Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[sfrench/cifs-2.6.git] / arch / x86 / events / intel / core.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
20 #include <asm/apic.h>
21
22 #include "../perf_event.h"
23
24 /*
25  * Intel PerfMon, used on Core and later.
26  */
27 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
28 {
29         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
30         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
31         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
32         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
33         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
34         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
35         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
36         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
37 };
38
39 static struct event_constraint intel_core_event_constraints[] __read_mostly =
40 {
41         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
42         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
43         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
44         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
45         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
46         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
47         EVENT_CONSTRAINT_END
48 };
49
50 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
51 {
52         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
53         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
54         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
55         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
56         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
57         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
58         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
59         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
60         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
61         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
62         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
63         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
64         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
65         EVENT_CONSTRAINT_END
66 };
67
68 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
69 {
70         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
71         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
72         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
73         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
74         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
75         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
76         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
77         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
78         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
79         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
80         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
81         EVENT_CONSTRAINT_END
82 };
83
84 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
85 {
86         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
87         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
88         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
89         EVENT_EXTRA_END
90 };
91
92 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
93 {
94         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
95         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
96         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
97         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
98         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
99         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
100         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
101         EVENT_CONSTRAINT_END
102 };
103
104 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
105 {
106         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
107         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
108         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
109         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
110         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
111         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
112         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
113         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
114         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
115         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
116         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
117         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118
119         /*
120          * When HT is off these events can only run on the bottom 4 counters
121          * When HT is on, they are impacted by the HT bug and require EXCL access
122          */
123         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
124         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
125         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
126         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
127
128         EVENT_CONSTRAINT_END
129 };
130
131 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
132 {
133         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
134         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
135         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
136         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
137         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
138         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
139         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
140         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
141         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
142         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
143         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
144         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
145         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
146
147         /*
148          * When HT is off these events can only run on the bottom 4 counters
149          * When HT is on, they are impacted by the HT bug and require EXCL access
150          */
151         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
152         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
153         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
154         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
155
156         EVENT_CONSTRAINT_END
157 };
158
159 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
160 {
161         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
162         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
163         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
164         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
165         EVENT_EXTRA_END
166 };
167
168 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
169 {
170         EVENT_CONSTRAINT_END
171 };
172
173 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
174 {
175         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
176         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
177         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
178         EVENT_CONSTRAINT_END
179 };
180
181 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
182 {
183         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
184         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
185         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
186         EVENT_CONSTRAINT_END
187 };
188
189 static struct event_constraint intel_skl_event_constraints[] = {
190         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
191         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
192         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
193         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
194
195         /*
196          * when HT is off, these can only run on the bottom 4 counters
197          */
198         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
199         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
200         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
201         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
202         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
203
204         EVENT_CONSTRAINT_END
205 };
206
207 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
208         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
209         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
210         EVENT_EXTRA_END
211 };
212
213 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
214         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
215         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
216         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
217         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
218         EVENT_EXTRA_END
219 };
220
221 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
222         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
223         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
224         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
225         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
226         EVENT_EXTRA_END
227 };
228
229 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
230         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
231         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
232         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
233         /*
234          * Note the low 8 bits eventsel code is not a continuous field, containing
235          * some #GPing bits. These are masked out.
236          */
237         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
238         EVENT_EXTRA_END
239 };
240
241 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
242 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
243 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
244
245 static struct attribute *nhm_events_attrs[] = {
246         EVENT_PTR(mem_ld_nhm),
247         NULL,
248 };
249
250 /*
251  * topdown events for Intel Core CPUs.
252  *
253  * The events are all in slots, which is a free slot in a 4 wide
254  * pipeline. Some events are already reported in slots, for cycle
255  * events we multiply by the pipeline width (4).
256  *
257  * With Hyper Threading on, topdown metrics are either summed or averaged
258  * between the threads of a core: (count_t0 + count_t1).
259  *
260  * For the average case the metric is always scaled to pipeline width,
261  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
262  */
263
264 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
265         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
266         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
267 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
268 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
269         "event=0xe,umask=0x1");                 /* uops_issued.any */
270 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
271         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
272 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
273         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
274 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
275         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
276         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
277 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
278         "4", "2");
279
280 static struct attribute *snb_events_attrs[] = {
281         EVENT_PTR(mem_ld_snb),
282         EVENT_PTR(mem_st_snb),
283         EVENT_PTR(td_slots_issued),
284         EVENT_PTR(td_slots_retired),
285         EVENT_PTR(td_fetch_bubbles),
286         EVENT_PTR(td_total_slots),
287         EVENT_PTR(td_total_slots_scale),
288         EVENT_PTR(td_recovery_bubbles),
289         EVENT_PTR(td_recovery_bubbles_scale),
290         NULL,
291 };
292
293 static struct event_constraint intel_hsw_event_constraints[] = {
294         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
295         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
296         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
297         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
298         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
299         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
300         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
301         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
302         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
303         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
304         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
305         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
306
307         /*
308          * When HT is off these events can only run on the bottom 4 counters
309          * When HT is on, they are impacted by the HT bug and require EXCL access
310          */
311         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
312         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
313         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
314         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
315
316         EVENT_CONSTRAINT_END
317 };
318
319 static struct event_constraint intel_bdw_event_constraints[] = {
320         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
321         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
322         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
323         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
324         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
325         /*
326          * when HT is off, these can only run on the bottom 4 counters
327          */
328         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
329         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
330         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
331         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
332         EVENT_CONSTRAINT_END
333 };
334
335 static u64 intel_pmu_event_map(int hw_event)
336 {
337         return intel_perfmon_event_map[hw_event];
338 }
339
340 /*
341  * Notes on the events:
342  * - data reads do not include code reads (comparable to earlier tables)
343  * - data counts include speculative execution (except L1 write, dtlb, bpu)
344  * - remote node access includes remote memory, remote cache, remote mmio.
345  * - prefetches are not included in the counts.
346  * - icache miss does not include decoded icache
347  */
348
349 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
350 #define SKL_DEMAND_RFO                  BIT_ULL(1)
351 #define SKL_ANY_RESPONSE                BIT_ULL(16)
352 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
353 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
354 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
355 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
356 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
357 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
358                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
359                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
360                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
361 #define SKL_SPL_HIT                     BIT_ULL(30)
362 #define SKL_SNOOP_NONE                  BIT_ULL(31)
363 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
364 #define SKL_SNOOP_MISS                  BIT_ULL(33)
365 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
366 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
367 #define SKL_SNOOP_HITM                  BIT_ULL(36)
368 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
369 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
370                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
371                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
372                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
373 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
374 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
375                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
376                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
377                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
378 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
379 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
380 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
381                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
382                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
383
384 static __initconst const u64 skl_hw_cache_event_ids
385                                 [PERF_COUNT_HW_CACHE_MAX]
386                                 [PERF_COUNT_HW_CACHE_OP_MAX]
387                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
388 {
389  [ C(L1D ) ] = {
390         [ C(OP_READ) ] = {
391                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
392                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
393         },
394         [ C(OP_WRITE) ] = {
395                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
396                 [ C(RESULT_MISS)   ] = 0x0,
397         },
398         [ C(OP_PREFETCH) ] = {
399                 [ C(RESULT_ACCESS) ] = 0x0,
400                 [ C(RESULT_MISS)   ] = 0x0,
401         },
402  },
403  [ C(L1I ) ] = {
404         [ C(OP_READ) ] = {
405                 [ C(RESULT_ACCESS) ] = 0x0,
406                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
407         },
408         [ C(OP_WRITE) ] = {
409                 [ C(RESULT_ACCESS) ] = -1,
410                 [ C(RESULT_MISS)   ] = -1,
411         },
412         [ C(OP_PREFETCH) ] = {
413                 [ C(RESULT_ACCESS) ] = 0x0,
414                 [ C(RESULT_MISS)   ] = 0x0,
415         },
416  },
417  [ C(LL  ) ] = {
418         [ C(OP_READ) ] = {
419                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
420                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
421         },
422         [ C(OP_WRITE) ] = {
423                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
424                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
425         },
426         [ C(OP_PREFETCH) ] = {
427                 [ C(RESULT_ACCESS) ] = 0x0,
428                 [ C(RESULT_MISS)   ] = 0x0,
429         },
430  },
431  [ C(DTLB) ] = {
432         [ C(OP_READ) ] = {
433                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
434                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
435         },
436         [ C(OP_WRITE) ] = {
437                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
438                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
439         },
440         [ C(OP_PREFETCH) ] = {
441                 [ C(RESULT_ACCESS) ] = 0x0,
442                 [ C(RESULT_MISS)   ] = 0x0,
443         },
444  },
445  [ C(ITLB) ] = {
446         [ C(OP_READ) ] = {
447                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
448                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
449         },
450         [ C(OP_WRITE) ] = {
451                 [ C(RESULT_ACCESS) ] = -1,
452                 [ C(RESULT_MISS)   ] = -1,
453         },
454         [ C(OP_PREFETCH) ] = {
455                 [ C(RESULT_ACCESS) ] = -1,
456                 [ C(RESULT_MISS)   ] = -1,
457         },
458  },
459  [ C(BPU ) ] = {
460         [ C(OP_READ) ] = {
461                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
462                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
463         },
464         [ C(OP_WRITE) ] = {
465                 [ C(RESULT_ACCESS) ] = -1,
466                 [ C(RESULT_MISS)   ] = -1,
467         },
468         [ C(OP_PREFETCH) ] = {
469                 [ C(RESULT_ACCESS) ] = -1,
470                 [ C(RESULT_MISS)   ] = -1,
471         },
472  },
473  [ C(NODE) ] = {
474         [ C(OP_READ) ] = {
475                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
476                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
477         },
478         [ C(OP_WRITE) ] = {
479                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
480                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
481         },
482         [ C(OP_PREFETCH) ] = {
483                 [ C(RESULT_ACCESS) ] = 0x0,
484                 [ C(RESULT_MISS)   ] = 0x0,
485         },
486  },
487 };
488
489 static __initconst const u64 skl_hw_cache_extra_regs
490                                 [PERF_COUNT_HW_CACHE_MAX]
491                                 [PERF_COUNT_HW_CACHE_OP_MAX]
492                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
493 {
494  [ C(LL  ) ] = {
495         [ C(OP_READ) ] = {
496                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
497                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
498                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
499                                        SKL_L3_MISS|SKL_ANY_SNOOP|
500                                        SKL_SUPPLIER_NONE,
501         },
502         [ C(OP_WRITE) ] = {
503                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
504                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
505                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
506                                        SKL_L3_MISS|SKL_ANY_SNOOP|
507                                        SKL_SUPPLIER_NONE,
508         },
509         [ C(OP_PREFETCH) ] = {
510                 [ C(RESULT_ACCESS) ] = 0x0,
511                 [ C(RESULT_MISS)   ] = 0x0,
512         },
513  },
514  [ C(NODE) ] = {
515         [ C(OP_READ) ] = {
516                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
517                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
518                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
519                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
520         },
521         [ C(OP_WRITE) ] = {
522                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
523                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
524                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
525                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
526         },
527         [ C(OP_PREFETCH) ] = {
528                 [ C(RESULT_ACCESS) ] = 0x0,
529                 [ C(RESULT_MISS)   ] = 0x0,
530         },
531  },
532 };
533
534 #define SNB_DMND_DATA_RD        (1ULL << 0)
535 #define SNB_DMND_RFO            (1ULL << 1)
536 #define SNB_DMND_IFETCH         (1ULL << 2)
537 #define SNB_DMND_WB             (1ULL << 3)
538 #define SNB_PF_DATA_RD          (1ULL << 4)
539 #define SNB_PF_RFO              (1ULL << 5)
540 #define SNB_PF_IFETCH           (1ULL << 6)
541 #define SNB_LLC_DATA_RD         (1ULL << 7)
542 #define SNB_LLC_RFO             (1ULL << 8)
543 #define SNB_LLC_IFETCH          (1ULL << 9)
544 #define SNB_BUS_LOCKS           (1ULL << 10)
545 #define SNB_STRM_ST             (1ULL << 11)
546 #define SNB_OTHER               (1ULL << 15)
547 #define SNB_RESP_ANY            (1ULL << 16)
548 #define SNB_NO_SUPP             (1ULL << 17)
549 #define SNB_LLC_HITM            (1ULL << 18)
550 #define SNB_LLC_HITE            (1ULL << 19)
551 #define SNB_LLC_HITS            (1ULL << 20)
552 #define SNB_LLC_HITF            (1ULL << 21)
553 #define SNB_LOCAL               (1ULL << 22)
554 #define SNB_REMOTE              (0xffULL << 23)
555 #define SNB_SNP_NONE            (1ULL << 31)
556 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
557 #define SNB_SNP_MISS            (1ULL << 33)
558 #define SNB_NO_FWD              (1ULL << 34)
559 #define SNB_SNP_FWD             (1ULL << 35)
560 #define SNB_HITM                (1ULL << 36)
561 #define SNB_NON_DRAM            (1ULL << 37)
562
563 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
564 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
565 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
566
567 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
568                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
569                                  SNB_HITM)
570
571 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
572 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
573
574 #define SNB_L3_ACCESS           SNB_RESP_ANY
575 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
576
577 static __initconst const u64 snb_hw_cache_extra_regs
578                                 [PERF_COUNT_HW_CACHE_MAX]
579                                 [PERF_COUNT_HW_CACHE_OP_MAX]
580                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
581 {
582  [ C(LL  ) ] = {
583         [ C(OP_READ) ] = {
584                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
585                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
586         },
587         [ C(OP_WRITE) ] = {
588                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
589                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
590         },
591         [ C(OP_PREFETCH) ] = {
592                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
593                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
594         },
595  },
596  [ C(NODE) ] = {
597         [ C(OP_READ) ] = {
598                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
599                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
600         },
601         [ C(OP_WRITE) ] = {
602                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
603                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
604         },
605         [ C(OP_PREFETCH) ] = {
606                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
607                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
608         },
609  },
610 };
611
612 static __initconst const u64 snb_hw_cache_event_ids
613                                 [PERF_COUNT_HW_CACHE_MAX]
614                                 [PERF_COUNT_HW_CACHE_OP_MAX]
615                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
616 {
617  [ C(L1D) ] = {
618         [ C(OP_READ) ] = {
619                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
620                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
621         },
622         [ C(OP_WRITE) ] = {
623                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
624                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
625         },
626         [ C(OP_PREFETCH) ] = {
627                 [ C(RESULT_ACCESS) ] = 0x0,
628                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
629         },
630  },
631  [ C(L1I ) ] = {
632         [ C(OP_READ) ] = {
633                 [ C(RESULT_ACCESS) ] = 0x0,
634                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
635         },
636         [ C(OP_WRITE) ] = {
637                 [ C(RESULT_ACCESS) ] = -1,
638                 [ C(RESULT_MISS)   ] = -1,
639         },
640         [ C(OP_PREFETCH) ] = {
641                 [ C(RESULT_ACCESS) ] = 0x0,
642                 [ C(RESULT_MISS)   ] = 0x0,
643         },
644  },
645  [ C(LL  ) ] = {
646         [ C(OP_READ) ] = {
647                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
648                 [ C(RESULT_ACCESS) ] = 0x01b7,
649                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
650                 [ C(RESULT_MISS)   ] = 0x01b7,
651         },
652         [ C(OP_WRITE) ] = {
653                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
654                 [ C(RESULT_ACCESS) ] = 0x01b7,
655                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
656                 [ C(RESULT_MISS)   ] = 0x01b7,
657         },
658         [ C(OP_PREFETCH) ] = {
659                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
660                 [ C(RESULT_ACCESS) ] = 0x01b7,
661                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
662                 [ C(RESULT_MISS)   ] = 0x01b7,
663         },
664  },
665  [ C(DTLB) ] = {
666         [ C(OP_READ) ] = {
667                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
668                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
669         },
670         [ C(OP_WRITE) ] = {
671                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
672                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
673         },
674         [ C(OP_PREFETCH) ] = {
675                 [ C(RESULT_ACCESS) ] = 0x0,
676                 [ C(RESULT_MISS)   ] = 0x0,
677         },
678  },
679  [ C(ITLB) ] = {
680         [ C(OP_READ) ] = {
681                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
682                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
683         },
684         [ C(OP_WRITE) ] = {
685                 [ C(RESULT_ACCESS) ] = -1,
686                 [ C(RESULT_MISS)   ] = -1,
687         },
688         [ C(OP_PREFETCH) ] = {
689                 [ C(RESULT_ACCESS) ] = -1,
690                 [ C(RESULT_MISS)   ] = -1,
691         },
692  },
693  [ C(BPU ) ] = {
694         [ C(OP_READ) ] = {
695                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
696                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
697         },
698         [ C(OP_WRITE) ] = {
699                 [ C(RESULT_ACCESS) ] = -1,
700                 [ C(RESULT_MISS)   ] = -1,
701         },
702         [ C(OP_PREFETCH) ] = {
703                 [ C(RESULT_ACCESS) ] = -1,
704                 [ C(RESULT_MISS)   ] = -1,
705         },
706  },
707  [ C(NODE) ] = {
708         [ C(OP_READ) ] = {
709                 [ C(RESULT_ACCESS) ] = 0x01b7,
710                 [ C(RESULT_MISS)   ] = 0x01b7,
711         },
712         [ C(OP_WRITE) ] = {
713                 [ C(RESULT_ACCESS) ] = 0x01b7,
714                 [ C(RESULT_MISS)   ] = 0x01b7,
715         },
716         [ C(OP_PREFETCH) ] = {
717                 [ C(RESULT_ACCESS) ] = 0x01b7,
718                 [ C(RESULT_MISS)   ] = 0x01b7,
719         },
720  },
721
722 };
723
724 /*
725  * Notes on the events:
726  * - data reads do not include code reads (comparable to earlier tables)
727  * - data counts include speculative execution (except L1 write, dtlb, bpu)
728  * - remote node access includes remote memory, remote cache, remote mmio.
729  * - prefetches are not included in the counts because they are not
730  *   reliably counted.
731  */
732
733 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
734 #define HSW_DEMAND_RFO                  BIT_ULL(1)
735 #define HSW_ANY_RESPONSE                BIT_ULL(16)
736 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
737 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
738 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
739 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
740 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
741 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
742                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
743                                          HSW_L3_MISS_REMOTE_HOP2P)
744 #define HSW_SNOOP_NONE                  BIT_ULL(31)
745 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
746 #define HSW_SNOOP_MISS                  BIT_ULL(33)
747 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
748 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
749 #define HSW_SNOOP_HITM                  BIT_ULL(36)
750 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
751 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
752                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
753                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
754                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
755 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
756 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
757 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
758 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
759                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
760 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
761
762 #define BDW_L3_MISS_LOCAL               BIT(26)
763 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
764                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
765                                          HSW_L3_MISS_REMOTE_HOP2P)
766
767
768 static __initconst const u64 hsw_hw_cache_event_ids
769                                 [PERF_COUNT_HW_CACHE_MAX]
770                                 [PERF_COUNT_HW_CACHE_OP_MAX]
771                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
772 {
773  [ C(L1D ) ] = {
774         [ C(OP_READ) ] = {
775                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
776                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
777         },
778         [ C(OP_WRITE) ] = {
779                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
780                 [ C(RESULT_MISS)   ] = 0x0,
781         },
782         [ C(OP_PREFETCH) ] = {
783                 [ C(RESULT_ACCESS) ] = 0x0,
784                 [ C(RESULT_MISS)   ] = 0x0,
785         },
786  },
787  [ C(L1I ) ] = {
788         [ C(OP_READ) ] = {
789                 [ C(RESULT_ACCESS) ] = 0x0,
790                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
791         },
792         [ C(OP_WRITE) ] = {
793                 [ C(RESULT_ACCESS) ] = -1,
794                 [ C(RESULT_MISS)   ] = -1,
795         },
796         [ C(OP_PREFETCH) ] = {
797                 [ C(RESULT_ACCESS) ] = 0x0,
798                 [ C(RESULT_MISS)   ] = 0x0,
799         },
800  },
801  [ C(LL  ) ] = {
802         [ C(OP_READ) ] = {
803                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
804                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
805         },
806         [ C(OP_WRITE) ] = {
807                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
808                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
809         },
810         [ C(OP_PREFETCH) ] = {
811                 [ C(RESULT_ACCESS) ] = 0x0,
812                 [ C(RESULT_MISS)   ] = 0x0,
813         },
814  },
815  [ C(DTLB) ] = {
816         [ C(OP_READ) ] = {
817                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
818                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
819         },
820         [ C(OP_WRITE) ] = {
821                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
822                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
823         },
824         [ C(OP_PREFETCH) ] = {
825                 [ C(RESULT_ACCESS) ] = 0x0,
826                 [ C(RESULT_MISS)   ] = 0x0,
827         },
828  },
829  [ C(ITLB) ] = {
830         [ C(OP_READ) ] = {
831                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
832                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
833         },
834         [ C(OP_WRITE) ] = {
835                 [ C(RESULT_ACCESS) ] = -1,
836                 [ C(RESULT_MISS)   ] = -1,
837         },
838         [ C(OP_PREFETCH) ] = {
839                 [ C(RESULT_ACCESS) ] = -1,
840                 [ C(RESULT_MISS)   ] = -1,
841         },
842  },
843  [ C(BPU ) ] = {
844         [ C(OP_READ) ] = {
845                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
846                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
847         },
848         [ C(OP_WRITE) ] = {
849                 [ C(RESULT_ACCESS) ] = -1,
850                 [ C(RESULT_MISS)   ] = -1,
851         },
852         [ C(OP_PREFETCH) ] = {
853                 [ C(RESULT_ACCESS) ] = -1,
854                 [ C(RESULT_MISS)   ] = -1,
855         },
856  },
857  [ C(NODE) ] = {
858         [ C(OP_READ) ] = {
859                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
860                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
861         },
862         [ C(OP_WRITE) ] = {
863                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
864                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
865         },
866         [ C(OP_PREFETCH) ] = {
867                 [ C(RESULT_ACCESS) ] = 0x0,
868                 [ C(RESULT_MISS)   ] = 0x0,
869         },
870  },
871 };
872
873 static __initconst const u64 hsw_hw_cache_extra_regs
874                                 [PERF_COUNT_HW_CACHE_MAX]
875                                 [PERF_COUNT_HW_CACHE_OP_MAX]
876                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
877 {
878  [ C(LL  ) ] = {
879         [ C(OP_READ) ] = {
880                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
881                                        HSW_LLC_ACCESS,
882                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
883                                        HSW_L3_MISS|HSW_ANY_SNOOP,
884         },
885         [ C(OP_WRITE) ] = {
886                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
887                                        HSW_LLC_ACCESS,
888                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
889                                        HSW_L3_MISS|HSW_ANY_SNOOP,
890         },
891         [ C(OP_PREFETCH) ] = {
892                 [ C(RESULT_ACCESS) ] = 0x0,
893                 [ C(RESULT_MISS)   ] = 0x0,
894         },
895  },
896  [ C(NODE) ] = {
897         [ C(OP_READ) ] = {
898                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
899                                        HSW_L3_MISS_LOCAL_DRAM|
900                                        HSW_SNOOP_DRAM,
901                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
902                                        HSW_L3_MISS_REMOTE|
903                                        HSW_SNOOP_DRAM,
904         },
905         [ C(OP_WRITE) ] = {
906                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
907                                        HSW_L3_MISS_LOCAL_DRAM|
908                                        HSW_SNOOP_DRAM,
909                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
910                                        HSW_L3_MISS_REMOTE|
911                                        HSW_SNOOP_DRAM,
912         },
913         [ C(OP_PREFETCH) ] = {
914                 [ C(RESULT_ACCESS) ] = 0x0,
915                 [ C(RESULT_MISS)   ] = 0x0,
916         },
917  },
918 };
919
920 static __initconst const u64 westmere_hw_cache_event_ids
921                                 [PERF_COUNT_HW_CACHE_MAX]
922                                 [PERF_COUNT_HW_CACHE_OP_MAX]
923                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
924 {
925  [ C(L1D) ] = {
926         [ C(OP_READ) ] = {
927                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
928                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
929         },
930         [ C(OP_WRITE) ] = {
931                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
932                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
933         },
934         [ C(OP_PREFETCH) ] = {
935                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
936                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
937         },
938  },
939  [ C(L1I ) ] = {
940         [ C(OP_READ) ] = {
941                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
942                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
943         },
944         [ C(OP_WRITE) ] = {
945                 [ C(RESULT_ACCESS) ] = -1,
946                 [ C(RESULT_MISS)   ] = -1,
947         },
948         [ C(OP_PREFETCH) ] = {
949                 [ C(RESULT_ACCESS) ] = 0x0,
950                 [ C(RESULT_MISS)   ] = 0x0,
951         },
952  },
953  [ C(LL  ) ] = {
954         [ C(OP_READ) ] = {
955                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
956                 [ C(RESULT_ACCESS) ] = 0x01b7,
957                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
958                 [ C(RESULT_MISS)   ] = 0x01b7,
959         },
960         /*
961          * Use RFO, not WRITEBACK, because a write miss would typically occur
962          * on RFO.
963          */
964         [ C(OP_WRITE) ] = {
965                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
966                 [ C(RESULT_ACCESS) ] = 0x01b7,
967                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
968                 [ C(RESULT_MISS)   ] = 0x01b7,
969         },
970         [ C(OP_PREFETCH) ] = {
971                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
972                 [ C(RESULT_ACCESS) ] = 0x01b7,
973                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
974                 [ C(RESULT_MISS)   ] = 0x01b7,
975         },
976  },
977  [ C(DTLB) ] = {
978         [ C(OP_READ) ] = {
979                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
980                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
981         },
982         [ C(OP_WRITE) ] = {
983                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
984                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
985         },
986         [ C(OP_PREFETCH) ] = {
987                 [ C(RESULT_ACCESS) ] = 0x0,
988                 [ C(RESULT_MISS)   ] = 0x0,
989         },
990  },
991  [ C(ITLB) ] = {
992         [ C(OP_READ) ] = {
993                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
994                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
995         },
996         [ C(OP_WRITE) ] = {
997                 [ C(RESULT_ACCESS) ] = -1,
998                 [ C(RESULT_MISS)   ] = -1,
999         },
1000         [ C(OP_PREFETCH) ] = {
1001                 [ C(RESULT_ACCESS) ] = -1,
1002                 [ C(RESULT_MISS)   ] = -1,
1003         },
1004  },
1005  [ C(BPU ) ] = {
1006         [ C(OP_READ) ] = {
1007                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1008                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1009         },
1010         [ C(OP_WRITE) ] = {
1011                 [ C(RESULT_ACCESS) ] = -1,
1012                 [ C(RESULT_MISS)   ] = -1,
1013         },
1014         [ C(OP_PREFETCH) ] = {
1015                 [ C(RESULT_ACCESS) ] = -1,
1016                 [ C(RESULT_MISS)   ] = -1,
1017         },
1018  },
1019  [ C(NODE) ] = {
1020         [ C(OP_READ) ] = {
1021                 [ C(RESULT_ACCESS) ] = 0x01b7,
1022                 [ C(RESULT_MISS)   ] = 0x01b7,
1023         },
1024         [ C(OP_WRITE) ] = {
1025                 [ C(RESULT_ACCESS) ] = 0x01b7,
1026                 [ C(RESULT_MISS)   ] = 0x01b7,
1027         },
1028         [ C(OP_PREFETCH) ] = {
1029                 [ C(RESULT_ACCESS) ] = 0x01b7,
1030                 [ C(RESULT_MISS)   ] = 0x01b7,
1031         },
1032  },
1033 };
1034
1035 /*
1036  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1037  * See IA32 SDM Vol 3B 30.6.1.3
1038  */
1039
1040 #define NHM_DMND_DATA_RD        (1 << 0)
1041 #define NHM_DMND_RFO            (1 << 1)
1042 #define NHM_DMND_IFETCH         (1 << 2)
1043 #define NHM_DMND_WB             (1 << 3)
1044 #define NHM_PF_DATA_RD          (1 << 4)
1045 #define NHM_PF_DATA_RFO         (1 << 5)
1046 #define NHM_PF_IFETCH           (1 << 6)
1047 #define NHM_OFFCORE_OTHER       (1 << 7)
1048 #define NHM_UNCORE_HIT          (1 << 8)
1049 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1050 #define NHM_OTHER_CORE_HITM     (1 << 10)
1051                                 /* reserved */
1052 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1053 #define NHM_REMOTE_DRAM         (1 << 13)
1054 #define NHM_LOCAL_DRAM          (1 << 14)
1055 #define NHM_NON_DRAM            (1 << 15)
1056
1057 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1058 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1059
1060 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1061 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1062 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1063
1064 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1065 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1066 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1067
1068 static __initconst const u64 nehalem_hw_cache_extra_regs
1069                                 [PERF_COUNT_HW_CACHE_MAX]
1070                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1071                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1072 {
1073  [ C(LL  ) ] = {
1074         [ C(OP_READ) ] = {
1075                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1076                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1077         },
1078         [ C(OP_WRITE) ] = {
1079                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1080                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1081         },
1082         [ C(OP_PREFETCH) ] = {
1083                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1084                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1085         },
1086  },
1087  [ C(NODE) ] = {
1088         [ C(OP_READ) ] = {
1089                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1090                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1091         },
1092         [ C(OP_WRITE) ] = {
1093                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1094                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1095         },
1096         [ C(OP_PREFETCH) ] = {
1097                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1098                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1099         },
1100  },
1101 };
1102
1103 static __initconst const u64 nehalem_hw_cache_event_ids
1104                                 [PERF_COUNT_HW_CACHE_MAX]
1105                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1106                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1107 {
1108  [ C(L1D) ] = {
1109         [ C(OP_READ) ] = {
1110                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1111                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1112         },
1113         [ C(OP_WRITE) ] = {
1114                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1115                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1116         },
1117         [ C(OP_PREFETCH) ] = {
1118                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1119                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1120         },
1121  },
1122  [ C(L1I ) ] = {
1123         [ C(OP_READ) ] = {
1124                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1125                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1126         },
1127         [ C(OP_WRITE) ] = {
1128                 [ C(RESULT_ACCESS) ] = -1,
1129                 [ C(RESULT_MISS)   ] = -1,
1130         },
1131         [ C(OP_PREFETCH) ] = {
1132                 [ C(RESULT_ACCESS) ] = 0x0,
1133                 [ C(RESULT_MISS)   ] = 0x0,
1134         },
1135  },
1136  [ C(LL  ) ] = {
1137         [ C(OP_READ) ] = {
1138                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1139                 [ C(RESULT_ACCESS) ] = 0x01b7,
1140                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1141                 [ C(RESULT_MISS)   ] = 0x01b7,
1142         },
1143         /*
1144          * Use RFO, not WRITEBACK, because a write miss would typically occur
1145          * on RFO.
1146          */
1147         [ C(OP_WRITE) ] = {
1148                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1149                 [ C(RESULT_ACCESS) ] = 0x01b7,
1150                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1151                 [ C(RESULT_MISS)   ] = 0x01b7,
1152         },
1153         [ C(OP_PREFETCH) ] = {
1154                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1155                 [ C(RESULT_ACCESS) ] = 0x01b7,
1156                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1157                 [ C(RESULT_MISS)   ] = 0x01b7,
1158         },
1159  },
1160  [ C(DTLB) ] = {
1161         [ C(OP_READ) ] = {
1162                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1163                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1164         },
1165         [ C(OP_WRITE) ] = {
1166                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1167                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1168         },
1169         [ C(OP_PREFETCH) ] = {
1170                 [ C(RESULT_ACCESS) ] = 0x0,
1171                 [ C(RESULT_MISS)   ] = 0x0,
1172         },
1173  },
1174  [ C(ITLB) ] = {
1175         [ C(OP_READ) ] = {
1176                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1177                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1178         },
1179         [ C(OP_WRITE) ] = {
1180                 [ C(RESULT_ACCESS) ] = -1,
1181                 [ C(RESULT_MISS)   ] = -1,
1182         },
1183         [ C(OP_PREFETCH) ] = {
1184                 [ C(RESULT_ACCESS) ] = -1,
1185                 [ C(RESULT_MISS)   ] = -1,
1186         },
1187  },
1188  [ C(BPU ) ] = {
1189         [ C(OP_READ) ] = {
1190                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1191                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1192         },
1193         [ C(OP_WRITE) ] = {
1194                 [ C(RESULT_ACCESS) ] = -1,
1195                 [ C(RESULT_MISS)   ] = -1,
1196         },
1197         [ C(OP_PREFETCH) ] = {
1198                 [ C(RESULT_ACCESS) ] = -1,
1199                 [ C(RESULT_MISS)   ] = -1,
1200         },
1201  },
1202  [ C(NODE) ] = {
1203         [ C(OP_READ) ] = {
1204                 [ C(RESULT_ACCESS) ] = 0x01b7,
1205                 [ C(RESULT_MISS)   ] = 0x01b7,
1206         },
1207         [ C(OP_WRITE) ] = {
1208                 [ C(RESULT_ACCESS) ] = 0x01b7,
1209                 [ C(RESULT_MISS)   ] = 0x01b7,
1210         },
1211         [ C(OP_PREFETCH) ] = {
1212                 [ C(RESULT_ACCESS) ] = 0x01b7,
1213                 [ C(RESULT_MISS)   ] = 0x01b7,
1214         },
1215  },
1216 };
1217
1218 static __initconst const u64 core2_hw_cache_event_ids
1219                                 [PERF_COUNT_HW_CACHE_MAX]
1220                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1221                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1222 {
1223  [ C(L1D) ] = {
1224         [ C(OP_READ) ] = {
1225                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1226                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1227         },
1228         [ C(OP_WRITE) ] = {
1229                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1230                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1231         },
1232         [ C(OP_PREFETCH) ] = {
1233                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1234                 [ C(RESULT_MISS)   ] = 0,
1235         },
1236  },
1237  [ C(L1I ) ] = {
1238         [ C(OP_READ) ] = {
1239                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1240                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1241         },
1242         [ C(OP_WRITE) ] = {
1243                 [ C(RESULT_ACCESS) ] = -1,
1244                 [ C(RESULT_MISS)   ] = -1,
1245         },
1246         [ C(OP_PREFETCH) ] = {
1247                 [ C(RESULT_ACCESS) ] = 0,
1248                 [ C(RESULT_MISS)   ] = 0,
1249         },
1250  },
1251  [ C(LL  ) ] = {
1252         [ C(OP_READ) ] = {
1253                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1254                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1255         },
1256         [ C(OP_WRITE) ] = {
1257                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1258                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1259         },
1260         [ C(OP_PREFETCH) ] = {
1261                 [ C(RESULT_ACCESS) ] = 0,
1262                 [ C(RESULT_MISS)   ] = 0,
1263         },
1264  },
1265  [ C(DTLB) ] = {
1266         [ C(OP_READ) ] = {
1267                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1268                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1269         },
1270         [ C(OP_WRITE) ] = {
1271                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1272                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1273         },
1274         [ C(OP_PREFETCH) ] = {
1275                 [ C(RESULT_ACCESS) ] = 0,
1276                 [ C(RESULT_MISS)   ] = 0,
1277         },
1278  },
1279  [ C(ITLB) ] = {
1280         [ C(OP_READ) ] = {
1281                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1282                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1283         },
1284         [ C(OP_WRITE) ] = {
1285                 [ C(RESULT_ACCESS) ] = -1,
1286                 [ C(RESULT_MISS)   ] = -1,
1287         },
1288         [ C(OP_PREFETCH) ] = {
1289                 [ C(RESULT_ACCESS) ] = -1,
1290                 [ C(RESULT_MISS)   ] = -1,
1291         },
1292  },
1293  [ C(BPU ) ] = {
1294         [ C(OP_READ) ] = {
1295                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1296                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1297         },
1298         [ C(OP_WRITE) ] = {
1299                 [ C(RESULT_ACCESS) ] = -1,
1300                 [ C(RESULT_MISS)   ] = -1,
1301         },
1302         [ C(OP_PREFETCH) ] = {
1303                 [ C(RESULT_ACCESS) ] = -1,
1304                 [ C(RESULT_MISS)   ] = -1,
1305         },
1306  },
1307 };
1308
1309 static __initconst const u64 atom_hw_cache_event_ids
1310                                 [PERF_COUNT_HW_CACHE_MAX]
1311                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1312                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1313 {
1314  [ C(L1D) ] = {
1315         [ C(OP_READ) ] = {
1316                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1317                 [ C(RESULT_MISS)   ] = 0,
1318         },
1319         [ C(OP_WRITE) ] = {
1320                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1321                 [ C(RESULT_MISS)   ] = 0,
1322         },
1323         [ C(OP_PREFETCH) ] = {
1324                 [ C(RESULT_ACCESS) ] = 0x0,
1325                 [ C(RESULT_MISS)   ] = 0,
1326         },
1327  },
1328  [ C(L1I ) ] = {
1329         [ C(OP_READ) ] = {
1330                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1331                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1332         },
1333         [ C(OP_WRITE) ] = {
1334                 [ C(RESULT_ACCESS) ] = -1,
1335                 [ C(RESULT_MISS)   ] = -1,
1336         },
1337         [ C(OP_PREFETCH) ] = {
1338                 [ C(RESULT_ACCESS) ] = 0,
1339                 [ C(RESULT_MISS)   ] = 0,
1340         },
1341  },
1342  [ C(LL  ) ] = {
1343         [ C(OP_READ) ] = {
1344                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1345                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1346         },
1347         [ C(OP_WRITE) ] = {
1348                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1349                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1350         },
1351         [ C(OP_PREFETCH) ] = {
1352                 [ C(RESULT_ACCESS) ] = 0,
1353                 [ C(RESULT_MISS)   ] = 0,
1354         },
1355  },
1356  [ C(DTLB) ] = {
1357         [ C(OP_READ) ] = {
1358                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1359                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1360         },
1361         [ C(OP_WRITE) ] = {
1362                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1363                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1364         },
1365         [ C(OP_PREFETCH) ] = {
1366                 [ C(RESULT_ACCESS) ] = 0,
1367                 [ C(RESULT_MISS)   ] = 0,
1368         },
1369  },
1370  [ C(ITLB) ] = {
1371         [ C(OP_READ) ] = {
1372                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1373                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1374         },
1375         [ C(OP_WRITE) ] = {
1376                 [ C(RESULT_ACCESS) ] = -1,
1377                 [ C(RESULT_MISS)   ] = -1,
1378         },
1379         [ C(OP_PREFETCH) ] = {
1380                 [ C(RESULT_ACCESS) ] = -1,
1381                 [ C(RESULT_MISS)   ] = -1,
1382         },
1383  },
1384  [ C(BPU ) ] = {
1385         [ C(OP_READ) ] = {
1386                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1387                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1388         },
1389         [ C(OP_WRITE) ] = {
1390                 [ C(RESULT_ACCESS) ] = -1,
1391                 [ C(RESULT_MISS)   ] = -1,
1392         },
1393         [ C(OP_PREFETCH) ] = {
1394                 [ C(RESULT_ACCESS) ] = -1,
1395                 [ C(RESULT_MISS)   ] = -1,
1396         },
1397  },
1398 };
1399
1400 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1401 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1402 /* no_alloc_cycles.not_delivered */
1403 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1404                "event=0xca,umask=0x50");
1405 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1406 /* uops_retired.all */
1407 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1408                "event=0xc2,umask=0x10");
1409 /* uops_retired.all */
1410 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1411                "event=0xc2,umask=0x10");
1412
1413 static struct attribute *slm_events_attrs[] = {
1414         EVENT_PTR(td_total_slots_slm),
1415         EVENT_PTR(td_total_slots_scale_slm),
1416         EVENT_PTR(td_fetch_bubbles_slm),
1417         EVENT_PTR(td_fetch_bubbles_scale_slm),
1418         EVENT_PTR(td_slots_issued_slm),
1419         EVENT_PTR(td_slots_retired_slm),
1420         NULL
1421 };
1422
1423 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1424 {
1425         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1426         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1427         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1428         EVENT_EXTRA_END
1429 };
1430
1431 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1432 #define SLM_DMND_WRITE          SNB_DMND_RFO
1433 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1434
1435 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1436 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1437 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1438
1439 static __initconst const u64 slm_hw_cache_extra_regs
1440                                 [PERF_COUNT_HW_CACHE_MAX]
1441                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1442                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1443 {
1444  [ C(LL  ) ] = {
1445         [ C(OP_READ) ] = {
1446                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1447                 [ C(RESULT_MISS)   ] = 0,
1448         },
1449         [ C(OP_WRITE) ] = {
1450                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1451                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1452         },
1453         [ C(OP_PREFETCH) ] = {
1454                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1455                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1456         },
1457  },
1458 };
1459
1460 static __initconst const u64 slm_hw_cache_event_ids
1461                                 [PERF_COUNT_HW_CACHE_MAX]
1462                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1463                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1464 {
1465  [ C(L1D) ] = {
1466         [ C(OP_READ) ] = {
1467                 [ C(RESULT_ACCESS) ] = 0,
1468                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1469         },
1470         [ C(OP_WRITE) ] = {
1471                 [ C(RESULT_ACCESS) ] = 0,
1472                 [ C(RESULT_MISS)   ] = 0,
1473         },
1474         [ C(OP_PREFETCH) ] = {
1475                 [ C(RESULT_ACCESS) ] = 0,
1476                 [ C(RESULT_MISS)   ] = 0,
1477         },
1478  },
1479  [ C(L1I ) ] = {
1480         [ C(OP_READ) ] = {
1481                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1482                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1483         },
1484         [ C(OP_WRITE) ] = {
1485                 [ C(RESULT_ACCESS) ] = -1,
1486                 [ C(RESULT_MISS)   ] = -1,
1487         },
1488         [ C(OP_PREFETCH) ] = {
1489                 [ C(RESULT_ACCESS) ] = 0,
1490                 [ C(RESULT_MISS)   ] = 0,
1491         },
1492  },
1493  [ C(LL  ) ] = {
1494         [ C(OP_READ) ] = {
1495                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1496                 [ C(RESULT_ACCESS) ] = 0x01b7,
1497                 [ C(RESULT_MISS)   ] = 0,
1498         },
1499         [ C(OP_WRITE) ] = {
1500                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1501                 [ C(RESULT_ACCESS) ] = 0x01b7,
1502                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1503                 [ C(RESULT_MISS)   ] = 0x01b7,
1504         },
1505         [ C(OP_PREFETCH) ] = {
1506                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1507                 [ C(RESULT_ACCESS) ] = 0x01b7,
1508                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1509                 [ C(RESULT_MISS)   ] = 0x01b7,
1510         },
1511  },
1512  [ C(DTLB) ] = {
1513         [ C(OP_READ) ] = {
1514                 [ C(RESULT_ACCESS) ] = 0,
1515                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1516         },
1517         [ C(OP_WRITE) ] = {
1518                 [ C(RESULT_ACCESS) ] = 0,
1519                 [ C(RESULT_MISS)   ] = 0,
1520         },
1521         [ C(OP_PREFETCH) ] = {
1522                 [ C(RESULT_ACCESS) ] = 0,
1523                 [ C(RESULT_MISS)   ] = 0,
1524         },
1525  },
1526  [ C(ITLB) ] = {
1527         [ C(OP_READ) ] = {
1528                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1529                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1530         },
1531         [ C(OP_WRITE) ] = {
1532                 [ C(RESULT_ACCESS) ] = -1,
1533                 [ C(RESULT_MISS)   ] = -1,
1534         },
1535         [ C(OP_PREFETCH) ] = {
1536                 [ C(RESULT_ACCESS) ] = -1,
1537                 [ C(RESULT_MISS)   ] = -1,
1538         },
1539  },
1540  [ C(BPU ) ] = {
1541         [ C(OP_READ) ] = {
1542                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1543                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1544         },
1545         [ C(OP_WRITE) ] = {
1546                 [ C(RESULT_ACCESS) ] = -1,
1547                 [ C(RESULT_MISS)   ] = -1,
1548         },
1549         [ C(OP_PREFETCH) ] = {
1550                 [ C(RESULT_ACCESS) ] = -1,
1551                 [ C(RESULT_MISS)   ] = -1,
1552         },
1553  },
1554 };
1555
1556 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1557 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1558 /* UOPS_NOT_DELIVERED.ANY */
1559 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1560 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1561 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1562 /* UOPS_RETIRED.ANY */
1563 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1564 /* UOPS_ISSUED.ANY */
1565 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1566
1567 static struct attribute *glm_events_attrs[] = {
1568         EVENT_PTR(td_total_slots_glm),
1569         EVENT_PTR(td_total_slots_scale_glm),
1570         EVENT_PTR(td_fetch_bubbles_glm),
1571         EVENT_PTR(td_recovery_bubbles_glm),
1572         EVENT_PTR(td_slots_issued_glm),
1573         EVENT_PTR(td_slots_retired_glm),
1574         NULL
1575 };
1576
1577 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1578         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1579         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1580         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1581         EVENT_EXTRA_END
1582 };
1583
1584 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1585 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1586 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1587 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1588 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1589 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1590 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1591 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1592 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1593 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1594
1595 static __initconst const u64 glm_hw_cache_event_ids
1596                                 [PERF_COUNT_HW_CACHE_MAX]
1597                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1598                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1599         [C(L1D)] = {
1600                 [C(OP_READ)] = {
1601                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1602                         [C(RESULT_MISS)]        = 0x0,
1603                 },
1604                 [C(OP_WRITE)] = {
1605                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1606                         [C(RESULT_MISS)]        = 0x0,
1607                 },
1608                 [C(OP_PREFETCH)] = {
1609                         [C(RESULT_ACCESS)]      = 0x0,
1610                         [C(RESULT_MISS)]        = 0x0,
1611                 },
1612         },
1613         [C(L1I)] = {
1614                 [C(OP_READ)] = {
1615                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1616                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1617                 },
1618                 [C(OP_WRITE)] = {
1619                         [C(RESULT_ACCESS)]      = -1,
1620                         [C(RESULT_MISS)]        = -1,
1621                 },
1622                 [C(OP_PREFETCH)] = {
1623                         [C(RESULT_ACCESS)]      = 0x0,
1624                         [C(RESULT_MISS)]        = 0x0,
1625                 },
1626         },
1627         [C(LL)] = {
1628                 [C(OP_READ)] = {
1629                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1630                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1631                 },
1632                 [C(OP_WRITE)] = {
1633                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1634                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1635                 },
1636                 [C(OP_PREFETCH)] = {
1637                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1638                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1639                 },
1640         },
1641         [C(DTLB)] = {
1642                 [C(OP_READ)] = {
1643                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1644                         [C(RESULT_MISS)]        = 0x0,
1645                 },
1646                 [C(OP_WRITE)] = {
1647                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1648                         [C(RESULT_MISS)]        = 0x0,
1649                 },
1650                 [C(OP_PREFETCH)] = {
1651                         [C(RESULT_ACCESS)]      = 0x0,
1652                         [C(RESULT_MISS)]        = 0x0,
1653                 },
1654         },
1655         [C(ITLB)] = {
1656                 [C(OP_READ)] = {
1657                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1658                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1659                 },
1660                 [C(OP_WRITE)] = {
1661                         [C(RESULT_ACCESS)]      = -1,
1662                         [C(RESULT_MISS)]        = -1,
1663                 },
1664                 [C(OP_PREFETCH)] = {
1665                         [C(RESULT_ACCESS)]      = -1,
1666                         [C(RESULT_MISS)]        = -1,
1667                 },
1668         },
1669         [C(BPU)] = {
1670                 [C(OP_READ)] = {
1671                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1672                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1673                 },
1674                 [C(OP_WRITE)] = {
1675                         [C(RESULT_ACCESS)]      = -1,
1676                         [C(RESULT_MISS)]        = -1,
1677                 },
1678                 [C(OP_PREFETCH)] = {
1679                         [C(RESULT_ACCESS)]      = -1,
1680                         [C(RESULT_MISS)]        = -1,
1681                 },
1682         },
1683 };
1684
1685 static __initconst const u64 glm_hw_cache_extra_regs
1686                                 [PERF_COUNT_HW_CACHE_MAX]
1687                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1688                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1689         [C(LL)] = {
1690                 [C(OP_READ)] = {
1691                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1692                                                   GLM_LLC_ACCESS,
1693                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1694                                                   GLM_LLC_MISS,
1695                 },
1696                 [C(OP_WRITE)] = {
1697                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1698                                                   GLM_LLC_ACCESS,
1699                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1700                                                   GLM_LLC_MISS,
1701                 },
1702                 [C(OP_PREFETCH)] = {
1703                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1704                                                   GLM_LLC_ACCESS,
1705                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1706                                                   GLM_LLC_MISS,
1707                 },
1708         },
1709 };
1710
1711 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
1712 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
1713 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
1714 #define KNL_MCDRAM_FAR          BIT_ULL(22)
1715 #define KNL_DDR_LOCAL           BIT_ULL(23)
1716 #define KNL_DDR_FAR             BIT_ULL(24)
1717 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1718                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
1719 #define KNL_L2_READ             SLM_DMND_READ
1720 #define KNL_L2_WRITE            SLM_DMND_WRITE
1721 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
1722 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
1723 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1724                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
1725                                                   SNB_NON_DRAM)
1726
1727 static __initconst const u64 knl_hw_cache_extra_regs
1728                                 [PERF_COUNT_HW_CACHE_MAX]
1729                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1730                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1731         [C(LL)] = {
1732                 [C(OP_READ)] = {
1733                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1734                         [C(RESULT_MISS)]   = 0,
1735                 },
1736                 [C(OP_WRITE)] = {
1737                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1738                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1739                 },
1740                 [C(OP_PREFETCH)] = {
1741                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1742                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1743                 },
1744         },
1745 };
1746
1747 /*
1748  * Used from PMIs where the LBRs are already disabled.
1749  *
1750  * This function could be called consecutively. It is required to remain in
1751  * disabled state if called consecutively.
1752  *
1753  * During consecutive calls, the same disable value will be written to related
1754  * registers, so the PMU state remains unchanged.
1755  *
1756  * intel_bts events don't coexist with intel PMU's BTS events because of
1757  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1758  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1759  */
1760 static void __intel_pmu_disable_all(void)
1761 {
1762         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1763
1764         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1765
1766         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1767                 intel_pmu_disable_bts();
1768
1769         intel_pmu_pebs_disable_all();
1770 }
1771
1772 static void intel_pmu_disable_all(void)
1773 {
1774         __intel_pmu_disable_all();
1775         intel_pmu_lbr_disable_all();
1776 }
1777
1778 static void __intel_pmu_enable_all(int added, bool pmi)
1779 {
1780         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1781
1782         intel_pmu_pebs_enable_all();
1783         intel_pmu_lbr_enable_all(pmi);
1784         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1785                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1786
1787         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1788                 struct perf_event *event =
1789                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1790
1791                 if (WARN_ON_ONCE(!event))
1792                         return;
1793
1794                 intel_pmu_enable_bts(event->hw.config);
1795         }
1796 }
1797
1798 static void intel_pmu_enable_all(int added)
1799 {
1800         __intel_pmu_enable_all(added, false);
1801 }
1802
1803 /*
1804  * Workaround for:
1805  *   Intel Errata AAK100 (model 26)
1806  *   Intel Errata AAP53  (model 30)
1807  *   Intel Errata BD53   (model 44)
1808  *
1809  * The official story:
1810  *   These chips need to be 'reset' when adding counters by programming the
1811  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1812  *   in sequence on the same PMC or on different PMCs.
1813  *
1814  * In practise it appears some of these events do in fact count, and
1815  * we need to programm all 4 events.
1816  */
1817 static void intel_pmu_nhm_workaround(void)
1818 {
1819         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1820         static const unsigned long nhm_magic[4] = {
1821                 0x4300B5,
1822                 0x4300D2,
1823                 0x4300B1,
1824                 0x4300B1
1825         };
1826         struct perf_event *event;
1827         int i;
1828
1829         /*
1830          * The Errata requires below steps:
1831          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1832          * 2) Configure 4 PERFEVTSELx with the magic events and clear
1833          *    the corresponding PMCx;
1834          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1835          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1836          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1837          */
1838
1839         /*
1840          * The real steps we choose are a little different from above.
1841          * A) To reduce MSR operations, we don't run step 1) as they
1842          *    are already cleared before this function is called;
1843          * B) Call x86_perf_event_update to save PMCx before configuring
1844          *    PERFEVTSELx with magic number;
1845          * C) With step 5), we do clear only when the PERFEVTSELx is
1846          *    not used currently.
1847          * D) Call x86_perf_event_set_period to restore PMCx;
1848          */
1849
1850         /* We always operate 4 pairs of PERF Counters */
1851         for (i = 0; i < 4; i++) {
1852                 event = cpuc->events[i];
1853                 if (event)
1854                         x86_perf_event_update(event);
1855         }
1856
1857         for (i = 0; i < 4; i++) {
1858                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1859                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1860         }
1861
1862         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1863         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1864
1865         for (i = 0; i < 4; i++) {
1866                 event = cpuc->events[i];
1867
1868                 if (event) {
1869                         x86_perf_event_set_period(event);
1870                         __x86_pmu_enable_event(&event->hw,
1871                                         ARCH_PERFMON_EVENTSEL_ENABLE);
1872                 } else
1873                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1874         }
1875 }
1876
1877 static void intel_pmu_nhm_enable_all(int added)
1878 {
1879         if (added)
1880                 intel_pmu_nhm_workaround();
1881         intel_pmu_enable_all(added);
1882 }
1883
1884 static inline u64 intel_pmu_get_status(void)
1885 {
1886         u64 status;
1887
1888         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1889
1890         return status;
1891 }
1892
1893 static inline void intel_pmu_ack_status(u64 ack)
1894 {
1895         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1896 }
1897
1898 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1899 {
1900         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1901         u64 ctrl_val, mask;
1902
1903         mask = 0xfULL << (idx * 4);
1904
1905         rdmsrl(hwc->config_base, ctrl_val);
1906         ctrl_val &= ~mask;
1907         wrmsrl(hwc->config_base, ctrl_val);
1908 }
1909
1910 static inline bool event_is_checkpointed(struct perf_event *event)
1911 {
1912         return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1913 }
1914
1915 static void intel_pmu_disable_event(struct perf_event *event)
1916 {
1917         struct hw_perf_event *hwc = &event->hw;
1918         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1919
1920         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1921                 intel_pmu_disable_bts();
1922                 intel_pmu_drain_bts_buffer();
1923                 return;
1924         }
1925
1926         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1927         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1928         cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1929
1930         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1931                 intel_pmu_disable_fixed(hwc);
1932                 return;
1933         }
1934
1935         x86_pmu_disable_event(event);
1936
1937         if (unlikely(event->attr.precise_ip))
1938                 intel_pmu_pebs_disable(event);
1939 }
1940
1941 static void intel_pmu_del_event(struct perf_event *event)
1942 {
1943         if (needs_branch_stack(event))
1944                 intel_pmu_lbr_del(event);
1945         if (event->attr.precise_ip)
1946                 intel_pmu_pebs_del(event);
1947 }
1948
1949 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1950 {
1951         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1952         u64 ctrl_val, bits, mask;
1953
1954         /*
1955          * Enable IRQ generation (0x8),
1956          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1957          * if requested:
1958          */
1959         bits = 0x8ULL;
1960         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1961                 bits |= 0x2;
1962         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1963                 bits |= 0x1;
1964
1965         /*
1966          * ANY bit is supported in v3 and up
1967          */
1968         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1969                 bits |= 0x4;
1970
1971         bits <<= (idx * 4);
1972         mask = 0xfULL << (idx * 4);
1973
1974         rdmsrl(hwc->config_base, ctrl_val);
1975         ctrl_val &= ~mask;
1976         ctrl_val |= bits;
1977         wrmsrl(hwc->config_base, ctrl_val);
1978 }
1979
1980 static void intel_pmu_enable_event(struct perf_event *event)
1981 {
1982         struct hw_perf_event *hwc = &event->hw;
1983         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1984
1985         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1986                 if (!__this_cpu_read(cpu_hw_events.enabled))
1987                         return;
1988
1989                 intel_pmu_enable_bts(hwc->config);
1990                 return;
1991         }
1992
1993         if (event->attr.exclude_host)
1994                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1995         if (event->attr.exclude_guest)
1996                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1997
1998         if (unlikely(event_is_checkpointed(event)))
1999                 cpuc->intel_cp_status |= (1ull << hwc->idx);
2000
2001         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2002                 intel_pmu_enable_fixed(hwc);
2003                 return;
2004         }
2005
2006         if (unlikely(event->attr.precise_ip))
2007                 intel_pmu_pebs_enable(event);
2008
2009         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2010 }
2011
2012 static void intel_pmu_add_event(struct perf_event *event)
2013 {
2014         if (event->attr.precise_ip)
2015                 intel_pmu_pebs_add(event);
2016         if (needs_branch_stack(event))
2017                 intel_pmu_lbr_add(event);
2018 }
2019
2020 /*
2021  * Save and restart an expired event. Called by NMI contexts,
2022  * so it has to be careful about preempting normal event ops:
2023  */
2024 int intel_pmu_save_and_restart(struct perf_event *event)
2025 {
2026         x86_perf_event_update(event);
2027         /*
2028          * For a checkpointed counter always reset back to 0.  This
2029          * avoids a situation where the counter overflows, aborts the
2030          * transaction and is then set back to shortly before the
2031          * overflow, and overflows and aborts again.
2032          */
2033         if (unlikely(event_is_checkpointed(event))) {
2034                 /* No race with NMIs because the counter should not be armed */
2035                 wrmsrl(event->hw.event_base, 0);
2036                 local64_set(&event->hw.prev_count, 0);
2037         }
2038         return x86_perf_event_set_period(event);
2039 }
2040
2041 static void intel_pmu_reset(void)
2042 {
2043         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2044         unsigned long flags;
2045         int idx;
2046
2047         if (!x86_pmu.num_counters)
2048                 return;
2049
2050         local_irq_save(flags);
2051
2052         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2053
2054         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2055                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2056                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2057         }
2058         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2059                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2060
2061         if (ds)
2062                 ds->bts_index = ds->bts_buffer_base;
2063
2064         /* Ack all overflows and disable fixed counters */
2065         if (x86_pmu.version >= 2) {
2066                 intel_pmu_ack_status(intel_pmu_get_status());
2067                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2068         }
2069
2070         /* Reset LBRs and LBR freezing */
2071         if (x86_pmu.lbr_nr) {
2072                 update_debugctlmsr(get_debugctlmsr() &
2073                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2074         }
2075
2076         local_irq_restore(flags);
2077 }
2078
2079 /*
2080  * This handler is triggered by the local APIC, so the APIC IRQ handling
2081  * rules apply:
2082  */
2083 static int intel_pmu_handle_irq(struct pt_regs *regs)
2084 {
2085         struct perf_sample_data data;
2086         struct cpu_hw_events *cpuc;
2087         int bit, loops;
2088         u64 status;
2089         int handled;
2090
2091         cpuc = this_cpu_ptr(&cpu_hw_events);
2092
2093         /*
2094          * No known reason to not always do late ACK,
2095          * but just in case do it opt-in.
2096          */
2097         if (!x86_pmu.late_ack)
2098                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2099         intel_bts_disable_local();
2100         __intel_pmu_disable_all();
2101         handled = intel_pmu_drain_bts_buffer();
2102         handled += intel_bts_interrupt();
2103         status = intel_pmu_get_status();
2104         if (!status)
2105                 goto done;
2106
2107         loops = 0;
2108 again:
2109         intel_pmu_lbr_read();
2110         intel_pmu_ack_status(status);
2111         if (++loops > 100) {
2112                 static bool warned = false;
2113                 if (!warned) {
2114                         WARN(1, "perfevents: irq loop stuck!\n");
2115                         perf_event_print_debug();
2116                         warned = true;
2117                 }
2118                 intel_pmu_reset();
2119                 goto done;
2120         }
2121
2122         inc_irq_stat(apic_perf_irqs);
2123
2124
2125         /*
2126          * Ignore a range of extra bits in status that do not indicate
2127          * overflow by themselves.
2128          */
2129         status &= ~(GLOBAL_STATUS_COND_CHG |
2130                     GLOBAL_STATUS_ASIF |
2131                     GLOBAL_STATUS_LBRS_FROZEN);
2132         if (!status)
2133                 goto done;
2134         /*
2135          * In case multiple PEBS events are sampled at the same time,
2136          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2137          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2138          * having their bits set in the status register. This is a sign
2139          * that there was at least one PEBS record pending at the time
2140          * of the PMU interrupt. PEBS counters must only be processed
2141          * via the drain_pebs() calls and not via the regular sample
2142          * processing loop coming after that the function, otherwise
2143          * phony regular samples may be generated in the sampling buffer
2144          * not marked with the EXACT tag. Another possibility is to have
2145          * one PEBS event and at least one non-PEBS event whic hoverflows
2146          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2147          * not be set, yet the overflow status bit for the PEBS counter will
2148          * be on Skylake.
2149          *
2150          * To avoid this problem, we systematically ignore the PEBS-enabled
2151          * counters from the GLOBAL_STATUS mask and we always process PEBS
2152          * events via drain_pebs().
2153          */
2154         status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2155
2156         /*
2157          * PEBS overflow sets bit 62 in the global status register
2158          */
2159         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2160                 handled++;
2161                 x86_pmu.drain_pebs(regs);
2162                 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2163         }
2164
2165         /*
2166          * Intel PT
2167          */
2168         if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2169                 handled++;
2170                 intel_pt_interrupt();
2171         }
2172
2173         /*
2174          * Checkpointed counters can lead to 'spurious' PMIs because the
2175          * rollback caused by the PMI will have cleared the overflow status
2176          * bit. Therefore always force probe these counters.
2177          */
2178         status |= cpuc->intel_cp_status;
2179
2180         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2181                 struct perf_event *event = cpuc->events[bit];
2182
2183                 handled++;
2184
2185                 if (!test_bit(bit, cpuc->active_mask))
2186                         continue;
2187
2188                 if (!intel_pmu_save_and_restart(event))
2189                         continue;
2190
2191                 perf_sample_data_init(&data, 0, event->hw.last_period);
2192
2193                 if (has_branch_stack(event))
2194                         data.br_stack = &cpuc->lbr_stack;
2195
2196                 if (perf_event_overflow(event, &data, regs))
2197                         x86_pmu_stop(event, 0);
2198         }
2199
2200         /*
2201          * Repeat if there is more work to be done:
2202          */
2203         status = intel_pmu_get_status();
2204         if (status)
2205                 goto again;
2206
2207 done:
2208         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2209         if (cpuc->enabled)
2210                 __intel_pmu_enable_all(0, true);
2211         intel_bts_enable_local();
2212
2213         /*
2214          * Only unmask the NMI after the overflow counters
2215          * have been reset. This avoids spurious NMIs on
2216          * Haswell CPUs.
2217          */
2218         if (x86_pmu.late_ack)
2219                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2220         return handled;
2221 }
2222
2223 static struct event_constraint *
2224 intel_bts_constraints(struct perf_event *event)
2225 {
2226         struct hw_perf_event *hwc = &event->hw;
2227         unsigned int hw_event, bts_event;
2228
2229         if (event->attr.freq)
2230                 return NULL;
2231
2232         hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
2233         bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
2234
2235         if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
2236                 return &bts_constraint;
2237
2238         return NULL;
2239 }
2240
2241 static int intel_alt_er(int idx, u64 config)
2242 {
2243         int alt_idx = idx;
2244
2245         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2246                 return idx;
2247
2248         if (idx == EXTRA_REG_RSP_0)
2249                 alt_idx = EXTRA_REG_RSP_1;
2250
2251         if (idx == EXTRA_REG_RSP_1)
2252                 alt_idx = EXTRA_REG_RSP_0;
2253
2254         if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2255                 return idx;
2256
2257         return alt_idx;
2258 }
2259
2260 static void intel_fixup_er(struct perf_event *event, int idx)
2261 {
2262         event->hw.extra_reg.idx = idx;
2263
2264         if (idx == EXTRA_REG_RSP_0) {
2265                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2266                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2267                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2268         } else if (idx == EXTRA_REG_RSP_1) {
2269                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2270                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2271                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2272         }
2273 }
2274
2275 /*
2276  * manage allocation of shared extra msr for certain events
2277  *
2278  * sharing can be:
2279  * per-cpu: to be shared between the various events on a single PMU
2280  * per-core: per-cpu + shared by HT threads
2281  */
2282 static struct event_constraint *
2283 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2284                                    struct perf_event *event,
2285                                    struct hw_perf_event_extra *reg)
2286 {
2287         struct event_constraint *c = &emptyconstraint;
2288         struct er_account *era;
2289         unsigned long flags;
2290         int idx = reg->idx;
2291
2292         /*
2293          * reg->alloc can be set due to existing state, so for fake cpuc we
2294          * need to ignore this, otherwise we might fail to allocate proper fake
2295          * state for this extra reg constraint. Also see the comment below.
2296          */
2297         if (reg->alloc && !cpuc->is_fake)
2298                 return NULL; /* call x86_get_event_constraint() */
2299
2300 again:
2301         era = &cpuc->shared_regs->regs[idx];
2302         /*
2303          * we use spin_lock_irqsave() to avoid lockdep issues when
2304          * passing a fake cpuc
2305          */
2306         raw_spin_lock_irqsave(&era->lock, flags);
2307
2308         if (!atomic_read(&era->ref) || era->config == reg->config) {
2309
2310                 /*
2311                  * If its a fake cpuc -- as per validate_{group,event}() we
2312                  * shouldn't touch event state and we can avoid doing so
2313                  * since both will only call get_event_constraints() once
2314                  * on each event, this avoids the need for reg->alloc.
2315                  *
2316                  * Not doing the ER fixup will only result in era->reg being
2317                  * wrong, but since we won't actually try and program hardware
2318                  * this isn't a problem either.
2319                  */
2320                 if (!cpuc->is_fake) {
2321                         if (idx != reg->idx)
2322                                 intel_fixup_er(event, idx);
2323
2324                         /*
2325                          * x86_schedule_events() can call get_event_constraints()
2326                          * multiple times on events in the case of incremental
2327                          * scheduling(). reg->alloc ensures we only do the ER
2328                          * allocation once.
2329                          */
2330                         reg->alloc = 1;
2331                 }
2332
2333                 /* lock in msr value */
2334                 era->config = reg->config;
2335                 era->reg = reg->reg;
2336
2337                 /* one more user */
2338                 atomic_inc(&era->ref);
2339
2340                 /*
2341                  * need to call x86_get_event_constraint()
2342                  * to check if associated event has constraints
2343                  */
2344                 c = NULL;
2345         } else {
2346                 idx = intel_alt_er(idx, reg->config);
2347                 if (idx != reg->idx) {
2348                         raw_spin_unlock_irqrestore(&era->lock, flags);
2349                         goto again;
2350                 }
2351         }
2352         raw_spin_unlock_irqrestore(&era->lock, flags);
2353
2354         return c;
2355 }
2356
2357 static void
2358 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2359                                    struct hw_perf_event_extra *reg)
2360 {
2361         struct er_account *era;
2362
2363         /*
2364          * Only put constraint if extra reg was actually allocated. Also takes
2365          * care of event which do not use an extra shared reg.
2366          *
2367          * Also, if this is a fake cpuc we shouldn't touch any event state
2368          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2369          * either since it'll be thrown out.
2370          */
2371         if (!reg->alloc || cpuc->is_fake)
2372                 return;
2373
2374         era = &cpuc->shared_regs->regs[reg->idx];
2375
2376         /* one fewer user */
2377         atomic_dec(&era->ref);
2378
2379         /* allocate again next time */
2380         reg->alloc = 0;
2381 }
2382
2383 static struct event_constraint *
2384 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2385                               struct perf_event *event)
2386 {
2387         struct event_constraint *c = NULL, *d;
2388         struct hw_perf_event_extra *xreg, *breg;
2389
2390         xreg = &event->hw.extra_reg;
2391         if (xreg->idx != EXTRA_REG_NONE) {
2392                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2393                 if (c == &emptyconstraint)
2394                         return c;
2395         }
2396         breg = &event->hw.branch_reg;
2397         if (breg->idx != EXTRA_REG_NONE) {
2398                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2399                 if (d == &emptyconstraint) {
2400                         __intel_shared_reg_put_constraints(cpuc, xreg);
2401                         c = d;
2402                 }
2403         }
2404         return c;
2405 }
2406
2407 struct event_constraint *
2408 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2409                           struct perf_event *event)
2410 {
2411         struct event_constraint *c;
2412
2413         if (x86_pmu.event_constraints) {
2414                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2415                         if ((event->hw.config & c->cmask) == c->code) {
2416                                 event->hw.flags |= c->flags;
2417                                 return c;
2418                         }
2419                 }
2420         }
2421
2422         return &unconstrained;
2423 }
2424
2425 static struct event_constraint *
2426 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2427                             struct perf_event *event)
2428 {
2429         struct event_constraint *c;
2430
2431         c = intel_bts_constraints(event);
2432         if (c)
2433                 return c;
2434
2435         c = intel_shared_regs_constraints(cpuc, event);
2436         if (c)
2437                 return c;
2438
2439         c = intel_pebs_constraints(event);
2440         if (c)
2441                 return c;
2442
2443         return x86_get_event_constraints(cpuc, idx, event);
2444 }
2445
2446 static void
2447 intel_start_scheduling(struct cpu_hw_events *cpuc)
2448 {
2449         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2450         struct intel_excl_states *xl;
2451         int tid = cpuc->excl_thread_id;
2452
2453         /*
2454          * nothing needed if in group validation mode
2455          */
2456         if (cpuc->is_fake || !is_ht_workaround_enabled())
2457                 return;
2458
2459         /*
2460          * no exclusion needed
2461          */
2462         if (WARN_ON_ONCE(!excl_cntrs))
2463                 return;
2464
2465         xl = &excl_cntrs->states[tid];
2466
2467         xl->sched_started = true;
2468         /*
2469          * lock shared state until we are done scheduling
2470          * in stop_event_scheduling()
2471          * makes scheduling appear as a transaction
2472          */
2473         raw_spin_lock(&excl_cntrs->lock);
2474 }
2475
2476 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2477 {
2478         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2479         struct event_constraint *c = cpuc->event_constraint[idx];
2480         struct intel_excl_states *xl;
2481         int tid = cpuc->excl_thread_id;
2482
2483         if (cpuc->is_fake || !is_ht_workaround_enabled())
2484                 return;
2485
2486         if (WARN_ON_ONCE(!excl_cntrs))
2487                 return;
2488
2489         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2490                 return;
2491
2492         xl = &excl_cntrs->states[tid];
2493
2494         lockdep_assert_held(&excl_cntrs->lock);
2495
2496         if (c->flags & PERF_X86_EVENT_EXCL)
2497                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2498         else
2499                 xl->state[cntr] = INTEL_EXCL_SHARED;
2500 }
2501
2502 static void
2503 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2504 {
2505         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2506         struct intel_excl_states *xl;
2507         int tid = cpuc->excl_thread_id;
2508
2509         /*
2510          * nothing needed if in group validation mode
2511          */
2512         if (cpuc->is_fake || !is_ht_workaround_enabled())
2513                 return;
2514         /*
2515          * no exclusion needed
2516          */
2517         if (WARN_ON_ONCE(!excl_cntrs))
2518                 return;
2519
2520         xl = &excl_cntrs->states[tid];
2521
2522         xl->sched_started = false;
2523         /*
2524          * release shared state lock (acquired in intel_start_scheduling())
2525          */
2526         raw_spin_unlock(&excl_cntrs->lock);
2527 }
2528
2529 static struct event_constraint *
2530 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2531                            int idx, struct event_constraint *c)
2532 {
2533         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2534         struct intel_excl_states *xlo;
2535         int tid = cpuc->excl_thread_id;
2536         int is_excl, i;
2537
2538         /*
2539          * validating a group does not require
2540          * enforcing cross-thread  exclusion
2541          */
2542         if (cpuc->is_fake || !is_ht_workaround_enabled())
2543                 return c;
2544
2545         /*
2546          * no exclusion needed
2547          */
2548         if (WARN_ON_ONCE(!excl_cntrs))
2549                 return c;
2550
2551         /*
2552          * because we modify the constraint, we need
2553          * to make a copy. Static constraints come
2554          * from static const tables.
2555          *
2556          * only needed when constraint has not yet
2557          * been cloned (marked dynamic)
2558          */
2559         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2560                 struct event_constraint *cx;
2561
2562                 /*
2563                  * grab pre-allocated constraint entry
2564                  */
2565                 cx = &cpuc->constraint_list[idx];
2566
2567                 /*
2568                  * initialize dynamic constraint
2569                  * with static constraint
2570                  */
2571                 *cx = *c;
2572
2573                 /*
2574                  * mark constraint as dynamic, so we
2575                  * can free it later on
2576                  */
2577                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2578                 c = cx;
2579         }
2580
2581         /*
2582          * From here on, the constraint is dynamic.
2583          * Either it was just allocated above, or it
2584          * was allocated during a earlier invocation
2585          * of this function
2586          */
2587
2588         /*
2589          * state of sibling HT
2590          */
2591         xlo = &excl_cntrs->states[tid ^ 1];
2592
2593         /*
2594          * event requires exclusive counter access
2595          * across HT threads
2596          */
2597         is_excl = c->flags & PERF_X86_EVENT_EXCL;
2598         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2599                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2600                 if (!cpuc->n_excl++)
2601                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2602         }
2603
2604         /*
2605          * Modify static constraint with current dynamic
2606          * state of thread
2607          *
2608          * EXCLUSIVE: sibling counter measuring exclusive event
2609          * SHARED   : sibling counter measuring non-exclusive event
2610          * UNUSED   : sibling counter unused
2611          */
2612         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2613                 /*
2614                  * exclusive event in sibling counter
2615                  * our corresponding counter cannot be used
2616                  * regardless of our event
2617                  */
2618                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2619                         __clear_bit(i, c->idxmsk);
2620                 /*
2621                  * if measuring an exclusive event, sibling
2622                  * measuring non-exclusive, then counter cannot
2623                  * be used
2624                  */
2625                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2626                         __clear_bit(i, c->idxmsk);
2627         }
2628
2629         /*
2630          * recompute actual bit weight for scheduling algorithm
2631          */
2632         c->weight = hweight64(c->idxmsk64);
2633
2634         /*
2635          * if we return an empty mask, then switch
2636          * back to static empty constraint to avoid
2637          * the cost of freeing later on
2638          */
2639         if (c->weight == 0)
2640                 c = &emptyconstraint;
2641
2642         return c;
2643 }
2644
2645 static struct event_constraint *
2646 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2647                             struct perf_event *event)
2648 {
2649         struct event_constraint *c1 = NULL;
2650         struct event_constraint *c2;
2651
2652         if (idx >= 0) /* fake does < 0 */
2653                 c1 = cpuc->event_constraint[idx];
2654
2655         /*
2656          * first time only
2657          * - static constraint: no change across incremental scheduling calls
2658          * - dynamic constraint: handled by intel_get_excl_constraints()
2659          */
2660         c2 = __intel_get_event_constraints(cpuc, idx, event);
2661         if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2662                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2663                 c1->weight = c2->weight;
2664                 c2 = c1;
2665         }
2666
2667         if (cpuc->excl_cntrs)
2668                 return intel_get_excl_constraints(cpuc, event, idx, c2);
2669
2670         return c2;
2671 }
2672
2673 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2674                 struct perf_event *event)
2675 {
2676         struct hw_perf_event *hwc = &event->hw;
2677         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2678         int tid = cpuc->excl_thread_id;
2679         struct intel_excl_states *xl;
2680
2681         /*
2682          * nothing needed if in group validation mode
2683          */
2684         if (cpuc->is_fake)
2685                 return;
2686
2687         if (WARN_ON_ONCE(!excl_cntrs))
2688                 return;
2689
2690         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2691                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2692                 if (!--cpuc->n_excl)
2693                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2694         }
2695
2696         /*
2697          * If event was actually assigned, then mark the counter state as
2698          * unused now.
2699          */
2700         if (hwc->idx >= 0) {
2701                 xl = &excl_cntrs->states[tid];
2702
2703                 /*
2704                  * put_constraint may be called from x86_schedule_events()
2705                  * which already has the lock held so here make locking
2706                  * conditional.
2707                  */
2708                 if (!xl->sched_started)
2709                         raw_spin_lock(&excl_cntrs->lock);
2710
2711                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2712
2713                 if (!xl->sched_started)
2714                         raw_spin_unlock(&excl_cntrs->lock);
2715         }
2716 }
2717
2718 static void
2719 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2720                                         struct perf_event *event)
2721 {
2722         struct hw_perf_event_extra *reg;
2723
2724         reg = &event->hw.extra_reg;
2725         if (reg->idx != EXTRA_REG_NONE)
2726                 __intel_shared_reg_put_constraints(cpuc, reg);
2727
2728         reg = &event->hw.branch_reg;
2729         if (reg->idx != EXTRA_REG_NONE)
2730                 __intel_shared_reg_put_constraints(cpuc, reg);
2731 }
2732
2733 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2734                                         struct perf_event *event)
2735 {
2736         intel_put_shared_regs_event_constraints(cpuc, event);
2737
2738         /*
2739          * is PMU has exclusive counter restrictions, then
2740          * all events are subject to and must call the
2741          * put_excl_constraints() routine
2742          */
2743         if (cpuc->excl_cntrs)
2744                 intel_put_excl_constraints(cpuc, event);
2745 }
2746
2747 static void intel_pebs_aliases_core2(struct perf_event *event)
2748 {
2749         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2750                 /*
2751                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2752                  * (0x003c) so that we can use it with PEBS.
2753                  *
2754                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2755                  * PEBS capable. However we can use INST_RETIRED.ANY_P
2756                  * (0x00c0), which is a PEBS capable event, to get the same
2757                  * count.
2758                  *
2759                  * INST_RETIRED.ANY_P counts the number of cycles that retires
2760                  * CNTMASK instructions. By setting CNTMASK to a value (16)
2761                  * larger than the maximum number of instructions that can be
2762                  * retired per cycle (4) and then inverting the condition, we
2763                  * count all cycles that retire 16 or less instructions, which
2764                  * is every cycle.
2765                  *
2766                  * Thereby we gain a PEBS capable cycle counter.
2767                  */
2768                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2769
2770                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2771                 event->hw.config = alt_config;
2772         }
2773 }
2774
2775 static void intel_pebs_aliases_snb(struct perf_event *event)
2776 {
2777         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2778                 /*
2779                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2780                  * (0x003c) so that we can use it with PEBS.
2781                  *
2782                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2783                  * PEBS capable. However we can use UOPS_RETIRED.ALL
2784                  * (0x01c2), which is a PEBS capable event, to get the same
2785                  * count.
2786                  *
2787                  * UOPS_RETIRED.ALL counts the number of cycles that retires
2788                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2789                  * larger than the maximum number of micro-ops that can be
2790                  * retired per cycle (4) and then inverting the condition, we
2791                  * count all cycles that retire 16 or less micro-ops, which
2792                  * is every cycle.
2793                  *
2794                  * Thereby we gain a PEBS capable cycle counter.
2795                  */
2796                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2797
2798                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2799                 event->hw.config = alt_config;
2800         }
2801 }
2802
2803 static void intel_pebs_aliases_precdist(struct perf_event *event)
2804 {
2805         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2806                 /*
2807                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2808                  * (0x003c) so that we can use it with PEBS.
2809                  *
2810                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2811                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
2812                  * (0x01c0), which is a PEBS capable event, to get the same
2813                  * count.
2814                  *
2815                  * The PREC_DIST event has special support to minimize sample
2816                  * shadowing effects. One drawback is that it can be
2817                  * only programmed on counter 1, but that seems like an
2818                  * acceptable trade off.
2819                  */
2820                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
2821
2822                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2823                 event->hw.config = alt_config;
2824         }
2825 }
2826
2827 static void intel_pebs_aliases_ivb(struct perf_event *event)
2828 {
2829         if (event->attr.precise_ip < 3)
2830                 return intel_pebs_aliases_snb(event);
2831         return intel_pebs_aliases_precdist(event);
2832 }
2833
2834 static void intel_pebs_aliases_skl(struct perf_event *event)
2835 {
2836         if (event->attr.precise_ip < 3)
2837                 return intel_pebs_aliases_core2(event);
2838         return intel_pebs_aliases_precdist(event);
2839 }
2840
2841 static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
2842 {
2843         unsigned long flags = x86_pmu.free_running_flags;
2844
2845         if (event->attr.use_clockid)
2846                 flags &= ~PERF_SAMPLE_TIME;
2847         return flags;
2848 }
2849
2850 static int intel_pmu_hw_config(struct perf_event *event)
2851 {
2852         int ret = x86_pmu_hw_config(event);
2853
2854         if (ret)
2855                 return ret;
2856
2857         if (event->attr.precise_ip) {
2858                 if (!event->attr.freq) {
2859                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2860                         if (!(event->attr.sample_type &
2861                               ~intel_pmu_free_running_flags(event)))
2862                                 event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2863                 }
2864                 if (x86_pmu.pebs_aliases)
2865                         x86_pmu.pebs_aliases(event);
2866         }
2867
2868         if (needs_branch_stack(event)) {
2869                 ret = intel_pmu_setup_lbr_filter(event);
2870                 if (ret)
2871                         return ret;
2872
2873                 /*
2874                  * BTS is set up earlier in this path, so don't account twice
2875                  */
2876                 if (!intel_pmu_has_bts(event)) {
2877                         /* disallow lbr if conflicting events are present */
2878                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2879                                 return -EBUSY;
2880
2881                         event->destroy = hw_perf_lbr_event_destroy;
2882                 }
2883         }
2884
2885         if (event->attr.type != PERF_TYPE_RAW)
2886                 return 0;
2887
2888         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2889                 return 0;
2890
2891         if (x86_pmu.version < 3)
2892                 return -EINVAL;
2893
2894         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2895                 return -EACCES;
2896
2897         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2898
2899         return 0;
2900 }
2901
2902 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2903 {
2904         if (x86_pmu.guest_get_msrs)
2905                 return x86_pmu.guest_get_msrs(nr);
2906         *nr = 0;
2907         return NULL;
2908 }
2909 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2910
2911 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2912 {
2913         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2914         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2915
2916         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2917         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2918         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2919         /*
2920          * If PMU counter has PEBS enabled it is not enough to disable counter
2921          * on a guest entry since PEBS memory write can overshoot guest entry
2922          * and corrupt guest memory. Disabling PEBS solves the problem.
2923          */
2924         arr[1].msr = MSR_IA32_PEBS_ENABLE;
2925         arr[1].host = cpuc->pebs_enabled;
2926         arr[1].guest = 0;
2927
2928         *nr = 2;
2929         return arr;
2930 }
2931
2932 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2933 {
2934         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2935         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2936         int idx;
2937
2938         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
2939                 struct perf_event *event = cpuc->events[idx];
2940
2941                 arr[idx].msr = x86_pmu_config_addr(idx);
2942                 arr[idx].host = arr[idx].guest = 0;
2943
2944                 if (!test_bit(idx, cpuc->active_mask))
2945                         continue;
2946
2947                 arr[idx].host = arr[idx].guest =
2948                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2949
2950                 if (event->attr.exclude_host)
2951                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2952                 else if (event->attr.exclude_guest)
2953                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2954         }
2955
2956         *nr = x86_pmu.num_counters;
2957         return arr;
2958 }
2959
2960 static void core_pmu_enable_event(struct perf_event *event)
2961 {
2962         if (!event->attr.exclude_host)
2963                 x86_pmu_enable_event(event);
2964 }
2965
2966 static void core_pmu_enable_all(int added)
2967 {
2968         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2969         int idx;
2970
2971         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2972                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2973
2974                 if (!test_bit(idx, cpuc->active_mask) ||
2975                                 cpuc->events[idx]->attr.exclude_host)
2976                         continue;
2977
2978                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2979         }
2980 }
2981
2982 static int hsw_hw_config(struct perf_event *event)
2983 {
2984         int ret = intel_pmu_hw_config(event);
2985
2986         if (ret)
2987                 return ret;
2988         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2989                 return 0;
2990         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2991
2992         /*
2993          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2994          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2995          * this combination.
2996          */
2997         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2998              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2999               event->attr.precise_ip > 0))
3000                 return -EOPNOTSUPP;
3001
3002         if (event_is_checkpointed(event)) {
3003                 /*
3004                  * Sampling of checkpointed events can cause situations where
3005                  * the CPU constantly aborts because of a overflow, which is
3006                  * then checkpointed back and ignored. Forbid checkpointing
3007                  * for sampling.
3008                  *
3009                  * But still allow a long sampling period, so that perf stat
3010                  * from KVM works.
3011                  */
3012                 if (event->attr.sample_period > 0 &&
3013                     event->attr.sample_period < 0x7fffffff)
3014                         return -EOPNOTSUPP;
3015         }
3016         return 0;
3017 }
3018
3019 static struct event_constraint counter2_constraint =
3020                         EVENT_CONSTRAINT(0, 0x4, 0);
3021
3022 static struct event_constraint *
3023 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3024                           struct perf_event *event)
3025 {
3026         struct event_constraint *c;
3027
3028         c = intel_get_event_constraints(cpuc, idx, event);
3029
3030         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3031         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3032                 if (c->idxmsk64 & (1U << 2))
3033                         return &counter2_constraint;
3034                 return &emptyconstraint;
3035         }
3036
3037         return c;
3038 }
3039
3040 /*
3041  * Broadwell:
3042  *
3043  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3044  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3045  * the two to enforce a minimum period of 128 (the smallest value that has bits
3046  * 0-5 cleared and >= 100).
3047  *
3048  * Because of how the code in x86_perf_event_set_period() works, the truncation
3049  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3050  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3051  *
3052  * Therefore the effective (average) period matches the requested period,
3053  * despite coarser hardware granularity.
3054  */
3055 static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
3056 {
3057         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3058                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
3059                 if (left < 128)
3060                         left = 128;
3061                 left &= ~0x3fu;
3062         }
3063         return left;
3064 }
3065
3066 PMU_FORMAT_ATTR(event,  "config:0-7"    );
3067 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
3068 PMU_FORMAT_ATTR(edge,   "config:18"     );
3069 PMU_FORMAT_ATTR(pc,     "config:19"     );
3070 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
3071 PMU_FORMAT_ATTR(inv,    "config:23"     );
3072 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
3073 PMU_FORMAT_ATTR(in_tx,  "config:32");
3074 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3075
3076 static struct attribute *intel_arch_formats_attr[] = {
3077         &format_attr_event.attr,
3078         &format_attr_umask.attr,
3079         &format_attr_edge.attr,
3080         &format_attr_pc.attr,
3081         &format_attr_inv.attr,
3082         &format_attr_cmask.attr,
3083         NULL,
3084 };
3085
3086 ssize_t intel_event_sysfs_show(char *page, u64 config)
3087 {
3088         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3089
3090         return x86_event_sysfs_show(page, config, event);
3091 }
3092
3093 struct intel_shared_regs *allocate_shared_regs(int cpu)
3094 {
3095         struct intel_shared_regs *regs;
3096         int i;
3097
3098         regs = kzalloc_node(sizeof(struct intel_shared_regs),
3099                             GFP_KERNEL, cpu_to_node(cpu));
3100         if (regs) {
3101                 /*
3102                  * initialize the locks to keep lockdep happy
3103                  */
3104                 for (i = 0; i < EXTRA_REG_MAX; i++)
3105                         raw_spin_lock_init(&regs->regs[i].lock);
3106
3107                 regs->core_id = -1;
3108         }
3109         return regs;
3110 }
3111
3112 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3113 {
3114         struct intel_excl_cntrs *c;
3115
3116         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3117                          GFP_KERNEL, cpu_to_node(cpu));
3118         if (c) {
3119                 raw_spin_lock_init(&c->lock);
3120                 c->core_id = -1;
3121         }
3122         return c;
3123 }
3124
3125 static int intel_pmu_cpu_prepare(int cpu)
3126 {
3127         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3128
3129         if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3130                 cpuc->shared_regs = allocate_shared_regs(cpu);
3131                 if (!cpuc->shared_regs)
3132                         goto err;
3133         }
3134
3135         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3136                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3137
3138                 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
3139                 if (!cpuc->constraint_list)
3140                         goto err_shared_regs;
3141
3142                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3143                 if (!cpuc->excl_cntrs)
3144                         goto err_constraint_list;
3145
3146                 cpuc->excl_thread_id = 0;
3147         }
3148
3149         return 0;
3150
3151 err_constraint_list:
3152         kfree(cpuc->constraint_list);
3153         cpuc->constraint_list = NULL;
3154
3155 err_shared_regs:
3156         kfree(cpuc->shared_regs);
3157         cpuc->shared_regs = NULL;
3158
3159 err:
3160         return -ENOMEM;
3161 }
3162
3163 static void flip_smm_bit(void *data)
3164 {
3165         unsigned long set = *(unsigned long *)data;
3166
3167         if (set > 0) {
3168                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3169                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3170         } else {
3171                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3172                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3173         }
3174 }
3175
3176 static void intel_pmu_cpu_starting(int cpu)
3177 {
3178         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3179         int core_id = topology_core_id(cpu);
3180         int i;
3181
3182         init_debug_store_on_cpu(cpu);
3183         /*
3184          * Deal with CPUs that don't clear their LBRs on power-up.
3185          */
3186         intel_pmu_lbr_reset();
3187
3188         cpuc->lbr_sel = NULL;
3189
3190         flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3191
3192         if (!cpuc->shared_regs)
3193                 return;
3194
3195         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3196                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3197                         struct intel_shared_regs *pc;
3198
3199                         pc = per_cpu(cpu_hw_events, i).shared_regs;
3200                         if (pc && pc->core_id == core_id) {
3201                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
3202                                 cpuc->shared_regs = pc;
3203                                 break;
3204                         }
3205                 }
3206                 cpuc->shared_regs->core_id = core_id;
3207                 cpuc->shared_regs->refcnt++;
3208         }
3209
3210         if (x86_pmu.lbr_sel_map)
3211                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3212
3213         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3214                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3215                         struct cpu_hw_events *sibling;
3216                         struct intel_excl_cntrs *c;
3217
3218                         sibling = &per_cpu(cpu_hw_events, i);
3219                         c = sibling->excl_cntrs;
3220                         if (c && c->core_id == core_id) {
3221                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3222                                 cpuc->excl_cntrs = c;
3223                                 if (!sibling->excl_thread_id)
3224                                         cpuc->excl_thread_id = 1;
3225                                 break;
3226                         }
3227                 }
3228                 cpuc->excl_cntrs->core_id = core_id;
3229                 cpuc->excl_cntrs->refcnt++;
3230         }
3231 }
3232
3233 static void free_excl_cntrs(int cpu)
3234 {
3235         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3236         struct intel_excl_cntrs *c;
3237
3238         c = cpuc->excl_cntrs;
3239         if (c) {
3240                 if (c->core_id == -1 || --c->refcnt == 0)
3241                         kfree(c);
3242                 cpuc->excl_cntrs = NULL;
3243                 kfree(cpuc->constraint_list);
3244                 cpuc->constraint_list = NULL;
3245         }
3246 }
3247
3248 static void intel_pmu_cpu_dying(int cpu)
3249 {
3250         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3251         struct intel_shared_regs *pc;
3252
3253         pc = cpuc->shared_regs;
3254         if (pc) {
3255                 if (pc->core_id == -1 || --pc->refcnt == 0)
3256                         kfree(pc);
3257                 cpuc->shared_regs = NULL;
3258         }
3259
3260         free_excl_cntrs(cpu);
3261
3262         fini_debug_store_on_cpu(cpu);
3263 }
3264
3265 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3266                                  bool sched_in)
3267 {
3268         if (x86_pmu.pebs_active)
3269                 intel_pmu_pebs_sched_task(ctx, sched_in);
3270         if (x86_pmu.lbr_nr)
3271                 intel_pmu_lbr_sched_task(ctx, sched_in);
3272 }
3273
3274 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3275
3276 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3277
3278 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3279
3280 static struct attribute *intel_arch3_formats_attr[] = {
3281         &format_attr_event.attr,
3282         &format_attr_umask.attr,
3283         &format_attr_edge.attr,
3284         &format_attr_pc.attr,
3285         &format_attr_any.attr,
3286         &format_attr_inv.attr,
3287         &format_attr_cmask.attr,
3288         &format_attr_in_tx.attr,
3289         &format_attr_in_tx_cp.attr,
3290
3291         &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
3292         &format_attr_ldlat.attr, /* PEBS load latency */
3293         NULL,
3294 };
3295
3296 static struct attribute *skl_format_attr[] = {
3297         &format_attr_frontend.attr,
3298         NULL,
3299 };
3300
3301 static __initconst const struct x86_pmu core_pmu = {
3302         .name                   = "core",
3303         .handle_irq             = x86_pmu_handle_irq,
3304         .disable_all            = x86_pmu_disable_all,
3305         .enable_all             = core_pmu_enable_all,
3306         .enable                 = core_pmu_enable_event,
3307         .disable                = x86_pmu_disable_event,
3308         .hw_config              = x86_pmu_hw_config,
3309         .schedule_events        = x86_schedule_events,
3310         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3311         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3312         .event_map              = intel_pmu_event_map,
3313         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3314         .apic                   = 1,
3315         .free_running_flags     = PEBS_FREERUNNING_FLAGS,
3316
3317         /*
3318          * Intel PMCs cannot be accessed sanely above 32-bit width,
3319          * so we install an artificial 1<<31 period regardless of
3320          * the generic event period:
3321          */
3322         .max_period             = (1ULL<<31) - 1,
3323         .get_event_constraints  = intel_get_event_constraints,
3324         .put_event_constraints  = intel_put_event_constraints,
3325         .event_constraints      = intel_core_event_constraints,
3326         .guest_get_msrs         = core_guest_get_msrs,
3327         .format_attrs           = intel_arch_formats_attr,
3328         .events_sysfs_show      = intel_event_sysfs_show,
3329
3330         /*
3331          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3332          * together with PMU version 1 and thus be using core_pmu with
3333          * shared_regs. We need following callbacks here to allocate
3334          * it properly.
3335          */
3336         .cpu_prepare            = intel_pmu_cpu_prepare,
3337         .cpu_starting           = intel_pmu_cpu_starting,
3338         .cpu_dying              = intel_pmu_cpu_dying,
3339 };
3340
3341 static __initconst const struct x86_pmu intel_pmu = {
3342         .name                   = "Intel",
3343         .handle_irq             = intel_pmu_handle_irq,
3344         .disable_all            = intel_pmu_disable_all,
3345         .enable_all             = intel_pmu_enable_all,
3346         .enable                 = intel_pmu_enable_event,
3347         .disable                = intel_pmu_disable_event,
3348         .add                    = intel_pmu_add_event,
3349         .del                    = intel_pmu_del_event,
3350         .hw_config              = intel_pmu_hw_config,
3351         .schedule_events        = x86_schedule_events,
3352         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3353         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3354         .event_map              = intel_pmu_event_map,
3355         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3356         .apic                   = 1,
3357         .free_running_flags     = PEBS_FREERUNNING_FLAGS,
3358         /*
3359          * Intel PMCs cannot be accessed sanely above 32 bit width,
3360          * so we install an artificial 1<<31 period regardless of
3361          * the generic event period:
3362          */
3363         .max_period             = (1ULL << 31) - 1,
3364         .get_event_constraints  = intel_get_event_constraints,
3365         .put_event_constraints  = intel_put_event_constraints,
3366         .pebs_aliases           = intel_pebs_aliases_core2,
3367
3368         .format_attrs           = intel_arch3_formats_attr,
3369         .events_sysfs_show      = intel_event_sysfs_show,
3370
3371         .cpu_prepare            = intel_pmu_cpu_prepare,
3372         .cpu_starting           = intel_pmu_cpu_starting,
3373         .cpu_dying              = intel_pmu_cpu_dying,
3374         .guest_get_msrs         = intel_guest_get_msrs,
3375         .sched_task             = intel_pmu_sched_task,
3376 };
3377
3378 static __init void intel_clovertown_quirk(void)
3379 {
3380         /*
3381          * PEBS is unreliable due to:
3382          *
3383          *   AJ67  - PEBS may experience CPL leaks
3384          *   AJ68  - PEBS PMI may be delayed by one event
3385          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3386          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3387          *
3388          * AJ67 could be worked around by restricting the OS/USR flags.
3389          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3390          *
3391          * AJ106 could possibly be worked around by not allowing LBR
3392          *       usage from PEBS, including the fixup.
3393          * AJ68  could possibly be worked around by always programming
3394          *       a pebs_event_reset[0] value and coping with the lost events.
3395          *
3396          * But taken together it might just make sense to not enable PEBS on
3397          * these chips.
3398          */
3399         pr_warn("PEBS disabled due to CPU errata\n");
3400         x86_pmu.pebs = 0;
3401         x86_pmu.pebs_constraints = NULL;
3402 }
3403
3404 static int intel_snb_pebs_broken(int cpu)
3405 {
3406         u32 rev = UINT_MAX; /* default to broken for unknown models */
3407
3408         switch (cpu_data(cpu).x86_model) {
3409         case INTEL_FAM6_SANDYBRIDGE:
3410                 rev = 0x28;
3411                 break;
3412
3413         case INTEL_FAM6_SANDYBRIDGE_X:
3414                 switch (cpu_data(cpu).x86_mask) {
3415                 case 6: rev = 0x618; break;
3416                 case 7: rev = 0x70c; break;
3417                 }
3418         }
3419
3420         return (cpu_data(cpu).microcode < rev);
3421 }
3422
3423 static void intel_snb_check_microcode(void)
3424 {
3425         int pebs_broken = 0;
3426         int cpu;
3427
3428         for_each_online_cpu(cpu) {
3429                 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3430                         break;
3431         }
3432
3433         if (pebs_broken == x86_pmu.pebs_broken)
3434                 return;
3435
3436         /*
3437          * Serialized by the microcode lock..
3438          */
3439         if (x86_pmu.pebs_broken) {
3440                 pr_info("PEBS enabled due to microcode update\n");
3441                 x86_pmu.pebs_broken = 0;
3442         } else {
3443                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3444                 x86_pmu.pebs_broken = 1;
3445         }
3446 }
3447
3448 static bool is_lbr_from(unsigned long msr)
3449 {
3450         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
3451
3452         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
3453 }
3454
3455 /*
3456  * Under certain circumstances, access certain MSR may cause #GP.
3457  * The function tests if the input MSR can be safely accessed.
3458  */
3459 static bool check_msr(unsigned long msr, u64 mask)
3460 {
3461         u64 val_old, val_new, val_tmp;
3462
3463         /*
3464          * Read the current value, change it and read it back to see if it
3465          * matches, this is needed to detect certain hardware emulators
3466          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3467          */
3468         if (rdmsrl_safe(msr, &val_old))
3469                 return false;
3470
3471         /*
3472          * Only change the bits which can be updated by wrmsrl.
3473          */
3474         val_tmp = val_old ^ mask;
3475
3476         if (is_lbr_from(msr))
3477                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
3478
3479         if (wrmsrl_safe(msr, val_tmp) ||
3480             rdmsrl_safe(msr, &val_new))
3481                 return false;
3482
3483         /*
3484          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3485          * should equal rdmsrl()'s even with the quirk.
3486          */
3487         if (val_new != val_tmp)
3488                 return false;
3489
3490         if (is_lbr_from(msr))
3491                 val_old = lbr_from_signext_quirk_wr(val_old);
3492
3493         /* Here it's sure that the MSR can be safely accessed.
3494          * Restore the old value and return.
3495          */
3496         wrmsrl(msr, val_old);
3497
3498         return true;
3499 }
3500
3501 static __init void intel_sandybridge_quirk(void)
3502 {
3503         x86_pmu.check_microcode = intel_snb_check_microcode;
3504         cpus_read_lock();
3505         intel_snb_check_microcode();
3506         cpus_read_unlock();
3507 }
3508
3509 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3510         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3511         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3512         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3513         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3514         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3515         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3516         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3517 };
3518
3519 static __init void intel_arch_events_quirk(void)
3520 {
3521         int bit;
3522
3523         /* disable event that reported as not presend by cpuid */
3524         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3525                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3526                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
3527                         intel_arch_events_map[bit].name);
3528         }
3529 }
3530
3531 static __init void intel_nehalem_quirk(void)
3532 {
3533         union cpuid10_ebx ebx;
3534
3535         ebx.full = x86_pmu.events_maskl;
3536         if (ebx.split.no_branch_misses_retired) {
3537                 /*
3538                  * Erratum AAJ80 detected, we work it around by using
3539                  * the BR_MISP_EXEC.ANY event. This will over-count
3540                  * branch-misses, but it's still much better than the
3541                  * architectural event which is often completely bogus:
3542                  */
3543                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3544                 ebx.split.no_branch_misses_retired = 0;
3545                 x86_pmu.events_maskl = ebx.full;
3546                 pr_info("CPU erratum AAJ80 worked around\n");
3547         }
3548 }
3549
3550 /*
3551  * enable software workaround for errata:
3552  * SNB: BJ122
3553  * IVB: BV98
3554  * HSW: HSD29
3555  *
3556  * Only needed when HT is enabled. However detecting
3557  * if HT is enabled is difficult (model specific). So instead,
3558  * we enable the workaround in the early boot, and verify if
3559  * it is needed in a later initcall phase once we have valid
3560  * topology information to check if HT is actually enabled
3561  */
3562 static __init void intel_ht_bug(void)
3563 {
3564         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3565
3566         x86_pmu.start_scheduling = intel_start_scheduling;
3567         x86_pmu.commit_scheduling = intel_commit_scheduling;
3568         x86_pmu.stop_scheduling = intel_stop_scheduling;
3569 }
3570
3571 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
3572 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
3573
3574 /* Haswell special events */
3575 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
3576 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
3577 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
3578 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
3579 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
3580 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
3581 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
3582 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
3583 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
3584 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
3585 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
3586 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
3587
3588 static struct attribute *hsw_events_attrs[] = {
3589         EVENT_PTR(tx_start),
3590         EVENT_PTR(tx_commit),
3591         EVENT_PTR(tx_abort),
3592         EVENT_PTR(tx_capacity),
3593         EVENT_PTR(tx_conflict),
3594         EVENT_PTR(el_start),
3595         EVENT_PTR(el_commit),
3596         EVENT_PTR(el_abort),
3597         EVENT_PTR(el_capacity),
3598         EVENT_PTR(el_conflict),
3599         EVENT_PTR(cycles_t),
3600         EVENT_PTR(cycles_ct),
3601         EVENT_PTR(mem_ld_hsw),
3602         EVENT_PTR(mem_st_hsw),
3603         EVENT_PTR(td_slots_issued),
3604         EVENT_PTR(td_slots_retired),
3605         EVENT_PTR(td_fetch_bubbles),
3606         EVENT_PTR(td_total_slots),
3607         EVENT_PTR(td_total_slots_scale),
3608         EVENT_PTR(td_recovery_bubbles),
3609         EVENT_PTR(td_recovery_bubbles_scale),
3610         NULL
3611 };
3612
3613 static ssize_t freeze_on_smi_show(struct device *cdev,
3614                                   struct device_attribute *attr,
3615                                   char *buf)
3616 {
3617         return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
3618 }
3619
3620 static DEFINE_MUTEX(freeze_on_smi_mutex);
3621
3622 static ssize_t freeze_on_smi_store(struct device *cdev,
3623                                    struct device_attribute *attr,
3624                                    const char *buf, size_t count)
3625 {
3626         unsigned long val;
3627         ssize_t ret;
3628
3629         ret = kstrtoul(buf, 0, &val);
3630         if (ret)
3631                 return ret;
3632
3633         if (val > 1)
3634                 return -EINVAL;
3635
3636         mutex_lock(&freeze_on_smi_mutex);
3637
3638         if (x86_pmu.attr_freeze_on_smi == val)
3639                 goto done;
3640
3641         x86_pmu.attr_freeze_on_smi = val;
3642
3643         get_online_cpus();
3644         on_each_cpu(flip_smm_bit, &val, 1);
3645         put_online_cpus();
3646 done:
3647         mutex_unlock(&freeze_on_smi_mutex);
3648
3649         return count;
3650 }
3651
3652 static DEVICE_ATTR_RW(freeze_on_smi);
3653
3654 static struct attribute *intel_pmu_attrs[] = {
3655         &dev_attr_freeze_on_smi.attr,
3656         NULL,
3657 };
3658
3659 __init int intel_pmu_init(void)
3660 {
3661         union cpuid10_edx edx;
3662         union cpuid10_eax eax;
3663         union cpuid10_ebx ebx;
3664         struct event_constraint *c;
3665         unsigned int unused;
3666         struct extra_reg *er;
3667         int version, i;
3668
3669         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3670                 switch (boot_cpu_data.x86) {
3671                 case 0x6:
3672                         return p6_pmu_init();
3673                 case 0xb:
3674                         return knc_pmu_init();
3675                 case 0xf:
3676                         return p4_pmu_init();
3677                 }
3678                 return -ENODEV;
3679         }
3680
3681         /*
3682          * Check whether the Architectural PerfMon supports
3683          * Branch Misses Retired hw_event or not.
3684          */
3685         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3686         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3687                 return -ENODEV;
3688
3689         version = eax.split.version_id;
3690         if (version < 2)
3691                 x86_pmu = core_pmu;
3692         else
3693                 x86_pmu = intel_pmu;
3694
3695         x86_pmu.version                 = version;
3696         x86_pmu.num_counters            = eax.split.num_counters;
3697         x86_pmu.cntval_bits             = eax.split.bit_width;
3698         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
3699
3700         x86_pmu.events_maskl            = ebx.full;
3701         x86_pmu.events_mask_len         = eax.split.mask_length;
3702
3703         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3704
3705
3706         x86_pmu.attrs                   = intel_pmu_attrs;
3707         /*
3708          * Quirk: v2 perfmon does not report fixed-purpose events, so
3709          * assume at least 3 events, when not running in a hypervisor:
3710          */
3711         if (version > 1) {
3712                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
3713
3714                 x86_pmu.num_counters_fixed =
3715                         max((int)edx.split.num_counters_fixed, assume);
3716         }
3717
3718         if (boot_cpu_has(X86_FEATURE_PDCM)) {
3719                 u64 capabilities;
3720
3721                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3722                 x86_pmu.intel_cap.capabilities = capabilities;
3723         }
3724
3725         intel_ds_init();
3726
3727         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3728
3729         /*
3730          * Install the hw-cache-events table:
3731          */
3732         switch (boot_cpu_data.x86_model) {
3733         case INTEL_FAM6_CORE_YONAH:
3734                 pr_cont("Core events, ");
3735                 break;
3736
3737         case INTEL_FAM6_CORE2_MEROM:
3738                 x86_add_quirk(intel_clovertown_quirk);
3739         case INTEL_FAM6_CORE2_MEROM_L:
3740         case INTEL_FAM6_CORE2_PENRYN:
3741         case INTEL_FAM6_CORE2_DUNNINGTON:
3742                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3743                        sizeof(hw_cache_event_ids));
3744
3745                 intel_pmu_lbr_init_core();
3746
3747                 x86_pmu.event_constraints = intel_core2_event_constraints;
3748                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3749                 pr_cont("Core2 events, ");
3750                 break;
3751
3752         case INTEL_FAM6_NEHALEM:
3753         case INTEL_FAM6_NEHALEM_EP:
3754         case INTEL_FAM6_NEHALEM_EX:
3755                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3756                        sizeof(hw_cache_event_ids));
3757                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3758                        sizeof(hw_cache_extra_regs));
3759
3760                 intel_pmu_lbr_init_nhm();
3761
3762                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
3763                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3764                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3765                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
3766
3767                 x86_pmu.cpu_events = nhm_events_attrs;
3768
3769                 /* UOPS_ISSUED.STALLED_CYCLES */
3770                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3771                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3772                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3773                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3774                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3775
3776                 intel_pmu_pebs_data_source_nhm();
3777                 x86_add_quirk(intel_nehalem_quirk);
3778
3779                 pr_cont("Nehalem events, ");
3780                 break;
3781
3782         case INTEL_FAM6_ATOM_PINEVIEW:
3783         case INTEL_FAM6_ATOM_LINCROFT:
3784         case INTEL_FAM6_ATOM_PENWELL:
3785         case INTEL_FAM6_ATOM_CLOVERVIEW:
3786         case INTEL_FAM6_ATOM_CEDARVIEW:
3787                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3788                        sizeof(hw_cache_event_ids));
3789
3790                 intel_pmu_lbr_init_atom();
3791
3792                 x86_pmu.event_constraints = intel_gen_event_constraints;
3793                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3794                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
3795                 pr_cont("Atom events, ");
3796                 break;
3797
3798         case INTEL_FAM6_ATOM_SILVERMONT1:
3799         case INTEL_FAM6_ATOM_SILVERMONT2:
3800         case INTEL_FAM6_ATOM_AIRMONT:
3801                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3802                         sizeof(hw_cache_event_ids));
3803                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3804                        sizeof(hw_cache_extra_regs));
3805
3806                 intel_pmu_lbr_init_slm();
3807
3808                 x86_pmu.event_constraints = intel_slm_event_constraints;
3809                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3810                 x86_pmu.extra_regs = intel_slm_extra_regs;
3811                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3812                 x86_pmu.cpu_events = slm_events_attrs;
3813                 pr_cont("Silvermont events, ");
3814                 break;
3815
3816         case INTEL_FAM6_ATOM_GOLDMONT:
3817         case INTEL_FAM6_ATOM_DENVERTON:
3818                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
3819                        sizeof(hw_cache_event_ids));
3820                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
3821                        sizeof(hw_cache_extra_regs));
3822
3823                 intel_pmu_lbr_init_skl();
3824
3825                 x86_pmu.event_constraints = intel_slm_event_constraints;
3826                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
3827                 x86_pmu.extra_regs = intel_glm_extra_regs;
3828                 /*
3829                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
3830                  * for precise cycles.
3831                  * :pp is identical to :ppp
3832                  */
3833                 x86_pmu.pebs_aliases = NULL;
3834                 x86_pmu.pebs_prec_dist = true;
3835                 x86_pmu.lbr_pt_coexist = true;
3836                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3837                 x86_pmu.cpu_events = glm_events_attrs;
3838                 pr_cont("Goldmont events, ");
3839                 break;
3840
3841         case INTEL_FAM6_WESTMERE:
3842         case INTEL_FAM6_WESTMERE_EP:
3843         case INTEL_FAM6_WESTMERE_EX:
3844                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3845                        sizeof(hw_cache_event_ids));
3846                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3847                        sizeof(hw_cache_extra_regs));
3848
3849                 intel_pmu_lbr_init_nhm();
3850
3851                 x86_pmu.event_constraints = intel_westmere_event_constraints;
3852                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3853                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3854                 x86_pmu.extra_regs = intel_westmere_extra_regs;
3855                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3856
3857                 x86_pmu.cpu_events = nhm_events_attrs;
3858
3859                 /* UOPS_ISSUED.STALLED_CYCLES */
3860                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3861                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3862                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3863                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3864                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3865
3866                 intel_pmu_pebs_data_source_nhm();
3867                 pr_cont("Westmere events, ");
3868                 break;
3869
3870         case INTEL_FAM6_SANDYBRIDGE:
3871         case INTEL_FAM6_SANDYBRIDGE_X:
3872                 x86_add_quirk(intel_sandybridge_quirk);
3873                 x86_add_quirk(intel_ht_bug);
3874                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3875                        sizeof(hw_cache_event_ids));
3876                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3877                        sizeof(hw_cache_extra_regs));
3878
3879                 intel_pmu_lbr_init_snb();
3880
3881                 x86_pmu.event_constraints = intel_snb_event_constraints;
3882                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3883                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3884                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
3885                         x86_pmu.extra_regs = intel_snbep_extra_regs;
3886                 else
3887                         x86_pmu.extra_regs = intel_snb_extra_regs;
3888
3889
3890                 /* all extra regs are per-cpu when HT is on */
3891                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3892                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3893
3894                 x86_pmu.cpu_events = snb_events_attrs;
3895
3896                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3897                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3898                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3899                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3900                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3901                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3902
3903                 pr_cont("SandyBridge events, ");
3904                 break;
3905
3906         case INTEL_FAM6_IVYBRIDGE:
3907         case INTEL_FAM6_IVYBRIDGE_X:
3908                 x86_add_quirk(intel_ht_bug);
3909                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3910                        sizeof(hw_cache_event_ids));
3911                 /* dTLB-load-misses on IVB is different than SNB */
3912                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3913
3914                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3915                        sizeof(hw_cache_extra_regs));
3916
3917                 intel_pmu_lbr_init_snb();
3918
3919                 x86_pmu.event_constraints = intel_ivb_event_constraints;
3920                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3921                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3922                 x86_pmu.pebs_prec_dist = true;
3923                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
3924                         x86_pmu.extra_regs = intel_snbep_extra_regs;
3925                 else
3926                         x86_pmu.extra_regs = intel_snb_extra_regs;
3927                 /* all extra regs are per-cpu when HT is on */
3928                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3929                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3930
3931                 x86_pmu.cpu_events = snb_events_attrs;
3932
3933                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3934                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3935                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3936
3937                 pr_cont("IvyBridge events, ");
3938                 break;
3939
3940
3941         case INTEL_FAM6_HASWELL_CORE:
3942         case INTEL_FAM6_HASWELL_X:
3943         case INTEL_FAM6_HASWELL_ULT:
3944         case INTEL_FAM6_HASWELL_GT3E:
3945                 x86_add_quirk(intel_ht_bug);
3946                 x86_pmu.late_ack = true;
3947                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3948                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3949
3950                 intel_pmu_lbr_init_hsw();
3951
3952                 x86_pmu.event_constraints = intel_hsw_event_constraints;
3953                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3954                 x86_pmu.extra_regs = intel_snbep_extra_regs;
3955                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3956                 x86_pmu.pebs_prec_dist = true;
3957                 /* all extra regs are per-cpu when HT is on */
3958                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3959                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3960
3961                 x86_pmu.hw_config = hsw_hw_config;
3962                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3963                 x86_pmu.cpu_events = hsw_events_attrs;
3964                 x86_pmu.lbr_double_abort = true;
3965                 pr_cont("Haswell events, ");
3966                 break;
3967
3968         case INTEL_FAM6_BROADWELL_CORE:
3969         case INTEL_FAM6_BROADWELL_XEON_D:
3970         case INTEL_FAM6_BROADWELL_GT3E:
3971         case INTEL_FAM6_BROADWELL_X:
3972                 x86_pmu.late_ack = true;
3973                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3974                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3975
3976                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3977                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3978                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
3979                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3980                                                                           HSW_SNOOP_DRAM;
3981                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3982                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3983                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3984                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3985
3986                 intel_pmu_lbr_init_hsw();
3987
3988                 x86_pmu.event_constraints = intel_bdw_event_constraints;
3989                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
3990                 x86_pmu.extra_regs = intel_snbep_extra_regs;
3991                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3992                 x86_pmu.pebs_prec_dist = true;
3993                 /* all extra regs are per-cpu when HT is on */
3994                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3995                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3996
3997                 x86_pmu.hw_config = hsw_hw_config;
3998                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3999                 x86_pmu.cpu_events = hsw_events_attrs;
4000                 x86_pmu.limit_period = bdw_limit_period;
4001                 pr_cont("Broadwell events, ");
4002                 break;
4003
4004         case INTEL_FAM6_XEON_PHI_KNL:
4005         case INTEL_FAM6_XEON_PHI_KNM:
4006                 memcpy(hw_cache_event_ids,
4007                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4008                 memcpy(hw_cache_extra_regs,
4009                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4010                 intel_pmu_lbr_init_knl();
4011
4012                 x86_pmu.event_constraints = intel_slm_event_constraints;
4013                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4014                 x86_pmu.extra_regs = intel_knl_extra_regs;
4015
4016                 /* all extra regs are per-cpu when HT is on */
4017                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4018                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4019
4020                 pr_cont("Knights Landing/Mill events, ");
4021                 break;
4022
4023         case INTEL_FAM6_SKYLAKE_MOBILE:
4024         case INTEL_FAM6_SKYLAKE_DESKTOP:
4025         case INTEL_FAM6_SKYLAKE_X:
4026         case INTEL_FAM6_KABYLAKE_MOBILE:
4027         case INTEL_FAM6_KABYLAKE_DESKTOP:
4028                 x86_pmu.late_ack = true;
4029                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4030                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4031                 intel_pmu_lbr_init_skl();
4032
4033                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
4034                 event_attr_td_recovery_bubbles.event_str_noht =
4035                         "event=0xd,umask=0x1,cmask=1";
4036                 event_attr_td_recovery_bubbles.event_str_ht =
4037                         "event=0xd,umask=0x1,cmask=1,any=1";
4038
4039                 x86_pmu.event_constraints = intel_skl_event_constraints;
4040                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
4041                 x86_pmu.extra_regs = intel_skl_extra_regs;
4042                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
4043                 x86_pmu.pebs_prec_dist = true;
4044                 /* all extra regs are per-cpu when HT is on */
4045                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4046                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4047
4048                 x86_pmu.hw_config = hsw_hw_config;
4049                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4050                 x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
4051                                                   skl_format_attr);
4052                 WARN_ON(!x86_pmu.format_attrs);
4053                 x86_pmu.cpu_events = hsw_events_attrs;
4054                 pr_cont("Skylake events, ");
4055                 break;
4056
4057         default:
4058                 switch (x86_pmu.version) {
4059                 case 1:
4060                         x86_pmu.event_constraints = intel_v1_event_constraints;
4061                         pr_cont("generic architected perfmon v1, ");
4062                         break;
4063                 default:
4064                         /*
4065                          * default constraints for v2 and up
4066                          */
4067                         x86_pmu.event_constraints = intel_gen_event_constraints;
4068                         pr_cont("generic architected perfmon, ");
4069                         break;
4070                 }
4071         }
4072
4073         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
4074                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
4075                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
4076                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
4077         }
4078         x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
4079
4080         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
4081                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
4082                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
4083                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
4084         }
4085
4086         x86_pmu.intel_ctrl |=
4087                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
4088
4089         if (x86_pmu.event_constraints) {
4090                 /*
4091                  * event on fixed counter2 (REF_CYCLES) only works on this
4092                  * counter, so do not extend mask to generic counters
4093                  */
4094                 for_each_event_constraint(c, x86_pmu.event_constraints) {
4095                         if (c->cmask == FIXED_EVENT_FLAGS
4096                             && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
4097                                 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
4098                         }
4099                         c->idxmsk64 &=
4100                                 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
4101                         c->weight = hweight64(c->idxmsk64);
4102                 }
4103         }
4104
4105         /*
4106          * Access LBR MSR may cause #GP under certain circumstances.
4107          * E.g. KVM doesn't support LBR MSR
4108          * Check all LBT MSR here.
4109          * Disable LBR access if any LBR MSRs can not be accessed.
4110          */
4111         if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
4112                 x86_pmu.lbr_nr = 0;
4113         for (i = 0; i < x86_pmu.lbr_nr; i++) {
4114                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
4115                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
4116                         x86_pmu.lbr_nr = 0;
4117         }
4118
4119         if (x86_pmu.lbr_nr)
4120                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
4121         /*
4122          * Access extra MSR may cause #GP under certain circumstances.
4123          * E.g. KVM doesn't support offcore event
4124          * Check all extra_regs here.
4125          */
4126         if (x86_pmu.extra_regs) {
4127                 for (er = x86_pmu.extra_regs; er->msr; er++) {
4128                         er->extra_msr_access = check_msr(er->msr, 0x11UL);
4129                         /* Disable LBR select mapping */
4130                         if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
4131                                 x86_pmu.lbr_sel_map = NULL;
4132                 }
4133         }
4134
4135         /* Support full width counters using alternative MSR range */
4136         if (x86_pmu.intel_cap.full_width_write) {
4137                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
4138                 x86_pmu.perfctr = MSR_IA32_PMC0;
4139                 pr_cont("full-width counters, ");
4140         }
4141
4142         return 0;
4143 }
4144
4145 /*
4146  * HT bug: phase 2 init
4147  * Called once we have valid topology information to check
4148  * whether or not HT is enabled
4149  * If HT is off, then we disable the workaround
4150  */
4151 static __init int fixup_ht_bug(void)
4152 {
4153         int c;
4154         /*
4155          * problem not present on this CPU model, nothing to do
4156          */
4157         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
4158                 return 0;
4159
4160         if (topology_max_smt_threads() > 1) {
4161                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4162                 return 0;
4163         }
4164
4165         if (lockup_detector_suspend() != 0) {
4166                 pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
4167                 return 0;
4168         }
4169
4170         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
4171
4172         x86_pmu.start_scheduling = NULL;
4173         x86_pmu.commit_scheduling = NULL;
4174         x86_pmu.stop_scheduling = NULL;
4175
4176         lockup_detector_resume();
4177
4178         cpus_read_lock();
4179
4180         for_each_online_cpu(c)
4181                 free_excl_cntrs(c);
4182
4183         cpus_read_unlock();
4184         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4185         return 0;
4186 }
4187 subsys_initcall(fixup_ht_bug)