "S"(input2_lo),
231                                         THUNK_TARGET(hv_hypercall_pg)
232                                       : "cc");
233         }
234 #endif
235                 return hv_status;
236 }
237
238 /*
239  * Rep hypercalls. Callers of this functions are supposed to ensure that
240  * rep_count and varhead_size comply with Hyper-V hypercall definition.
241  */
242 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size,
243                                       void *input, void *output)
244 {
245         u64 control = code;
246         u64 status;
247         u16 rep_comp;
248
249         control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET;
250         control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET;
251
252         do {
253                 status = hv_do_hypercall(control, input, output);
254                 if ((status & HV_HYPERCALL_RESULT_MASK) != HV_STATUS_SUCCESS)
255                         return status;
256
257                 /* Bits 32-43 of status have 'Reps completed' data. */
258                 rep_comp = (status & HV_HYPERCALL_REP_COMP_MASK) >>
259                         HV_HYPERCALL_REP_COMP_OFFSET;
260
261                 control &= ~HV_HYPERCALL_REP_START_MASK;
262                 control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET;
263
264                 touch_nmi_watchdog();
265         } while (rep_comp < rep_count);
266
267         return status;
268 }
269
270 /*
271  * Hypervisor's notion of virtual processor ID is different from
272  * Linux' notion of CPU ID. This information can only be retrieved
273  * in the context of the calling CPU. Setup a map for easy access
274  * to this information.
275  */
276 extern u32 *hv_vp_index;
277 extern u32 hv_max_vp_index;
278 extern struct hv_vp_assist_page **hv_vp_assist_page;
279
280 static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu)
281 {
282         if (!hv_vp_assist_page)
283                 return NULL;
284
285         return hv_vp_assist_page[cpu];
286 }
287
288 /**
289  * hv_cpu_number_to_vp_number() - Map CPU to VP.
290  * @cpu_number: CPU number in Linux terms
291  *
292  * This function returns the mapping between the Linux processor
293  * number and the hypervisor's virtual processor number, useful
294  * in making hypercalls and such that talk about specific
295  * processors.
296  *
297  * Return: Virtual processor number in Hyper-V terms
298  */
299 static inline int hv_cpu_number_to_vp_number(int cpu_number)
300 {
301         return hv_vp_index[cpu_number];
302 }
303
304 static inline int cpumask_to_vpset(struct hv_vpset *vpset,
305                                     const struct cpumask *cpus)
306 {
307         int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1;
308
309         /* valid_bank_mask can represent up to 64 banks */
310         if (hv_max_vp_index / 64 >= 64)
311                 return 0;
312
313         /*
314          * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex
315          * structs are not cleared between calls, we risk flushing unneeded
316          * vCPUs otherwise.
317          */
318         for (vcpu_bank = 0; vcpu_bank <= hv_max_vp_index / 64; vcpu_bank++)
319                 vpset->bank_contents[vcpu_bank] = 0;
320
321         /*
322          * Some banks may end up being empty but this is acceptable.
323          */
324         for_each_cpu(cpu, cpus) {
325                 vcpu = hv_cpu_number_to_vp_number(cpu);
326                 if (vcpu == VP_INVAL)
327                         return -1;
328                 vcpu_bank = vcpu / 64;
329                 vcpu_offset = vcpu % 64;
330                 __set_bit(vcpu_offset, (unsigned long *)
331                           &vpset->bank_contents[vcpu_bank]);
332                 if (vcpu_bank >= nr_bank)
333                         nr_bank = vcpu_bank + 1;
334         }
335         vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0);
336         return nr_bank;
337 }
338
339 void __init hyperv_init(void);
340 void hyperv_setup_mmu_ops(void);
341 void hyperv_report_panic(struct pt_regs *regs, long err);
342 void hyperv_report_panic_msg(phys_addr_t pa, size_t size);
343 bool hv_is_hyperv_initialized(void);
344 void hyperv_cleanup(void);
345
346 void hyperv_reenlightenment_intr(struct pt_regs *regs);
347 void set_hv_tscchange_cb(void (*cb)(void));
348 void clear_hv_tscchange_cb(void);
349 void hyperv_stop_tsc_emulation(void);
350 int hyperv_flush_guest_mapping(u64 as);
351
352 #ifdef CONFIG_X86_64
353 void hv_apic_init(void);
354 void __init hv_init_spinlocks(void);
355 bool hv_vcpu_is_preempted(int vcpu);
356 #else
357 static inline void hv_apic_init(void) {}
358 #endif
359
360 #else /* CONFIG_HYPERV */
361 static inline void hyperv_init(void) {}
362 static inline bool hv_is_hyperv_initialized(void) { return false; }
363 static inline void hyperv_cleanup(void) {}
364 static inline void hyperv_setup_mmu_ops(void) {}
365 static inline void set_hv_tscchange_cb(void (*cb)(void)) {}
366 static inline void clear_hv_tscchange_cb(void) {}
367 static inline void hyperv_stop_tsc_emulation(void) {};
368 static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu)
369 {
370         return NULL;
371 }
372 static inline int hyperv_flush_guest_mapping(u64 as) { return -1; }
373 #endif /* CONFIG_HYPERV */
374
375 #ifdef CONFIG_HYPERV_TSCPAGE
376 struct ms_hyperv_tsc_page *hv_get_tsc_page(void);
377 static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg,
378                                        u64 *cur_tsc)
379 {
380         u64 scale, offset;
381         u32 sequence;
382
383         /*
384          * The protocol for reading Hyper-V TSC page is specified in Hypervisor
385          * Top-Level Functional Specification ver. 3.0 and above. To get the
386          * reference time we must do the following:
387          * - READ ReferenceTscSequence
388          *   A special '0' value indicates the time source is unreliable and we
389          *   need to use something else. The currently published specification
390          *   versions (up to 4.0b) contain a mistake and wrongly claim '-1'
391          *   instead of '0' as the special value, see commit c35b82ef0294.
392          * - ReferenceTime =
393          *        ((RDTSC() * ReferenceTscScale) >> 64) + ReferenceTscOffset
394          * - READ ReferenceTscSequence again. In case its value has changed
395          *   since our first reading we need to discard ReferenceTime and repeat
396          *   the whole sequence as the hypervisor was updating the page in
397          *   between.
398          */
399         do {
400                 sequence = READ_ONCE(tsc_pg->tsc_sequence);
401                 if (!sequence)
402                         return U64_MAX;
403                 /*
404                  * Make sure we read sequence before we read other values from
405                  * TSC page.
406                  */
407                 smp_rmb();
408
409                 scale = READ_ONCE(tsc_pg->tsc_scale);
410                 offset = READ_ONCE(tsc_pg->tsc_offset);
411                 *cur_tsc = rdtsc_ordered();
412
413                 /*
414                  * Make sure we read sequence after we read all other values
415                  * from TSC page.
416                  */
417                 smp_rmb();
418
419         } while (READ_ONCE(tsc_pg->tsc_sequence) != sequence);
420
421         return mul_u64_u64_shr(*cur_tsc, scale, 64) + offset;
422 }
423
424 static inline u64 hv_read_tsc_page(const struct ms_hyperv_tsc_page *tsc_pg)
425 {
426         u64 cur_tsc;
427
428         return hv_read_tsc_page_tsc(tsc_pg, &cur_tsc);
429 }
430
431 #else
432 static inline struct ms_hyperv_tsc_page *hv_get_tsc_page(void)
433 {
434         return NULL;
435 }
436
437 static inline u64 hv_read_tsc_page_tsc(const struct ms_hyperv_tsc_page *tsc_pg,
438                                        u64 *cur_tsc)
439 {
440         BUG();
441         return U64_MAX;
442 }
443 #endif
444 #endif