Merge tag 'armsoc-dt64' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[sfrench/cifs-2.6.git] / arch / x86 / events / intel / core.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/apic.h>
20
21 #include "../perf_event.h"
22
23 /*
24  * Intel PerfMon, used on Core and later.
25  */
26 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
27 {
28         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
29         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
30         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
31         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
32         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
33         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
34         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
35         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
36 };
37
38 static struct event_constraint intel_core_event_constraints[] __read_mostly =
39 {
40         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
41         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
42         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
43         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
44         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
45         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
46         EVENT_CONSTRAINT_END
47 };
48
49 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
50 {
51         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
52         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
53         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
54         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
55         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
56         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
57         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
58         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
59         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
60         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
61         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
62         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
63         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
64         EVENT_CONSTRAINT_END
65 };
66
67 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
68 {
69         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
70         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
71         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
72         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
73         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
74         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
75         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
76         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
77         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
78         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
79         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
80         EVENT_CONSTRAINT_END
81 };
82
83 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
84 {
85         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
86         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
87         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
88         EVENT_EXTRA_END
89 };
90
91 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
92 {
93         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
94         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
95         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
96         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
97         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
98         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
99         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
100         EVENT_CONSTRAINT_END
101 };
102
103 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
104 {
105         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
106         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
107         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
108         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
109         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
110         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
111         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
112         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
113         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
114         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
115         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
116         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
117
118         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
119         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
120         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
121         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
122
123         EVENT_CONSTRAINT_END
124 };
125
126 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
127 {
128         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
129         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
130         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
131         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
132         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
133         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
134         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
135         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
136         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
137         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
138         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
139         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
140         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
141
142         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
143         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
144         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
145         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
146
147         EVENT_CONSTRAINT_END
148 };
149
150 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
151 {
152         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
153         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
154         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
155         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
156         EVENT_EXTRA_END
157 };
158
159 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
160 {
161         EVENT_CONSTRAINT_END
162 };
163
164 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
165 {
166         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
167         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
168         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
169         EVENT_CONSTRAINT_END
170 };
171
172 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
173 {
174         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
175         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
176         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
177         EVENT_CONSTRAINT_END
178 };
179
180 struct event_constraint intel_skl_event_constraints[] = {
181         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
182         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
183         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
184         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
185         EVENT_CONSTRAINT_END
186 };
187
188 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
189         INTEL_UEVENT_EXTRA_REG(0x01b7,
190                                MSR_OFFCORE_RSP_0, 0x7f9ffbffffull, RSP_0),
191         INTEL_UEVENT_EXTRA_REG(0x02b7,
192                                MSR_OFFCORE_RSP_1, 0x3f9ffbffffull, RSP_1),
193         EVENT_EXTRA_END
194 };
195
196 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
197         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
198         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
199         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
200         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
201         EVENT_EXTRA_END
202 };
203
204 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
205         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
206         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
207         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
208         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
209         EVENT_EXTRA_END
210 };
211
212 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
213         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
214         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
215         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
216         /*
217          * Note the low 8 bits eventsel code is not a continuous field, containing
218          * some #GPing bits. These are masked out.
219          */
220         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
221         EVENT_EXTRA_END
222 };
223
224 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
225 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
226 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
227
228 struct attribute *nhm_events_attrs[] = {
229         EVENT_PTR(mem_ld_nhm),
230         NULL,
231 };
232
233 struct attribute *snb_events_attrs[] = {
234         EVENT_PTR(mem_ld_snb),
235         EVENT_PTR(mem_st_snb),
236         NULL,
237 };
238
239 static struct event_constraint intel_hsw_event_constraints[] = {
240         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
241         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
242         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
243         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
244         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
245         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
246         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
247         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
248         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
249         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
250         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
251         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
252
253         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
254         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
255         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
256         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
257
258         EVENT_CONSTRAINT_END
259 };
260
261 struct event_constraint intel_bdw_event_constraints[] = {
262         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
263         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
264         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
265         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
266         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
267         EVENT_CONSTRAINT_END
268 };
269
270 static u64 intel_pmu_event_map(int hw_event)
271 {
272         return intel_perfmon_event_map[hw_event];
273 }
274
275 /*
276  * Notes on the events:
277  * - data reads do not include code reads (comparable to earlier tables)
278  * - data counts include speculative execution (except L1 write, dtlb, bpu)
279  * - remote node access includes remote memory, remote cache, remote mmio.
280  * - prefetches are not included in the counts.
281  * - icache miss does not include decoded icache
282  */
283
284 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
285 #define SKL_DEMAND_RFO                  BIT_ULL(1)
286 #define SKL_ANY_RESPONSE                BIT_ULL(16)
287 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
288 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
289 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
290 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
291 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
292 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
293                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
294                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
295                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
296 #define SKL_SPL_HIT                     BIT_ULL(30)
297 #define SKL_SNOOP_NONE                  BIT_ULL(31)
298 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
299 #define SKL_SNOOP_MISS                  BIT_ULL(33)
300 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
301 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
302 #define SKL_SNOOP_HITM                  BIT_ULL(36)
303 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
304 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
305                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
306                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
307                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
308 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
309 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
310                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
311                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
312                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
313 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
314 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
315 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
316                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
317                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
318
319 static __initconst const u64 skl_hw_cache_event_ids
320                                 [PERF_COUNT_HW_CACHE_MAX]
321                                 [PERF_COUNT_HW_CACHE_OP_MAX]
322                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
323 {
324  [ C(L1D ) ] = {
325         [ C(OP_READ) ] = {
326                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
327                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
328         },
329         [ C(OP_WRITE) ] = {
330                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
331                 [ C(RESULT_MISS)   ] = 0x0,
332         },
333         [ C(OP_PREFETCH) ] = {
334                 [ C(RESULT_ACCESS) ] = 0x0,
335                 [ C(RESULT_MISS)   ] = 0x0,
336         },
337  },
338  [ C(L1I ) ] = {
339         [ C(OP_READ) ] = {
340                 [ C(RESULT_ACCESS) ] = 0x0,
341                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
342         },
343         [ C(OP_WRITE) ] = {
344                 [ C(RESULT_ACCESS) ] = -1,
345                 [ C(RESULT_MISS)   ] = -1,
346         },
347         [ C(OP_PREFETCH) ] = {
348                 [ C(RESULT_ACCESS) ] = 0x0,
349                 [ C(RESULT_MISS)   ] = 0x0,
350         },
351  },
352  [ C(LL  ) ] = {
353         [ C(OP_READ) ] = {
354                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
355                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
356         },
357         [ C(OP_WRITE) ] = {
358                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
359                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
360         },
361         [ C(OP_PREFETCH) ] = {
362                 [ C(RESULT_ACCESS) ] = 0x0,
363                 [ C(RESULT_MISS)   ] = 0x0,
364         },
365  },
366  [ C(DTLB) ] = {
367         [ C(OP_READ) ] = {
368                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
369                 [ C(RESULT_MISS)   ] = 0x608,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
370         },
371         [ C(OP_WRITE) ] = {
372                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
373                 [ C(RESULT_MISS)   ] = 0x649,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
374         },
375         [ C(OP_PREFETCH) ] = {
376                 [ C(RESULT_ACCESS) ] = 0x0,
377                 [ C(RESULT_MISS)   ] = 0x0,
378         },
379  },
380  [ C(ITLB) ] = {
381         [ C(OP_READ) ] = {
382                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
383                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
384         },
385         [ C(OP_WRITE) ] = {
386                 [ C(RESULT_ACCESS) ] = -1,
387                 [ C(RESULT_MISS)   ] = -1,
388         },
389         [ C(OP_PREFETCH) ] = {
390                 [ C(RESULT_ACCESS) ] = -1,
391                 [ C(RESULT_MISS)   ] = -1,
392         },
393  },
394  [ C(BPU ) ] = {
395         [ C(OP_READ) ] = {
396                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
397                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
398         },
399         [ C(OP_WRITE) ] = {
400                 [ C(RESULT_ACCESS) ] = -1,
401                 [ C(RESULT_MISS)   ] = -1,
402         },
403         [ C(OP_PREFETCH) ] = {
404                 [ C(RESULT_ACCESS) ] = -1,
405                 [ C(RESULT_MISS)   ] = -1,
406         },
407  },
408  [ C(NODE) ] = {
409         [ C(OP_READ) ] = {
410                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
411                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
412         },
413         [ C(OP_WRITE) ] = {
414                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
415                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
416         },
417         [ C(OP_PREFETCH) ] = {
418                 [ C(RESULT_ACCESS) ] = 0x0,
419                 [ C(RESULT_MISS)   ] = 0x0,
420         },
421  },
422 };
423
424 static __initconst const u64 skl_hw_cache_extra_regs
425                                 [PERF_COUNT_HW_CACHE_MAX]
426                                 [PERF_COUNT_HW_CACHE_OP_MAX]
427                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
428 {
429  [ C(LL  ) ] = {
430         [ C(OP_READ) ] = {
431                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
432                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
433                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
434                                        SKL_L3_MISS|SKL_ANY_SNOOP|
435                                        SKL_SUPPLIER_NONE,
436         },
437         [ C(OP_WRITE) ] = {
438                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
439                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
440                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
441                                        SKL_L3_MISS|SKL_ANY_SNOOP|
442                                        SKL_SUPPLIER_NONE,
443         },
444         [ C(OP_PREFETCH) ] = {
445                 [ C(RESULT_ACCESS) ] = 0x0,
446                 [ C(RESULT_MISS)   ] = 0x0,
447         },
448  },
449  [ C(NODE) ] = {
450         [ C(OP_READ) ] = {
451                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
452                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
453                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
454                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
455         },
456         [ C(OP_WRITE) ] = {
457                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
458                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
459                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
460                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
461         },
462         [ C(OP_PREFETCH) ] = {
463                 [ C(RESULT_ACCESS) ] = 0x0,
464                 [ C(RESULT_MISS)   ] = 0x0,
465         },
466  },
467 };
468
469 #define SNB_DMND_DATA_RD        (1ULL << 0)
470 #define SNB_DMND_RFO            (1ULL << 1)
471 #define SNB_DMND_IFETCH         (1ULL << 2)
472 #define SNB_DMND_WB             (1ULL << 3)
473 #define SNB_PF_DATA_RD          (1ULL << 4)
474 #define SNB_PF_RFO              (1ULL << 5)
475 #define SNB_PF_IFETCH           (1ULL << 6)
476 #define SNB_LLC_DATA_RD         (1ULL << 7)
477 #define SNB_LLC_RFO             (1ULL << 8)
478 #define SNB_LLC_IFETCH          (1ULL << 9)
479 #define SNB_BUS_LOCKS           (1ULL << 10)
480 #define SNB_STRM_ST             (1ULL << 11)
481 #define SNB_OTHER               (1ULL << 15)
482 #define SNB_RESP_ANY            (1ULL << 16)
483 #define SNB_NO_SUPP             (1ULL << 17)
484 #define SNB_LLC_HITM            (1ULL << 18)
485 #define SNB_LLC_HITE            (1ULL << 19)
486 #define SNB_LLC_HITS            (1ULL << 20)
487 #define SNB_LLC_HITF            (1ULL << 21)
488 #define SNB_LOCAL               (1ULL << 22)
489 #define SNB_REMOTE              (0xffULL << 23)
490 #define SNB_SNP_NONE            (1ULL << 31)
491 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
492 #define SNB_SNP_MISS            (1ULL << 33)
493 #define SNB_NO_FWD              (1ULL << 34)
494 #define SNB_SNP_FWD             (1ULL << 35)
495 #define SNB_HITM                (1ULL << 36)
496 #define SNB_NON_DRAM            (1ULL << 37)
497
498 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
499 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
500 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
501
502 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
503                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
504                                  SNB_HITM)
505
506 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
507 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
508
509 #define SNB_L3_ACCESS           SNB_RESP_ANY
510 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
511
512 static __initconst const u64 snb_hw_cache_extra_regs
513                                 [PERF_COUNT_HW_CACHE_MAX]
514                                 [PERF_COUNT_HW_CACHE_OP_MAX]
515                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
516 {
517  [ C(LL  ) ] = {
518         [ C(OP_READ) ] = {
519                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
520                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
521         },
522         [ C(OP_WRITE) ] = {
523                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
524                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
525         },
526         [ C(OP_PREFETCH) ] = {
527                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
528                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
529         },
530  },
531  [ C(NODE) ] = {
532         [ C(OP_READ) ] = {
533                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
534                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
535         },
536         [ C(OP_WRITE) ] = {
537                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
538                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
539         },
540         [ C(OP_PREFETCH) ] = {
541                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
542                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
543         },
544  },
545 };
546
547 static __initconst const u64 snb_hw_cache_event_ids
548                                 [PERF_COUNT_HW_CACHE_MAX]
549                                 [PERF_COUNT_HW_CACHE_OP_MAX]
550                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
551 {
552  [ C(L1D) ] = {
553         [ C(OP_READ) ] = {
554                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
555                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
556         },
557         [ C(OP_WRITE) ] = {
558                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
559                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
560         },
561         [ C(OP_PREFETCH) ] = {
562                 [ C(RESULT_ACCESS) ] = 0x0,
563                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
564         },
565  },
566  [ C(L1I ) ] = {
567         [ C(OP_READ) ] = {
568                 [ C(RESULT_ACCESS) ] = 0x0,
569                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
570         },
571         [ C(OP_WRITE) ] = {
572                 [ C(RESULT_ACCESS) ] = -1,
573                 [ C(RESULT_MISS)   ] = -1,
574         },
575         [ C(OP_PREFETCH) ] = {
576                 [ C(RESULT_ACCESS) ] = 0x0,
577                 [ C(RESULT_MISS)   ] = 0x0,
578         },
579  },
580  [ C(LL  ) ] = {
581         [ C(OP_READ) ] = {
582                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
583                 [ C(RESULT_ACCESS) ] = 0x01b7,
584                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
585                 [ C(RESULT_MISS)   ] = 0x01b7,
586         },
587         [ C(OP_WRITE) ] = {
588                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
589                 [ C(RESULT_ACCESS) ] = 0x01b7,
590                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
591                 [ C(RESULT_MISS)   ] = 0x01b7,
592         },
593         [ C(OP_PREFETCH) ] = {
594                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
595                 [ C(RESULT_ACCESS) ] = 0x01b7,
596                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
597                 [ C(RESULT_MISS)   ] = 0x01b7,
598         },
599  },
600  [ C(DTLB) ] = {
601         [ C(OP_READ) ] = {
602                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
603                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
604         },
605         [ C(OP_WRITE) ] = {
606                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
607                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
608         },
609         [ C(OP_PREFETCH) ] = {
610                 [ C(RESULT_ACCESS) ] = 0x0,
611                 [ C(RESULT_MISS)   ] = 0x0,
612         },
613  },
614  [ C(ITLB) ] = {
615         [ C(OP_READ) ] = {
616                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
617                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
618         },
619         [ C(OP_WRITE) ] = {
620                 [ C(RESULT_ACCESS) ] = -1,
621                 [ C(RESULT_MISS)   ] = -1,
622         },
623         [ C(OP_PREFETCH) ] = {
624                 [ C(RESULT_ACCESS) ] = -1,
625                 [ C(RESULT_MISS)   ] = -1,
626         },
627  },
628  [ C(BPU ) ] = {
629         [ C(OP_READ) ] = {
630                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
631                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
632         },
633         [ C(OP_WRITE) ] = {
634                 [ C(RESULT_ACCESS) ] = -1,
635                 [ C(RESULT_MISS)   ] = -1,
636         },
637         [ C(OP_PREFETCH) ] = {
638                 [ C(RESULT_ACCESS) ] = -1,
639                 [ C(RESULT_MISS)   ] = -1,
640         },
641  },
642  [ C(NODE) ] = {
643         [ C(OP_READ) ] = {
644                 [ C(RESULT_ACCESS) ] = 0x01b7,
645                 [ C(RESULT_MISS)   ] = 0x01b7,
646         },
647         [ C(OP_WRITE) ] = {
648                 [ C(RESULT_ACCESS) ] = 0x01b7,
649                 [ C(RESULT_MISS)   ] = 0x01b7,
650         },
651         [ C(OP_PREFETCH) ] = {
652                 [ C(RESULT_ACCESS) ] = 0x01b7,
653                 [ C(RESULT_MISS)   ] = 0x01b7,
654         },
655  },
656
657 };
658
659 /*
660  * Notes on the events:
661  * - data reads do not include code reads (comparable to earlier tables)
662  * - data counts include speculative execution (except L1 write, dtlb, bpu)
663  * - remote node access includes remote memory, remote cache, remote mmio.
664  * - prefetches are not included in the counts because they are not
665  *   reliably counted.
666  */
667
668 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
669 #define HSW_DEMAND_RFO                  BIT_ULL(1)
670 #define HSW_ANY_RESPONSE                BIT_ULL(16)
671 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
672 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
673 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
674 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
675 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
676 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
677                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
678                                          HSW_L3_MISS_REMOTE_HOP2P)
679 #define HSW_SNOOP_NONE                  BIT_ULL(31)
680 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
681 #define HSW_SNOOP_MISS                  BIT_ULL(33)
682 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
683 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
684 #define HSW_SNOOP_HITM                  BIT_ULL(36)
685 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
686 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
687                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
688                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
689                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
690 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
691 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
692 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
693 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
694                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
695 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
696
697 #define BDW_L3_MISS_LOCAL               BIT(26)
698 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
699                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
700                                          HSW_L3_MISS_REMOTE_HOP2P)
701
702
703 static __initconst const u64 hsw_hw_cache_event_ids
704                                 [PERF_COUNT_HW_CACHE_MAX]
705                                 [PERF_COUNT_HW_CACHE_OP_MAX]
706                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
707 {
708  [ C(L1D ) ] = {
709         [ C(OP_READ) ] = {
710                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
711                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
712         },
713         [ C(OP_WRITE) ] = {
714                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
715                 [ C(RESULT_MISS)   ] = 0x0,
716         },
717         [ C(OP_PREFETCH) ] = {
718                 [ C(RESULT_ACCESS) ] = 0x0,
719                 [ C(RESULT_MISS)   ] = 0x0,
720         },
721  },
722  [ C(L1I ) ] = {
723         [ C(OP_READ) ] = {
724                 [ C(RESULT_ACCESS) ] = 0x0,
725                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
726         },
727         [ C(OP_WRITE) ] = {
728                 [ C(RESULT_ACCESS) ] = -1,
729                 [ C(RESULT_MISS)   ] = -1,
730         },
731         [ C(OP_PREFETCH) ] = {
732                 [ C(RESULT_ACCESS) ] = 0x0,
733                 [ C(RESULT_MISS)   ] = 0x0,
734         },
735  },
736  [ C(LL  ) ] = {
737         [ C(OP_READ) ] = {
738                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
739                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
740         },
741         [ C(OP_WRITE) ] = {
742                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
743                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
744         },
745         [ C(OP_PREFETCH) ] = {
746                 [ C(RESULT_ACCESS) ] = 0x0,
747                 [ C(RESULT_MISS)   ] = 0x0,
748         },
749  },
750  [ C(DTLB) ] = {
751         [ C(OP_READ) ] = {
752                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
753                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
754         },
755         [ C(OP_WRITE) ] = {
756                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
757                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
758         },
759         [ C(OP_PREFETCH) ] = {
760                 [ C(RESULT_ACCESS) ] = 0x0,
761                 [ C(RESULT_MISS)   ] = 0x0,
762         },
763  },
764  [ C(ITLB) ] = {
765         [ C(OP_READ) ] = {
766                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
767                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
768         },
769         [ C(OP_WRITE) ] = {
770                 [ C(RESULT_ACCESS) ] = -1,
771                 [ C(RESULT_MISS)   ] = -1,
772         },
773         [ C(OP_PREFETCH) ] = {
774                 [ C(RESULT_ACCESS) ] = -1,
775                 [ C(RESULT_MISS)   ] = -1,
776         },
777  },
778  [ C(BPU ) ] = {
779         [ C(OP_READ) ] = {
780                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
781                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
782         },
783         [ C(OP_WRITE) ] = {
784                 [ C(RESULT_ACCESS) ] = -1,
785                 [ C(RESULT_MISS)   ] = -1,
786         },
787         [ C(OP_PREFETCH) ] = {
788                 [ C(RESULT_ACCESS) ] = -1,
789                 [ C(RESULT_MISS)   ] = -1,
790         },
791  },
792  [ C(NODE) ] = {
793         [ C(OP_READ) ] = {
794                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
795                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
796         },
797         [ C(OP_WRITE) ] = {
798                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
799                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
800         },
801         [ C(OP_PREFETCH) ] = {
802                 [ C(RESULT_ACCESS) ] = 0x0,
803                 [ C(RESULT_MISS)   ] = 0x0,
804         },
805  },
806 };
807
808 static __initconst const u64 hsw_hw_cache_extra_regs
809                                 [PERF_COUNT_HW_CACHE_MAX]
810                                 [PERF_COUNT_HW_CACHE_OP_MAX]
811                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
812 {
813  [ C(LL  ) ] = {
814         [ C(OP_READ) ] = {
815                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
816                                        HSW_LLC_ACCESS,
817                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
818                                        HSW_L3_MISS|HSW_ANY_SNOOP,
819         },
820         [ C(OP_WRITE) ] = {
821                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
822                                        HSW_LLC_ACCESS,
823                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
824                                        HSW_L3_MISS|HSW_ANY_SNOOP,
825         },
826         [ C(OP_PREFETCH) ] = {
827                 [ C(RESULT_ACCESS) ] = 0x0,
828                 [ C(RESULT_MISS)   ] = 0x0,
829         },
830  },
831  [ C(NODE) ] = {
832         [ C(OP_READ) ] = {
833                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
834                                        HSW_L3_MISS_LOCAL_DRAM|
835                                        HSW_SNOOP_DRAM,
836                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
837                                        HSW_L3_MISS_REMOTE|
838                                        HSW_SNOOP_DRAM,
839         },
840         [ C(OP_WRITE) ] = {
841                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
842                                        HSW_L3_MISS_LOCAL_DRAM|
843                                        HSW_SNOOP_DRAM,
844                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
845                                        HSW_L3_MISS_REMOTE|
846                                        HSW_SNOOP_DRAM,
847         },
848         [ C(OP_PREFETCH) ] = {
849                 [ C(RESULT_ACCESS) ] = 0x0,
850                 [ C(RESULT_MISS)   ] = 0x0,
851         },
852  },
853 };
854
855 static __initconst const u64 westmere_hw_cache_event_ids
856                                 [PERF_COUNT_HW_CACHE_MAX]
857                                 [PERF_COUNT_HW_CACHE_OP_MAX]
858                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
859 {
860  [ C(L1D) ] = {
861         [ C(OP_READ) ] = {
862                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
863                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
864         },
865         [ C(OP_WRITE) ] = {
866                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
867                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
868         },
869         [ C(OP_PREFETCH) ] = {
870                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
871                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
872         },
873  },
874  [ C(L1I ) ] = {
875         [ C(OP_READ) ] = {
876                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
877                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
878         },
879         [ C(OP_WRITE) ] = {
880                 [ C(RESULT_ACCESS) ] = -1,
881                 [ C(RESULT_MISS)   ] = -1,
882         },
883         [ C(OP_PREFETCH) ] = {
884                 [ C(RESULT_ACCESS) ] = 0x0,
885                 [ C(RESULT_MISS)   ] = 0x0,
886         },
887  },
888  [ C(LL  ) ] = {
889         [ C(OP_READ) ] = {
890                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
891                 [ C(RESULT_ACCESS) ] = 0x01b7,
892                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
893                 [ C(RESULT_MISS)   ] = 0x01b7,
894         },
895         /*
896          * Use RFO, not WRITEBACK, because a write miss would typically occur
897          * on RFO.
898          */
899         [ C(OP_WRITE) ] = {
900                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
901                 [ C(RESULT_ACCESS) ] = 0x01b7,
902                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
903                 [ C(RESULT_MISS)   ] = 0x01b7,
904         },
905         [ C(OP_PREFETCH) ] = {
906                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
907                 [ C(RESULT_ACCESS) ] = 0x01b7,
908                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
909                 [ C(RESULT_MISS)   ] = 0x01b7,
910         },
911  },
912  [ C(DTLB) ] = {
913         [ C(OP_READ) ] = {
914                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
915                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
916         },
917         [ C(OP_WRITE) ] = {
918                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
919                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
920         },
921         [ C(OP_PREFETCH) ] = {
922                 [ C(RESULT_ACCESS) ] = 0x0,
923                 [ C(RESULT_MISS)   ] = 0x0,
924         },
925  },
926  [ C(ITLB) ] = {
927         [ C(OP_READ) ] = {
928                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
929                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
930         },
931         [ C(OP_WRITE) ] = {
932                 [ C(RESULT_ACCESS) ] = -1,
933                 [ C(RESULT_MISS)   ] = -1,
934         },
935         [ C(OP_PREFETCH) ] = {
936                 [ C(RESULT_ACCESS) ] = -1,
937                 [ C(RESULT_MISS)   ] = -1,
938         },
939  },
940  [ C(BPU ) ] = {
941         [ C(OP_READ) ] = {
942                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
943                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
944         },
945         [ C(OP_WRITE) ] = {
946                 [ C(RESULT_ACCESS) ] = -1,
947                 [ C(RESULT_MISS)   ] = -1,
948         },
949         [ C(OP_PREFETCH) ] = {
950                 [ C(RESULT_ACCESS) ] = -1,
951                 [ C(RESULT_MISS)   ] = -1,
952         },
953  },
954  [ C(NODE) ] = {
955         [ C(OP_READ) ] = {
956                 [ C(RESULT_ACCESS) ] = 0x01b7,
957                 [ C(RESULT_MISS)   ] = 0x01b7,
958         },
959         [ C(OP_WRITE) ] = {
960                 [ C(RESULT_ACCESS) ] = 0x01b7,
961                 [ C(RESULT_MISS)   ] = 0x01b7,
962         },
963         [ C(OP_PREFETCH) ] = {
964                 [ C(RESULT_ACCESS) ] = 0x01b7,
965                 [ C(RESULT_MISS)   ] = 0x01b7,
966         },
967  },
968 };
969
970 /*
971  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
972  * See IA32 SDM Vol 3B 30.6.1.3
973  */
974
975 #define NHM_DMND_DATA_RD        (1 << 0)
976 #define NHM_DMND_RFO            (1 << 1)
977 #define NHM_DMND_IFETCH         (1 << 2)
978 #define NHM_DMND_WB             (1 << 3)
979 #define NHM_PF_DATA_RD          (1 << 4)
980 #define NHM_PF_DATA_RFO         (1 << 5)
981 #define NHM_PF_IFETCH           (1 << 6)
982 #define NHM_OFFCORE_OTHER       (1 << 7)
983 #define NHM_UNCORE_HIT          (1 << 8)
984 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
985 #define NHM_OTHER_CORE_HITM     (1 << 10)
986                                 /* reserved */
987 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
988 #define NHM_REMOTE_DRAM         (1 << 13)
989 #define NHM_LOCAL_DRAM          (1 << 14)
990 #define NHM_NON_DRAM            (1 << 15)
991
992 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
993 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
994
995 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
996 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
997 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
998
999 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1000 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1001 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1002
1003 static __initconst const u64 nehalem_hw_cache_extra_regs
1004                                 [PERF_COUNT_HW_CACHE_MAX]
1005                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1006                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1007 {
1008  [ C(LL  ) ] = {
1009         [ C(OP_READ) ] = {
1010                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1011                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1012         },
1013         [ C(OP_WRITE) ] = {
1014                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1015                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1016         },
1017         [ C(OP_PREFETCH) ] = {
1018                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1019                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1020         },
1021  },
1022  [ C(NODE) ] = {
1023         [ C(OP_READ) ] = {
1024                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1025                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1026         },
1027         [ C(OP_WRITE) ] = {
1028                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1029                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1030         },
1031         [ C(OP_PREFETCH) ] = {
1032                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1033                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1034         },
1035  },
1036 };
1037
1038 static __initconst const u64 nehalem_hw_cache_event_ids
1039                                 [PERF_COUNT_HW_CACHE_MAX]
1040                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1041                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1042 {
1043  [ C(L1D) ] = {
1044         [ C(OP_READ) ] = {
1045                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1046                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1047         },
1048         [ C(OP_WRITE) ] = {
1049                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1050                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1051         },
1052         [ C(OP_PREFETCH) ] = {
1053                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1054                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1055         },
1056  },
1057  [ C(L1I ) ] = {
1058         [ C(OP_READ) ] = {
1059                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1060                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1061         },
1062         [ C(OP_WRITE) ] = {
1063                 [ C(RESULT_ACCESS) ] = -1,
1064                 [ C(RESULT_MISS)   ] = -1,
1065         },
1066         [ C(OP_PREFETCH) ] = {
1067                 [ C(RESULT_ACCESS) ] = 0x0,
1068                 [ C(RESULT_MISS)   ] = 0x0,
1069         },
1070  },
1071  [ C(LL  ) ] = {
1072         [ C(OP_READ) ] = {
1073                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1074                 [ C(RESULT_ACCESS) ] = 0x01b7,
1075                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1076                 [ C(RESULT_MISS)   ] = 0x01b7,
1077         },
1078         /*
1079          * Use RFO, not WRITEBACK, because a write miss would typically occur
1080          * on RFO.
1081          */
1082         [ C(OP_WRITE) ] = {
1083                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1084                 [ C(RESULT_ACCESS) ] = 0x01b7,
1085                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1086                 [ C(RESULT_MISS)   ] = 0x01b7,
1087         },
1088         [ C(OP_PREFETCH) ] = {
1089                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1090                 [ C(RESULT_ACCESS) ] = 0x01b7,
1091                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1092                 [ C(RESULT_MISS)   ] = 0x01b7,
1093         },
1094  },
1095  [ C(DTLB) ] = {
1096         [ C(OP_READ) ] = {
1097                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1098                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1099         },
1100         [ C(OP_WRITE) ] = {
1101                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1102                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1103         },
1104         [ C(OP_PREFETCH) ] = {
1105                 [ C(RESULT_ACCESS) ] = 0x0,
1106                 [ C(RESULT_MISS)   ] = 0x0,
1107         },
1108  },
1109  [ C(ITLB) ] = {
1110         [ C(OP_READ) ] = {
1111                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1112                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1113         },
1114         [ C(OP_WRITE) ] = {
1115                 [ C(RESULT_ACCESS) ] = -1,
1116                 [ C(RESULT_MISS)   ] = -1,
1117         },
1118         [ C(OP_PREFETCH) ] = {
1119                 [ C(RESULT_ACCESS) ] = -1,
1120                 [ C(RESULT_MISS)   ] = -1,
1121         },
1122  },
1123  [ C(BPU ) ] = {
1124         [ C(OP_READ) ] = {
1125                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1126                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1127         },
1128         [ C(OP_WRITE) ] = {
1129                 [ C(RESULT_ACCESS) ] = -1,
1130                 [ C(RESULT_MISS)   ] = -1,
1131         },
1132         [ C(OP_PREFETCH) ] = {
1133                 [ C(RESULT_ACCESS) ] = -1,
1134                 [ C(RESULT_MISS)   ] = -1,
1135         },
1136  },
1137  [ C(NODE) ] = {
1138         [ C(OP_READ) ] = {
1139                 [ C(RESULT_ACCESS) ] = 0x01b7,
1140                 [ C(RESULT_MISS)   ] = 0x01b7,
1141         },
1142         [ C(OP_WRITE) ] = {
1143                 [ C(RESULT_ACCESS) ] = 0x01b7,
1144                 [ C(RESULT_MISS)   ] = 0x01b7,
1145         },
1146         [ C(OP_PREFETCH) ] = {
1147                 [ C(RESULT_ACCESS) ] = 0x01b7,
1148                 [ C(RESULT_MISS)   ] = 0x01b7,
1149         },
1150  },
1151 };
1152
1153 static __initconst const u64 core2_hw_cache_event_ids
1154                                 [PERF_COUNT_HW_CACHE_MAX]
1155                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1156                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1157 {
1158  [ C(L1D) ] = {
1159         [ C(OP_READ) ] = {
1160                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1161                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1162         },
1163         [ C(OP_WRITE) ] = {
1164                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1165                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1166         },
1167         [ C(OP_PREFETCH) ] = {
1168                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1169                 [ C(RESULT_MISS)   ] = 0,
1170         },
1171  },
1172  [ C(L1I ) ] = {
1173         [ C(OP_READ) ] = {
1174                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1175                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1176         },
1177         [ C(OP_WRITE) ] = {
1178                 [ C(RESULT_ACCESS) ] = -1,
1179                 [ C(RESULT_MISS)   ] = -1,
1180         },
1181         [ C(OP_PREFETCH) ] = {
1182                 [ C(RESULT_ACCESS) ] = 0,
1183                 [ C(RESULT_MISS)   ] = 0,
1184         },
1185  },
1186  [ C(LL  ) ] = {
1187         [ C(OP_READ) ] = {
1188                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1189                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1190         },
1191         [ C(OP_WRITE) ] = {
1192                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1193                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1194         },
1195         [ C(OP_PREFETCH) ] = {
1196                 [ C(RESULT_ACCESS) ] = 0,
1197                 [ C(RESULT_MISS)   ] = 0,
1198         },
1199  },
1200  [ C(DTLB) ] = {
1201         [ C(OP_READ) ] = {
1202                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1203                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1204         },
1205         [ C(OP_WRITE) ] = {
1206                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1207                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1208         },
1209         [ C(OP_PREFETCH) ] = {
1210                 [ C(RESULT_ACCESS) ] = 0,
1211                 [ C(RESULT_MISS)   ] = 0,
1212         },
1213  },
1214  [ C(ITLB) ] = {
1215         [ C(OP_READ) ] = {
1216                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1217                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1218         },
1219         [ C(OP_WRITE) ] = {
1220                 [ C(RESULT_ACCESS) ] = -1,
1221                 [ C(RESULT_MISS)   ] = -1,
1222         },
1223         [ C(OP_PREFETCH) ] = {
1224                 [ C(RESULT_ACCESS) ] = -1,
1225                 [ C(RESULT_MISS)   ] = -1,
1226         },
1227  },
1228  [ C(BPU ) ] = {
1229         [ C(OP_READ) ] = {
1230                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1231                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1232         },
1233         [ C(OP_WRITE) ] = {
1234                 [ C(RESULT_ACCESS) ] = -1,
1235                 [ C(RESULT_MISS)   ] = -1,
1236         },
1237         [ C(OP_PREFETCH) ] = {
1238                 [ C(RESULT_ACCESS) ] = -1,
1239                 [ C(RESULT_MISS)   ] = -1,
1240         },
1241  },
1242 };
1243
1244 static __initconst const u64 atom_hw_cache_event_ids
1245                                 [PERF_COUNT_HW_CACHE_MAX]
1246                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1247                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1248 {
1249  [ C(L1D) ] = {
1250         [ C(OP_READ) ] = {
1251                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1252                 [ C(RESULT_MISS)   ] = 0,
1253         },
1254         [ C(OP_WRITE) ] = {
1255                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1256                 [ C(RESULT_MISS)   ] = 0,
1257         },
1258         [ C(OP_PREFETCH) ] = {
1259                 [ C(RESULT_ACCESS) ] = 0x0,
1260                 [ C(RESULT_MISS)   ] = 0,
1261         },
1262  },
1263  [ C(L1I ) ] = {
1264         [ C(OP_READ) ] = {
1265                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1266                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1267         },
1268         [ C(OP_WRITE) ] = {
1269                 [ C(RESULT_ACCESS) ] = -1,
1270                 [ C(RESULT_MISS)   ] = -1,
1271         },
1272         [ C(OP_PREFETCH) ] = {
1273                 [ C(RESULT_ACCESS) ] = 0,
1274                 [ C(RESULT_MISS)   ] = 0,
1275         },
1276  },
1277  [ C(LL  ) ] = {
1278         [ C(OP_READ) ] = {
1279                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1280                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1281         },
1282         [ C(OP_WRITE) ] = {
1283                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1284                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1285         },
1286         [ C(OP_PREFETCH) ] = {
1287                 [ C(RESULT_ACCESS) ] = 0,
1288                 [ C(RESULT_MISS)   ] = 0,
1289         },
1290  },
1291  [ C(DTLB) ] = {
1292         [ C(OP_READ) ] = {
1293                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1294                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1295         },
1296         [ C(OP_WRITE) ] = {
1297                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1298                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1299         },
1300         [ C(OP_PREFETCH) ] = {
1301                 [ C(RESULT_ACCESS) ] = 0,
1302                 [ C(RESULT_MISS)   ] = 0,
1303         },
1304  },
1305  [ C(ITLB) ] = {
1306         [ C(OP_READ) ] = {
1307                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1308                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1309         },
1310         [ C(OP_WRITE) ] = {
1311                 [ C(RESULT_ACCESS) ] = -1,
1312                 [ C(RESULT_MISS)   ] = -1,
1313         },
1314         [ C(OP_PREFETCH) ] = {
1315                 [ C(RESULT_ACCESS) ] = -1,
1316                 [ C(RESULT_MISS)   ] = -1,
1317         },
1318  },
1319  [ C(BPU ) ] = {
1320         [ C(OP_READ) ] = {
1321                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1322                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1323         },
1324         [ C(OP_WRITE) ] = {
1325                 [ C(RESULT_ACCESS) ] = -1,
1326                 [ C(RESULT_MISS)   ] = -1,
1327         },
1328         [ C(OP_PREFETCH) ] = {
1329                 [ C(RESULT_ACCESS) ] = -1,
1330                 [ C(RESULT_MISS)   ] = -1,
1331         },
1332  },
1333 };
1334
1335 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1336 {
1337         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1338         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1339         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1340         EVENT_EXTRA_END
1341 };
1342
1343 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1344 #define SLM_DMND_WRITE          SNB_DMND_RFO
1345 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1346
1347 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1348 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1349 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1350
1351 static __initconst const u64 slm_hw_cache_extra_regs
1352                                 [PERF_COUNT_HW_CACHE_MAX]
1353                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1354                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1355 {
1356  [ C(LL  ) ] = {
1357         [ C(OP_READ) ] = {
1358                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1359                 [ C(RESULT_MISS)   ] = 0,
1360         },
1361         [ C(OP_WRITE) ] = {
1362                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1363                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1364         },
1365         [ C(OP_PREFETCH) ] = {
1366                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1367                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1368         },
1369  },
1370 };
1371
1372 static __initconst const u64 slm_hw_cache_event_ids
1373                                 [PERF_COUNT_HW_CACHE_MAX]
1374                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1375                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1376 {
1377  [ C(L1D) ] = {
1378         [ C(OP_READ) ] = {
1379                 [ C(RESULT_ACCESS) ] = 0,
1380                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1381         },
1382         [ C(OP_WRITE) ] = {
1383                 [ C(RESULT_ACCESS) ] = 0,
1384                 [ C(RESULT_MISS)   ] = 0,
1385         },
1386         [ C(OP_PREFETCH) ] = {
1387                 [ C(RESULT_ACCESS) ] = 0,
1388                 [ C(RESULT_MISS)   ] = 0,
1389         },
1390  },
1391  [ C(L1I ) ] = {
1392         [ C(OP_READ) ] = {
1393                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1394                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1395         },
1396         [ C(OP_WRITE) ] = {
1397                 [ C(RESULT_ACCESS) ] = -1,
1398                 [ C(RESULT_MISS)   ] = -1,
1399         },
1400         [ C(OP_PREFETCH) ] = {
1401                 [ C(RESULT_ACCESS) ] = 0,
1402                 [ C(RESULT_MISS)   ] = 0,
1403         },
1404  },
1405  [ C(LL  ) ] = {
1406         [ C(OP_READ) ] = {
1407                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1408                 [ C(RESULT_ACCESS) ] = 0x01b7,
1409                 [ C(RESULT_MISS)   ] = 0,
1410         },
1411         [ C(OP_WRITE) ] = {
1412                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1413                 [ C(RESULT_ACCESS) ] = 0x01b7,
1414                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1415                 [ C(RESULT_MISS)   ] = 0x01b7,
1416         },
1417         [ C(OP_PREFETCH) ] = {
1418                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1419                 [ C(RESULT_ACCESS) ] = 0x01b7,
1420                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1421                 [ C(RESULT_MISS)   ] = 0x01b7,
1422         },
1423  },
1424  [ C(DTLB) ] = {
1425         [ C(OP_READ) ] = {
1426                 [ C(RESULT_ACCESS) ] = 0,
1427                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1428         },
1429         [ C(OP_WRITE) ] = {
1430                 [ C(RESULT_ACCESS) ] = 0,
1431                 [ C(RESULT_MISS)   ] = 0,
1432         },
1433         [ C(OP_PREFETCH) ] = {
1434                 [ C(RESULT_ACCESS) ] = 0,
1435                 [ C(RESULT_MISS)   ] = 0,
1436         },
1437  },
1438  [ C(ITLB) ] = {
1439         [ C(OP_READ) ] = {
1440                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1441                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1442         },
1443         [ C(OP_WRITE) ] = {
1444                 [ C(RESULT_ACCESS) ] = -1,
1445                 [ C(RESULT_MISS)   ] = -1,
1446         },
1447         [ C(OP_PREFETCH) ] = {
1448                 [ C(RESULT_ACCESS) ] = -1,
1449                 [ C(RESULT_MISS)   ] = -1,
1450         },
1451  },
1452  [ C(BPU ) ] = {
1453         [ C(OP_READ) ] = {
1454                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1455                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1456         },
1457         [ C(OP_WRITE) ] = {
1458                 [ C(RESULT_ACCESS) ] = -1,
1459                 [ C(RESULT_MISS)   ] = -1,
1460         },
1461         [ C(OP_PREFETCH) ] = {
1462                 [ C(RESULT_ACCESS) ] = -1,
1463                 [ C(RESULT_MISS)   ] = -1,
1464         },
1465  },
1466 };
1467
1468 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1469         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1470         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1471         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1472         EVENT_EXTRA_END
1473 };
1474
1475 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1476 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1477 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1478 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1479 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1480 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1481 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1482 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1483 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1484 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1485
1486 static __initconst const u64 glm_hw_cache_event_ids
1487                                 [PERF_COUNT_HW_CACHE_MAX]
1488                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1489                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1490         [C(L1D)] = {
1491                 [C(OP_READ)] = {
1492                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1493                         [C(RESULT_MISS)]        = 0x0,
1494                 },
1495                 [C(OP_WRITE)] = {
1496                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1497                         [C(RESULT_MISS)]        = 0x0,
1498                 },
1499                 [C(OP_PREFETCH)] = {
1500                         [C(RESULT_ACCESS)]      = 0x0,
1501                         [C(RESULT_MISS)]        = 0x0,
1502                 },
1503         },
1504         [C(L1I)] = {
1505                 [C(OP_READ)] = {
1506                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1507                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1508                 },
1509                 [C(OP_WRITE)] = {
1510                         [C(RESULT_ACCESS)]      = -1,
1511                         [C(RESULT_MISS)]        = -1,
1512                 },
1513                 [C(OP_PREFETCH)] = {
1514                         [C(RESULT_ACCESS)]      = 0x0,
1515                         [C(RESULT_MISS)]        = 0x0,
1516                 },
1517         },
1518         [C(LL)] = {
1519                 [C(OP_READ)] = {
1520                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1521                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1522                 },
1523                 [C(OP_WRITE)] = {
1524                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1525                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1526                 },
1527                 [C(OP_PREFETCH)] = {
1528                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1529                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1530                 },
1531         },
1532         [C(DTLB)] = {
1533                 [C(OP_READ)] = {
1534                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1535                         [C(RESULT_MISS)]        = 0x0,
1536                 },
1537                 [C(OP_WRITE)] = {
1538                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1539                         [C(RESULT_MISS)]        = 0x0,
1540                 },
1541                 [C(OP_PREFETCH)] = {
1542                         [C(RESULT_ACCESS)]      = 0x0,
1543                         [C(RESULT_MISS)]        = 0x0,
1544                 },
1545         },
1546         [C(ITLB)] = {
1547                 [C(OP_READ)] = {
1548                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1549                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1550                 },
1551                 [C(OP_WRITE)] = {
1552                         [C(RESULT_ACCESS)]      = -1,
1553                         [C(RESULT_MISS)]        = -1,
1554                 },
1555                 [C(OP_PREFETCH)] = {
1556                         [C(RESULT_ACCESS)]      = -1,
1557                         [C(RESULT_MISS)]        = -1,
1558                 },
1559         },
1560         [C(BPU)] = {
1561                 [C(OP_READ)] = {
1562                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1563                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1564                 },
1565                 [C(OP_WRITE)] = {
1566                         [C(RESULT_ACCESS)]      = -1,
1567                         [C(RESULT_MISS)]        = -1,
1568                 },
1569                 [C(OP_PREFETCH)] = {
1570                         [C(RESULT_ACCESS)]      = -1,
1571                         [C(RESULT_MISS)]        = -1,
1572                 },
1573         },
1574 };
1575
1576 static __initconst const u64 glm_hw_cache_extra_regs
1577                                 [PERF_COUNT_HW_CACHE_MAX]
1578                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1579                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1580         [C(LL)] = {
1581                 [C(OP_READ)] = {
1582                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1583                                                   GLM_LLC_ACCESS,
1584                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1585                                                   GLM_LLC_MISS,
1586                 },
1587                 [C(OP_WRITE)] = {
1588                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1589                                                   GLM_LLC_ACCESS,
1590                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1591                                                   GLM_LLC_MISS,
1592                 },
1593                 [C(OP_PREFETCH)] = {
1594                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1595                                                   GLM_LLC_ACCESS,
1596                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1597                                                   GLM_LLC_MISS,
1598                 },
1599         },
1600 };
1601
1602 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
1603 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
1604 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
1605 #define KNL_MCDRAM_FAR          BIT_ULL(22)
1606 #define KNL_DDR_LOCAL           BIT_ULL(23)
1607 #define KNL_DDR_FAR             BIT_ULL(24)
1608 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1609                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
1610 #define KNL_L2_READ             SLM_DMND_READ
1611 #define KNL_L2_WRITE            SLM_DMND_WRITE
1612 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
1613 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
1614 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1615                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
1616                                                   SNB_NON_DRAM)
1617
1618 static __initconst const u64 knl_hw_cache_extra_regs
1619                                 [PERF_COUNT_HW_CACHE_MAX]
1620                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1621                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1622         [C(LL)] = {
1623                 [C(OP_READ)] = {
1624                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1625                         [C(RESULT_MISS)]   = 0,
1626                 },
1627                 [C(OP_WRITE)] = {
1628                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1629                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1630                 },
1631                 [C(OP_PREFETCH)] = {
1632                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1633                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1634                 },
1635         },
1636 };
1637
1638 /*
1639  * Used from PMIs where the LBRs are already disabled.
1640  *
1641  * This function could be called consecutively. It is required to remain in
1642  * disabled state if called consecutively.
1643  *
1644  * During consecutive calls, the same disable value will be written to related
1645  * registers, so the PMU state remains unchanged. hw.state in
1646  * intel_bts_disable_local will remain PERF_HES_STOPPED too in consecutive
1647  * calls.
1648  */
1649 static void __intel_pmu_disable_all(void)
1650 {
1651         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1652
1653         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1654
1655         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1656                 intel_pmu_disable_bts();
1657         else
1658                 intel_bts_disable_local();
1659
1660         intel_pmu_pebs_disable_all();
1661 }
1662
1663 static void intel_pmu_disable_all(void)
1664 {
1665         __intel_pmu_disable_all();
1666         intel_pmu_lbr_disable_all();
1667 }
1668
1669 static void __intel_pmu_enable_all(int added, bool pmi)
1670 {
1671         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1672
1673         intel_pmu_pebs_enable_all();
1674         intel_pmu_lbr_enable_all(pmi);
1675         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1676                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1677
1678         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1679                 struct perf_event *event =
1680                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1681
1682                 if (WARN_ON_ONCE(!event))
1683                         return;
1684
1685                 intel_pmu_enable_bts(event->hw.config);
1686         } else
1687                 intel_bts_enable_local();
1688 }
1689
1690 static void intel_pmu_enable_all(int added)
1691 {
1692         __intel_pmu_enable_all(added, false);
1693 }
1694
1695 /*
1696  * Workaround for:
1697  *   Intel Errata AAK100 (model 26)
1698  *   Intel Errata AAP53  (model 30)
1699  *   Intel Errata BD53   (model 44)
1700  *
1701  * The official story:
1702  *   These chips need to be 'reset' when adding counters by programming the
1703  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1704  *   in sequence on the same PMC or on different PMCs.
1705  *
1706  * In practise it appears some of these events do in fact count, and
1707  * we need to programm all 4 events.
1708  */
1709 static void intel_pmu_nhm_workaround(void)
1710 {
1711         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1712         static const unsigned long nhm_magic[4] = {
1713                 0x4300B5,
1714                 0x4300D2,
1715                 0x4300B1,
1716                 0x4300B1
1717         };
1718         struct perf_event *event;
1719         int i;
1720
1721         /*
1722          * The Errata requires below steps:
1723          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1724          * 2) Configure 4 PERFEVTSELx with the magic events and clear
1725          *    the corresponding PMCx;
1726          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1727          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1728          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1729          */
1730
1731         /*
1732          * The real steps we choose are a little different from above.
1733          * A) To reduce MSR operations, we don't run step 1) as they
1734          *    are already cleared before this function is called;
1735          * B) Call x86_perf_event_update to save PMCx before configuring
1736          *    PERFEVTSELx with magic number;
1737          * C) With step 5), we do clear only when the PERFEVTSELx is
1738          *    not used currently.
1739          * D) Call x86_perf_event_set_period to restore PMCx;
1740          */
1741
1742         /* We always operate 4 pairs of PERF Counters */
1743         for (i = 0; i < 4; i++) {
1744                 event = cpuc->events[i];
1745                 if (event)
1746                         x86_perf_event_update(event);
1747         }
1748
1749         for (i = 0; i < 4; i++) {
1750                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1751                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1752         }
1753
1754         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1755         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1756
1757         for (i = 0; i < 4; i++) {
1758                 event = cpuc->events[i];
1759
1760                 if (event) {
1761                         x86_perf_event_set_period(event);
1762                         __x86_pmu_enable_event(&event->hw,
1763                                         ARCH_PERFMON_EVENTSEL_ENABLE);
1764                 } else
1765                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1766         }
1767 }
1768
1769 static void intel_pmu_nhm_enable_all(int added)
1770 {
1771         if (added)
1772                 intel_pmu_nhm_workaround();
1773         intel_pmu_enable_all(added);
1774 }
1775
1776 static inline u64 intel_pmu_get_status(void)
1777 {
1778         u64 status;
1779
1780         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1781
1782         return status;
1783 }
1784
1785 static inline void intel_pmu_ack_status(u64 ack)
1786 {
1787         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
1788 }
1789
1790 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
1791 {
1792         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1793         u64 ctrl_val, mask;
1794
1795         mask = 0xfULL << (idx * 4);
1796
1797         rdmsrl(hwc->config_base, ctrl_val);
1798         ctrl_val &= ~mask;
1799         wrmsrl(hwc->config_base, ctrl_val);
1800 }
1801
1802 static inline bool event_is_checkpointed(struct perf_event *event)
1803 {
1804         return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
1805 }
1806
1807 static void intel_pmu_disable_event(struct perf_event *event)
1808 {
1809         struct hw_perf_event *hwc = &event->hw;
1810         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1811
1812         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1813                 intel_pmu_disable_bts();
1814                 intel_pmu_drain_bts_buffer();
1815                 return;
1816         }
1817
1818         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
1819         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
1820         cpuc->intel_cp_status &= ~(1ull << hwc->idx);
1821
1822         /*
1823          * must disable before any actual event
1824          * because any event may be combined with LBR
1825          */
1826         if (needs_branch_stack(event))
1827                 intel_pmu_lbr_disable(event);
1828
1829         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1830                 intel_pmu_disable_fixed(hwc);
1831                 return;
1832         }
1833
1834         x86_pmu_disable_event(event);
1835
1836         if (unlikely(event->attr.precise_ip))
1837                 intel_pmu_pebs_disable(event);
1838 }
1839
1840 static void intel_pmu_enable_fixed(struct hw_perf_event *hwc)
1841 {
1842         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1843         u64 ctrl_val, bits, mask;
1844
1845         /*
1846          * Enable IRQ generation (0x8),
1847          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
1848          * if requested:
1849          */
1850         bits = 0x8ULL;
1851         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
1852                 bits |= 0x2;
1853         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
1854                 bits |= 0x1;
1855
1856         /*
1857          * ANY bit is supported in v3 and up
1858          */
1859         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
1860                 bits |= 0x4;
1861
1862         bits <<= (idx * 4);
1863         mask = 0xfULL << (idx * 4);
1864
1865         rdmsrl(hwc->config_base, ctrl_val);
1866         ctrl_val &= ~mask;
1867         ctrl_val |= bits;
1868         wrmsrl(hwc->config_base, ctrl_val);
1869 }
1870
1871 static void intel_pmu_enable_event(struct perf_event *event)
1872 {
1873         struct hw_perf_event *hwc = &event->hw;
1874         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1875
1876         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
1877                 if (!__this_cpu_read(cpu_hw_events.enabled))
1878                         return;
1879
1880                 intel_pmu_enable_bts(hwc->config);
1881                 return;
1882         }
1883         /*
1884          * must enabled before any actual event
1885          * because any event may be combined with LBR
1886          */
1887         if (needs_branch_stack(event))
1888                 intel_pmu_lbr_enable(event);
1889
1890         if (event->attr.exclude_host)
1891                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
1892         if (event->attr.exclude_guest)
1893                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
1894
1895         if (unlikely(event_is_checkpointed(event)))
1896                 cpuc->intel_cp_status |= (1ull << hwc->idx);
1897
1898         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
1899                 intel_pmu_enable_fixed(hwc);
1900                 return;
1901         }
1902
1903         if (unlikely(event->attr.precise_ip))
1904                 intel_pmu_pebs_enable(event);
1905
1906         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
1907 }
1908
1909 /*
1910  * Save and restart an expired event. Called by NMI contexts,
1911  * so it has to be careful about preempting normal event ops:
1912  */
1913 int intel_pmu_save_and_restart(struct perf_event *event)
1914 {
1915         x86_perf_event_update(event);
1916         /*
1917          * For a checkpointed counter always reset back to 0.  This
1918          * avoids a situation where the counter overflows, aborts the
1919          * transaction and is then set back to shortly before the
1920          * overflow, and overflows and aborts again.
1921          */
1922         if (unlikely(event_is_checkpointed(event))) {
1923                 /* No race with NMIs because the counter should not be armed */
1924                 wrmsrl(event->hw.event_base, 0);
1925                 local64_set(&event->hw.prev_count, 0);
1926         }
1927         return x86_perf_event_set_period(event);
1928 }
1929
1930 static void intel_pmu_reset(void)
1931 {
1932         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
1933         unsigned long flags;
1934         int idx;
1935
1936         if (!x86_pmu.num_counters)
1937                 return;
1938
1939         local_irq_save(flags);
1940
1941         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
1942
1943         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1944                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
1945                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
1946         }
1947         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
1948                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
1949
1950         if (ds)
1951                 ds->bts_index = ds->bts_buffer_base;
1952
1953         /* Ack all overflows and disable fixed counters */
1954         if (x86_pmu.version >= 2) {
1955                 intel_pmu_ack_status(intel_pmu_get_status());
1956                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1957         }
1958
1959         /* Reset LBRs and LBR freezing */
1960         if (x86_pmu.lbr_nr) {
1961                 update_debugctlmsr(get_debugctlmsr() &
1962                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
1963         }
1964
1965         local_irq_restore(flags);
1966 }
1967
1968 /*
1969  * This handler is triggered by the local APIC, so the APIC IRQ handling
1970  * rules apply:
1971  */
1972 static int intel_pmu_handle_irq(struct pt_regs *regs)
1973 {
1974         struct perf_sample_data data;
1975         struct cpu_hw_events *cpuc;
1976         int bit, loops;
1977         u64 status;
1978         int handled;
1979
1980         cpuc = this_cpu_ptr(&cpu_hw_events);
1981
1982         /*
1983          * No known reason to not always do late ACK,
1984          * but just in case do it opt-in.
1985          */
1986         if (!x86_pmu.late_ack)
1987                 apic_write(APIC_LVTPC, APIC_DM_NMI);
1988         __intel_pmu_disable_all();
1989         handled = intel_pmu_drain_bts_buffer();
1990         handled += intel_bts_interrupt();
1991         status = intel_pmu_get_status();
1992         if (!status)
1993                 goto done;
1994
1995         loops = 0;
1996 again:
1997         intel_pmu_lbr_read();
1998         intel_pmu_ack_status(status);
1999         if (++loops > 100) {
2000                 static bool warned = false;
2001                 if (!warned) {
2002                         WARN(1, "perfevents: irq loop stuck!\n");
2003                         perf_event_print_debug();
2004                         warned = true;
2005                 }
2006                 intel_pmu_reset();
2007                 goto done;
2008         }
2009
2010         inc_irq_stat(apic_perf_irqs);
2011
2012
2013         /*
2014          * Ignore a range of extra bits in status that do not indicate
2015          * overflow by themselves.
2016          */
2017         status &= ~(GLOBAL_STATUS_COND_CHG |
2018                     GLOBAL_STATUS_ASIF |
2019                     GLOBAL_STATUS_LBRS_FROZEN);
2020         if (!status)
2021                 goto done;
2022
2023         /*
2024          * PEBS overflow sets bit 62 in the global status register
2025          */
2026         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2027                 handled++;
2028                 x86_pmu.drain_pebs(regs);
2029                 /*
2030                  * There are cases where, even though, the PEBS ovfl bit is set
2031                  * in GLOBAL_OVF_STATUS, the PEBS events may also have their
2032                  * overflow bits set for their counters. We must clear them
2033                  * here because they have been processed as exact samples in
2034                  * the drain_pebs() routine. They must not be processed again
2035                  * in the for_each_bit_set() loop for regular samples below.
2036                  */
2037                 status &= ~cpuc->pebs_enabled;
2038                 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2039         }
2040
2041         /*
2042          * Intel PT
2043          */
2044         if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2045                 handled++;
2046                 intel_pt_interrupt();
2047         }
2048
2049         /*
2050          * Checkpointed counters can lead to 'spurious' PMIs because the
2051          * rollback caused by the PMI will have cleared the overflow status
2052          * bit. Therefore always force probe these counters.
2053          */
2054         status |= cpuc->intel_cp_status;
2055
2056         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2057                 struct perf_event *event = cpuc->events[bit];
2058
2059                 handled++;
2060
2061                 if (!test_bit(bit, cpuc->active_mask))
2062                         continue;
2063
2064                 if (!intel_pmu_save_and_restart(event))
2065                         continue;
2066
2067                 perf_sample_data_init(&data, 0, event->hw.last_period);
2068
2069                 if (has_branch_stack(event))
2070                         data.br_stack = &cpuc->lbr_stack;
2071
2072                 if (perf_event_overflow(event, &data, regs))
2073                         x86_pmu_stop(event, 0);
2074         }
2075
2076         /*
2077          * Repeat if there is more work to be done:
2078          */
2079         status = intel_pmu_get_status();
2080         if (status)
2081                 goto again;
2082
2083 done:
2084         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2085         if (cpuc->enabled)
2086                 __intel_pmu_enable_all(0, true);
2087
2088         /*
2089          * Only unmask the NMI after the overflow counters
2090          * have been reset. This avoids spurious NMIs on
2091          * Haswell CPUs.
2092          */
2093         if (x86_pmu.late_ack)
2094                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2095         return handled;
2096 }
2097
2098 static struct event_constraint *
2099 intel_bts_constraints(struct perf_event *event)
2100 {
2101         struct hw_perf_event *hwc = &event->hw;
2102         unsigned int hw_event, bts_event;
2103
2104         if (event->attr.freq)
2105                 return NULL;
2106
2107         hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
2108         bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
2109
2110         if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
2111                 return &bts_constraint;
2112
2113         return NULL;
2114 }
2115
2116 static int intel_alt_er(int idx, u64 config)
2117 {
2118         int alt_idx = idx;
2119
2120         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2121                 return idx;
2122
2123         if (idx == EXTRA_REG_RSP_0)
2124                 alt_idx = EXTRA_REG_RSP_1;
2125
2126         if (idx == EXTRA_REG_RSP_1)
2127                 alt_idx = EXTRA_REG_RSP_0;
2128
2129         if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2130                 return idx;
2131
2132         return alt_idx;
2133 }
2134
2135 static void intel_fixup_er(struct perf_event *event, int idx)
2136 {
2137         event->hw.extra_reg.idx = idx;
2138
2139         if (idx == EXTRA_REG_RSP_0) {
2140                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2141                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2142                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2143         } else if (idx == EXTRA_REG_RSP_1) {
2144                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2145                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2146                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2147         }
2148 }
2149
2150 /*
2151  * manage allocation of shared extra msr for certain events
2152  *
2153  * sharing can be:
2154  * per-cpu: to be shared between the various events on a single PMU
2155  * per-core: per-cpu + shared by HT threads
2156  */
2157 static struct event_constraint *
2158 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2159                                    struct perf_event *event,
2160                                    struct hw_perf_event_extra *reg)
2161 {
2162         struct event_constraint *c = &emptyconstraint;
2163         struct er_account *era;
2164         unsigned long flags;
2165         int idx = reg->idx;
2166
2167         /*
2168          * reg->alloc can be set due to existing state, so for fake cpuc we
2169          * need to ignore this, otherwise we might fail to allocate proper fake
2170          * state for this extra reg constraint. Also see the comment below.
2171          */
2172         if (reg->alloc && !cpuc->is_fake)
2173                 return NULL; /* call x86_get_event_constraint() */
2174
2175 again:
2176         era = &cpuc->shared_regs->regs[idx];
2177         /*
2178          * we use spin_lock_irqsave() to avoid lockdep issues when
2179          * passing a fake cpuc
2180          */
2181         raw_spin_lock_irqsave(&era->lock, flags);
2182
2183         if (!atomic_read(&era->ref) || era->config == reg->config) {
2184
2185                 /*
2186                  * If its a fake cpuc -- as per validate_{group,event}() we
2187                  * shouldn't touch event state and we can avoid doing so
2188                  * since both will only call get_event_constraints() once
2189                  * on each event, this avoids the need for reg->alloc.
2190                  *
2191                  * Not doing the ER fixup will only result in era->reg being
2192                  * wrong, but since we won't actually try and program hardware
2193                  * this isn't a problem either.
2194                  */
2195                 if (!cpuc->is_fake) {
2196                         if (idx != reg->idx)
2197                                 intel_fixup_er(event, idx);
2198
2199                         /*
2200                          * x86_schedule_events() can call get_event_constraints()
2201                          * multiple times on events in the case of incremental
2202                          * scheduling(). reg->alloc ensures we only do the ER
2203                          * allocation once.
2204                          */
2205                         reg->alloc = 1;
2206                 }
2207
2208                 /* lock in msr value */
2209                 era->config = reg->config;
2210                 era->reg = reg->reg;
2211
2212                 /* one more user */
2213                 atomic_inc(&era->ref);
2214
2215                 /*
2216                  * need to call x86_get_event_constraint()
2217                  * to check if associated event has constraints
2218                  */
2219                 c = NULL;
2220         } else {
2221                 idx = intel_alt_er(idx, reg->config);
2222                 if (idx != reg->idx) {
2223                         raw_spin_unlock_irqrestore(&era->lock, flags);
2224                         goto again;
2225                 }
2226         }
2227         raw_spin_unlock_irqrestore(&era->lock, flags);
2228
2229         return c;
2230 }
2231
2232 static void
2233 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2234                                    struct hw_perf_event_extra *reg)
2235 {
2236         struct er_account *era;
2237
2238         /*
2239          * Only put constraint if extra reg was actually allocated. Also takes
2240          * care of event which do not use an extra shared reg.
2241          *
2242          * Also, if this is a fake cpuc we shouldn't touch any event state
2243          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2244          * either since it'll be thrown out.
2245          */
2246         if (!reg->alloc || cpuc->is_fake)
2247                 return;
2248
2249         era = &cpuc->shared_regs->regs[reg->idx];
2250
2251         /* one fewer user */
2252         atomic_dec(&era->ref);
2253
2254         /* allocate again next time */
2255         reg->alloc = 0;
2256 }
2257
2258 static struct event_constraint *
2259 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2260                               struct perf_event *event)
2261 {
2262         struct event_constraint *c = NULL, *d;
2263         struct hw_perf_event_extra *xreg, *breg;
2264
2265         xreg = &event->hw.extra_reg;
2266         if (xreg->idx != EXTRA_REG_NONE) {
2267                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2268                 if (c == &emptyconstraint)
2269                         return c;
2270         }
2271         breg = &event->hw.branch_reg;
2272         if (breg->idx != EXTRA_REG_NONE) {
2273                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2274                 if (d == &emptyconstraint) {
2275                         __intel_shared_reg_put_constraints(cpuc, xreg);
2276                         c = d;
2277                 }
2278         }
2279         return c;
2280 }
2281
2282 struct event_constraint *
2283 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2284                           struct perf_event *event)
2285 {
2286         struct event_constraint *c;
2287
2288         if (x86_pmu.event_constraints) {
2289                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2290                         if ((event->hw.config & c->cmask) == c->code) {
2291                                 event->hw.flags |= c->flags;
2292                                 return c;
2293                         }
2294                 }
2295         }
2296
2297         return &unconstrained;
2298 }
2299
2300 static struct event_constraint *
2301 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2302                             struct perf_event *event)
2303 {
2304         struct event_constraint *c;
2305
2306         c = intel_bts_constraints(event);
2307         if (c)
2308                 return c;
2309
2310         c = intel_shared_regs_constraints(cpuc, event);
2311         if (c)
2312                 return c;
2313
2314         c = intel_pebs_constraints(event);
2315         if (c)
2316                 return c;
2317
2318         return x86_get_event_constraints(cpuc, idx, event);
2319 }
2320
2321 static void
2322 intel_start_scheduling(struct cpu_hw_events *cpuc)
2323 {
2324         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2325         struct intel_excl_states *xl;
2326         int tid = cpuc->excl_thread_id;
2327
2328         /*
2329          * nothing needed if in group validation mode
2330          */
2331         if (cpuc->is_fake || !is_ht_workaround_enabled())
2332                 return;
2333
2334         /*
2335          * no exclusion needed
2336          */
2337         if (WARN_ON_ONCE(!excl_cntrs))
2338                 return;
2339
2340         xl = &excl_cntrs->states[tid];
2341
2342         xl->sched_started = true;
2343         /*
2344          * lock shared state until we are done scheduling
2345          * in stop_event_scheduling()
2346          * makes scheduling appear as a transaction
2347          */
2348         raw_spin_lock(&excl_cntrs->lock);
2349 }
2350
2351 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2352 {
2353         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2354         struct event_constraint *c = cpuc->event_constraint[idx];
2355         struct intel_excl_states *xl;
2356         int tid = cpuc->excl_thread_id;
2357
2358         if (cpuc->is_fake || !is_ht_workaround_enabled())
2359                 return;
2360
2361         if (WARN_ON_ONCE(!excl_cntrs))
2362                 return;
2363
2364         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2365                 return;
2366
2367         xl = &excl_cntrs->states[tid];
2368
2369         lockdep_assert_held(&excl_cntrs->lock);
2370
2371         if (c->flags & PERF_X86_EVENT_EXCL)
2372                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2373         else
2374                 xl->state[cntr] = INTEL_EXCL_SHARED;
2375 }
2376
2377 static void
2378 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2379 {
2380         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2381         struct intel_excl_states *xl;
2382         int tid = cpuc->excl_thread_id;
2383
2384         /*
2385          * nothing needed if in group validation mode
2386          */
2387         if (cpuc->is_fake || !is_ht_workaround_enabled())
2388                 return;
2389         /*
2390          * no exclusion needed
2391          */
2392         if (WARN_ON_ONCE(!excl_cntrs))
2393                 return;
2394
2395         xl = &excl_cntrs->states[tid];
2396
2397         xl->sched_started = false;
2398         /*
2399          * release shared state lock (acquired in intel_start_scheduling())
2400          */
2401         raw_spin_unlock(&excl_cntrs->lock);
2402 }
2403
2404 static struct event_constraint *
2405 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2406                            int idx, struct event_constraint *c)
2407 {
2408         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2409         struct intel_excl_states *xlo;
2410         int tid = cpuc->excl_thread_id;
2411         int is_excl, i;
2412
2413         /*
2414          * validating a group does not require
2415          * enforcing cross-thread  exclusion
2416          */
2417         if (cpuc->is_fake || !is_ht_workaround_enabled())
2418                 return c;
2419
2420         /*
2421          * no exclusion needed
2422          */
2423         if (WARN_ON_ONCE(!excl_cntrs))
2424                 return c;
2425
2426         /*
2427          * because we modify the constraint, we need
2428          * to make a copy. Static constraints come
2429          * from static const tables.
2430          *
2431          * only needed when constraint has not yet
2432          * been cloned (marked dynamic)
2433          */
2434         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2435                 struct event_constraint *cx;
2436
2437                 /*
2438                  * grab pre-allocated constraint entry
2439                  */
2440                 cx = &cpuc->constraint_list[idx];
2441
2442                 /*
2443                  * initialize dynamic constraint
2444                  * with static constraint
2445                  */
2446                 *cx = *c;
2447
2448                 /*
2449                  * mark constraint as dynamic, so we
2450                  * can free it later on
2451                  */
2452                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2453                 c = cx;
2454         }
2455
2456         /*
2457          * From here on, the constraint is dynamic.
2458          * Either it was just allocated above, or it
2459          * was allocated during a earlier invocation
2460          * of this function
2461          */
2462
2463         /*
2464          * state of sibling HT
2465          */
2466         xlo = &excl_cntrs->states[tid ^ 1];
2467
2468         /*
2469          * event requires exclusive counter access
2470          * across HT threads
2471          */
2472         is_excl = c->flags & PERF_X86_EVENT_EXCL;
2473         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2474                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2475                 if (!cpuc->n_excl++)
2476                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2477         }
2478
2479         /*
2480          * Modify static constraint with current dynamic
2481          * state of thread
2482          *
2483          * EXCLUSIVE: sibling counter measuring exclusive event
2484          * SHARED   : sibling counter measuring non-exclusive event
2485          * UNUSED   : sibling counter unused
2486          */
2487         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2488                 /*
2489                  * exclusive event in sibling counter
2490                  * our corresponding counter cannot be used
2491                  * regardless of our event
2492                  */
2493                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2494                         __clear_bit(i, c->idxmsk);
2495                 /*
2496                  * if measuring an exclusive event, sibling
2497                  * measuring non-exclusive, then counter cannot
2498                  * be used
2499                  */
2500                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2501                         __clear_bit(i, c->idxmsk);
2502         }
2503
2504         /*
2505          * recompute actual bit weight for scheduling algorithm
2506          */
2507         c->weight = hweight64(c->idxmsk64);
2508
2509         /*
2510          * if we return an empty mask, then switch
2511          * back to static empty constraint to avoid
2512          * the cost of freeing later on
2513          */
2514         if (c->weight == 0)
2515                 c = &emptyconstraint;
2516
2517         return c;
2518 }
2519
2520 static struct event_constraint *
2521 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2522                             struct perf_event *event)
2523 {
2524         struct event_constraint *c1 = NULL;
2525         struct event_constraint *c2;
2526
2527         if (idx >= 0) /* fake does < 0 */
2528                 c1 = cpuc->event_constraint[idx];
2529
2530         /*
2531          * first time only
2532          * - static constraint: no change across incremental scheduling calls
2533          * - dynamic constraint: handled by intel_get_excl_constraints()
2534          */
2535         c2 = __intel_get_event_constraints(cpuc, idx, event);
2536         if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2537                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2538                 c1->weight = c2->weight;
2539                 c2 = c1;
2540         }
2541
2542         if (cpuc->excl_cntrs)
2543                 return intel_get_excl_constraints(cpuc, event, idx, c2);
2544
2545         return c2;
2546 }
2547
2548 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2549                 struct perf_event *event)
2550 {
2551         struct hw_perf_event *hwc = &event->hw;
2552         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2553         int tid = cpuc->excl_thread_id;
2554         struct intel_excl_states *xl;
2555
2556         /*
2557          * nothing needed if in group validation mode
2558          */
2559         if (cpuc->is_fake)
2560                 return;
2561
2562         if (WARN_ON_ONCE(!excl_cntrs))
2563                 return;
2564
2565         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2566                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2567                 if (!--cpuc->n_excl)
2568                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2569         }
2570
2571         /*
2572          * If event was actually assigned, then mark the counter state as
2573          * unused now.
2574          */
2575         if (hwc->idx >= 0) {
2576                 xl = &excl_cntrs->states[tid];
2577
2578                 /*
2579                  * put_constraint may be called from x86_schedule_events()
2580                  * which already has the lock held so here make locking
2581                  * conditional.
2582                  */
2583                 if (!xl->sched_started)
2584                         raw_spin_lock(&excl_cntrs->lock);
2585
2586                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2587
2588                 if (!xl->sched_started)
2589                         raw_spin_unlock(&excl_cntrs->lock);
2590         }
2591 }
2592
2593 static void
2594 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2595                                         struct perf_event *event)
2596 {
2597         struct hw_perf_event_extra *reg;
2598
2599         reg = &event->hw.extra_reg;
2600         if (reg->idx != EXTRA_REG_NONE)
2601                 __intel_shared_reg_put_constraints(cpuc, reg);
2602
2603         reg = &event->hw.branch_reg;
2604         if (reg->idx != EXTRA_REG_NONE)
2605                 __intel_shared_reg_put_constraints(cpuc, reg);
2606 }
2607
2608 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2609                                         struct perf_event *event)
2610 {
2611         intel_put_shared_regs_event_constraints(cpuc, event);
2612
2613         /*
2614          * is PMU has exclusive counter restrictions, then
2615          * all events are subject to and must call the
2616          * put_excl_constraints() routine
2617          */
2618         if (cpuc->excl_cntrs)
2619                 intel_put_excl_constraints(cpuc, event);
2620 }
2621
2622 static void intel_pebs_aliases_core2(struct perf_event *event)
2623 {
2624         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2625                 /*
2626                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2627                  * (0x003c) so that we can use it with PEBS.
2628                  *
2629                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2630                  * PEBS capable. However we can use INST_RETIRED.ANY_P
2631                  * (0x00c0), which is a PEBS capable event, to get the same
2632                  * count.
2633                  *
2634                  * INST_RETIRED.ANY_P counts the number of cycles that retires
2635                  * CNTMASK instructions. By setting CNTMASK to a value (16)
2636                  * larger than the maximum number of instructions that can be
2637                  * retired per cycle (4) and then inverting the condition, we
2638                  * count all cycles that retire 16 or less instructions, which
2639                  * is every cycle.
2640                  *
2641                  * Thereby we gain a PEBS capable cycle counter.
2642                  */
2643                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2644
2645                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2646                 event->hw.config = alt_config;
2647         }
2648 }
2649
2650 static void intel_pebs_aliases_snb(struct perf_event *event)
2651 {
2652         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2653                 /*
2654                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2655                  * (0x003c) so that we can use it with PEBS.
2656                  *
2657                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2658                  * PEBS capable. However we can use UOPS_RETIRED.ALL
2659                  * (0x01c2), which is a PEBS capable event, to get the same
2660                  * count.
2661                  *
2662                  * UOPS_RETIRED.ALL counts the number of cycles that retires
2663                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2664                  * larger than the maximum number of micro-ops that can be
2665                  * retired per cycle (4) and then inverting the condition, we
2666                  * count all cycles that retire 16 or less micro-ops, which
2667                  * is every cycle.
2668                  *
2669                  * Thereby we gain a PEBS capable cycle counter.
2670                  */
2671                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2672
2673                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2674                 event->hw.config = alt_config;
2675         }
2676 }
2677
2678 static void intel_pebs_aliases_precdist(struct perf_event *event)
2679 {
2680         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2681                 /*
2682                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2683                  * (0x003c) so that we can use it with PEBS.
2684                  *
2685                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2686                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
2687                  * (0x01c0), which is a PEBS capable event, to get the same
2688                  * count.
2689                  *
2690                  * The PREC_DIST event has special support to minimize sample
2691                  * shadowing effects. One drawback is that it can be
2692                  * only programmed on counter 1, but that seems like an
2693                  * acceptable trade off.
2694                  */
2695                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
2696
2697                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2698                 event->hw.config = alt_config;
2699         }
2700 }
2701
2702 static void intel_pebs_aliases_ivb(struct perf_event *event)
2703 {
2704         if (event->attr.precise_ip < 3)
2705                 return intel_pebs_aliases_snb(event);
2706         return intel_pebs_aliases_precdist(event);
2707 }
2708
2709 static void intel_pebs_aliases_skl(struct perf_event *event)
2710 {
2711         if (event->attr.precise_ip < 3)
2712                 return intel_pebs_aliases_core2(event);
2713         return intel_pebs_aliases_precdist(event);
2714 }
2715
2716 static unsigned long intel_pmu_free_running_flags(struct perf_event *event)
2717 {
2718         unsigned long flags = x86_pmu.free_running_flags;
2719
2720         if (event->attr.use_clockid)
2721                 flags &= ~PERF_SAMPLE_TIME;
2722         return flags;
2723 }
2724
2725 static int intel_pmu_hw_config(struct perf_event *event)
2726 {
2727         int ret = x86_pmu_hw_config(event);
2728
2729         if (ret)
2730                 return ret;
2731
2732         if (event->attr.precise_ip) {
2733                 if (!event->attr.freq) {
2734                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2735                         if (!(event->attr.sample_type &
2736                               ~intel_pmu_free_running_flags(event)))
2737                                 event->hw.flags |= PERF_X86_EVENT_FREERUNNING;
2738                 }
2739                 if (x86_pmu.pebs_aliases)
2740                         x86_pmu.pebs_aliases(event);
2741         }
2742
2743         if (needs_branch_stack(event)) {
2744                 ret = intel_pmu_setup_lbr_filter(event);
2745                 if (ret)
2746                         return ret;
2747
2748                 /*
2749                  * BTS is set up earlier in this path, so don't account twice
2750                  */
2751                 if (!intel_pmu_has_bts(event)) {
2752                         /* disallow lbr if conflicting events are present */
2753                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
2754                                 return -EBUSY;
2755
2756                         event->destroy = hw_perf_lbr_event_destroy;
2757                 }
2758         }
2759
2760         if (event->attr.type != PERF_TYPE_RAW)
2761                 return 0;
2762
2763         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
2764                 return 0;
2765
2766         if (x86_pmu.version < 3)
2767                 return -EINVAL;
2768
2769         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2770                 return -EACCES;
2771
2772         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
2773
2774         return 0;
2775 }
2776
2777 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
2778 {
2779         if (x86_pmu.guest_get_msrs)
2780                 return x86_pmu.guest_get_msrs(nr);
2781         *nr = 0;
2782         return NULL;
2783 }
2784 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
2785
2786 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
2787 {
2788         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2789         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2790
2791         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
2792         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
2793         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
2794         /*
2795          * If PMU counter has PEBS enabled it is not enough to disable counter
2796          * on a guest entry since PEBS memory write can overshoot guest entry
2797          * and corrupt guest memory. Disabling PEBS solves the problem.
2798          */
2799         arr[1].msr = MSR_IA32_PEBS_ENABLE;
2800         arr[1].host = cpuc->pebs_enabled;
2801         arr[1].guest = 0;
2802
2803         *nr = 2;
2804         return arr;
2805 }
2806
2807 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
2808 {
2809         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2810         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
2811         int idx;
2812
2813         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
2814                 struct perf_event *event = cpuc->events[idx];
2815
2816                 arr[idx].msr = x86_pmu_config_addr(idx);
2817                 arr[idx].host = arr[idx].guest = 0;
2818
2819                 if (!test_bit(idx, cpuc->active_mask))
2820                         continue;
2821
2822                 arr[idx].host = arr[idx].guest =
2823                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
2824
2825                 if (event->attr.exclude_host)
2826                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2827                 else if (event->attr.exclude_guest)
2828                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
2829         }
2830
2831         *nr = x86_pmu.num_counters;
2832         return arr;
2833 }
2834
2835 static void core_pmu_enable_event(struct perf_event *event)
2836 {
2837         if (!event->attr.exclude_host)
2838                 x86_pmu_enable_event(event);
2839 }
2840
2841 static void core_pmu_enable_all(int added)
2842 {
2843         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2844         int idx;
2845
2846         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2847                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
2848
2849                 if (!test_bit(idx, cpuc->active_mask) ||
2850                                 cpuc->events[idx]->attr.exclude_host)
2851                         continue;
2852
2853                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2854         }
2855 }
2856
2857 static int hsw_hw_config(struct perf_event *event)
2858 {
2859         int ret = intel_pmu_hw_config(event);
2860
2861         if (ret)
2862                 return ret;
2863         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
2864                 return 0;
2865         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
2866
2867         /*
2868          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
2869          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
2870          * this combination.
2871          */
2872         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
2873              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
2874               event->attr.precise_ip > 0))
2875                 return -EOPNOTSUPP;
2876
2877         if (event_is_checkpointed(event)) {
2878                 /*
2879                  * Sampling of checkpointed events can cause situations where
2880                  * the CPU constantly aborts because of a overflow, which is
2881                  * then checkpointed back and ignored. Forbid checkpointing
2882                  * for sampling.
2883                  *
2884                  * But still allow a long sampling period, so that perf stat
2885                  * from KVM works.
2886                  */
2887                 if (event->attr.sample_period > 0 &&
2888                     event->attr.sample_period < 0x7fffffff)
2889                         return -EOPNOTSUPP;
2890         }
2891         return 0;
2892 }
2893
2894 static struct event_constraint counter2_constraint =
2895                         EVENT_CONSTRAINT(0, 0x4, 0);
2896
2897 static struct event_constraint *
2898 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2899                           struct perf_event *event)
2900 {
2901         struct event_constraint *c;
2902
2903         c = intel_get_event_constraints(cpuc, idx, event);
2904
2905         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
2906         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
2907                 if (c->idxmsk64 & (1U << 2))
2908                         return &counter2_constraint;
2909                 return &emptyconstraint;
2910         }
2911
2912         return c;
2913 }
2914
2915 /*
2916  * Broadwell:
2917  *
2918  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
2919  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
2920  * the two to enforce a minimum period of 128 (the smallest value that has bits
2921  * 0-5 cleared and >= 100).
2922  *
2923  * Because of how the code in x86_perf_event_set_period() works, the truncation
2924  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
2925  * to make up for the 'lost' events due to carrying the 'error' in period_left.
2926  *
2927  * Therefore the effective (average) period matches the requested period,
2928  * despite coarser hardware granularity.
2929  */
2930 static unsigned bdw_limit_period(struct perf_event *event, unsigned left)
2931 {
2932         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
2933                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
2934                 if (left < 128)
2935                         left = 128;
2936                 left &= ~0x3fu;
2937         }
2938         return left;
2939 }
2940
2941 PMU_FORMAT_ATTR(event,  "config:0-7"    );
2942 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
2943 PMU_FORMAT_ATTR(edge,   "config:18"     );
2944 PMU_FORMAT_ATTR(pc,     "config:19"     );
2945 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
2946 PMU_FORMAT_ATTR(inv,    "config:23"     );
2947 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
2948 PMU_FORMAT_ATTR(in_tx,  "config:32");
2949 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
2950
2951 static struct attribute *intel_arch_formats_attr[] = {
2952         &format_attr_event.attr,
2953         &format_attr_umask.attr,
2954         &format_attr_edge.attr,
2955         &format_attr_pc.attr,
2956         &format_attr_inv.attr,
2957         &format_attr_cmask.attr,
2958         NULL,
2959 };
2960
2961 ssize_t intel_event_sysfs_show(char *page, u64 config)
2962 {
2963         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
2964
2965         return x86_event_sysfs_show(page, config, event);
2966 }
2967
2968 struct intel_shared_regs *allocate_shared_regs(int cpu)
2969 {
2970         struct intel_shared_regs *regs;
2971         int i;
2972
2973         regs = kzalloc_node(sizeof(struct intel_shared_regs),
2974                             GFP_KERNEL, cpu_to_node(cpu));
2975         if (regs) {
2976                 /*
2977                  * initialize the locks to keep lockdep happy
2978                  */
2979                 for (i = 0; i < EXTRA_REG_MAX; i++)
2980                         raw_spin_lock_init(&regs->regs[i].lock);
2981
2982                 regs->core_id = -1;
2983         }
2984         return regs;
2985 }
2986
2987 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
2988 {
2989         struct intel_excl_cntrs *c;
2990
2991         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
2992                          GFP_KERNEL, cpu_to_node(cpu));
2993         if (c) {
2994                 raw_spin_lock_init(&c->lock);
2995                 c->core_id = -1;
2996         }
2997         return c;
2998 }
2999
3000 static int intel_pmu_cpu_prepare(int cpu)
3001 {
3002         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3003
3004         if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3005                 cpuc->shared_regs = allocate_shared_regs(cpu);
3006                 if (!cpuc->shared_regs)
3007                         goto err;
3008         }
3009
3010         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3011                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3012
3013                 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
3014                 if (!cpuc->constraint_list)
3015                         goto err_shared_regs;
3016
3017                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3018                 if (!cpuc->excl_cntrs)
3019                         goto err_constraint_list;
3020
3021                 cpuc->excl_thread_id = 0;
3022         }
3023
3024         return NOTIFY_OK;
3025
3026 err_constraint_list:
3027         kfree(cpuc->constraint_list);
3028         cpuc->constraint_list = NULL;
3029
3030 err_shared_regs:
3031         kfree(cpuc->shared_regs);
3032         cpuc->shared_regs = NULL;
3033
3034 err:
3035         return NOTIFY_BAD;
3036 }
3037
3038 static void intel_pmu_cpu_starting(int cpu)
3039 {
3040         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3041         int core_id = topology_core_id(cpu);
3042         int i;
3043
3044         init_debug_store_on_cpu(cpu);
3045         /*
3046          * Deal with CPUs that don't clear their LBRs on power-up.
3047          */
3048         intel_pmu_lbr_reset();
3049
3050         cpuc->lbr_sel = NULL;
3051
3052         if (!cpuc->shared_regs)
3053                 return;
3054
3055         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3056                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3057                         struct intel_shared_regs *pc;
3058
3059                         pc = per_cpu(cpu_hw_events, i).shared_regs;
3060                         if (pc && pc->core_id == core_id) {
3061                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
3062                                 cpuc->shared_regs = pc;
3063                                 break;
3064                         }
3065                 }
3066                 cpuc->shared_regs->core_id = core_id;
3067                 cpuc->shared_regs->refcnt++;
3068         }
3069
3070         if (x86_pmu.lbr_sel_map)
3071                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3072
3073         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3074                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3075                         struct intel_excl_cntrs *c;
3076
3077                         c = per_cpu(cpu_hw_events, i).excl_cntrs;
3078                         if (c && c->core_id == core_id) {
3079                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3080                                 cpuc->excl_cntrs = c;
3081                                 cpuc->excl_thread_id = 1;
3082                                 break;
3083                         }
3084                 }
3085                 cpuc->excl_cntrs->core_id = core_id;
3086                 cpuc->excl_cntrs->refcnt++;
3087         }
3088 }
3089
3090 static void free_excl_cntrs(int cpu)
3091 {
3092         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3093         struct intel_excl_cntrs *c;
3094
3095         c = cpuc->excl_cntrs;
3096         if (c) {
3097                 if (c->core_id == -1 || --c->refcnt == 0)
3098                         kfree(c);
3099                 cpuc->excl_cntrs = NULL;
3100                 kfree(cpuc->constraint_list);
3101                 cpuc->constraint_list = NULL;
3102         }
3103 }
3104
3105 static void intel_pmu_cpu_dying(int cpu)
3106 {
3107         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3108         struct intel_shared_regs *pc;
3109
3110         pc = cpuc->shared_regs;
3111         if (pc) {
3112                 if (pc->core_id == -1 || --pc->refcnt == 0)
3113                         kfree(pc);
3114                 cpuc->shared_regs = NULL;
3115         }
3116
3117         free_excl_cntrs(cpu);
3118
3119         fini_debug_store_on_cpu(cpu);
3120 }
3121
3122 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3123                                  bool sched_in)
3124 {
3125         if (x86_pmu.pebs_active)
3126                 intel_pmu_pebs_sched_task(ctx, sched_in);
3127         if (x86_pmu.lbr_nr)
3128                 intel_pmu_lbr_sched_task(ctx, sched_in);
3129 }
3130
3131 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3132
3133 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3134
3135 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3136
3137 static struct attribute *intel_arch3_formats_attr[] = {
3138         &format_attr_event.attr,
3139         &format_attr_umask.attr,
3140         &format_attr_edge.attr,
3141         &format_attr_pc.attr,
3142         &format_attr_any.attr,
3143         &format_attr_inv.attr,
3144         &format_attr_cmask.attr,
3145         &format_attr_in_tx.attr,
3146         &format_attr_in_tx_cp.attr,
3147
3148         &format_attr_offcore_rsp.attr, /* XXX do NHM/WSM + SNB breakout */
3149         &format_attr_ldlat.attr, /* PEBS load latency */
3150         NULL,
3151 };
3152
3153 static struct attribute *skl_format_attr[] = {
3154         &format_attr_frontend.attr,
3155         NULL,
3156 };
3157
3158 static __initconst const struct x86_pmu core_pmu = {
3159         .name                   = "core",
3160         .handle_irq             = x86_pmu_handle_irq,
3161         .disable_all            = x86_pmu_disable_all,
3162         .enable_all             = core_pmu_enable_all,
3163         .enable                 = core_pmu_enable_event,
3164         .disable                = x86_pmu_disable_event,
3165         .hw_config              = x86_pmu_hw_config,
3166         .schedule_events        = x86_schedule_events,
3167         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3168         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3169         .event_map              = intel_pmu_event_map,
3170         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3171         .apic                   = 1,
3172         .free_running_flags     = PEBS_FREERUNNING_FLAGS,
3173
3174         /*
3175          * Intel PMCs cannot be accessed sanely above 32-bit width,
3176          * so we install an artificial 1<<31 period regardless of
3177          * the generic event period:
3178          */
3179         .max_period             = (1ULL<<31) - 1,
3180         .get_event_constraints  = intel_get_event_constraints,
3181         .put_event_constraints  = intel_put_event_constraints,
3182         .event_constraints      = intel_core_event_constraints,
3183         .guest_get_msrs         = core_guest_get_msrs,
3184         .format_attrs           = intel_arch_formats_attr,
3185         .events_sysfs_show      = intel_event_sysfs_show,
3186
3187         /*
3188          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3189          * together with PMU version 1 and thus be using core_pmu with
3190          * shared_regs. We need following callbacks here to allocate
3191          * it properly.
3192          */
3193         .cpu_prepare            = intel_pmu_cpu_prepare,
3194         .cpu_starting           = intel_pmu_cpu_starting,
3195         .cpu_dying              = intel_pmu_cpu_dying,
3196 };
3197
3198 static __initconst const struct x86_pmu intel_pmu = {
3199         .name                   = "Intel",
3200         .handle_irq             = intel_pmu_handle_irq,
3201         .disable_all            = intel_pmu_disable_all,
3202         .enable_all             = intel_pmu_enable_all,
3203         .enable                 = intel_pmu_enable_event,
3204         .disable                = intel_pmu_disable_event,
3205         .hw_config              = intel_pmu_hw_config,
3206         .schedule_events        = x86_schedule_events,
3207         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3208         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3209         .event_map              = intel_pmu_event_map,
3210         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3211         .apic                   = 1,
3212         .free_running_flags     = PEBS_FREERUNNING_FLAGS,
3213         /*
3214          * Intel PMCs cannot be accessed sanely above 32 bit width,
3215          * so we install an artificial 1<<31 period regardless of
3216          * the generic event period:
3217          */
3218         .max_period             = (1ULL << 31) - 1,
3219         .get_event_constraints  = intel_get_event_constraints,
3220         .put_event_constraints  = intel_put_event_constraints,
3221         .pebs_aliases           = intel_pebs_aliases_core2,
3222
3223         .format_attrs           = intel_arch3_formats_attr,
3224         .events_sysfs_show      = intel_event_sysfs_show,
3225
3226         .cpu_prepare            = intel_pmu_cpu_prepare,
3227         .cpu_starting           = intel_pmu_cpu_starting,
3228         .cpu_dying              = intel_pmu_cpu_dying,
3229         .guest_get_msrs         = intel_guest_get_msrs,
3230         .sched_task             = intel_pmu_sched_task,
3231 };
3232
3233 static __init void intel_clovertown_quirk(void)
3234 {
3235         /*
3236          * PEBS is unreliable due to:
3237          *
3238          *   AJ67  - PEBS may experience CPL leaks
3239          *   AJ68  - PEBS PMI may be delayed by one event
3240          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3241          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3242          *
3243          * AJ67 could be worked around by restricting the OS/USR flags.
3244          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3245          *
3246          * AJ106 could possibly be worked around by not allowing LBR
3247          *       usage from PEBS, including the fixup.
3248          * AJ68  could possibly be worked around by always programming
3249          *       a pebs_event_reset[0] value and coping with the lost events.
3250          *
3251          * But taken together it might just make sense to not enable PEBS on
3252          * these chips.
3253          */
3254         pr_warn("PEBS disabled due to CPU errata\n");
3255         x86_pmu.pebs = 0;
3256         x86_pmu.pebs_constraints = NULL;
3257 }
3258
3259 static int intel_snb_pebs_broken(int cpu)
3260 {
3261         u32 rev = UINT_MAX; /* default to broken for unknown models */
3262
3263         switch (cpu_data(cpu).x86_model) {
3264         case 42: /* SNB */
3265                 rev = 0x28;
3266                 break;
3267
3268         case 45: /* SNB-EP */
3269                 switch (cpu_data(cpu).x86_mask) {
3270                 case 6: rev = 0x618; break;
3271                 case 7: rev = 0x70c; break;
3272                 }
3273         }
3274
3275         return (cpu_data(cpu).microcode < rev);
3276 }
3277
3278 static void intel_snb_check_microcode(void)
3279 {
3280         int pebs_broken = 0;
3281         int cpu;
3282
3283         get_online_cpus();
3284         for_each_online_cpu(cpu) {
3285                 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3286                         break;
3287         }
3288         put_online_cpus();
3289
3290         if (pebs_broken == x86_pmu.pebs_broken)
3291                 return;
3292
3293         /*
3294          * Serialized by the microcode lock..
3295          */
3296         if (x86_pmu.pebs_broken) {
3297                 pr_info("PEBS enabled due to microcode update\n");
3298                 x86_pmu.pebs_broken = 0;
3299         } else {
3300                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3301                 x86_pmu.pebs_broken = 1;
3302         }
3303 }
3304
3305 /*
3306  * Under certain circumstances, access certain MSR may cause #GP.
3307  * The function tests if the input MSR can be safely accessed.
3308  */
3309 static bool check_msr(unsigned long msr, u64 mask)
3310 {
3311         u64 val_old, val_new, val_tmp;
3312
3313         /*
3314          * Read the current value, change it and read it back to see if it
3315          * matches, this is needed to detect certain hardware emulators
3316          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3317          */
3318         if (rdmsrl_safe(msr, &val_old))
3319                 return false;
3320
3321         /*
3322          * Only change the bits which can be updated by wrmsrl.
3323          */
3324         val_tmp = val_old ^ mask;
3325         if (wrmsrl_safe(msr, val_tmp) ||
3326             rdmsrl_safe(msr, &val_new))
3327                 return false;
3328
3329         if (val_new != val_tmp)
3330                 return false;
3331
3332         /* Here it's sure that the MSR can be safely accessed.
3333          * Restore the old value and return.
3334          */
3335         wrmsrl(msr, val_old);
3336
3337         return true;
3338 }
3339
3340 static __init void intel_sandybridge_quirk(void)
3341 {
3342         x86_pmu.check_microcode = intel_snb_check_microcode;
3343         intel_snb_check_microcode();
3344 }
3345
3346 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3347         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3348         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3349         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3350         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3351         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3352         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3353         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3354 };
3355
3356 static __init void intel_arch_events_quirk(void)
3357 {
3358         int bit;
3359
3360         /* disable event that reported as not presend by cpuid */
3361         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3362                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3363                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
3364                         intel_arch_events_map[bit].name);
3365         }
3366 }
3367
3368 static __init void intel_nehalem_quirk(void)
3369 {
3370         union cpuid10_ebx ebx;
3371
3372         ebx.full = x86_pmu.events_maskl;
3373         if (ebx.split.no_branch_misses_retired) {
3374                 /*
3375                  * Erratum AAJ80 detected, we work it around by using
3376                  * the BR_MISP_EXEC.ANY event. This will over-count
3377                  * branch-misses, but it's still much better than the
3378                  * architectural event which is often completely bogus:
3379                  */
3380                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3381                 ebx.split.no_branch_misses_retired = 0;
3382                 x86_pmu.events_maskl = ebx.full;
3383                 pr_info("CPU erratum AAJ80 worked around\n");
3384         }
3385 }
3386
3387 /*
3388  * enable software workaround for errata:
3389  * SNB: BJ122
3390  * IVB: BV98
3391  * HSW: HSD29
3392  *
3393  * Only needed when HT is enabled. However detecting
3394  * if HT is enabled is difficult (model specific). So instead,
3395  * we enable the workaround in the early boot, and verify if
3396  * it is needed in a later initcall phase once we have valid
3397  * topology information to check if HT is actually enabled
3398  */
3399 static __init void intel_ht_bug(void)
3400 {
3401         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3402
3403         x86_pmu.start_scheduling = intel_start_scheduling;
3404         x86_pmu.commit_scheduling = intel_commit_scheduling;
3405         x86_pmu.stop_scheduling = intel_stop_scheduling;
3406 }
3407
3408 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
3409 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
3410
3411 /* Haswell special events */
3412 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
3413 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
3414 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
3415 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
3416 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
3417 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
3418 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
3419 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
3420 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
3421 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
3422 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
3423 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
3424
3425 static struct attribute *hsw_events_attrs[] = {
3426         EVENT_PTR(tx_start),
3427         EVENT_PTR(tx_commit),
3428         EVENT_PTR(tx_abort),
3429         EVENT_PTR(tx_capacity),
3430         EVENT_PTR(tx_conflict),
3431         EVENT_PTR(el_start),
3432         EVENT_PTR(el_commit),
3433         EVENT_PTR(el_abort),
3434         EVENT_PTR(el_capacity),
3435         EVENT_PTR(el_conflict),
3436         EVENT_PTR(cycles_t),
3437         EVENT_PTR(cycles_ct),
3438         EVENT_PTR(mem_ld_hsw),
3439         EVENT_PTR(mem_st_hsw),
3440         NULL
3441 };
3442
3443 __init int intel_pmu_init(void)
3444 {
3445         union cpuid10_edx edx;
3446         union cpuid10_eax eax;
3447         union cpuid10_ebx ebx;
3448         struct event_constraint *c;
3449         unsigned int unused;
3450         struct extra_reg *er;
3451         int version, i;
3452
3453         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3454                 switch (boot_cpu_data.x86) {
3455                 case 0x6:
3456                         return p6_pmu_init();
3457                 case 0xb:
3458                         return knc_pmu_init();
3459                 case 0xf:
3460                         return p4_pmu_init();
3461                 }
3462                 return -ENODEV;
3463         }
3464
3465         /*
3466          * Check whether the Architectural PerfMon supports
3467          * Branch Misses Retired hw_event or not.
3468          */
3469         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3470         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3471                 return -ENODEV;
3472
3473         version = eax.split.version_id;
3474         if (version < 2)
3475                 x86_pmu = core_pmu;
3476         else
3477                 x86_pmu = intel_pmu;
3478
3479         x86_pmu.version                 = version;
3480         x86_pmu.num_counters            = eax.split.num_counters;
3481         x86_pmu.cntval_bits             = eax.split.bit_width;
3482         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
3483
3484         x86_pmu.events_maskl            = ebx.full;
3485         x86_pmu.events_mask_len         = eax.split.mask_length;
3486
3487         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3488
3489         /*
3490          * Quirk: v2 perfmon does not report fixed-purpose events, so
3491          * assume at least 3 events:
3492          */
3493         if (version > 1)
3494                 x86_pmu.num_counters_fixed = max((int)edx.split.num_counters_fixed, 3);
3495
3496         if (boot_cpu_has(X86_FEATURE_PDCM)) {
3497                 u64 capabilities;
3498
3499                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3500                 x86_pmu.intel_cap.capabilities = capabilities;
3501         }
3502
3503         intel_ds_init();
3504
3505         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3506
3507         /*
3508          * Install the hw-cache-events table:
3509          */
3510         switch (boot_cpu_data.x86_model) {
3511         case 14: /* 65nm Core "Yonah" */
3512                 pr_cont("Core events, ");
3513                 break;
3514
3515         case 15: /* 65nm Core2 "Merom"          */
3516                 x86_add_quirk(intel_clovertown_quirk);
3517         case 22: /* 65nm Core2 "Merom-L"        */
3518         case 23: /* 45nm Core2 "Penryn"         */
3519         case 29: /* 45nm Core2 "Dunnington (MP) */
3520                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3521                        sizeof(hw_cache_event_ids));
3522
3523                 intel_pmu_lbr_init_core();
3524
3525                 x86_pmu.event_constraints = intel_core2_event_constraints;
3526                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3527                 pr_cont("Core2 events, ");
3528                 break;
3529
3530         case 30: /* 45nm Nehalem    */
3531         case 26: /* 45nm Nehalem-EP */
3532         case 46: /* 45nm Nehalem-EX */
3533                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3534                        sizeof(hw_cache_event_ids));
3535                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3536                        sizeof(hw_cache_extra_regs));
3537
3538                 intel_pmu_lbr_init_nhm();
3539
3540                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
3541                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3542                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3543                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
3544
3545                 x86_pmu.cpu_events = nhm_events_attrs;
3546
3547                 /* UOPS_ISSUED.STALLED_CYCLES */
3548                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3549                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3550                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3551                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3552                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3553
3554                 intel_pmu_pebs_data_source_nhm();
3555                 x86_add_quirk(intel_nehalem_quirk);
3556
3557                 pr_cont("Nehalem events, ");
3558                 break;
3559
3560         case 28: /* 45nm Atom "Pineview"   */
3561         case 38: /* 45nm Atom "Lincroft"   */
3562         case 39: /* 32nm Atom "Penwell"    */
3563         case 53: /* 32nm Atom "Cloverview" */
3564         case 54: /* 32nm Atom "Cedarview"  */
3565                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
3566                        sizeof(hw_cache_event_ids));
3567
3568                 intel_pmu_lbr_init_atom();
3569
3570                 x86_pmu.event_constraints = intel_gen_event_constraints;
3571                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
3572                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
3573                 pr_cont("Atom events, ");
3574                 break;
3575
3576         case 55: /* 22nm Atom "Silvermont"                */
3577         case 76: /* 14nm Atom "Airmont"                   */
3578         case 77: /* 22nm Atom "Silvermont Avoton/Rangely" */
3579                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
3580                         sizeof(hw_cache_event_ids));
3581                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
3582                        sizeof(hw_cache_extra_regs));
3583
3584                 intel_pmu_lbr_init_slm();
3585
3586                 x86_pmu.event_constraints = intel_slm_event_constraints;
3587                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3588                 x86_pmu.extra_regs = intel_slm_extra_regs;
3589                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3590                 pr_cont("Silvermont events, ");
3591                 break;
3592
3593         case 92: /* 14nm Atom "Goldmont" */
3594         case 95: /* 14nm Atom "Goldmont Denverton" */
3595                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
3596                        sizeof(hw_cache_event_ids));
3597                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
3598                        sizeof(hw_cache_extra_regs));
3599
3600                 intel_pmu_lbr_init_skl();
3601
3602                 x86_pmu.event_constraints = intel_slm_event_constraints;
3603                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
3604                 x86_pmu.extra_regs = intel_glm_extra_regs;
3605                 /*
3606                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
3607                  * for precise cycles.
3608                  * :pp is identical to :ppp
3609                  */
3610                 x86_pmu.pebs_aliases = NULL;
3611                 x86_pmu.pebs_prec_dist = true;
3612                 x86_pmu.lbr_pt_coexist = true;
3613                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3614                 pr_cont("Goldmont events, ");
3615                 break;
3616
3617         case 37: /* 32nm Westmere    */
3618         case 44: /* 32nm Westmere-EP */
3619         case 47: /* 32nm Westmere-EX */
3620                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
3621                        sizeof(hw_cache_event_ids));
3622                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3623                        sizeof(hw_cache_extra_regs));
3624
3625                 intel_pmu_lbr_init_nhm();
3626
3627                 x86_pmu.event_constraints = intel_westmere_event_constraints;
3628                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3629                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
3630                 x86_pmu.extra_regs = intel_westmere_extra_regs;
3631                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3632
3633                 x86_pmu.cpu_events = nhm_events_attrs;
3634
3635                 /* UOPS_ISSUED.STALLED_CYCLES */
3636                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3637                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3638                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3639                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3640                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3641
3642                 intel_pmu_pebs_data_source_nhm();
3643                 pr_cont("Westmere events, ");
3644                 break;
3645
3646         case 42: /* 32nm SandyBridge         */
3647         case 45: /* 32nm SandyBridge-E/EN/EP */
3648                 x86_add_quirk(intel_sandybridge_quirk);
3649                 x86_add_quirk(intel_ht_bug);
3650                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3651                        sizeof(hw_cache_event_ids));
3652                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3653                        sizeof(hw_cache_extra_regs));
3654
3655                 intel_pmu_lbr_init_snb();
3656
3657                 x86_pmu.event_constraints = intel_snb_event_constraints;
3658                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
3659                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
3660                 if (boot_cpu_data.x86_model == 45)
3661                         x86_pmu.extra_regs = intel_snbep_extra_regs;
3662                 else
3663                         x86_pmu.extra_regs = intel_snb_extra_regs;
3664
3665
3666                 /* all extra regs are per-cpu when HT is on */
3667                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3668                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3669
3670                 x86_pmu.cpu_events = snb_events_attrs;
3671
3672                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3673                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3674                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3675                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
3676                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3677                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
3678
3679                 pr_cont("SandyBridge events, ");
3680                 break;
3681
3682         case 58: /* 22nm IvyBridge       */
3683         case 62: /* 22nm IvyBridge-EP/EX */
3684                 x86_add_quirk(intel_ht_bug);
3685                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
3686                        sizeof(hw_cache_event_ids));
3687                 /* dTLB-load-misses on IVB is different than SNB */
3688                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
3689
3690                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
3691                        sizeof(hw_cache_extra_regs));
3692
3693                 intel_pmu_lbr_init_snb();
3694
3695                 x86_pmu.event_constraints = intel_ivb_event_constraints;
3696                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
3697                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3698                 x86_pmu.pebs_prec_dist = true;
3699                 if (boot_cpu_data.x86_model == 62)
3700                         x86_pmu.extra_regs = intel_snbep_extra_regs;
3701                 else
3702                         x86_pmu.extra_regs = intel_snb_extra_regs;
3703                 /* all extra regs are per-cpu when HT is on */
3704                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3705                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3706
3707                 x86_pmu.cpu_events = snb_events_attrs;
3708
3709                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
3710                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3711                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3712
3713                 pr_cont("IvyBridge events, ");
3714                 break;
3715
3716
3717         case 60: /* 22nm Haswell Core */
3718         case 63: /* 22nm Haswell Server */
3719         case 69: /* 22nm Haswell ULT */
3720         case 70: /* 22nm Haswell + GT3e (Intel Iris Pro graphics) */
3721                 x86_add_quirk(intel_ht_bug);
3722                 x86_pmu.late_ack = true;
3723                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3724                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3725
3726                 intel_pmu_lbr_init_hsw();
3727
3728                 x86_pmu.event_constraints = intel_hsw_event_constraints;
3729                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
3730                 x86_pmu.extra_regs = intel_snbep_extra_regs;
3731                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3732                 x86_pmu.pebs_prec_dist = true;
3733                 /* all extra regs are per-cpu when HT is on */
3734                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3735                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3736
3737                 x86_pmu.hw_config = hsw_hw_config;
3738                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3739                 x86_pmu.cpu_events = hsw_events_attrs;
3740                 x86_pmu.lbr_double_abort = true;
3741                 pr_cont("Haswell events, ");
3742                 break;
3743
3744         case 61: /* 14nm Broadwell Core-M */
3745         case 86: /* 14nm Broadwell Xeon D */
3746         case 71: /* 14nm Broadwell + GT3e (Intel Iris Pro graphics) */
3747         case 79: /* 14nm Broadwell Server */
3748                 x86_pmu.late_ack = true;
3749                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3750                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3751
3752                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
3753                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
3754                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
3755                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
3756                                                                           HSW_SNOOP_DRAM;
3757                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
3758                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3759                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
3760                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
3761
3762                 intel_pmu_lbr_init_hsw();
3763
3764                 x86_pmu.event_constraints = intel_bdw_event_constraints;
3765                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
3766                 x86_pmu.extra_regs = intel_snbep_extra_regs;
3767                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
3768                 x86_pmu.pebs_prec_dist = true;
3769                 /* all extra regs are per-cpu when HT is on */
3770                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3771                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3772
3773                 x86_pmu.hw_config = hsw_hw_config;
3774                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3775                 x86_pmu.cpu_events = hsw_events_attrs;
3776                 x86_pmu.limit_period = bdw_limit_period;
3777                 pr_cont("Broadwell events, ");
3778                 break;
3779
3780         case 87: /* Knights Landing Xeon Phi */
3781                 memcpy(hw_cache_event_ids,
3782                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3783                 memcpy(hw_cache_extra_regs,
3784                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3785                 intel_pmu_lbr_init_knl();
3786
3787                 x86_pmu.event_constraints = intel_slm_event_constraints;
3788                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
3789                 x86_pmu.extra_regs = intel_knl_extra_regs;
3790
3791                 /* all extra regs are per-cpu when HT is on */
3792                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3793                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3794
3795                 pr_cont("Knights Landing events, ");
3796                 break;
3797
3798         case 142: /* 14nm Kabylake Mobile */
3799         case 158: /* 14nm Kabylake Desktop */
3800         case 78: /* 14nm Skylake Mobile */
3801         case 94: /* 14nm Skylake Desktop */
3802         case 85: /* 14nm Skylake Server */
3803                 x86_pmu.late_ack = true;
3804                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
3805                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
3806                 intel_pmu_lbr_init_skl();
3807
3808                 x86_pmu.event_constraints = intel_skl_event_constraints;
3809                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
3810                 x86_pmu.extra_regs = intel_skl_extra_regs;
3811                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
3812                 x86_pmu.pebs_prec_dist = true;
3813                 /* all extra regs are per-cpu when HT is on */
3814                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
3815                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
3816
3817                 x86_pmu.hw_config = hsw_hw_config;
3818                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
3819                 x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
3820                                                   skl_format_attr);
3821                 WARN_ON(!x86_pmu.format_attrs);
3822                 x86_pmu.cpu_events = hsw_events_attrs;
3823                 pr_cont("Skylake events, ");
3824                 break;
3825
3826         default:
3827                 switch (x86_pmu.version) {
3828                 case 1:
3829                         x86_pmu.event_constraints = intel_v1_event_constraints;
3830                         pr_cont("generic architected perfmon v1, ");
3831                         break;
3832                 default:
3833                         /*
3834                          * default constraints for v2 and up
3835                          */
3836                         x86_pmu.event_constraints = intel_gen_event_constraints;
3837                         pr_cont("generic architected perfmon, ");
3838                         break;
3839                 }
3840         }
3841
3842         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
3843                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
3844                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
3845                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
3846         }
3847         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
3848
3849         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
3850                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
3851                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
3852                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
3853         }
3854
3855         x86_pmu.intel_ctrl |=
3856                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
3857
3858         if (x86_pmu.event_constraints) {
3859                 /*
3860                  * event on fixed counter2 (REF_CYCLES) only works on this
3861                  * counter, so do not extend mask to generic counters
3862                  */
3863                 for_each_event_constraint(c, x86_pmu.event_constraints) {
3864                         if (c->cmask == FIXED_EVENT_FLAGS
3865                             && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
3866                                 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
3867                         }
3868                         c->idxmsk64 &=
3869                                 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
3870                         c->weight = hweight64(c->idxmsk64);
3871                 }
3872         }
3873
3874         /*
3875          * Access LBR MSR may cause #GP under certain circumstances.
3876          * E.g. KVM doesn't support LBR MSR
3877          * Check all LBT MSR here.
3878          * Disable LBR access if any LBR MSRs can not be accessed.
3879          */
3880         if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
3881                 x86_pmu.lbr_nr = 0;
3882         for (i = 0; i < x86_pmu.lbr_nr; i++) {
3883                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
3884                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
3885                         x86_pmu.lbr_nr = 0;
3886         }
3887
3888         /*
3889          * Access extra MSR may cause #GP under certain circumstances.
3890          * E.g. KVM doesn't support offcore event
3891          * Check all extra_regs here.
3892          */
3893         if (x86_pmu.extra_regs) {
3894                 for (er = x86_pmu.extra_regs; er->msr; er++) {
3895                         er->extra_msr_access = check_msr(er->msr, 0x11UL);
3896                         /* Disable LBR select mapping */
3897                         if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
3898                                 x86_pmu.lbr_sel_map = NULL;
3899                 }
3900         }
3901
3902         /* Support full width counters using alternative MSR range */
3903         if (x86_pmu.intel_cap.full_width_write) {
3904                 x86_pmu.max_period = x86_pmu.cntval_mask;
3905                 x86_pmu.perfctr = MSR_IA32_PMC0;
3906                 pr_cont("full-width counters, ");
3907         }
3908
3909         return 0;
3910 }
3911
3912 /*
3913  * HT bug: phase 2 init
3914  * Called once we have valid topology information to check
3915  * whether or not HT is enabled
3916  * If HT is off, then we disable the workaround
3917  */
3918 static __init int fixup_ht_bug(void)
3919 {
3920         int cpu = smp_processor_id();
3921         int w, c;
3922         /*
3923          * problem not present on this CPU model, nothing to do
3924          */
3925         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
3926                 return 0;
3927
3928         w = cpumask_weight(topology_sibling_cpumask(cpu));
3929         if (w > 1) {
3930                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
3931                 return 0;
3932         }
3933
3934         if (lockup_detector_suspend() != 0) {
3935                 pr_debug("failed to disable PMU erratum BJ122, BV98, HSD29 workaround\n");
3936                 return 0;
3937         }
3938
3939         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
3940
3941         x86_pmu.start_scheduling = NULL;
3942         x86_pmu.commit_scheduling = NULL;
3943         x86_pmu.stop_scheduling = NULL;
3944
3945         lockup_detector_resume();
3946
3947         get_online_cpus();
3948
3949         for_each_online_cpu(c) {
3950                 free_excl_cntrs(c);
3951         }
3952
3953         put_online_cpus();
3954         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
3955         return 0;
3956 }
3957 subsys_initcall(fixup_ht_bug)