Merge branches 'work.misc' and 'work.dcache' of git://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / arch / x86 / events / intel / core.c
1 /*
2  * Per core/cpu state
3  *
4  * Used to coordinate shared registers between HT threads or
5  * among events on a single PMU.
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/stddef.h>
11 #include <linux/types.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/nmi.h>
16
17 #include <asm/cpufeature.h>
18 #include <asm/hardirq.h>
19 #include <asm/intel-family.h>
20 #include <asm/apic.h>
21
22 #include "../perf_event.h"
23
24 /*
25  * Intel PerfMon, used on Core and later.
26  */
27 static u64 intel_perfmon_event_map[PERF_COUNT_HW_MAX] __read_mostly =
28 {
29         [PERF_COUNT_HW_CPU_CYCLES]              = 0x003c,
30         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x00c0,
31         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x4f2e,
32         [PERF_COUNT_HW_CACHE_MISSES]            = 0x412e,
33         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x00c4,
34         [PERF_COUNT_HW_BRANCH_MISSES]           = 0x00c5,
35         [PERF_COUNT_HW_BUS_CYCLES]              = 0x013c,
36         [PERF_COUNT_HW_REF_CPU_CYCLES]          = 0x0300, /* pseudo-encoding */
37 };
38
39 static struct event_constraint intel_core_event_constraints[] __read_mostly =
40 {
41         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
42         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
43         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
44         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
45         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
46         INTEL_EVENT_CONSTRAINT(0xc1, 0x1), /* FP_COMP_INSTR_RET */
47         EVENT_CONSTRAINT_END
48 };
49
50 static struct event_constraint intel_core2_event_constraints[] __read_mostly =
51 {
52         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
53         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
54         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
55         INTEL_EVENT_CONSTRAINT(0x10, 0x1), /* FP_COMP_OPS_EXE */
56         INTEL_EVENT_CONSTRAINT(0x11, 0x2), /* FP_ASSIST */
57         INTEL_EVENT_CONSTRAINT(0x12, 0x2), /* MUL */
58         INTEL_EVENT_CONSTRAINT(0x13, 0x2), /* DIV */
59         INTEL_EVENT_CONSTRAINT(0x14, 0x1), /* CYCLES_DIV_BUSY */
60         INTEL_EVENT_CONSTRAINT(0x18, 0x1), /* IDLE_DURING_DIV */
61         INTEL_EVENT_CONSTRAINT(0x19, 0x2), /* DELAYED_BYPASS */
62         INTEL_EVENT_CONSTRAINT(0xa1, 0x1), /* RS_UOPS_DISPATCH_CYCLES */
63         INTEL_EVENT_CONSTRAINT(0xc9, 0x1), /* ITLB_MISS_RETIRED (T30-9) */
64         INTEL_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED */
65         EVENT_CONSTRAINT_END
66 };
67
68 static struct event_constraint intel_nehalem_event_constraints[] __read_mostly =
69 {
70         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
71         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
72         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
73         INTEL_EVENT_CONSTRAINT(0x40, 0x3), /* L1D_CACHE_LD */
74         INTEL_EVENT_CONSTRAINT(0x41, 0x3), /* L1D_CACHE_ST */
75         INTEL_EVENT_CONSTRAINT(0x42, 0x3), /* L1D_CACHE_LOCK */
76         INTEL_EVENT_CONSTRAINT(0x43, 0x3), /* L1D_ALL_REF */
77         INTEL_EVENT_CONSTRAINT(0x48, 0x3), /* L1D_PEND_MISS */
78         INTEL_EVENT_CONSTRAINT(0x4e, 0x3), /* L1D_PREFETCH */
79         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
80         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
81         EVENT_CONSTRAINT_END
82 };
83
84 static struct extra_reg intel_nehalem_extra_regs[] __read_mostly =
85 {
86         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
87         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
88         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
89         EVENT_EXTRA_END
90 };
91
92 static struct event_constraint intel_westmere_event_constraints[] __read_mostly =
93 {
94         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
95         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
96         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
97         INTEL_EVENT_CONSTRAINT(0x51, 0x3), /* L1D */
98         INTEL_EVENT_CONSTRAINT(0x60, 0x1), /* OFFCORE_REQUESTS_OUTSTANDING */
99         INTEL_EVENT_CONSTRAINT(0x63, 0x3), /* CACHE_LOCK_CYCLES */
100         INTEL_EVENT_CONSTRAINT(0xb3, 0x1), /* SNOOPQ_REQUEST_OUTSTANDING */
101         EVENT_CONSTRAINT_END
102 };
103
104 static struct event_constraint intel_snb_event_constraints[] __read_mostly =
105 {
106         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
107         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
108         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
109         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
110         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
111         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
112         INTEL_UEVENT_CONSTRAINT(0x06a3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
113         INTEL_EVENT_CONSTRAINT(0x48, 0x4), /* L1D_PEND_MISS.PENDING */
114         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
115         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
116         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_DISPATCH */
117         INTEL_UEVENT_CONSTRAINT(0x02a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
118
119         /*
120          * When HT is off these events can only run on the bottom 4 counters
121          * When HT is on, they are impacted by the HT bug and require EXCL access
122          */
123         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
124         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
125         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
126         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
127
128         EVENT_CONSTRAINT_END
129 };
130
131 static struct event_constraint intel_ivb_event_constraints[] __read_mostly =
132 {
133         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
134         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
135         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
136         INTEL_UEVENT_CONSTRAINT(0x0148, 0x4), /* L1D_PEND_MISS.PENDING */
137         INTEL_UEVENT_CONSTRAINT(0x0279, 0xf), /* IDQ.EMTPY */
138         INTEL_UEVENT_CONSTRAINT(0x019c, 0xf), /* IDQ_UOPS_NOT_DELIVERED.CORE */
139         INTEL_UEVENT_CONSTRAINT(0x02a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_LDM_PENDING */
140         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf), /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
141         INTEL_UEVENT_CONSTRAINT(0x05a3, 0xf), /* CYCLE_ACTIVITY.STALLS_L2_PENDING */
142         INTEL_UEVENT_CONSTRAINT(0x06a3, 0xf), /* CYCLE_ACTIVITY.STALLS_LDM_PENDING */
143         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4), /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
144         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4), /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
145         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
146
147         /*
148          * When HT is off these events can only run on the bottom 4 counters
149          * When HT is on, they are impacted by the HT bug and require EXCL access
150          */
151         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
152         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
153         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
154         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
155
156         EVENT_CONSTRAINT_END
157 };
158
159 static struct extra_reg intel_westmere_extra_regs[] __read_mostly =
160 {
161         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
162         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0xffff, RSP_0),
163         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0xffff, RSP_1),
164         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x100b),
165         EVENT_EXTRA_END
166 };
167
168 static struct event_constraint intel_v1_event_constraints[] __read_mostly =
169 {
170         EVENT_CONSTRAINT_END
171 };
172
173 static struct event_constraint intel_gen_event_constraints[] __read_mostly =
174 {
175         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
176         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
177         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
178         EVENT_CONSTRAINT_END
179 };
180
181 static struct event_constraint intel_slm_event_constraints[] __read_mostly =
182 {
183         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
184         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
185         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* pseudo CPU_CLK_UNHALTED.REF */
186         EVENT_CONSTRAINT_END
187 };
188
189 static struct event_constraint intel_skl_event_constraints[] = {
190         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
191         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
192         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
193         INTEL_UEVENT_CONSTRAINT(0x1c0, 0x2),    /* INST_RETIRED.PREC_DIST */
194
195         /*
196          * when HT is off, these can only run on the bottom 4 counters
197          */
198         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
199         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
200         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
201         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
202         INTEL_EVENT_CONSTRAINT(0xc6, 0xf),      /* FRONTEND_RETIRED.* */
203
204         EVENT_CONSTRAINT_END
205 };
206
207 static struct extra_reg intel_knl_extra_regs[] __read_mostly = {
208         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x799ffbb6e7ull, RSP_0),
209         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x399ffbffe7ull, RSP_1),
210         EVENT_EXTRA_END
211 };
212
213 static struct extra_reg intel_snb_extra_regs[] __read_mostly = {
214         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
215         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3f807f8fffull, RSP_0),
216         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3f807f8fffull, RSP_1),
217         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
218         EVENT_EXTRA_END
219 };
220
221 static struct extra_reg intel_snbep_extra_regs[] __read_mostly = {
222         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
223         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
224         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
225         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
226         EVENT_EXTRA_END
227 };
228
229 static struct extra_reg intel_skl_extra_regs[] __read_mostly = {
230         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x3fffff8fffull, RSP_0),
231         INTEL_UEVENT_EXTRA_REG(0x01bb, MSR_OFFCORE_RSP_1, 0x3fffff8fffull, RSP_1),
232         INTEL_UEVENT_PEBS_LDLAT_EXTRA_REG(0x01cd),
233         /*
234          * Note the low 8 bits eventsel code is not a continuous field, containing
235          * some #GPing bits. These are masked out.
236          */
237         INTEL_UEVENT_EXTRA_REG(0x01c6, MSR_PEBS_FRONTEND, 0x7fff17, FE),
238         EVENT_EXTRA_END
239 };
240
241 EVENT_ATTR_STR(mem-loads,       mem_ld_nhm,     "event=0x0b,umask=0x10,ldlat=3");
242 EVENT_ATTR_STR(mem-loads,       mem_ld_snb,     "event=0xcd,umask=0x1,ldlat=3");
243 EVENT_ATTR_STR(mem-stores,      mem_st_snb,     "event=0xcd,umask=0x2");
244
245 static struct attribute *nhm_events_attrs[] = {
246         EVENT_PTR(mem_ld_nhm),
247         NULL,
248 };
249
250 /*
251  * topdown events for Intel Core CPUs.
252  *
253  * The events are all in slots, which is a free slot in a 4 wide
254  * pipeline. Some events are already reported in slots, for cycle
255  * events we multiply by the pipeline width (4).
256  *
257  * With Hyper Threading on, topdown metrics are either summed or averaged
258  * between the threads of a core: (count_t0 + count_t1).
259  *
260  * For the average case the metric is always scaled to pipeline width,
261  * so we use factor 2 ((count_t0 + count_t1) / 2 * 4)
262  */
263
264 EVENT_ATTR_STR_HT(topdown-total-slots, td_total_slots,
265         "event=0x3c,umask=0x0",                 /* cpu_clk_unhalted.thread */
266         "event=0x3c,umask=0x0,any=1");          /* cpu_clk_unhalted.thread_any */
267 EVENT_ATTR_STR_HT(topdown-total-slots.scale, td_total_slots_scale, "4", "2");
268 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued,
269         "event=0xe,umask=0x1");                 /* uops_issued.any */
270 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired,
271         "event=0xc2,umask=0x2");                /* uops_retired.retire_slots */
272 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles,
273         "event=0x9c,umask=0x1");                /* idq_uops_not_delivered_core */
274 EVENT_ATTR_STR_HT(topdown-recovery-bubbles, td_recovery_bubbles,
275         "event=0xd,umask=0x3,cmask=1",          /* int_misc.recovery_cycles */
276         "event=0xd,umask=0x3,cmask=1,any=1");   /* int_misc.recovery_cycles_any */
277 EVENT_ATTR_STR_HT(topdown-recovery-bubbles.scale, td_recovery_bubbles_scale,
278         "4", "2");
279
280 static struct attribute *snb_events_attrs[] = {
281         EVENT_PTR(mem_ld_snb),
282         EVENT_PTR(mem_st_snb),
283         EVENT_PTR(td_slots_issued),
284         EVENT_PTR(td_slots_retired),
285         EVENT_PTR(td_fetch_bubbles),
286         EVENT_PTR(td_total_slots),
287         EVENT_PTR(td_total_slots_scale),
288         EVENT_PTR(td_recovery_bubbles),
289         EVENT_PTR(td_recovery_bubbles_scale),
290         NULL,
291 };
292
293 static struct event_constraint intel_hsw_event_constraints[] = {
294         FIXED_EVENT_CONSTRAINT(0x00c0, 0), /* INST_RETIRED.ANY */
295         FIXED_EVENT_CONSTRAINT(0x003c, 1), /* CPU_CLK_UNHALTED.CORE */
296         FIXED_EVENT_CONSTRAINT(0x0300, 2), /* CPU_CLK_UNHALTED.REF */
297         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
298         INTEL_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PREC_DIST */
299         INTEL_EVENT_CONSTRAINT(0xcd, 0x8), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
300         /* CYCLE_ACTIVITY.CYCLES_L1D_PENDING */
301         INTEL_UEVENT_CONSTRAINT(0x08a3, 0x4),
302         /* CYCLE_ACTIVITY.STALLS_L1D_PENDING */
303         INTEL_UEVENT_CONSTRAINT(0x0ca3, 0x4),
304         /* CYCLE_ACTIVITY.CYCLES_NO_EXECUTE */
305         INTEL_UEVENT_CONSTRAINT(0x04a3, 0xf),
306
307         /*
308          * When HT is off these events can only run on the bottom 4 counters
309          * When HT is on, they are impacted by the HT bug and require EXCL access
310          */
311         INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOPS_RETIRED.* */
312         INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
313         INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
314         INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
315
316         EVENT_CONSTRAINT_END
317 };
318
319 static struct event_constraint intel_bdw_event_constraints[] = {
320         FIXED_EVENT_CONSTRAINT(0x00c0, 0),      /* INST_RETIRED.ANY */
321         FIXED_EVENT_CONSTRAINT(0x003c, 1),      /* CPU_CLK_UNHALTED.CORE */
322         FIXED_EVENT_CONSTRAINT(0x0300, 2),      /* CPU_CLK_UNHALTED.REF */
323         INTEL_UEVENT_CONSTRAINT(0x148, 0x4),    /* L1D_PEND_MISS.PENDING */
324         INTEL_UBIT_EVENT_CONSTRAINT(0x8a3, 0x4),        /* CYCLE_ACTIVITY.CYCLES_L1D_MISS */
325         /*
326          * when HT is off, these can only run on the bottom 4 counters
327          */
328         INTEL_EVENT_CONSTRAINT(0xd0, 0xf),      /* MEM_INST_RETIRED.* */
329         INTEL_EVENT_CONSTRAINT(0xd1, 0xf),      /* MEM_LOAD_RETIRED.* */
330         INTEL_EVENT_CONSTRAINT(0xd2, 0xf),      /* MEM_LOAD_L3_HIT_RETIRED.* */
331         INTEL_EVENT_CONSTRAINT(0xcd, 0xf),      /* MEM_TRANS_RETIRED.* */
332         EVENT_CONSTRAINT_END
333 };
334
335 static u64 intel_pmu_event_map(int hw_event)
336 {
337         return intel_perfmon_event_map[hw_event];
338 }
339
340 /*
341  * Notes on the events:
342  * - data reads do not include code reads (comparable to earlier tables)
343  * - data counts include speculative execution (except L1 write, dtlb, bpu)
344  * - remote node access includes remote memory, remote cache, remote mmio.
345  * - prefetches are not included in the counts.
346  * - icache miss does not include decoded icache
347  */
348
349 #define SKL_DEMAND_DATA_RD              BIT_ULL(0)
350 #define SKL_DEMAND_RFO                  BIT_ULL(1)
351 #define SKL_ANY_RESPONSE                BIT_ULL(16)
352 #define SKL_SUPPLIER_NONE               BIT_ULL(17)
353 #define SKL_L3_MISS_LOCAL_DRAM          BIT_ULL(26)
354 #define SKL_L3_MISS_REMOTE_HOP0_DRAM    BIT_ULL(27)
355 #define SKL_L3_MISS_REMOTE_HOP1_DRAM    BIT_ULL(28)
356 #define SKL_L3_MISS_REMOTE_HOP2P_DRAM   BIT_ULL(29)
357 #define SKL_L3_MISS                     (SKL_L3_MISS_LOCAL_DRAM| \
358                                          SKL_L3_MISS_REMOTE_HOP0_DRAM| \
359                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
360                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
361 #define SKL_SPL_HIT                     BIT_ULL(30)
362 #define SKL_SNOOP_NONE                  BIT_ULL(31)
363 #define SKL_SNOOP_NOT_NEEDED            BIT_ULL(32)
364 #define SKL_SNOOP_MISS                  BIT_ULL(33)
365 #define SKL_SNOOP_HIT_NO_FWD            BIT_ULL(34)
366 #define SKL_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
367 #define SKL_SNOOP_HITM                  BIT_ULL(36)
368 #define SKL_SNOOP_NON_DRAM              BIT_ULL(37)
369 #define SKL_ANY_SNOOP                   (SKL_SPL_HIT|SKL_SNOOP_NONE| \
370                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
371                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
372                                          SKL_SNOOP_HITM|SKL_SNOOP_NON_DRAM)
373 #define SKL_DEMAND_READ                 SKL_DEMAND_DATA_RD
374 #define SKL_SNOOP_DRAM                  (SKL_SNOOP_NONE| \
375                                          SKL_SNOOP_NOT_NEEDED|SKL_SNOOP_MISS| \
376                                          SKL_SNOOP_HIT_NO_FWD|SKL_SNOOP_HIT_WITH_FWD| \
377                                          SKL_SNOOP_HITM|SKL_SPL_HIT)
378 #define SKL_DEMAND_WRITE                SKL_DEMAND_RFO
379 #define SKL_LLC_ACCESS                  SKL_ANY_RESPONSE
380 #define SKL_L3_MISS_REMOTE              (SKL_L3_MISS_REMOTE_HOP0_DRAM| \
381                                          SKL_L3_MISS_REMOTE_HOP1_DRAM| \
382                                          SKL_L3_MISS_REMOTE_HOP2P_DRAM)
383
384 static __initconst const u64 skl_hw_cache_event_ids
385                                 [PERF_COUNT_HW_CACHE_MAX]
386                                 [PERF_COUNT_HW_CACHE_OP_MAX]
387                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
388 {
389  [ C(L1D ) ] = {
390         [ C(OP_READ) ] = {
391                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
392                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
393         },
394         [ C(OP_WRITE) ] = {
395                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
396                 [ C(RESULT_MISS)   ] = 0x0,
397         },
398         [ C(OP_PREFETCH) ] = {
399                 [ C(RESULT_ACCESS) ] = 0x0,
400                 [ C(RESULT_MISS)   ] = 0x0,
401         },
402  },
403  [ C(L1I ) ] = {
404         [ C(OP_READ) ] = {
405                 [ C(RESULT_ACCESS) ] = 0x0,
406                 [ C(RESULT_MISS)   ] = 0x283,   /* ICACHE_64B.MISS */
407         },
408         [ C(OP_WRITE) ] = {
409                 [ C(RESULT_ACCESS) ] = -1,
410                 [ C(RESULT_MISS)   ] = -1,
411         },
412         [ C(OP_PREFETCH) ] = {
413                 [ C(RESULT_ACCESS) ] = 0x0,
414                 [ C(RESULT_MISS)   ] = 0x0,
415         },
416  },
417  [ C(LL  ) ] = {
418         [ C(OP_READ) ] = {
419                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
420                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
421         },
422         [ C(OP_WRITE) ] = {
423                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
424                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
425         },
426         [ C(OP_PREFETCH) ] = {
427                 [ C(RESULT_ACCESS) ] = 0x0,
428                 [ C(RESULT_MISS)   ] = 0x0,
429         },
430  },
431  [ C(DTLB) ] = {
432         [ C(OP_READ) ] = {
433                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_INST_RETIRED.ALL_LOADS */
434                 [ C(RESULT_MISS)   ] = 0xe08,   /* DTLB_LOAD_MISSES.WALK_COMPLETED */
435         },
436         [ C(OP_WRITE) ] = {
437                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_INST_RETIRED.ALL_STORES */
438                 [ C(RESULT_MISS)   ] = 0xe49,   /* DTLB_STORE_MISSES.WALK_COMPLETED */
439         },
440         [ C(OP_PREFETCH) ] = {
441                 [ C(RESULT_ACCESS) ] = 0x0,
442                 [ C(RESULT_MISS)   ] = 0x0,
443         },
444  },
445  [ C(ITLB) ] = {
446         [ C(OP_READ) ] = {
447                 [ C(RESULT_ACCESS) ] = 0x2085,  /* ITLB_MISSES.STLB_HIT */
448                 [ C(RESULT_MISS)   ] = 0xe85,   /* ITLB_MISSES.WALK_COMPLETED */
449         },
450         [ C(OP_WRITE) ] = {
451                 [ C(RESULT_ACCESS) ] = -1,
452                 [ C(RESULT_MISS)   ] = -1,
453         },
454         [ C(OP_PREFETCH) ] = {
455                 [ C(RESULT_ACCESS) ] = -1,
456                 [ C(RESULT_MISS)   ] = -1,
457         },
458  },
459  [ C(BPU ) ] = {
460         [ C(OP_READ) ] = {
461                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
462                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
463         },
464         [ C(OP_WRITE) ] = {
465                 [ C(RESULT_ACCESS) ] = -1,
466                 [ C(RESULT_MISS)   ] = -1,
467         },
468         [ C(OP_PREFETCH) ] = {
469                 [ C(RESULT_ACCESS) ] = -1,
470                 [ C(RESULT_MISS)   ] = -1,
471         },
472  },
473  [ C(NODE) ] = {
474         [ C(OP_READ) ] = {
475                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
476                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
477         },
478         [ C(OP_WRITE) ] = {
479                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
480                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
481         },
482         [ C(OP_PREFETCH) ] = {
483                 [ C(RESULT_ACCESS) ] = 0x0,
484                 [ C(RESULT_MISS)   ] = 0x0,
485         },
486  },
487 };
488
489 static __initconst const u64 skl_hw_cache_extra_regs
490                                 [PERF_COUNT_HW_CACHE_MAX]
491                                 [PERF_COUNT_HW_CACHE_OP_MAX]
492                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
493 {
494  [ C(LL  ) ] = {
495         [ C(OP_READ) ] = {
496                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
497                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
498                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
499                                        SKL_L3_MISS|SKL_ANY_SNOOP|
500                                        SKL_SUPPLIER_NONE,
501         },
502         [ C(OP_WRITE) ] = {
503                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
504                                        SKL_LLC_ACCESS|SKL_ANY_SNOOP,
505                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
506                                        SKL_L3_MISS|SKL_ANY_SNOOP|
507                                        SKL_SUPPLIER_NONE,
508         },
509         [ C(OP_PREFETCH) ] = {
510                 [ C(RESULT_ACCESS) ] = 0x0,
511                 [ C(RESULT_MISS)   ] = 0x0,
512         },
513  },
514  [ C(NODE) ] = {
515         [ C(OP_READ) ] = {
516                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_READ|
517                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
518                 [ C(RESULT_MISS)   ] = SKL_DEMAND_READ|
519                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
520         },
521         [ C(OP_WRITE) ] = {
522                 [ C(RESULT_ACCESS) ] = SKL_DEMAND_WRITE|
523                                        SKL_L3_MISS_LOCAL_DRAM|SKL_SNOOP_DRAM,
524                 [ C(RESULT_MISS)   ] = SKL_DEMAND_WRITE|
525                                        SKL_L3_MISS_REMOTE|SKL_SNOOP_DRAM,
526         },
527         [ C(OP_PREFETCH) ] = {
528                 [ C(RESULT_ACCESS) ] = 0x0,
529                 [ C(RESULT_MISS)   ] = 0x0,
530         },
531  },
532 };
533
534 #define SNB_DMND_DATA_RD        (1ULL << 0)
535 #define SNB_DMND_RFO            (1ULL << 1)
536 #define SNB_DMND_IFETCH         (1ULL << 2)
537 #define SNB_DMND_WB             (1ULL << 3)
538 #define SNB_PF_DATA_RD          (1ULL << 4)
539 #define SNB_PF_RFO              (1ULL << 5)
540 #define SNB_PF_IFETCH           (1ULL << 6)
541 #define SNB_LLC_DATA_RD         (1ULL << 7)
542 #define SNB_LLC_RFO             (1ULL << 8)
543 #define SNB_LLC_IFETCH          (1ULL << 9)
544 #define SNB_BUS_LOCKS           (1ULL << 10)
545 #define SNB_STRM_ST             (1ULL << 11)
546 #define SNB_OTHER               (1ULL << 15)
547 #define SNB_RESP_ANY            (1ULL << 16)
548 #define SNB_NO_SUPP             (1ULL << 17)
549 #define SNB_LLC_HITM            (1ULL << 18)
550 #define SNB_LLC_HITE            (1ULL << 19)
551 #define SNB_LLC_HITS            (1ULL << 20)
552 #define SNB_LLC_HITF            (1ULL << 21)
553 #define SNB_LOCAL               (1ULL << 22)
554 #define SNB_REMOTE              (0xffULL << 23)
555 #define SNB_SNP_NONE            (1ULL << 31)
556 #define SNB_SNP_NOT_NEEDED      (1ULL << 32)
557 #define SNB_SNP_MISS            (1ULL << 33)
558 #define SNB_NO_FWD              (1ULL << 34)
559 #define SNB_SNP_FWD             (1ULL << 35)
560 #define SNB_HITM                (1ULL << 36)
561 #define SNB_NON_DRAM            (1ULL << 37)
562
563 #define SNB_DMND_READ           (SNB_DMND_DATA_RD|SNB_LLC_DATA_RD)
564 #define SNB_DMND_WRITE          (SNB_DMND_RFO|SNB_LLC_RFO)
565 #define SNB_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
566
567 #define SNB_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_NOT_NEEDED| \
568                                  SNB_SNP_MISS|SNB_NO_FWD|SNB_SNP_FWD| \
569                                  SNB_HITM)
570
571 #define SNB_DRAM_ANY            (SNB_LOCAL|SNB_REMOTE|SNB_SNP_ANY)
572 #define SNB_DRAM_REMOTE         (SNB_REMOTE|SNB_SNP_ANY)
573
574 #define SNB_L3_ACCESS           SNB_RESP_ANY
575 #define SNB_L3_MISS             (SNB_DRAM_ANY|SNB_NON_DRAM)
576
577 static __initconst const u64 snb_hw_cache_extra_regs
578                                 [PERF_COUNT_HW_CACHE_MAX]
579                                 [PERF_COUNT_HW_CACHE_OP_MAX]
580                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
581 {
582  [ C(LL  ) ] = {
583         [ C(OP_READ) ] = {
584                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_L3_ACCESS,
585                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_L3_MISS,
586         },
587         [ C(OP_WRITE) ] = {
588                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_L3_ACCESS,
589                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_L3_MISS,
590         },
591         [ C(OP_PREFETCH) ] = {
592                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_L3_ACCESS,
593                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_L3_MISS,
594         },
595  },
596  [ C(NODE) ] = {
597         [ C(OP_READ) ] = {
598                 [ C(RESULT_ACCESS) ] = SNB_DMND_READ|SNB_DRAM_ANY,
599                 [ C(RESULT_MISS)   ] = SNB_DMND_READ|SNB_DRAM_REMOTE,
600         },
601         [ C(OP_WRITE) ] = {
602                 [ C(RESULT_ACCESS) ] = SNB_DMND_WRITE|SNB_DRAM_ANY,
603                 [ C(RESULT_MISS)   ] = SNB_DMND_WRITE|SNB_DRAM_REMOTE,
604         },
605         [ C(OP_PREFETCH) ] = {
606                 [ C(RESULT_ACCESS) ] = SNB_DMND_PREFETCH|SNB_DRAM_ANY,
607                 [ C(RESULT_MISS)   ] = SNB_DMND_PREFETCH|SNB_DRAM_REMOTE,
608         },
609  },
610 };
611
612 static __initconst const u64 snb_hw_cache_event_ids
613                                 [PERF_COUNT_HW_CACHE_MAX]
614                                 [PERF_COUNT_HW_CACHE_OP_MAX]
615                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
616 {
617  [ C(L1D) ] = {
618         [ C(OP_READ) ] = {
619                 [ C(RESULT_ACCESS) ] = 0xf1d0, /* MEM_UOP_RETIRED.LOADS        */
620                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPLACEMENT              */
621         },
622         [ C(OP_WRITE) ] = {
623                 [ C(RESULT_ACCESS) ] = 0xf2d0, /* MEM_UOP_RETIRED.STORES       */
624                 [ C(RESULT_MISS)   ] = 0x0851, /* L1D.ALL_M_REPLACEMENT        */
625         },
626         [ C(OP_PREFETCH) ] = {
627                 [ C(RESULT_ACCESS) ] = 0x0,
628                 [ C(RESULT_MISS)   ] = 0x024e, /* HW_PRE_REQ.DL1_MISS          */
629         },
630  },
631  [ C(L1I ) ] = {
632         [ C(OP_READ) ] = {
633                 [ C(RESULT_ACCESS) ] = 0x0,
634                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACHE.MISSES */
635         },
636         [ C(OP_WRITE) ] = {
637                 [ C(RESULT_ACCESS) ] = -1,
638                 [ C(RESULT_MISS)   ] = -1,
639         },
640         [ C(OP_PREFETCH) ] = {
641                 [ C(RESULT_ACCESS) ] = 0x0,
642                 [ C(RESULT_MISS)   ] = 0x0,
643         },
644  },
645  [ C(LL  ) ] = {
646         [ C(OP_READ) ] = {
647                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
648                 [ C(RESULT_ACCESS) ] = 0x01b7,
649                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
650                 [ C(RESULT_MISS)   ] = 0x01b7,
651         },
652         [ C(OP_WRITE) ] = {
653                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
654                 [ C(RESULT_ACCESS) ] = 0x01b7,
655                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
656                 [ C(RESULT_MISS)   ] = 0x01b7,
657         },
658         [ C(OP_PREFETCH) ] = {
659                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
660                 [ C(RESULT_ACCESS) ] = 0x01b7,
661                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
662                 [ C(RESULT_MISS)   ] = 0x01b7,
663         },
664  },
665  [ C(DTLB) ] = {
666         [ C(OP_READ) ] = {
667                 [ C(RESULT_ACCESS) ] = 0x81d0, /* MEM_UOP_RETIRED.ALL_LOADS */
668                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.CAUSES_A_WALK */
669         },
670         [ C(OP_WRITE) ] = {
671                 [ C(RESULT_ACCESS) ] = 0x82d0, /* MEM_UOP_RETIRED.ALL_STORES */
672                 [ C(RESULT_MISS)   ] = 0x0149, /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
673         },
674         [ C(OP_PREFETCH) ] = {
675                 [ C(RESULT_ACCESS) ] = 0x0,
676                 [ C(RESULT_MISS)   ] = 0x0,
677         },
678  },
679  [ C(ITLB) ] = {
680         [ C(OP_READ) ] = {
681                 [ C(RESULT_ACCESS) ] = 0x1085, /* ITLB_MISSES.STLB_HIT         */
682                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.CAUSES_A_WALK    */
683         },
684         [ C(OP_WRITE) ] = {
685                 [ C(RESULT_ACCESS) ] = -1,
686                 [ C(RESULT_MISS)   ] = -1,
687         },
688         [ C(OP_PREFETCH) ] = {
689                 [ C(RESULT_ACCESS) ] = -1,
690                 [ C(RESULT_MISS)   ] = -1,
691         },
692  },
693  [ C(BPU ) ] = {
694         [ C(OP_READ) ] = {
695                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
696                 [ C(RESULT_MISS)   ] = 0x00c5, /* BR_MISP_RETIRED.ALL_BRANCHES */
697         },
698         [ C(OP_WRITE) ] = {
699                 [ C(RESULT_ACCESS) ] = -1,
700                 [ C(RESULT_MISS)   ] = -1,
701         },
702         [ C(OP_PREFETCH) ] = {
703                 [ C(RESULT_ACCESS) ] = -1,
704                 [ C(RESULT_MISS)   ] = -1,
705         },
706  },
707  [ C(NODE) ] = {
708         [ C(OP_READ) ] = {
709                 [ C(RESULT_ACCESS) ] = 0x01b7,
710                 [ C(RESULT_MISS)   ] = 0x01b7,
711         },
712         [ C(OP_WRITE) ] = {
713                 [ C(RESULT_ACCESS) ] = 0x01b7,
714                 [ C(RESULT_MISS)   ] = 0x01b7,
715         },
716         [ C(OP_PREFETCH) ] = {
717                 [ C(RESULT_ACCESS) ] = 0x01b7,
718                 [ C(RESULT_MISS)   ] = 0x01b7,
719         },
720  },
721
722 };
723
724 /*
725  * Notes on the events:
726  * - data reads do not include code reads (comparable to earlier tables)
727  * - data counts include speculative execution (except L1 write, dtlb, bpu)
728  * - remote node access includes remote memory, remote cache, remote mmio.
729  * - prefetches are not included in the counts because they are not
730  *   reliably counted.
731  */
732
733 #define HSW_DEMAND_DATA_RD              BIT_ULL(0)
734 #define HSW_DEMAND_RFO                  BIT_ULL(1)
735 #define HSW_ANY_RESPONSE                BIT_ULL(16)
736 #define HSW_SUPPLIER_NONE               BIT_ULL(17)
737 #define HSW_L3_MISS_LOCAL_DRAM          BIT_ULL(22)
738 #define HSW_L3_MISS_REMOTE_HOP0         BIT_ULL(27)
739 #define HSW_L3_MISS_REMOTE_HOP1         BIT_ULL(28)
740 #define HSW_L3_MISS_REMOTE_HOP2P        BIT_ULL(29)
741 #define HSW_L3_MISS                     (HSW_L3_MISS_LOCAL_DRAM| \
742                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
743                                          HSW_L3_MISS_REMOTE_HOP2P)
744 #define HSW_SNOOP_NONE                  BIT_ULL(31)
745 #define HSW_SNOOP_NOT_NEEDED            BIT_ULL(32)
746 #define HSW_SNOOP_MISS                  BIT_ULL(33)
747 #define HSW_SNOOP_HIT_NO_FWD            BIT_ULL(34)
748 #define HSW_SNOOP_HIT_WITH_FWD          BIT_ULL(35)
749 #define HSW_SNOOP_HITM                  BIT_ULL(36)
750 #define HSW_SNOOP_NON_DRAM              BIT_ULL(37)
751 #define HSW_ANY_SNOOP                   (HSW_SNOOP_NONE| \
752                                          HSW_SNOOP_NOT_NEEDED|HSW_SNOOP_MISS| \
753                                          HSW_SNOOP_HIT_NO_FWD|HSW_SNOOP_HIT_WITH_FWD| \
754                                          HSW_SNOOP_HITM|HSW_SNOOP_NON_DRAM)
755 #define HSW_SNOOP_DRAM                  (HSW_ANY_SNOOP & ~HSW_SNOOP_NON_DRAM)
756 #define HSW_DEMAND_READ                 HSW_DEMAND_DATA_RD
757 #define HSW_DEMAND_WRITE                HSW_DEMAND_RFO
758 #define HSW_L3_MISS_REMOTE              (HSW_L3_MISS_REMOTE_HOP0|\
759                                          HSW_L3_MISS_REMOTE_HOP1|HSW_L3_MISS_REMOTE_HOP2P)
760 #define HSW_LLC_ACCESS                  HSW_ANY_RESPONSE
761
762 #define BDW_L3_MISS_LOCAL               BIT(26)
763 #define BDW_L3_MISS                     (BDW_L3_MISS_LOCAL| \
764                                          HSW_L3_MISS_REMOTE_HOP0|HSW_L3_MISS_REMOTE_HOP1| \
765                                          HSW_L3_MISS_REMOTE_HOP2P)
766
767
768 static __initconst const u64 hsw_hw_cache_event_ids
769                                 [PERF_COUNT_HW_CACHE_MAX]
770                                 [PERF_COUNT_HW_CACHE_OP_MAX]
771                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
772 {
773  [ C(L1D ) ] = {
774         [ C(OP_READ) ] = {
775                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
776                 [ C(RESULT_MISS)   ] = 0x151,   /* L1D.REPLACEMENT */
777         },
778         [ C(OP_WRITE) ] = {
779                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
780                 [ C(RESULT_MISS)   ] = 0x0,
781         },
782         [ C(OP_PREFETCH) ] = {
783                 [ C(RESULT_ACCESS) ] = 0x0,
784                 [ C(RESULT_MISS)   ] = 0x0,
785         },
786  },
787  [ C(L1I ) ] = {
788         [ C(OP_READ) ] = {
789                 [ C(RESULT_ACCESS) ] = 0x0,
790                 [ C(RESULT_MISS)   ] = 0x280,   /* ICACHE.MISSES */
791         },
792         [ C(OP_WRITE) ] = {
793                 [ C(RESULT_ACCESS) ] = -1,
794                 [ C(RESULT_MISS)   ] = -1,
795         },
796         [ C(OP_PREFETCH) ] = {
797                 [ C(RESULT_ACCESS) ] = 0x0,
798                 [ C(RESULT_MISS)   ] = 0x0,
799         },
800  },
801  [ C(LL  ) ] = {
802         [ C(OP_READ) ] = {
803                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
804                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
805         },
806         [ C(OP_WRITE) ] = {
807                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
808                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
809         },
810         [ C(OP_PREFETCH) ] = {
811                 [ C(RESULT_ACCESS) ] = 0x0,
812                 [ C(RESULT_MISS)   ] = 0x0,
813         },
814  },
815  [ C(DTLB) ] = {
816         [ C(OP_READ) ] = {
817                 [ C(RESULT_ACCESS) ] = 0x81d0,  /* MEM_UOPS_RETIRED.ALL_LOADS */
818                 [ C(RESULT_MISS)   ] = 0x108,   /* DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK */
819         },
820         [ C(OP_WRITE) ] = {
821                 [ C(RESULT_ACCESS) ] = 0x82d0,  /* MEM_UOPS_RETIRED.ALL_STORES */
822                 [ C(RESULT_MISS)   ] = 0x149,   /* DTLB_STORE_MISSES.MISS_CAUSES_A_WALK */
823         },
824         [ C(OP_PREFETCH) ] = {
825                 [ C(RESULT_ACCESS) ] = 0x0,
826                 [ C(RESULT_MISS)   ] = 0x0,
827         },
828  },
829  [ C(ITLB) ] = {
830         [ C(OP_READ) ] = {
831                 [ C(RESULT_ACCESS) ] = 0x6085,  /* ITLB_MISSES.STLB_HIT */
832                 [ C(RESULT_MISS)   ] = 0x185,   /* ITLB_MISSES.MISS_CAUSES_A_WALK */
833         },
834         [ C(OP_WRITE) ] = {
835                 [ C(RESULT_ACCESS) ] = -1,
836                 [ C(RESULT_MISS)   ] = -1,
837         },
838         [ C(OP_PREFETCH) ] = {
839                 [ C(RESULT_ACCESS) ] = -1,
840                 [ C(RESULT_MISS)   ] = -1,
841         },
842  },
843  [ C(BPU ) ] = {
844         [ C(OP_READ) ] = {
845                 [ C(RESULT_ACCESS) ] = 0xc4,    /* BR_INST_RETIRED.ALL_BRANCHES */
846                 [ C(RESULT_MISS)   ] = 0xc5,    /* BR_MISP_RETIRED.ALL_BRANCHES */
847         },
848         [ C(OP_WRITE) ] = {
849                 [ C(RESULT_ACCESS) ] = -1,
850                 [ C(RESULT_MISS)   ] = -1,
851         },
852         [ C(OP_PREFETCH) ] = {
853                 [ C(RESULT_ACCESS) ] = -1,
854                 [ C(RESULT_MISS)   ] = -1,
855         },
856  },
857  [ C(NODE) ] = {
858         [ C(OP_READ) ] = {
859                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
860                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
861         },
862         [ C(OP_WRITE) ] = {
863                 [ C(RESULT_ACCESS) ] = 0x1b7,   /* OFFCORE_RESPONSE */
864                 [ C(RESULT_MISS)   ] = 0x1b7,   /* OFFCORE_RESPONSE */
865         },
866         [ C(OP_PREFETCH) ] = {
867                 [ C(RESULT_ACCESS) ] = 0x0,
868                 [ C(RESULT_MISS)   ] = 0x0,
869         },
870  },
871 };
872
873 static __initconst const u64 hsw_hw_cache_extra_regs
874                                 [PERF_COUNT_HW_CACHE_MAX]
875                                 [PERF_COUNT_HW_CACHE_OP_MAX]
876                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
877 {
878  [ C(LL  ) ] = {
879         [ C(OP_READ) ] = {
880                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
881                                        HSW_LLC_ACCESS,
882                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
883                                        HSW_L3_MISS|HSW_ANY_SNOOP,
884         },
885         [ C(OP_WRITE) ] = {
886                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
887                                        HSW_LLC_ACCESS,
888                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
889                                        HSW_L3_MISS|HSW_ANY_SNOOP,
890         },
891         [ C(OP_PREFETCH) ] = {
892                 [ C(RESULT_ACCESS) ] = 0x0,
893                 [ C(RESULT_MISS)   ] = 0x0,
894         },
895  },
896  [ C(NODE) ] = {
897         [ C(OP_READ) ] = {
898                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_READ|
899                                        HSW_L3_MISS_LOCAL_DRAM|
900                                        HSW_SNOOP_DRAM,
901                 [ C(RESULT_MISS)   ] = HSW_DEMAND_READ|
902                                        HSW_L3_MISS_REMOTE|
903                                        HSW_SNOOP_DRAM,
904         },
905         [ C(OP_WRITE) ] = {
906                 [ C(RESULT_ACCESS) ] = HSW_DEMAND_WRITE|
907                                        HSW_L3_MISS_LOCAL_DRAM|
908                                        HSW_SNOOP_DRAM,
909                 [ C(RESULT_MISS)   ] = HSW_DEMAND_WRITE|
910                                        HSW_L3_MISS_REMOTE|
911                                        HSW_SNOOP_DRAM,
912         },
913         [ C(OP_PREFETCH) ] = {
914                 [ C(RESULT_ACCESS) ] = 0x0,
915                 [ C(RESULT_MISS)   ] = 0x0,
916         },
917  },
918 };
919
920 static __initconst const u64 westmere_hw_cache_event_ids
921                                 [PERF_COUNT_HW_CACHE_MAX]
922                                 [PERF_COUNT_HW_CACHE_OP_MAX]
923                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
924 {
925  [ C(L1D) ] = {
926         [ C(OP_READ) ] = {
927                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
928                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
929         },
930         [ C(OP_WRITE) ] = {
931                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
932                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
933         },
934         [ C(OP_PREFETCH) ] = {
935                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
936                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
937         },
938  },
939  [ C(L1I ) ] = {
940         [ C(OP_READ) ] = {
941                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
942                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
943         },
944         [ C(OP_WRITE) ] = {
945                 [ C(RESULT_ACCESS) ] = -1,
946                 [ C(RESULT_MISS)   ] = -1,
947         },
948         [ C(OP_PREFETCH) ] = {
949                 [ C(RESULT_ACCESS) ] = 0x0,
950                 [ C(RESULT_MISS)   ] = 0x0,
951         },
952  },
953  [ C(LL  ) ] = {
954         [ C(OP_READ) ] = {
955                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
956                 [ C(RESULT_ACCESS) ] = 0x01b7,
957                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
958                 [ C(RESULT_MISS)   ] = 0x01b7,
959         },
960         /*
961          * Use RFO, not WRITEBACK, because a write miss would typically occur
962          * on RFO.
963          */
964         [ C(OP_WRITE) ] = {
965                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
966                 [ C(RESULT_ACCESS) ] = 0x01b7,
967                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
968                 [ C(RESULT_MISS)   ] = 0x01b7,
969         },
970         [ C(OP_PREFETCH) ] = {
971                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
972                 [ C(RESULT_ACCESS) ] = 0x01b7,
973                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
974                 [ C(RESULT_MISS)   ] = 0x01b7,
975         },
976  },
977  [ C(DTLB) ] = {
978         [ C(OP_READ) ] = {
979                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
980                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
981         },
982         [ C(OP_WRITE) ] = {
983                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
984                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
985         },
986         [ C(OP_PREFETCH) ] = {
987                 [ C(RESULT_ACCESS) ] = 0x0,
988                 [ C(RESULT_MISS)   ] = 0x0,
989         },
990  },
991  [ C(ITLB) ] = {
992         [ C(OP_READ) ] = {
993                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
994                 [ C(RESULT_MISS)   ] = 0x0185, /* ITLB_MISSES.ANY              */
995         },
996         [ C(OP_WRITE) ] = {
997                 [ C(RESULT_ACCESS) ] = -1,
998                 [ C(RESULT_MISS)   ] = -1,
999         },
1000         [ C(OP_PREFETCH) ] = {
1001                 [ C(RESULT_ACCESS) ] = -1,
1002                 [ C(RESULT_MISS)   ] = -1,
1003         },
1004  },
1005  [ C(BPU ) ] = {
1006         [ C(OP_READ) ] = {
1007                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1008                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1009         },
1010         [ C(OP_WRITE) ] = {
1011                 [ C(RESULT_ACCESS) ] = -1,
1012                 [ C(RESULT_MISS)   ] = -1,
1013         },
1014         [ C(OP_PREFETCH) ] = {
1015                 [ C(RESULT_ACCESS) ] = -1,
1016                 [ C(RESULT_MISS)   ] = -1,
1017         },
1018  },
1019  [ C(NODE) ] = {
1020         [ C(OP_READ) ] = {
1021                 [ C(RESULT_ACCESS) ] = 0x01b7,
1022                 [ C(RESULT_MISS)   ] = 0x01b7,
1023         },
1024         [ C(OP_WRITE) ] = {
1025                 [ C(RESULT_ACCESS) ] = 0x01b7,
1026                 [ C(RESULT_MISS)   ] = 0x01b7,
1027         },
1028         [ C(OP_PREFETCH) ] = {
1029                 [ C(RESULT_ACCESS) ] = 0x01b7,
1030                 [ C(RESULT_MISS)   ] = 0x01b7,
1031         },
1032  },
1033 };
1034
1035 /*
1036  * Nehalem/Westmere MSR_OFFCORE_RESPONSE bits;
1037  * See IA32 SDM Vol 3B 30.6.1.3
1038  */
1039
1040 #define NHM_DMND_DATA_RD        (1 << 0)
1041 #define NHM_DMND_RFO            (1 << 1)
1042 #define NHM_DMND_IFETCH         (1 << 2)
1043 #define NHM_DMND_WB             (1 << 3)
1044 #define NHM_PF_DATA_RD          (1 << 4)
1045 #define NHM_PF_DATA_RFO         (1 << 5)
1046 #define NHM_PF_IFETCH           (1 << 6)
1047 #define NHM_OFFCORE_OTHER       (1 << 7)
1048 #define NHM_UNCORE_HIT          (1 << 8)
1049 #define NHM_OTHER_CORE_HIT_SNP  (1 << 9)
1050 #define NHM_OTHER_CORE_HITM     (1 << 10)
1051                                 /* reserved */
1052 #define NHM_REMOTE_CACHE_FWD    (1 << 12)
1053 #define NHM_REMOTE_DRAM         (1 << 13)
1054 #define NHM_LOCAL_DRAM          (1 << 14)
1055 #define NHM_NON_DRAM            (1 << 15)
1056
1057 #define NHM_LOCAL               (NHM_LOCAL_DRAM|NHM_REMOTE_CACHE_FWD)
1058 #define NHM_REMOTE              (NHM_REMOTE_DRAM)
1059
1060 #define NHM_DMND_READ           (NHM_DMND_DATA_RD)
1061 #define NHM_DMND_WRITE          (NHM_DMND_RFO|NHM_DMND_WB)
1062 #define NHM_DMND_PREFETCH       (NHM_PF_DATA_RD|NHM_PF_DATA_RFO)
1063
1064 #define NHM_L3_HIT      (NHM_UNCORE_HIT|NHM_OTHER_CORE_HIT_SNP|NHM_OTHER_CORE_HITM)
1065 #define NHM_L3_MISS     (NHM_NON_DRAM|NHM_LOCAL_DRAM|NHM_REMOTE_DRAM|NHM_REMOTE_CACHE_FWD)
1066 #define NHM_L3_ACCESS   (NHM_L3_HIT|NHM_L3_MISS)
1067
1068 static __initconst const u64 nehalem_hw_cache_extra_regs
1069                                 [PERF_COUNT_HW_CACHE_MAX]
1070                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1071                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1072 {
1073  [ C(LL  ) ] = {
1074         [ C(OP_READ) ] = {
1075                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_L3_ACCESS,
1076                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_L3_MISS,
1077         },
1078         [ C(OP_WRITE) ] = {
1079                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_L3_ACCESS,
1080                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_L3_MISS,
1081         },
1082         [ C(OP_PREFETCH) ] = {
1083                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_L3_ACCESS,
1084                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_L3_MISS,
1085         },
1086  },
1087  [ C(NODE) ] = {
1088         [ C(OP_READ) ] = {
1089                 [ C(RESULT_ACCESS) ] = NHM_DMND_READ|NHM_LOCAL|NHM_REMOTE,
1090                 [ C(RESULT_MISS)   ] = NHM_DMND_READ|NHM_REMOTE,
1091         },
1092         [ C(OP_WRITE) ] = {
1093                 [ C(RESULT_ACCESS) ] = NHM_DMND_WRITE|NHM_LOCAL|NHM_REMOTE,
1094                 [ C(RESULT_MISS)   ] = NHM_DMND_WRITE|NHM_REMOTE,
1095         },
1096         [ C(OP_PREFETCH) ] = {
1097                 [ C(RESULT_ACCESS) ] = NHM_DMND_PREFETCH|NHM_LOCAL|NHM_REMOTE,
1098                 [ C(RESULT_MISS)   ] = NHM_DMND_PREFETCH|NHM_REMOTE,
1099         },
1100  },
1101 };
1102
1103 static __initconst const u64 nehalem_hw_cache_event_ids
1104                                 [PERF_COUNT_HW_CACHE_MAX]
1105                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1106                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1107 {
1108  [ C(L1D) ] = {
1109         [ C(OP_READ) ] = {
1110                 [ C(RESULT_ACCESS) ] = 0x010b, /* MEM_INST_RETIRED.LOADS       */
1111                 [ C(RESULT_MISS)   ] = 0x0151, /* L1D.REPL                     */
1112         },
1113         [ C(OP_WRITE) ] = {
1114                 [ C(RESULT_ACCESS) ] = 0x020b, /* MEM_INST_RETURED.STORES      */
1115                 [ C(RESULT_MISS)   ] = 0x0251, /* L1D.M_REPL                   */
1116         },
1117         [ C(OP_PREFETCH) ] = {
1118                 [ C(RESULT_ACCESS) ] = 0x014e, /* L1D_PREFETCH.REQUESTS        */
1119                 [ C(RESULT_MISS)   ] = 0x024e, /* L1D_PREFETCH.MISS            */
1120         },
1121  },
1122  [ C(L1I ) ] = {
1123         [ C(OP_READ) ] = {
1124                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                    */
1125                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                   */
1126         },
1127         [ C(OP_WRITE) ] = {
1128                 [ C(RESULT_ACCESS) ] = -1,
1129                 [ C(RESULT_MISS)   ] = -1,
1130         },
1131         [ C(OP_PREFETCH) ] = {
1132                 [ C(RESULT_ACCESS) ] = 0x0,
1133                 [ C(RESULT_MISS)   ] = 0x0,
1134         },
1135  },
1136  [ C(LL  ) ] = {
1137         [ C(OP_READ) ] = {
1138                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1139                 [ C(RESULT_ACCESS) ] = 0x01b7,
1140                 /* OFFCORE_RESPONSE.ANY_DATA.ANY_LLC_MISS */
1141                 [ C(RESULT_MISS)   ] = 0x01b7,
1142         },
1143         /*
1144          * Use RFO, not WRITEBACK, because a write miss would typically occur
1145          * on RFO.
1146          */
1147         [ C(OP_WRITE) ] = {
1148                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1149                 [ C(RESULT_ACCESS) ] = 0x01b7,
1150                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1151                 [ C(RESULT_MISS)   ] = 0x01b7,
1152         },
1153         [ C(OP_PREFETCH) ] = {
1154                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1155                 [ C(RESULT_ACCESS) ] = 0x01b7,
1156                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1157                 [ C(RESULT_MISS)   ] = 0x01b7,
1158         },
1159  },
1160  [ C(DTLB) ] = {
1161         [ C(OP_READ) ] = {
1162                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI   (alias)  */
1163                 [ C(RESULT_MISS)   ] = 0x0108, /* DTLB_LOAD_MISSES.ANY         */
1164         },
1165         [ C(OP_WRITE) ] = {
1166                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI   (alias)  */
1167                 [ C(RESULT_MISS)   ] = 0x010c, /* MEM_STORE_RETIRED.DTLB_MISS  */
1168         },
1169         [ C(OP_PREFETCH) ] = {
1170                 [ C(RESULT_ACCESS) ] = 0x0,
1171                 [ C(RESULT_MISS)   ] = 0x0,
1172         },
1173  },
1174  [ C(ITLB) ] = {
1175         [ C(OP_READ) ] = {
1176                 [ C(RESULT_ACCESS) ] = 0x01c0, /* INST_RETIRED.ANY_P           */
1177                 [ C(RESULT_MISS)   ] = 0x20c8, /* ITLB_MISS_RETIRED            */
1178         },
1179         [ C(OP_WRITE) ] = {
1180                 [ C(RESULT_ACCESS) ] = -1,
1181                 [ C(RESULT_MISS)   ] = -1,
1182         },
1183         [ C(OP_PREFETCH) ] = {
1184                 [ C(RESULT_ACCESS) ] = -1,
1185                 [ C(RESULT_MISS)   ] = -1,
1186         },
1187  },
1188  [ C(BPU ) ] = {
1189         [ C(OP_READ) ] = {
1190                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ALL_BRANCHES */
1191                 [ C(RESULT_MISS)   ] = 0x03e8, /* BPU_CLEARS.ANY               */
1192         },
1193         [ C(OP_WRITE) ] = {
1194                 [ C(RESULT_ACCESS) ] = -1,
1195                 [ C(RESULT_MISS)   ] = -1,
1196         },
1197         [ C(OP_PREFETCH) ] = {
1198                 [ C(RESULT_ACCESS) ] = -1,
1199                 [ C(RESULT_MISS)   ] = -1,
1200         },
1201  },
1202  [ C(NODE) ] = {
1203         [ C(OP_READ) ] = {
1204                 [ C(RESULT_ACCESS) ] = 0x01b7,
1205                 [ C(RESULT_MISS)   ] = 0x01b7,
1206         },
1207         [ C(OP_WRITE) ] = {
1208                 [ C(RESULT_ACCESS) ] = 0x01b7,
1209                 [ C(RESULT_MISS)   ] = 0x01b7,
1210         },
1211         [ C(OP_PREFETCH) ] = {
1212                 [ C(RESULT_ACCESS) ] = 0x01b7,
1213                 [ C(RESULT_MISS)   ] = 0x01b7,
1214         },
1215  },
1216 };
1217
1218 static __initconst const u64 core2_hw_cache_event_ids
1219                                 [PERF_COUNT_HW_CACHE_MAX]
1220                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1221                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1222 {
1223  [ C(L1D) ] = {
1224         [ C(OP_READ) ] = {
1225                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI          */
1226                 [ C(RESULT_MISS)   ] = 0x0140, /* L1D_CACHE_LD.I_STATE       */
1227         },
1228         [ C(OP_WRITE) ] = {
1229                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI          */
1230                 [ C(RESULT_MISS)   ] = 0x0141, /* L1D_CACHE_ST.I_STATE       */
1231         },
1232         [ C(OP_PREFETCH) ] = {
1233                 [ C(RESULT_ACCESS) ] = 0x104e, /* L1D_PREFETCH.REQUESTS      */
1234                 [ C(RESULT_MISS)   ] = 0,
1235         },
1236  },
1237  [ C(L1I ) ] = {
1238         [ C(OP_READ) ] = {
1239                 [ C(RESULT_ACCESS) ] = 0x0080, /* L1I.READS                  */
1240                 [ C(RESULT_MISS)   ] = 0x0081, /* L1I.MISSES                 */
1241         },
1242         [ C(OP_WRITE) ] = {
1243                 [ C(RESULT_ACCESS) ] = -1,
1244                 [ C(RESULT_MISS)   ] = -1,
1245         },
1246         [ C(OP_PREFETCH) ] = {
1247                 [ C(RESULT_ACCESS) ] = 0,
1248                 [ C(RESULT_MISS)   ] = 0,
1249         },
1250  },
1251  [ C(LL  ) ] = {
1252         [ C(OP_READ) ] = {
1253                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1254                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1255         },
1256         [ C(OP_WRITE) ] = {
1257                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1258                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1259         },
1260         [ C(OP_PREFETCH) ] = {
1261                 [ C(RESULT_ACCESS) ] = 0,
1262                 [ C(RESULT_MISS)   ] = 0,
1263         },
1264  },
1265  [ C(DTLB) ] = {
1266         [ C(OP_READ) ] = {
1267                 [ C(RESULT_ACCESS) ] = 0x0f40, /* L1D_CACHE_LD.MESI  (alias) */
1268                 [ C(RESULT_MISS)   ] = 0x0208, /* DTLB_MISSES.MISS_LD        */
1269         },
1270         [ C(OP_WRITE) ] = {
1271                 [ C(RESULT_ACCESS) ] = 0x0f41, /* L1D_CACHE_ST.MESI  (alias) */
1272                 [ C(RESULT_MISS)   ] = 0x0808, /* DTLB_MISSES.MISS_ST        */
1273         },
1274         [ C(OP_PREFETCH) ] = {
1275                 [ C(RESULT_ACCESS) ] = 0,
1276                 [ C(RESULT_MISS)   ] = 0,
1277         },
1278  },
1279  [ C(ITLB) ] = {
1280         [ C(OP_READ) ] = {
1281                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1282                 [ C(RESULT_MISS)   ] = 0x1282, /* ITLBMISSES                 */
1283         },
1284         [ C(OP_WRITE) ] = {
1285                 [ C(RESULT_ACCESS) ] = -1,
1286                 [ C(RESULT_MISS)   ] = -1,
1287         },
1288         [ C(OP_PREFETCH) ] = {
1289                 [ C(RESULT_ACCESS) ] = -1,
1290                 [ C(RESULT_MISS)   ] = -1,
1291         },
1292  },
1293  [ C(BPU ) ] = {
1294         [ C(OP_READ) ] = {
1295                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1296                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1297         },
1298         [ C(OP_WRITE) ] = {
1299                 [ C(RESULT_ACCESS) ] = -1,
1300                 [ C(RESULT_MISS)   ] = -1,
1301         },
1302         [ C(OP_PREFETCH) ] = {
1303                 [ C(RESULT_ACCESS) ] = -1,
1304                 [ C(RESULT_MISS)   ] = -1,
1305         },
1306  },
1307 };
1308
1309 static __initconst const u64 atom_hw_cache_event_ids
1310                                 [PERF_COUNT_HW_CACHE_MAX]
1311                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1312                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1313 {
1314  [ C(L1D) ] = {
1315         [ C(OP_READ) ] = {
1316                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE.LD               */
1317                 [ C(RESULT_MISS)   ] = 0,
1318         },
1319         [ C(OP_WRITE) ] = {
1320                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE.ST               */
1321                 [ C(RESULT_MISS)   ] = 0,
1322         },
1323         [ C(OP_PREFETCH) ] = {
1324                 [ C(RESULT_ACCESS) ] = 0x0,
1325                 [ C(RESULT_MISS)   ] = 0,
1326         },
1327  },
1328  [ C(L1I ) ] = {
1329         [ C(OP_READ) ] = {
1330                 [ C(RESULT_ACCESS) ] = 0x0380, /* L1I.READS                  */
1331                 [ C(RESULT_MISS)   ] = 0x0280, /* L1I.MISSES                 */
1332         },
1333         [ C(OP_WRITE) ] = {
1334                 [ C(RESULT_ACCESS) ] = -1,
1335                 [ C(RESULT_MISS)   ] = -1,
1336         },
1337         [ C(OP_PREFETCH) ] = {
1338                 [ C(RESULT_ACCESS) ] = 0,
1339                 [ C(RESULT_MISS)   ] = 0,
1340         },
1341  },
1342  [ C(LL  ) ] = {
1343         [ C(OP_READ) ] = {
1344                 [ C(RESULT_ACCESS) ] = 0x4f29, /* L2_LD.MESI                 */
1345                 [ C(RESULT_MISS)   ] = 0x4129, /* L2_LD.ISTATE               */
1346         },
1347         [ C(OP_WRITE) ] = {
1348                 [ C(RESULT_ACCESS) ] = 0x4f2A, /* L2_ST.MESI                 */
1349                 [ C(RESULT_MISS)   ] = 0x412A, /* L2_ST.ISTATE               */
1350         },
1351         [ C(OP_PREFETCH) ] = {
1352                 [ C(RESULT_ACCESS) ] = 0,
1353                 [ C(RESULT_MISS)   ] = 0,
1354         },
1355  },
1356  [ C(DTLB) ] = {
1357         [ C(OP_READ) ] = {
1358                 [ C(RESULT_ACCESS) ] = 0x2140, /* L1D_CACHE_LD.MESI  (alias) */
1359                 [ C(RESULT_MISS)   ] = 0x0508, /* DTLB_MISSES.MISS_LD        */
1360         },
1361         [ C(OP_WRITE) ] = {
1362                 [ C(RESULT_ACCESS) ] = 0x2240, /* L1D_CACHE_ST.MESI  (alias) */
1363                 [ C(RESULT_MISS)   ] = 0x0608, /* DTLB_MISSES.MISS_ST        */
1364         },
1365         [ C(OP_PREFETCH) ] = {
1366                 [ C(RESULT_ACCESS) ] = 0,
1367                 [ C(RESULT_MISS)   ] = 0,
1368         },
1369  },
1370  [ C(ITLB) ] = {
1371         [ C(OP_READ) ] = {
1372                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P         */
1373                 [ C(RESULT_MISS)   ] = 0x0282, /* ITLB.MISSES                */
1374         },
1375         [ C(OP_WRITE) ] = {
1376                 [ C(RESULT_ACCESS) ] = -1,
1377                 [ C(RESULT_MISS)   ] = -1,
1378         },
1379         [ C(OP_PREFETCH) ] = {
1380                 [ C(RESULT_ACCESS) ] = -1,
1381                 [ C(RESULT_MISS)   ] = -1,
1382         },
1383  },
1384  [ C(BPU ) ] = {
1385         [ C(OP_READ) ] = {
1386                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY        */
1387                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED    */
1388         },
1389         [ C(OP_WRITE) ] = {
1390                 [ C(RESULT_ACCESS) ] = -1,
1391                 [ C(RESULT_MISS)   ] = -1,
1392         },
1393         [ C(OP_PREFETCH) ] = {
1394                 [ C(RESULT_ACCESS) ] = -1,
1395                 [ C(RESULT_MISS)   ] = -1,
1396         },
1397  },
1398 };
1399
1400 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_slm, "event=0x3c");
1401 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_slm, "2");
1402 /* no_alloc_cycles.not_delivered */
1403 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_slm,
1404                "event=0xca,umask=0x50");
1405 EVENT_ATTR_STR(topdown-fetch-bubbles.scale, td_fetch_bubbles_scale_slm, "2");
1406 /* uops_retired.all */
1407 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_slm,
1408                "event=0xc2,umask=0x10");
1409 /* uops_retired.all */
1410 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_slm,
1411                "event=0xc2,umask=0x10");
1412
1413 static struct attribute *slm_events_attrs[] = {
1414         EVENT_PTR(td_total_slots_slm),
1415         EVENT_PTR(td_total_slots_scale_slm),
1416         EVENT_PTR(td_fetch_bubbles_slm),
1417         EVENT_PTR(td_fetch_bubbles_scale_slm),
1418         EVENT_PTR(td_slots_issued_slm),
1419         EVENT_PTR(td_slots_retired_slm),
1420         NULL
1421 };
1422
1423 static struct extra_reg intel_slm_extra_regs[] __read_mostly =
1424 {
1425         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1426         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x768005ffffull, RSP_0),
1427         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x368005ffffull, RSP_1),
1428         EVENT_EXTRA_END
1429 };
1430
1431 #define SLM_DMND_READ           SNB_DMND_DATA_RD
1432 #define SLM_DMND_WRITE          SNB_DMND_RFO
1433 #define SLM_DMND_PREFETCH       (SNB_PF_DATA_RD|SNB_PF_RFO)
1434
1435 #define SLM_SNP_ANY             (SNB_SNP_NONE|SNB_SNP_MISS|SNB_NO_FWD|SNB_HITM)
1436 #define SLM_LLC_ACCESS          SNB_RESP_ANY
1437 #define SLM_LLC_MISS            (SLM_SNP_ANY|SNB_NON_DRAM)
1438
1439 static __initconst const u64 slm_hw_cache_extra_regs
1440                                 [PERF_COUNT_HW_CACHE_MAX]
1441                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1442                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1443 {
1444  [ C(LL  ) ] = {
1445         [ C(OP_READ) ] = {
1446                 [ C(RESULT_ACCESS) ] = SLM_DMND_READ|SLM_LLC_ACCESS,
1447                 [ C(RESULT_MISS)   ] = 0,
1448         },
1449         [ C(OP_WRITE) ] = {
1450                 [ C(RESULT_ACCESS) ] = SLM_DMND_WRITE|SLM_LLC_ACCESS,
1451                 [ C(RESULT_MISS)   ] = SLM_DMND_WRITE|SLM_LLC_MISS,
1452         },
1453         [ C(OP_PREFETCH) ] = {
1454                 [ C(RESULT_ACCESS) ] = SLM_DMND_PREFETCH|SLM_LLC_ACCESS,
1455                 [ C(RESULT_MISS)   ] = SLM_DMND_PREFETCH|SLM_LLC_MISS,
1456         },
1457  },
1458 };
1459
1460 static __initconst const u64 slm_hw_cache_event_ids
1461                                 [PERF_COUNT_HW_CACHE_MAX]
1462                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1463                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] =
1464 {
1465  [ C(L1D) ] = {
1466         [ C(OP_READ) ] = {
1467                 [ C(RESULT_ACCESS) ] = 0,
1468                 [ C(RESULT_MISS)   ] = 0x0104, /* LD_DCU_MISS */
1469         },
1470         [ C(OP_WRITE) ] = {
1471                 [ C(RESULT_ACCESS) ] = 0,
1472                 [ C(RESULT_MISS)   ] = 0,
1473         },
1474         [ C(OP_PREFETCH) ] = {
1475                 [ C(RESULT_ACCESS) ] = 0,
1476                 [ C(RESULT_MISS)   ] = 0,
1477         },
1478  },
1479  [ C(L1I ) ] = {
1480         [ C(OP_READ) ] = {
1481                 [ C(RESULT_ACCESS) ] = 0x0380, /* ICACHE.ACCESSES */
1482                 [ C(RESULT_MISS)   ] = 0x0280, /* ICACGE.MISSES */
1483         },
1484         [ C(OP_WRITE) ] = {
1485                 [ C(RESULT_ACCESS) ] = -1,
1486                 [ C(RESULT_MISS)   ] = -1,
1487         },
1488         [ C(OP_PREFETCH) ] = {
1489                 [ C(RESULT_ACCESS) ] = 0,
1490                 [ C(RESULT_MISS)   ] = 0,
1491         },
1492  },
1493  [ C(LL  ) ] = {
1494         [ C(OP_READ) ] = {
1495                 /* OFFCORE_RESPONSE.ANY_DATA.LOCAL_CACHE */
1496                 [ C(RESULT_ACCESS) ] = 0x01b7,
1497                 [ C(RESULT_MISS)   ] = 0,
1498         },
1499         [ C(OP_WRITE) ] = {
1500                 /* OFFCORE_RESPONSE.ANY_RFO.LOCAL_CACHE */
1501                 [ C(RESULT_ACCESS) ] = 0x01b7,
1502                 /* OFFCORE_RESPONSE.ANY_RFO.ANY_LLC_MISS */
1503                 [ C(RESULT_MISS)   ] = 0x01b7,
1504         },
1505         [ C(OP_PREFETCH) ] = {
1506                 /* OFFCORE_RESPONSE.PREFETCH.LOCAL_CACHE */
1507                 [ C(RESULT_ACCESS) ] = 0x01b7,
1508                 /* OFFCORE_RESPONSE.PREFETCH.ANY_LLC_MISS */
1509                 [ C(RESULT_MISS)   ] = 0x01b7,
1510         },
1511  },
1512  [ C(DTLB) ] = {
1513         [ C(OP_READ) ] = {
1514                 [ C(RESULT_ACCESS) ] = 0,
1515                 [ C(RESULT_MISS)   ] = 0x0804, /* LD_DTLB_MISS */
1516         },
1517         [ C(OP_WRITE) ] = {
1518                 [ C(RESULT_ACCESS) ] = 0,
1519                 [ C(RESULT_MISS)   ] = 0,
1520         },
1521         [ C(OP_PREFETCH) ] = {
1522                 [ C(RESULT_ACCESS) ] = 0,
1523                 [ C(RESULT_MISS)   ] = 0,
1524         },
1525  },
1526  [ C(ITLB) ] = {
1527         [ C(OP_READ) ] = {
1528                 [ C(RESULT_ACCESS) ] = 0x00c0, /* INST_RETIRED.ANY_P */
1529                 [ C(RESULT_MISS)   ] = 0x40205, /* PAGE_WALKS.I_SIDE_WALKS */
1530         },
1531         [ C(OP_WRITE) ] = {
1532                 [ C(RESULT_ACCESS) ] = -1,
1533                 [ C(RESULT_MISS)   ] = -1,
1534         },
1535         [ C(OP_PREFETCH) ] = {
1536                 [ C(RESULT_ACCESS) ] = -1,
1537                 [ C(RESULT_MISS)   ] = -1,
1538         },
1539  },
1540  [ C(BPU ) ] = {
1541         [ C(OP_READ) ] = {
1542                 [ C(RESULT_ACCESS) ] = 0x00c4, /* BR_INST_RETIRED.ANY */
1543                 [ C(RESULT_MISS)   ] = 0x00c5, /* BP_INST_RETIRED.MISPRED */
1544         },
1545         [ C(OP_WRITE) ] = {
1546                 [ C(RESULT_ACCESS) ] = -1,
1547                 [ C(RESULT_MISS)   ] = -1,
1548         },
1549         [ C(OP_PREFETCH) ] = {
1550                 [ C(RESULT_ACCESS) ] = -1,
1551                 [ C(RESULT_MISS)   ] = -1,
1552         },
1553  },
1554 };
1555
1556 EVENT_ATTR_STR(topdown-total-slots, td_total_slots_glm, "event=0x3c");
1557 EVENT_ATTR_STR(topdown-total-slots.scale, td_total_slots_scale_glm, "3");
1558 /* UOPS_NOT_DELIVERED.ANY */
1559 EVENT_ATTR_STR(topdown-fetch-bubbles, td_fetch_bubbles_glm, "event=0x9c");
1560 /* ISSUE_SLOTS_NOT_CONSUMED.RECOVERY */
1561 EVENT_ATTR_STR(topdown-recovery-bubbles, td_recovery_bubbles_glm, "event=0xca,umask=0x02");
1562 /* UOPS_RETIRED.ANY */
1563 EVENT_ATTR_STR(topdown-slots-retired, td_slots_retired_glm, "event=0xc2");
1564 /* UOPS_ISSUED.ANY */
1565 EVENT_ATTR_STR(topdown-slots-issued, td_slots_issued_glm, "event=0x0e");
1566
1567 static struct attribute *glm_events_attrs[] = {
1568         EVENT_PTR(td_total_slots_glm),
1569         EVENT_PTR(td_total_slots_scale_glm),
1570         EVENT_PTR(td_fetch_bubbles_glm),
1571         EVENT_PTR(td_recovery_bubbles_glm),
1572         EVENT_PTR(td_slots_issued_glm),
1573         EVENT_PTR(td_slots_retired_glm),
1574         NULL
1575 };
1576
1577 static struct extra_reg intel_glm_extra_regs[] __read_mostly = {
1578         /* must define OFFCORE_RSP_X first, see intel_fixup_er() */
1579         INTEL_UEVENT_EXTRA_REG(0x01b7, MSR_OFFCORE_RSP_0, 0x760005ffbfull, RSP_0),
1580         INTEL_UEVENT_EXTRA_REG(0x02b7, MSR_OFFCORE_RSP_1, 0x360005ffbfull, RSP_1),
1581         EVENT_EXTRA_END
1582 };
1583
1584 #define GLM_DEMAND_DATA_RD              BIT_ULL(0)
1585 #define GLM_DEMAND_RFO                  BIT_ULL(1)
1586 #define GLM_ANY_RESPONSE                BIT_ULL(16)
1587 #define GLM_SNP_NONE_OR_MISS            BIT_ULL(33)
1588 #define GLM_DEMAND_READ                 GLM_DEMAND_DATA_RD
1589 #define GLM_DEMAND_WRITE                GLM_DEMAND_RFO
1590 #define GLM_DEMAND_PREFETCH             (SNB_PF_DATA_RD|SNB_PF_RFO)
1591 #define GLM_LLC_ACCESS                  GLM_ANY_RESPONSE
1592 #define GLM_SNP_ANY                     (GLM_SNP_NONE_OR_MISS|SNB_NO_FWD|SNB_HITM)
1593 #define GLM_LLC_MISS                    (GLM_SNP_ANY|SNB_NON_DRAM)
1594
1595 static __initconst const u64 glm_hw_cache_event_ids
1596                                 [PERF_COUNT_HW_CACHE_MAX]
1597                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1598                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1599         [C(L1D)] = {
1600                 [C(OP_READ)] = {
1601                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1602                         [C(RESULT_MISS)]        = 0x0,
1603                 },
1604                 [C(OP_WRITE)] = {
1605                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1606                         [C(RESULT_MISS)]        = 0x0,
1607                 },
1608                 [C(OP_PREFETCH)] = {
1609                         [C(RESULT_ACCESS)]      = 0x0,
1610                         [C(RESULT_MISS)]        = 0x0,
1611                 },
1612         },
1613         [C(L1I)] = {
1614                 [C(OP_READ)] = {
1615                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1616                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1617                 },
1618                 [C(OP_WRITE)] = {
1619                         [C(RESULT_ACCESS)]      = -1,
1620                         [C(RESULT_MISS)]        = -1,
1621                 },
1622                 [C(OP_PREFETCH)] = {
1623                         [C(RESULT_ACCESS)]      = 0x0,
1624                         [C(RESULT_MISS)]        = 0x0,
1625                 },
1626         },
1627         [C(LL)] = {
1628                 [C(OP_READ)] = {
1629                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1630                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1631                 },
1632                 [C(OP_WRITE)] = {
1633                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1634                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1635                 },
1636                 [C(OP_PREFETCH)] = {
1637                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1638                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1639                 },
1640         },
1641         [C(DTLB)] = {
1642                 [C(OP_READ)] = {
1643                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1644                         [C(RESULT_MISS)]        = 0x0,
1645                 },
1646                 [C(OP_WRITE)] = {
1647                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1648                         [C(RESULT_MISS)]        = 0x0,
1649                 },
1650                 [C(OP_PREFETCH)] = {
1651                         [C(RESULT_ACCESS)]      = 0x0,
1652                         [C(RESULT_MISS)]        = 0x0,
1653                 },
1654         },
1655         [C(ITLB)] = {
1656                 [C(OP_READ)] = {
1657                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1658                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1659                 },
1660                 [C(OP_WRITE)] = {
1661                         [C(RESULT_ACCESS)]      = -1,
1662                         [C(RESULT_MISS)]        = -1,
1663                 },
1664                 [C(OP_PREFETCH)] = {
1665                         [C(RESULT_ACCESS)]      = -1,
1666                         [C(RESULT_MISS)]        = -1,
1667                 },
1668         },
1669         [C(BPU)] = {
1670                 [C(OP_READ)] = {
1671                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1672                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1673                 },
1674                 [C(OP_WRITE)] = {
1675                         [C(RESULT_ACCESS)]      = -1,
1676                         [C(RESULT_MISS)]        = -1,
1677                 },
1678                 [C(OP_PREFETCH)] = {
1679                         [C(RESULT_ACCESS)]      = -1,
1680                         [C(RESULT_MISS)]        = -1,
1681                 },
1682         },
1683 };
1684
1685 static __initconst const u64 glm_hw_cache_extra_regs
1686                                 [PERF_COUNT_HW_CACHE_MAX]
1687                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1688                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1689         [C(LL)] = {
1690                 [C(OP_READ)] = {
1691                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1692                                                   GLM_LLC_ACCESS,
1693                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1694                                                   GLM_LLC_MISS,
1695                 },
1696                 [C(OP_WRITE)] = {
1697                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1698                                                   GLM_LLC_ACCESS,
1699                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1700                                                   GLM_LLC_MISS,
1701                 },
1702                 [C(OP_PREFETCH)] = {
1703                         [C(RESULT_ACCESS)]      = GLM_DEMAND_PREFETCH|
1704                                                   GLM_LLC_ACCESS,
1705                         [C(RESULT_MISS)]        = GLM_DEMAND_PREFETCH|
1706                                                   GLM_LLC_MISS,
1707                 },
1708         },
1709 };
1710
1711 static __initconst const u64 glp_hw_cache_event_ids
1712                                 [PERF_COUNT_HW_CACHE_MAX]
1713                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1714                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1715         [C(L1D)] = {
1716                 [C(OP_READ)] = {
1717                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1718                         [C(RESULT_MISS)]        = 0x0,
1719                 },
1720                 [C(OP_WRITE)] = {
1721                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1722                         [C(RESULT_MISS)]        = 0x0,
1723                 },
1724                 [C(OP_PREFETCH)] = {
1725                         [C(RESULT_ACCESS)]      = 0x0,
1726                         [C(RESULT_MISS)]        = 0x0,
1727                 },
1728         },
1729         [C(L1I)] = {
1730                 [C(OP_READ)] = {
1731                         [C(RESULT_ACCESS)]      = 0x0380,       /* ICACHE.ACCESSES */
1732                         [C(RESULT_MISS)]        = 0x0280,       /* ICACHE.MISSES */
1733                 },
1734                 [C(OP_WRITE)] = {
1735                         [C(RESULT_ACCESS)]      = -1,
1736                         [C(RESULT_MISS)]        = -1,
1737                 },
1738                 [C(OP_PREFETCH)] = {
1739                         [C(RESULT_ACCESS)]      = 0x0,
1740                         [C(RESULT_MISS)]        = 0x0,
1741                 },
1742         },
1743         [C(LL)] = {
1744                 [C(OP_READ)] = {
1745                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1746                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1747                 },
1748                 [C(OP_WRITE)] = {
1749                         [C(RESULT_ACCESS)]      = 0x1b7,        /* OFFCORE_RESPONSE */
1750                         [C(RESULT_MISS)]        = 0x1b7,        /* OFFCORE_RESPONSE */
1751                 },
1752                 [C(OP_PREFETCH)] = {
1753                         [C(RESULT_ACCESS)]      = 0x0,
1754                         [C(RESULT_MISS)]        = 0x0,
1755                 },
1756         },
1757         [C(DTLB)] = {
1758                 [C(OP_READ)] = {
1759                         [C(RESULT_ACCESS)]      = 0x81d0,       /* MEM_UOPS_RETIRED.ALL_LOADS */
1760                         [C(RESULT_MISS)]        = 0xe08,        /* DTLB_LOAD_MISSES.WALK_COMPLETED */
1761                 },
1762                 [C(OP_WRITE)] = {
1763                         [C(RESULT_ACCESS)]      = 0x82d0,       /* MEM_UOPS_RETIRED.ALL_STORES */
1764                         [C(RESULT_MISS)]        = 0xe49,        /* DTLB_STORE_MISSES.WALK_COMPLETED */
1765                 },
1766                 [C(OP_PREFETCH)] = {
1767                         [C(RESULT_ACCESS)]      = 0x0,
1768                         [C(RESULT_MISS)]        = 0x0,
1769                 },
1770         },
1771         [C(ITLB)] = {
1772                 [C(OP_READ)] = {
1773                         [C(RESULT_ACCESS)]      = 0x00c0,       /* INST_RETIRED.ANY_P */
1774                         [C(RESULT_MISS)]        = 0x0481,       /* ITLB.MISS */
1775                 },
1776                 [C(OP_WRITE)] = {
1777                         [C(RESULT_ACCESS)]      = -1,
1778                         [C(RESULT_MISS)]        = -1,
1779                 },
1780                 [C(OP_PREFETCH)] = {
1781                         [C(RESULT_ACCESS)]      = -1,
1782                         [C(RESULT_MISS)]        = -1,
1783                 },
1784         },
1785         [C(BPU)] = {
1786                 [C(OP_READ)] = {
1787                         [C(RESULT_ACCESS)]      = 0x00c4,       /* BR_INST_RETIRED.ALL_BRANCHES */
1788                         [C(RESULT_MISS)]        = 0x00c5,       /* BR_MISP_RETIRED.ALL_BRANCHES */
1789                 },
1790                 [C(OP_WRITE)] = {
1791                         [C(RESULT_ACCESS)]      = -1,
1792                         [C(RESULT_MISS)]        = -1,
1793                 },
1794                 [C(OP_PREFETCH)] = {
1795                         [C(RESULT_ACCESS)]      = -1,
1796                         [C(RESULT_MISS)]        = -1,
1797                 },
1798         },
1799 };
1800
1801 static __initconst const u64 glp_hw_cache_extra_regs
1802                                 [PERF_COUNT_HW_CACHE_MAX]
1803                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1804                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1805         [C(LL)] = {
1806                 [C(OP_READ)] = {
1807                         [C(RESULT_ACCESS)]      = GLM_DEMAND_READ|
1808                                                   GLM_LLC_ACCESS,
1809                         [C(RESULT_MISS)]        = GLM_DEMAND_READ|
1810                                                   GLM_LLC_MISS,
1811                 },
1812                 [C(OP_WRITE)] = {
1813                         [C(RESULT_ACCESS)]      = GLM_DEMAND_WRITE|
1814                                                   GLM_LLC_ACCESS,
1815                         [C(RESULT_MISS)]        = GLM_DEMAND_WRITE|
1816                                                   GLM_LLC_MISS,
1817                 },
1818                 [C(OP_PREFETCH)] = {
1819                         [C(RESULT_ACCESS)]      = 0x0,
1820                         [C(RESULT_MISS)]        = 0x0,
1821                 },
1822         },
1823 };
1824
1825 #define KNL_OT_L2_HITE          BIT_ULL(19) /* Other Tile L2 Hit */
1826 #define KNL_OT_L2_HITF          BIT_ULL(20) /* Other Tile L2 Hit */
1827 #define KNL_MCDRAM_LOCAL        BIT_ULL(21)
1828 #define KNL_MCDRAM_FAR          BIT_ULL(22)
1829 #define KNL_DDR_LOCAL           BIT_ULL(23)
1830 #define KNL_DDR_FAR             BIT_ULL(24)
1831 #define KNL_DRAM_ANY            (KNL_MCDRAM_LOCAL | KNL_MCDRAM_FAR | \
1832                                     KNL_DDR_LOCAL | KNL_DDR_FAR)
1833 #define KNL_L2_READ             SLM_DMND_READ
1834 #define KNL_L2_WRITE            SLM_DMND_WRITE
1835 #define KNL_L2_PREFETCH         SLM_DMND_PREFETCH
1836 #define KNL_L2_ACCESS           SLM_LLC_ACCESS
1837 #define KNL_L2_MISS             (KNL_OT_L2_HITE | KNL_OT_L2_HITF | \
1838                                    KNL_DRAM_ANY | SNB_SNP_ANY | \
1839                                                   SNB_NON_DRAM)
1840
1841 static __initconst const u64 knl_hw_cache_extra_regs
1842                                 [PERF_COUNT_HW_CACHE_MAX]
1843                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1844                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1845         [C(LL)] = {
1846                 [C(OP_READ)] = {
1847                         [C(RESULT_ACCESS)] = KNL_L2_READ | KNL_L2_ACCESS,
1848                         [C(RESULT_MISS)]   = 0,
1849                 },
1850                 [C(OP_WRITE)] = {
1851                         [C(RESULT_ACCESS)] = KNL_L2_WRITE | KNL_L2_ACCESS,
1852                         [C(RESULT_MISS)]   = KNL_L2_WRITE | KNL_L2_MISS,
1853                 },
1854                 [C(OP_PREFETCH)] = {
1855                         [C(RESULT_ACCESS)] = KNL_L2_PREFETCH | KNL_L2_ACCESS,
1856                         [C(RESULT_MISS)]   = KNL_L2_PREFETCH | KNL_L2_MISS,
1857                 },
1858         },
1859 };
1860
1861 /*
1862  * Used from PMIs where the LBRs are already disabled.
1863  *
1864  * This function could be called consecutively. It is required to remain in
1865  * disabled state if called consecutively.
1866  *
1867  * During consecutive calls, the same disable value will be written to related
1868  * registers, so the PMU state remains unchanged.
1869  *
1870  * intel_bts events don't coexist with intel PMU's BTS events because of
1871  * x86_add_exclusive(x86_lbr_exclusive_lbr); there's no need to keep them
1872  * disabled around intel PMU's event batching etc, only inside the PMI handler.
1873  */
1874 static void __intel_pmu_disable_all(void)
1875 {
1876         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1877
1878         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
1879
1880         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
1881                 intel_pmu_disable_bts();
1882
1883         intel_pmu_pebs_disable_all();
1884 }
1885
1886 static void intel_pmu_disable_all(void)
1887 {
1888         __intel_pmu_disable_all();
1889         intel_pmu_lbr_disable_all();
1890 }
1891
1892 static void __intel_pmu_enable_all(int added, bool pmi)
1893 {
1894         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1895
1896         intel_pmu_pebs_enable_all();
1897         intel_pmu_lbr_enable_all(pmi);
1898         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL,
1899                         x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask);
1900
1901         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask)) {
1902                 struct perf_event *event =
1903                         cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
1904
1905                 if (WARN_ON_ONCE(!event))
1906                         return;
1907
1908                 intel_pmu_enable_bts(event->hw.config);
1909         }
1910 }
1911
1912 static void intel_pmu_enable_all(int added)
1913 {
1914         __intel_pmu_enable_all(added, false);
1915 }
1916
1917 /*
1918  * Workaround for:
1919  *   Intel Errata AAK100 (model 26)
1920  *   Intel Errata AAP53  (model 30)
1921  *   Intel Errata BD53   (model 44)
1922  *
1923  * The official story:
1924  *   These chips need to be 'reset' when adding counters by programming the
1925  *   magic three (non-counting) events 0x4300B5, 0x4300D2, and 0x4300B1 either
1926  *   in sequence on the same PMC or on different PMCs.
1927  *
1928  * In practise it appears some of these events do in fact count, and
1929  * we need to programm all 4 events.
1930  */
1931 static void intel_pmu_nhm_workaround(void)
1932 {
1933         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1934         static const unsigned long nhm_magic[4] = {
1935                 0x4300B5,
1936                 0x4300D2,
1937                 0x4300B1,
1938                 0x4300B1
1939         };
1940         struct perf_event *event;
1941         int i;
1942
1943         /*
1944          * The Errata requires below steps:
1945          * 1) Clear MSR_IA32_PEBS_ENABLE and MSR_CORE_PERF_GLOBAL_CTRL;
1946          * 2) Configure 4 PERFEVTSELx with the magic events and clear
1947          *    the corresponding PMCx;
1948          * 3) set bit0~bit3 of MSR_CORE_PERF_GLOBAL_CTRL;
1949          * 4) Clear MSR_CORE_PERF_GLOBAL_CTRL;
1950          * 5) Clear 4 pairs of ERFEVTSELx and PMCx;
1951          */
1952
1953         /*
1954          * The real steps we choose are a little different from above.
1955          * A) To reduce MSR operations, we don't run step 1) as they
1956          *    are already cleared before this function is called;
1957          * B) Call x86_perf_event_update to save PMCx before configuring
1958          *    PERFEVTSELx with magic number;
1959          * C) With step 5), we do clear only when the PERFEVTSELx is
1960          *    not used currently.
1961          * D) Call x86_perf_event_set_period to restore PMCx;
1962          */
1963
1964         /* We always operate 4 pairs of PERF Counters */
1965         for (i = 0; i < 4; i++) {
1966                 event = cpuc->events[i];
1967                 if (event)
1968                         x86_perf_event_update(event);
1969         }
1970
1971         for (i = 0; i < 4; i++) {
1972                 wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, nhm_magic[i]);
1973                 wrmsrl(MSR_ARCH_PERFMON_PERFCTR0 + i, 0x0);
1974         }
1975
1976         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0xf);
1977         wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0x0);
1978
1979         for (i = 0; i < 4; i++) {
1980                 event = cpuc->events[i];
1981
1982                 if (event) {
1983                         x86_perf_event_set_period(event);
1984                         __x86_pmu_enable_event(&event->hw,
1985                                         ARCH_PERFMON_EVENTSEL_ENABLE);
1986                 } else
1987                         wrmsrl(MSR_ARCH_PERFMON_EVENTSEL0 + i, 0x0);
1988         }
1989 }
1990
1991 static void intel_pmu_nhm_enable_all(int added)
1992 {
1993         if (added)
1994                 intel_pmu_nhm_workaround();
1995         intel_pmu_enable_all(added);
1996 }
1997
1998 static inline u64 intel_pmu_get_status(void)
1999 {
2000         u64 status;
2001
2002         rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
2003
2004         return status;
2005 }
2006
2007 static inline void intel_pmu_ack_status(u64 ack)
2008 {
2009         wrmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, ack);
2010 }
2011
2012 static void intel_pmu_disable_fixed(struct hw_perf_event *hwc)
2013 {
2014         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2015         u64 ctrl_val, mask;
2016
2017         mask = 0xfULL << (idx * 4);
2018
2019         rdmsrl(hwc->config_base, ctrl_val);
2020         ctrl_val &= ~mask;
2021         wrmsrl(hwc->config_base, ctrl_val);
2022 }
2023
2024 static inline bool event_is_checkpointed(struct perf_event *event)
2025 {
2026         return (event->hw.config & HSW_IN_TX_CHECKPOINTED) != 0;
2027 }
2028
2029 static void intel_pmu_disable_event(struct perf_event *event)
2030 {
2031         struct hw_perf_event *hwc = &event->hw;
2032         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2033
2034         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2035                 intel_pmu_disable_bts();
2036                 intel_pmu_drain_bts_buffer();
2037                 return;
2038         }
2039
2040         cpuc->intel_ctrl_guest_mask &= ~(1ull << hwc->idx);
2041         cpuc->intel_ctrl_host_mask &= ~(1ull << hwc->idx);
2042         cpuc->intel_cp_status &= ~(1ull << hwc->idx);
2043
2044         if (unlikely(event->attr.precise_ip))
2045                 intel_pmu_pebs_disable(event);
2046
2047         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2048                 intel_pmu_disable_fixed(hwc);
2049                 return;
2050         }
2051
2052         x86_pmu_disable_event(event);
2053 }
2054
2055 static void intel_pmu_del_event(struct perf_event *event)
2056 {
2057         if (needs_branch_stack(event))
2058                 intel_pmu_lbr_del(event);
2059         if (event->attr.precise_ip)
2060                 intel_pmu_pebs_del(event);
2061 }
2062
2063 static void intel_pmu_read_event(struct perf_event *event)
2064 {
2065         if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2066                 intel_pmu_auto_reload_read(event);
2067         else
2068                 x86_perf_event_update(event);
2069 }
2070
2071 static void intel_pmu_enable_fixed(struct perf_event *event)
2072 {
2073         struct hw_perf_event *hwc = &event->hw;
2074         int idx = hwc->idx - INTEL_PMC_IDX_FIXED;
2075         u64 ctrl_val, mask, bits = 0;
2076
2077         /*
2078          * Enable IRQ generation (0x8), if not PEBS,
2079          * and enable ring-3 counting (0x2) and ring-0 counting (0x1)
2080          * if requested:
2081          */
2082         if (!event->attr.precise_ip)
2083                 bits |= 0x8;
2084         if (hwc->config & ARCH_PERFMON_EVENTSEL_USR)
2085                 bits |= 0x2;
2086         if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
2087                 bits |= 0x1;
2088
2089         /*
2090          * ANY bit is supported in v3 and up
2091          */
2092         if (x86_pmu.version > 2 && hwc->config & ARCH_PERFMON_EVENTSEL_ANY)
2093                 bits |= 0x4;
2094
2095         bits <<= (idx * 4);
2096         mask = 0xfULL << (idx * 4);
2097
2098         rdmsrl(hwc->config_base, ctrl_val);
2099         ctrl_val &= ~mask;
2100         ctrl_val |= bits;
2101         wrmsrl(hwc->config_base, ctrl_val);
2102 }
2103
2104 static void intel_pmu_enable_event(struct perf_event *event)
2105 {
2106         struct hw_perf_event *hwc = &event->hw;
2107         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2108
2109         if (unlikely(hwc->idx == INTEL_PMC_IDX_FIXED_BTS)) {
2110                 if (!__this_cpu_read(cpu_hw_events.enabled))
2111                         return;
2112
2113                 intel_pmu_enable_bts(hwc->config);
2114                 return;
2115         }
2116
2117         if (event->attr.exclude_host)
2118                 cpuc->intel_ctrl_guest_mask |= (1ull << hwc->idx);
2119         if (event->attr.exclude_guest)
2120                 cpuc->intel_ctrl_host_mask |= (1ull << hwc->idx);
2121
2122         if (unlikely(event_is_checkpointed(event)))
2123                 cpuc->intel_cp_status |= (1ull << hwc->idx);
2124
2125         if (unlikely(event->attr.precise_ip))
2126                 intel_pmu_pebs_enable(event);
2127
2128         if (unlikely(hwc->config_base == MSR_ARCH_PERFMON_FIXED_CTR_CTRL)) {
2129                 intel_pmu_enable_fixed(event);
2130                 return;
2131         }
2132
2133         __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
2134 }
2135
2136 static void intel_pmu_add_event(struct perf_event *event)
2137 {
2138         if (event->attr.precise_ip)
2139                 intel_pmu_pebs_add(event);
2140         if (needs_branch_stack(event))
2141                 intel_pmu_lbr_add(event);
2142 }
2143
2144 /*
2145  * Save and restart an expired event. Called by NMI contexts,
2146  * so it has to be careful about preempting normal event ops:
2147  */
2148 int intel_pmu_save_and_restart(struct perf_event *event)
2149 {
2150         x86_perf_event_update(event);
2151         /*
2152          * For a checkpointed counter always reset back to 0.  This
2153          * avoids a situation where the counter overflows, aborts the
2154          * transaction and is then set back to shortly before the
2155          * overflow, and overflows and aborts again.
2156          */
2157         if (unlikely(event_is_checkpointed(event))) {
2158                 /* No race with NMIs because the counter should not be armed */
2159                 wrmsrl(event->hw.event_base, 0);
2160                 local64_set(&event->hw.prev_count, 0);
2161         }
2162         return x86_perf_event_set_period(event);
2163 }
2164
2165 static void intel_pmu_reset(void)
2166 {
2167         struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2168         unsigned long flags;
2169         int idx;
2170
2171         if (!x86_pmu.num_counters)
2172                 return;
2173
2174         local_irq_save(flags);
2175
2176         pr_info("clearing PMU state on CPU#%d\n", smp_processor_id());
2177
2178         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
2179                 wrmsrl_safe(x86_pmu_config_addr(idx), 0ull);
2180                 wrmsrl_safe(x86_pmu_event_addr(idx),  0ull);
2181         }
2182         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++)
2183                 wrmsrl_safe(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, 0ull);
2184
2185         if (ds)
2186                 ds->bts_index = ds->bts_buffer_base;
2187
2188         /* Ack all overflows and disable fixed counters */
2189         if (x86_pmu.version >= 2) {
2190                 intel_pmu_ack_status(intel_pmu_get_status());
2191                 wrmsrl(MSR_CORE_PERF_GLOBAL_CTRL, 0);
2192         }
2193
2194         /* Reset LBRs and LBR freezing */
2195         if (x86_pmu.lbr_nr) {
2196                 update_debugctlmsr(get_debugctlmsr() &
2197                         ~(DEBUGCTLMSR_FREEZE_LBRS_ON_PMI|DEBUGCTLMSR_LBR));
2198         }
2199
2200         local_irq_restore(flags);
2201 }
2202
2203 /*
2204  * This handler is triggered by the local APIC, so the APIC IRQ handling
2205  * rules apply:
2206  */
2207 static int intel_pmu_handle_irq(struct pt_regs *regs)
2208 {
2209         struct perf_sample_data data;
2210         struct cpu_hw_events *cpuc;
2211         int bit, loops;
2212         u64 status;
2213         int handled;
2214         int pmu_enabled;
2215
2216         cpuc = this_cpu_ptr(&cpu_hw_events);
2217
2218         /*
2219          * Save the PMU state.
2220          * It needs to be restored when leaving the handler.
2221          */
2222         pmu_enabled = cpuc->enabled;
2223         /*
2224          * No known reason to not always do late ACK,
2225          * but just in case do it opt-in.
2226          */
2227         if (!x86_pmu.late_ack)
2228                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2229         intel_bts_disable_local();
2230         cpuc->enabled = 0;
2231         __intel_pmu_disable_all();
2232         handled = intel_pmu_drain_bts_buffer();
2233         handled += intel_bts_interrupt();
2234         status = intel_pmu_get_status();
2235         if (!status)
2236                 goto done;
2237
2238         loops = 0;
2239 again:
2240         intel_pmu_lbr_read();
2241         intel_pmu_ack_status(status);
2242         if (++loops > 100) {
2243                 static bool warned = false;
2244                 if (!warned) {
2245                         WARN(1, "perfevents: irq loop stuck!\n");
2246                         perf_event_print_debug();
2247                         warned = true;
2248                 }
2249                 intel_pmu_reset();
2250                 goto done;
2251         }
2252
2253         inc_irq_stat(apic_perf_irqs);
2254
2255
2256         /*
2257          * Ignore a range of extra bits in status that do not indicate
2258          * overflow by themselves.
2259          */
2260         status &= ~(GLOBAL_STATUS_COND_CHG |
2261                     GLOBAL_STATUS_ASIF |
2262                     GLOBAL_STATUS_LBRS_FROZEN);
2263         if (!status)
2264                 goto done;
2265         /*
2266          * In case multiple PEBS events are sampled at the same time,
2267          * it is possible to have GLOBAL_STATUS bit 62 set indicating
2268          * PEBS buffer overflow and also seeing at most 3 PEBS counters
2269          * having their bits set in the status register. This is a sign
2270          * that there was at least one PEBS record pending at the time
2271          * of the PMU interrupt. PEBS counters must only be processed
2272          * via the drain_pebs() calls and not via the regular sample
2273          * processing loop coming after that the function, otherwise
2274          * phony regular samples may be generated in the sampling buffer
2275          * not marked with the EXACT tag. Another possibility is to have
2276          * one PEBS event and at least one non-PEBS event whic hoverflows
2277          * while PEBS has armed. In this case, bit 62 of GLOBAL_STATUS will
2278          * not be set, yet the overflow status bit for the PEBS counter will
2279          * be on Skylake.
2280          *
2281          * To avoid this problem, we systematically ignore the PEBS-enabled
2282          * counters from the GLOBAL_STATUS mask and we always process PEBS
2283          * events via drain_pebs().
2284          */
2285         if (x86_pmu.flags & PMU_FL_PEBS_ALL)
2286                 status &= ~cpuc->pebs_enabled;
2287         else
2288                 status &= ~(cpuc->pebs_enabled & PEBS_COUNTER_MASK);
2289
2290         /*
2291          * PEBS overflow sets bit 62 in the global status register
2292          */
2293         if (__test_and_clear_bit(62, (unsigned long *)&status)) {
2294                 handled++;
2295                 x86_pmu.drain_pebs(regs);
2296                 status &= x86_pmu.intel_ctrl | GLOBAL_STATUS_TRACE_TOPAPMI;
2297         }
2298
2299         /*
2300          * Intel PT
2301          */
2302         if (__test_and_clear_bit(55, (unsigned long *)&status)) {
2303                 handled++;
2304                 intel_pt_interrupt();
2305         }
2306
2307         /*
2308          * Checkpointed counters can lead to 'spurious' PMIs because the
2309          * rollback caused by the PMI will have cleared the overflow status
2310          * bit. Therefore always force probe these counters.
2311          */
2312         status |= cpuc->intel_cp_status;
2313
2314         for_each_set_bit(bit, (unsigned long *)&status, X86_PMC_IDX_MAX) {
2315                 struct perf_event *event = cpuc->events[bit];
2316
2317                 handled++;
2318
2319                 if (!test_bit(bit, cpuc->active_mask))
2320                         continue;
2321
2322                 if (!intel_pmu_save_and_restart(event))
2323                         continue;
2324
2325                 perf_sample_data_init(&data, 0, event->hw.last_period);
2326
2327                 if (has_branch_stack(event))
2328                         data.br_stack = &cpuc->lbr_stack;
2329
2330                 if (perf_event_overflow(event, &data, regs))
2331                         x86_pmu_stop(event, 0);
2332         }
2333
2334         /*
2335          * Repeat if there is more work to be done:
2336          */
2337         status = intel_pmu_get_status();
2338         if (status)
2339                 goto again;
2340
2341 done:
2342         /* Only restore PMU state when it's active. See x86_pmu_disable(). */
2343         cpuc->enabled = pmu_enabled;
2344         if (pmu_enabled)
2345                 __intel_pmu_enable_all(0, true);
2346         intel_bts_enable_local();
2347
2348         /*
2349          * Only unmask the NMI after the overflow counters
2350          * have been reset. This avoids spurious NMIs on
2351          * Haswell CPUs.
2352          */
2353         if (x86_pmu.late_ack)
2354                 apic_write(APIC_LVTPC, APIC_DM_NMI);
2355         return handled;
2356 }
2357
2358 static struct event_constraint *
2359 intel_bts_constraints(struct perf_event *event)
2360 {
2361         struct hw_perf_event *hwc = &event->hw;
2362         unsigned int hw_event, bts_event;
2363
2364         if (event->attr.freq)
2365                 return NULL;
2366
2367         hw_event = hwc->config & INTEL_ARCH_EVENT_MASK;
2368         bts_event = x86_pmu.event_map(PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
2369
2370         if (unlikely(hw_event == bts_event && hwc->sample_period == 1))
2371                 return &bts_constraint;
2372
2373         return NULL;
2374 }
2375
2376 static int intel_alt_er(int idx, u64 config)
2377 {
2378         int alt_idx = idx;
2379
2380         if (!(x86_pmu.flags & PMU_FL_HAS_RSP_1))
2381                 return idx;
2382
2383         if (idx == EXTRA_REG_RSP_0)
2384                 alt_idx = EXTRA_REG_RSP_1;
2385
2386         if (idx == EXTRA_REG_RSP_1)
2387                 alt_idx = EXTRA_REG_RSP_0;
2388
2389         if (config & ~x86_pmu.extra_regs[alt_idx].valid_mask)
2390                 return idx;
2391
2392         return alt_idx;
2393 }
2394
2395 static void intel_fixup_er(struct perf_event *event, int idx)
2396 {
2397         event->hw.extra_reg.idx = idx;
2398
2399         if (idx == EXTRA_REG_RSP_0) {
2400                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2401                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_0].event;
2402                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_0;
2403         } else if (idx == EXTRA_REG_RSP_1) {
2404                 event->hw.config &= ~INTEL_ARCH_EVENT_MASK;
2405                 event->hw.config |= x86_pmu.extra_regs[EXTRA_REG_RSP_1].event;
2406                 event->hw.extra_reg.reg = MSR_OFFCORE_RSP_1;
2407         }
2408 }
2409
2410 /*
2411  * manage allocation of shared extra msr for certain events
2412  *
2413  * sharing can be:
2414  * per-cpu: to be shared between the various events on a single PMU
2415  * per-core: per-cpu + shared by HT threads
2416  */
2417 static struct event_constraint *
2418 __intel_shared_reg_get_constraints(struct cpu_hw_events *cpuc,
2419                                    struct perf_event *event,
2420                                    struct hw_perf_event_extra *reg)
2421 {
2422         struct event_constraint *c = &emptyconstraint;
2423         struct er_account *era;
2424         unsigned long flags;
2425         int idx = reg->idx;
2426
2427         /*
2428          * reg->alloc can be set due to existing state, so for fake cpuc we
2429          * need to ignore this, otherwise we might fail to allocate proper fake
2430          * state for this extra reg constraint. Also see the comment below.
2431          */
2432         if (reg->alloc && !cpuc->is_fake)
2433                 return NULL; /* call x86_get_event_constraint() */
2434
2435 again:
2436         era = &cpuc->shared_regs->regs[idx];
2437         /*
2438          * we use spin_lock_irqsave() to avoid lockdep issues when
2439          * passing a fake cpuc
2440          */
2441         raw_spin_lock_irqsave(&era->lock, flags);
2442
2443         if (!atomic_read(&era->ref) || era->config == reg->config) {
2444
2445                 /*
2446                  * If its a fake cpuc -- as per validate_{group,event}() we
2447                  * shouldn't touch event state and we can avoid doing so
2448                  * since both will only call get_event_constraints() once
2449                  * on each event, this avoids the need for reg->alloc.
2450                  *
2451                  * Not doing the ER fixup will only result in era->reg being
2452                  * wrong, but since we won't actually try and program hardware
2453                  * this isn't a problem either.
2454                  */
2455                 if (!cpuc->is_fake) {
2456                         if (idx != reg->idx)
2457                                 intel_fixup_er(event, idx);
2458
2459                         /*
2460                          * x86_schedule_events() can call get_event_constraints()
2461                          * multiple times on events in the case of incremental
2462                          * scheduling(). reg->alloc ensures we only do the ER
2463                          * allocation once.
2464                          */
2465                         reg->alloc = 1;
2466                 }
2467
2468                 /* lock in msr value */
2469                 era->config = reg->config;
2470                 era->reg = reg->reg;
2471
2472                 /* one more user */
2473                 atomic_inc(&era->ref);
2474
2475                 /*
2476                  * need to call x86_get_event_constraint()
2477                  * to check if associated event has constraints
2478                  */
2479                 c = NULL;
2480         } else {
2481                 idx = intel_alt_er(idx, reg->config);
2482                 if (idx != reg->idx) {
2483                         raw_spin_unlock_irqrestore(&era->lock, flags);
2484                         goto again;
2485                 }
2486         }
2487         raw_spin_unlock_irqrestore(&era->lock, flags);
2488
2489         return c;
2490 }
2491
2492 static void
2493 __intel_shared_reg_put_constraints(struct cpu_hw_events *cpuc,
2494                                    struct hw_perf_event_extra *reg)
2495 {
2496         struct er_account *era;
2497
2498         /*
2499          * Only put constraint if extra reg was actually allocated. Also takes
2500          * care of event which do not use an extra shared reg.
2501          *
2502          * Also, if this is a fake cpuc we shouldn't touch any event state
2503          * (reg->alloc) and we don't care about leaving inconsistent cpuc state
2504          * either since it'll be thrown out.
2505          */
2506         if (!reg->alloc || cpuc->is_fake)
2507                 return;
2508
2509         era = &cpuc->shared_regs->regs[reg->idx];
2510
2511         /* one fewer user */
2512         atomic_dec(&era->ref);
2513
2514         /* allocate again next time */
2515         reg->alloc = 0;
2516 }
2517
2518 static struct event_constraint *
2519 intel_shared_regs_constraints(struct cpu_hw_events *cpuc,
2520                               struct perf_event *event)
2521 {
2522         struct event_constraint *c = NULL, *d;
2523         struct hw_perf_event_extra *xreg, *breg;
2524
2525         xreg = &event->hw.extra_reg;
2526         if (xreg->idx != EXTRA_REG_NONE) {
2527                 c = __intel_shared_reg_get_constraints(cpuc, event, xreg);
2528                 if (c == &emptyconstraint)
2529                         return c;
2530         }
2531         breg = &event->hw.branch_reg;
2532         if (breg->idx != EXTRA_REG_NONE) {
2533                 d = __intel_shared_reg_get_constraints(cpuc, event, breg);
2534                 if (d == &emptyconstraint) {
2535                         __intel_shared_reg_put_constraints(cpuc, xreg);
2536                         c = d;
2537                 }
2538         }
2539         return c;
2540 }
2541
2542 struct event_constraint *
2543 x86_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2544                           struct perf_event *event)
2545 {
2546         struct event_constraint *c;
2547
2548         if (x86_pmu.event_constraints) {
2549                 for_each_event_constraint(c, x86_pmu.event_constraints) {
2550                         if ((event->hw.config & c->cmask) == c->code) {
2551                                 event->hw.flags |= c->flags;
2552                                 return c;
2553                         }
2554                 }
2555         }
2556
2557         return &unconstrained;
2558 }
2559
2560 static struct event_constraint *
2561 __intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2562                             struct perf_event *event)
2563 {
2564         struct event_constraint *c;
2565
2566         c = intel_bts_constraints(event);
2567         if (c)
2568                 return c;
2569
2570         c = intel_shared_regs_constraints(cpuc, event);
2571         if (c)
2572                 return c;
2573
2574         c = intel_pebs_constraints(event);
2575         if (c)
2576                 return c;
2577
2578         return x86_get_event_constraints(cpuc, idx, event);
2579 }
2580
2581 static void
2582 intel_start_scheduling(struct cpu_hw_events *cpuc)
2583 {
2584         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2585         struct intel_excl_states *xl;
2586         int tid = cpuc->excl_thread_id;
2587
2588         /*
2589          * nothing needed if in group validation mode
2590          */
2591         if (cpuc->is_fake || !is_ht_workaround_enabled())
2592                 return;
2593
2594         /*
2595          * no exclusion needed
2596          */
2597         if (WARN_ON_ONCE(!excl_cntrs))
2598                 return;
2599
2600         xl = &excl_cntrs->states[tid];
2601
2602         xl->sched_started = true;
2603         /*
2604          * lock shared state until we are done scheduling
2605          * in stop_event_scheduling()
2606          * makes scheduling appear as a transaction
2607          */
2608         raw_spin_lock(&excl_cntrs->lock);
2609 }
2610
2611 static void intel_commit_scheduling(struct cpu_hw_events *cpuc, int idx, int cntr)
2612 {
2613         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2614         struct event_constraint *c = cpuc->event_constraint[idx];
2615         struct intel_excl_states *xl;
2616         int tid = cpuc->excl_thread_id;
2617
2618         if (cpuc->is_fake || !is_ht_workaround_enabled())
2619                 return;
2620
2621         if (WARN_ON_ONCE(!excl_cntrs))
2622                 return;
2623
2624         if (!(c->flags & PERF_X86_EVENT_DYNAMIC))
2625                 return;
2626
2627         xl = &excl_cntrs->states[tid];
2628
2629         lockdep_assert_held(&excl_cntrs->lock);
2630
2631         if (c->flags & PERF_X86_EVENT_EXCL)
2632                 xl->state[cntr] = INTEL_EXCL_EXCLUSIVE;
2633         else
2634                 xl->state[cntr] = INTEL_EXCL_SHARED;
2635 }
2636
2637 static void
2638 intel_stop_scheduling(struct cpu_hw_events *cpuc)
2639 {
2640         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2641         struct intel_excl_states *xl;
2642         int tid = cpuc->excl_thread_id;
2643
2644         /*
2645          * nothing needed if in group validation mode
2646          */
2647         if (cpuc->is_fake || !is_ht_workaround_enabled())
2648                 return;
2649         /*
2650          * no exclusion needed
2651          */
2652         if (WARN_ON_ONCE(!excl_cntrs))
2653                 return;
2654
2655         xl = &excl_cntrs->states[tid];
2656
2657         xl->sched_started = false;
2658         /*
2659          * release shared state lock (acquired in intel_start_scheduling())
2660          */
2661         raw_spin_unlock(&excl_cntrs->lock);
2662 }
2663
2664 static struct event_constraint *
2665 intel_get_excl_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
2666                            int idx, struct event_constraint *c)
2667 {
2668         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2669         struct intel_excl_states *xlo;
2670         int tid = cpuc->excl_thread_id;
2671         int is_excl, i;
2672
2673         /*
2674          * validating a group does not require
2675          * enforcing cross-thread  exclusion
2676          */
2677         if (cpuc->is_fake || !is_ht_workaround_enabled())
2678                 return c;
2679
2680         /*
2681          * no exclusion needed
2682          */
2683         if (WARN_ON_ONCE(!excl_cntrs))
2684                 return c;
2685
2686         /*
2687          * because we modify the constraint, we need
2688          * to make a copy. Static constraints come
2689          * from static const tables.
2690          *
2691          * only needed when constraint has not yet
2692          * been cloned (marked dynamic)
2693          */
2694         if (!(c->flags & PERF_X86_EVENT_DYNAMIC)) {
2695                 struct event_constraint *cx;
2696
2697                 /*
2698                  * grab pre-allocated constraint entry
2699                  */
2700                 cx = &cpuc->constraint_list[idx];
2701
2702                 /*
2703                  * initialize dynamic constraint
2704                  * with static constraint
2705                  */
2706                 *cx = *c;
2707
2708                 /*
2709                  * mark constraint as dynamic, so we
2710                  * can free it later on
2711                  */
2712                 cx->flags |= PERF_X86_EVENT_DYNAMIC;
2713                 c = cx;
2714         }
2715
2716         /*
2717          * From here on, the constraint is dynamic.
2718          * Either it was just allocated above, or it
2719          * was allocated during a earlier invocation
2720          * of this function
2721          */
2722
2723         /*
2724          * state of sibling HT
2725          */
2726         xlo = &excl_cntrs->states[tid ^ 1];
2727
2728         /*
2729          * event requires exclusive counter access
2730          * across HT threads
2731          */
2732         is_excl = c->flags & PERF_X86_EVENT_EXCL;
2733         if (is_excl && !(event->hw.flags & PERF_X86_EVENT_EXCL_ACCT)) {
2734                 event->hw.flags |= PERF_X86_EVENT_EXCL_ACCT;
2735                 if (!cpuc->n_excl++)
2736                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 1);
2737         }
2738
2739         /*
2740          * Modify static constraint with current dynamic
2741          * state of thread
2742          *
2743          * EXCLUSIVE: sibling counter measuring exclusive event
2744          * SHARED   : sibling counter measuring non-exclusive event
2745          * UNUSED   : sibling counter unused
2746          */
2747         for_each_set_bit(i, c->idxmsk, X86_PMC_IDX_MAX) {
2748                 /*
2749                  * exclusive event in sibling counter
2750                  * our corresponding counter cannot be used
2751                  * regardless of our event
2752                  */
2753                 if (xlo->state[i] == INTEL_EXCL_EXCLUSIVE)
2754                         __clear_bit(i, c->idxmsk);
2755                 /*
2756                  * if measuring an exclusive event, sibling
2757                  * measuring non-exclusive, then counter cannot
2758                  * be used
2759                  */
2760                 if (is_excl && xlo->state[i] == INTEL_EXCL_SHARED)
2761                         __clear_bit(i, c->idxmsk);
2762         }
2763
2764         /*
2765          * recompute actual bit weight for scheduling algorithm
2766          */
2767         c->weight = hweight64(c->idxmsk64);
2768
2769         /*
2770          * if we return an empty mask, then switch
2771          * back to static empty constraint to avoid
2772          * the cost of freeing later on
2773          */
2774         if (c->weight == 0)
2775                 c = &emptyconstraint;
2776
2777         return c;
2778 }
2779
2780 static struct event_constraint *
2781 intel_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
2782                             struct perf_event *event)
2783 {
2784         struct event_constraint *c1 = NULL;
2785         struct event_constraint *c2;
2786
2787         if (idx >= 0) /* fake does < 0 */
2788                 c1 = cpuc->event_constraint[idx];
2789
2790         /*
2791          * first time only
2792          * - static constraint: no change across incremental scheduling calls
2793          * - dynamic constraint: handled by intel_get_excl_constraints()
2794          */
2795         c2 = __intel_get_event_constraints(cpuc, idx, event);
2796         if (c1 && (c1->flags & PERF_X86_EVENT_DYNAMIC)) {
2797                 bitmap_copy(c1->idxmsk, c2->idxmsk, X86_PMC_IDX_MAX);
2798                 c1->weight = c2->weight;
2799                 c2 = c1;
2800         }
2801
2802         if (cpuc->excl_cntrs)
2803                 return intel_get_excl_constraints(cpuc, event, idx, c2);
2804
2805         return c2;
2806 }
2807
2808 static void intel_put_excl_constraints(struct cpu_hw_events *cpuc,
2809                 struct perf_event *event)
2810 {
2811         struct hw_perf_event *hwc = &event->hw;
2812         struct intel_excl_cntrs *excl_cntrs = cpuc->excl_cntrs;
2813         int tid = cpuc->excl_thread_id;
2814         struct intel_excl_states *xl;
2815
2816         /*
2817          * nothing needed if in group validation mode
2818          */
2819         if (cpuc->is_fake)
2820                 return;
2821
2822         if (WARN_ON_ONCE(!excl_cntrs))
2823                 return;
2824
2825         if (hwc->flags & PERF_X86_EVENT_EXCL_ACCT) {
2826                 hwc->flags &= ~PERF_X86_EVENT_EXCL_ACCT;
2827                 if (!--cpuc->n_excl)
2828                         WRITE_ONCE(excl_cntrs->has_exclusive[tid], 0);
2829         }
2830
2831         /*
2832          * If event was actually assigned, then mark the counter state as
2833          * unused now.
2834          */
2835         if (hwc->idx >= 0) {
2836                 xl = &excl_cntrs->states[tid];
2837
2838                 /*
2839                  * put_constraint may be called from x86_schedule_events()
2840                  * which already has the lock held so here make locking
2841                  * conditional.
2842                  */
2843                 if (!xl->sched_started)
2844                         raw_spin_lock(&excl_cntrs->lock);
2845
2846                 xl->state[hwc->idx] = INTEL_EXCL_UNUSED;
2847
2848                 if (!xl->sched_started)
2849                         raw_spin_unlock(&excl_cntrs->lock);
2850         }
2851 }
2852
2853 static void
2854 intel_put_shared_regs_event_constraints(struct cpu_hw_events *cpuc,
2855                                         struct perf_event *event)
2856 {
2857         struct hw_perf_event_extra *reg;
2858
2859         reg = &event->hw.extra_reg;
2860         if (reg->idx != EXTRA_REG_NONE)
2861                 __intel_shared_reg_put_constraints(cpuc, reg);
2862
2863         reg = &event->hw.branch_reg;
2864         if (reg->idx != EXTRA_REG_NONE)
2865                 __intel_shared_reg_put_constraints(cpuc, reg);
2866 }
2867
2868 static void intel_put_event_constraints(struct cpu_hw_events *cpuc,
2869                                         struct perf_event *event)
2870 {
2871         intel_put_shared_regs_event_constraints(cpuc, event);
2872
2873         /*
2874          * is PMU has exclusive counter restrictions, then
2875          * all events are subject to and must call the
2876          * put_excl_constraints() routine
2877          */
2878         if (cpuc->excl_cntrs)
2879                 intel_put_excl_constraints(cpuc, event);
2880 }
2881
2882 static void intel_pebs_aliases_core2(struct perf_event *event)
2883 {
2884         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2885                 /*
2886                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2887                  * (0x003c) so that we can use it with PEBS.
2888                  *
2889                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2890                  * PEBS capable. However we can use INST_RETIRED.ANY_P
2891                  * (0x00c0), which is a PEBS capable event, to get the same
2892                  * count.
2893                  *
2894                  * INST_RETIRED.ANY_P counts the number of cycles that retires
2895                  * CNTMASK instructions. By setting CNTMASK to a value (16)
2896                  * larger than the maximum number of instructions that can be
2897                  * retired per cycle (4) and then inverting the condition, we
2898                  * count all cycles that retire 16 or less instructions, which
2899                  * is every cycle.
2900                  *
2901                  * Thereby we gain a PEBS capable cycle counter.
2902                  */
2903                 u64 alt_config = X86_CONFIG(.event=0xc0, .inv=1, .cmask=16);
2904
2905                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2906                 event->hw.config = alt_config;
2907         }
2908 }
2909
2910 static void intel_pebs_aliases_snb(struct perf_event *event)
2911 {
2912         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2913                 /*
2914                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2915                  * (0x003c) so that we can use it with PEBS.
2916                  *
2917                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2918                  * PEBS capable. However we can use UOPS_RETIRED.ALL
2919                  * (0x01c2), which is a PEBS capable event, to get the same
2920                  * count.
2921                  *
2922                  * UOPS_RETIRED.ALL counts the number of cycles that retires
2923                  * CNTMASK micro-ops. By setting CNTMASK to a value (16)
2924                  * larger than the maximum number of micro-ops that can be
2925                  * retired per cycle (4) and then inverting the condition, we
2926                  * count all cycles that retire 16 or less micro-ops, which
2927                  * is every cycle.
2928                  *
2929                  * Thereby we gain a PEBS capable cycle counter.
2930                  */
2931                 u64 alt_config = X86_CONFIG(.event=0xc2, .umask=0x01, .inv=1, .cmask=16);
2932
2933                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2934                 event->hw.config = alt_config;
2935         }
2936 }
2937
2938 static void intel_pebs_aliases_precdist(struct perf_event *event)
2939 {
2940         if ((event->hw.config & X86_RAW_EVENT_MASK) == 0x003c) {
2941                 /*
2942                  * Use an alternative encoding for CPU_CLK_UNHALTED.THREAD_P
2943                  * (0x003c) so that we can use it with PEBS.
2944                  *
2945                  * The regular CPU_CLK_UNHALTED.THREAD_P event (0x003c) isn't
2946                  * PEBS capable. However we can use INST_RETIRED.PREC_DIST
2947                  * (0x01c0), which is a PEBS capable event, to get the same
2948                  * count.
2949                  *
2950                  * The PREC_DIST event has special support to minimize sample
2951                  * shadowing effects. One drawback is that it can be
2952                  * only programmed on counter 1, but that seems like an
2953                  * acceptable trade off.
2954                  */
2955                 u64 alt_config = X86_CONFIG(.event=0xc0, .umask=0x01, .inv=1, .cmask=16);
2956
2957                 alt_config |= (event->hw.config & ~X86_RAW_EVENT_MASK);
2958                 event->hw.config = alt_config;
2959         }
2960 }
2961
2962 static void intel_pebs_aliases_ivb(struct perf_event *event)
2963 {
2964         if (event->attr.precise_ip < 3)
2965                 return intel_pebs_aliases_snb(event);
2966         return intel_pebs_aliases_precdist(event);
2967 }
2968
2969 static void intel_pebs_aliases_skl(struct perf_event *event)
2970 {
2971         if (event->attr.precise_ip < 3)
2972                 return intel_pebs_aliases_core2(event);
2973         return intel_pebs_aliases_precdist(event);
2974 }
2975
2976 static unsigned long intel_pmu_large_pebs_flags(struct perf_event *event)
2977 {
2978         unsigned long flags = x86_pmu.large_pebs_flags;
2979
2980         if (event->attr.use_clockid)
2981                 flags &= ~PERF_SAMPLE_TIME;
2982         if (!event->attr.exclude_kernel)
2983                 flags &= ~PERF_SAMPLE_REGS_USER;
2984         if (event->attr.sample_regs_user & ~PEBS_REGS)
2985                 flags &= ~(PERF_SAMPLE_REGS_USER | PERF_SAMPLE_REGS_INTR);
2986         return flags;
2987 }
2988
2989 static int intel_pmu_hw_config(struct perf_event *event)
2990 {
2991         int ret = x86_pmu_hw_config(event);
2992
2993         if (ret)
2994                 return ret;
2995
2996         if (event->attr.precise_ip) {
2997                 if (!event->attr.freq) {
2998                         event->hw.flags |= PERF_X86_EVENT_AUTO_RELOAD;
2999                         if (!(event->attr.sample_type &
3000                               ~intel_pmu_large_pebs_flags(event)))
3001                                 event->hw.flags |= PERF_X86_EVENT_LARGE_PEBS;
3002                 }
3003                 if (x86_pmu.pebs_aliases)
3004                         x86_pmu.pebs_aliases(event);
3005
3006                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3007                         event->attr.sample_type |= __PERF_SAMPLE_CALLCHAIN_EARLY;
3008         }
3009
3010         if (needs_branch_stack(event)) {
3011                 ret = intel_pmu_setup_lbr_filter(event);
3012                 if (ret)
3013                         return ret;
3014
3015                 /*
3016                  * BTS is set up earlier in this path, so don't account twice
3017                  */
3018                 if (!intel_pmu_has_bts(event)) {
3019                         /* disallow lbr if conflicting events are present */
3020                         if (x86_add_exclusive(x86_lbr_exclusive_lbr))
3021                                 return -EBUSY;
3022
3023                         event->destroy = hw_perf_lbr_event_destroy;
3024                 }
3025         }
3026
3027         if (event->attr.type != PERF_TYPE_RAW)
3028                 return 0;
3029
3030         if (!(event->attr.config & ARCH_PERFMON_EVENTSEL_ANY))
3031                 return 0;
3032
3033         if (x86_pmu.version < 3)
3034                 return -EINVAL;
3035
3036         if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3037                 return -EACCES;
3038
3039         event->hw.config |= ARCH_PERFMON_EVENTSEL_ANY;
3040
3041         return 0;
3042 }
3043
3044 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
3045 {
3046         if (x86_pmu.guest_get_msrs)
3047                 return x86_pmu.guest_get_msrs(nr);
3048         *nr = 0;
3049         return NULL;
3050 }
3051 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
3052
3053 static struct perf_guest_switch_msr *intel_guest_get_msrs(int *nr)
3054 {
3055         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3056         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3057
3058         arr[0].msr = MSR_CORE_PERF_GLOBAL_CTRL;
3059         arr[0].host = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_guest_mask;
3060         arr[0].guest = x86_pmu.intel_ctrl & ~cpuc->intel_ctrl_host_mask;
3061         /*
3062          * If PMU counter has PEBS enabled it is not enough to disable counter
3063          * on a guest entry since PEBS memory write can overshoot guest entry
3064          * and corrupt guest memory. Disabling PEBS solves the problem.
3065          */
3066         arr[1].msr = MSR_IA32_PEBS_ENABLE;
3067         arr[1].host = cpuc->pebs_enabled;
3068         arr[1].guest = 0;
3069
3070         *nr = 2;
3071         return arr;
3072 }
3073
3074 static struct perf_guest_switch_msr *core_guest_get_msrs(int *nr)
3075 {
3076         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3077         struct perf_guest_switch_msr *arr = cpuc->guest_switch_msrs;
3078         int idx;
3079
3080         for (idx = 0; idx < x86_pmu.num_counters; idx++)  {
3081                 struct perf_event *event = cpuc->events[idx];
3082
3083                 arr[idx].msr = x86_pmu_config_addr(idx);
3084                 arr[idx].host = arr[idx].guest = 0;
3085
3086                 if (!test_bit(idx, cpuc->active_mask))
3087                         continue;
3088
3089                 arr[idx].host = arr[idx].guest =
3090                         event->hw.config | ARCH_PERFMON_EVENTSEL_ENABLE;
3091
3092                 if (event->attr.exclude_host)
3093                         arr[idx].host &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3094                 else if (event->attr.exclude_guest)
3095                         arr[idx].guest &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
3096         }
3097
3098         *nr = x86_pmu.num_counters;
3099         return arr;
3100 }
3101
3102 static void core_pmu_enable_event(struct perf_event *event)
3103 {
3104         if (!event->attr.exclude_host)
3105                 x86_pmu_enable_event(event);
3106 }
3107
3108 static void core_pmu_enable_all(int added)
3109 {
3110         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
3111         int idx;
3112
3113         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
3114                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
3115
3116                 if (!test_bit(idx, cpuc->active_mask) ||
3117                                 cpuc->events[idx]->attr.exclude_host)
3118                         continue;
3119
3120                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
3121         }
3122 }
3123
3124 static int hsw_hw_config(struct perf_event *event)
3125 {
3126         int ret = intel_pmu_hw_config(event);
3127
3128         if (ret)
3129                 return ret;
3130         if (!boot_cpu_has(X86_FEATURE_RTM) && !boot_cpu_has(X86_FEATURE_HLE))
3131                 return 0;
3132         event->hw.config |= event->attr.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED);
3133
3134         /*
3135          * IN_TX/IN_TX-CP filters are not supported by the Haswell PMU with
3136          * PEBS or in ANY thread mode. Since the results are non-sensical forbid
3137          * this combination.
3138          */
3139         if ((event->hw.config & (HSW_IN_TX|HSW_IN_TX_CHECKPOINTED)) &&
3140              ((event->hw.config & ARCH_PERFMON_EVENTSEL_ANY) ||
3141               event->attr.precise_ip > 0))
3142                 return -EOPNOTSUPP;
3143
3144         if (event_is_checkpointed(event)) {
3145                 /*
3146                  * Sampling of checkpointed events can cause situations where
3147                  * the CPU constantly aborts because of a overflow, which is
3148                  * then checkpointed back and ignored. Forbid checkpointing
3149                  * for sampling.
3150                  *
3151                  * But still allow a long sampling period, so that perf stat
3152                  * from KVM works.
3153                  */
3154                 if (event->attr.sample_period > 0 &&
3155                     event->attr.sample_period < 0x7fffffff)
3156                         return -EOPNOTSUPP;
3157         }
3158         return 0;
3159 }
3160
3161 static struct event_constraint counter0_constraint =
3162                         INTEL_ALL_EVENT_CONSTRAINT(0, 0x1);
3163
3164 static struct event_constraint counter2_constraint =
3165                         EVENT_CONSTRAINT(0, 0x4, 0);
3166
3167 static struct event_constraint *
3168 hsw_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3169                           struct perf_event *event)
3170 {
3171         struct event_constraint *c;
3172
3173         c = intel_get_event_constraints(cpuc, idx, event);
3174
3175         /* Handle special quirk on in_tx_checkpointed only in counter 2 */
3176         if (event->hw.config & HSW_IN_TX_CHECKPOINTED) {
3177                 if (c->idxmsk64 & (1U << 2))
3178                         return &counter2_constraint;
3179                 return &emptyconstraint;
3180         }
3181
3182         return c;
3183 }
3184
3185 static struct event_constraint *
3186 glp_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
3187                           struct perf_event *event)
3188 {
3189         struct event_constraint *c;
3190
3191         /* :ppp means to do reduced skid PEBS which is PMC0 only. */
3192         if (event->attr.precise_ip == 3)
3193                 return &counter0_constraint;
3194
3195         c = intel_get_event_constraints(cpuc, idx, event);
3196
3197         return c;
3198 }
3199
3200 /*
3201  * Broadwell:
3202  *
3203  * The INST_RETIRED.ALL period always needs to have lowest 6 bits cleared
3204  * (BDM55) and it must not use a period smaller than 100 (BDM11). We combine
3205  * the two to enforce a minimum period of 128 (the smallest value that has bits
3206  * 0-5 cleared and >= 100).
3207  *
3208  * Because of how the code in x86_perf_event_set_period() works, the truncation
3209  * of the lower 6 bits is 'harmless' as we'll occasionally add a longer period
3210  * to make up for the 'lost' events due to carrying the 'error' in period_left.
3211  *
3212  * Therefore the effective (average) period matches the requested period,
3213  * despite coarser hardware granularity.
3214  */
3215 static u64 bdw_limit_period(struct perf_event *event, u64 left)
3216 {
3217         if ((event->hw.config & INTEL_ARCH_EVENT_MASK) ==
3218                         X86_CONFIG(.event=0xc0, .umask=0x01)) {
3219                 if (left < 128)
3220                         left = 128;
3221                 left &= ~0x3fULL;
3222         }
3223         return left;
3224 }
3225
3226 PMU_FORMAT_ATTR(event,  "config:0-7"    );
3227 PMU_FORMAT_ATTR(umask,  "config:8-15"   );
3228 PMU_FORMAT_ATTR(edge,   "config:18"     );
3229 PMU_FORMAT_ATTR(pc,     "config:19"     );
3230 PMU_FORMAT_ATTR(any,    "config:21"     ); /* v3 + */
3231 PMU_FORMAT_ATTR(inv,    "config:23"     );
3232 PMU_FORMAT_ATTR(cmask,  "config:24-31"  );
3233 PMU_FORMAT_ATTR(in_tx,  "config:32");
3234 PMU_FORMAT_ATTR(in_tx_cp, "config:33");
3235
3236 static struct attribute *intel_arch_formats_attr[] = {
3237         &format_attr_event.attr,
3238         &format_attr_umask.attr,
3239         &format_attr_edge.attr,
3240         &format_attr_pc.attr,
3241         &format_attr_inv.attr,
3242         &format_attr_cmask.attr,
3243         NULL,
3244 };
3245
3246 ssize_t intel_event_sysfs_show(char *page, u64 config)
3247 {
3248         u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT);
3249
3250         return x86_event_sysfs_show(page, config, event);
3251 }
3252
3253 struct intel_shared_regs *allocate_shared_regs(int cpu)
3254 {
3255         struct intel_shared_regs *regs;
3256         int i;
3257
3258         regs = kzalloc_node(sizeof(struct intel_shared_regs),
3259                             GFP_KERNEL, cpu_to_node(cpu));
3260         if (regs) {
3261                 /*
3262                  * initialize the locks to keep lockdep happy
3263                  */
3264                 for (i = 0; i < EXTRA_REG_MAX; i++)
3265                         raw_spin_lock_init(&regs->regs[i].lock);
3266
3267                 regs->core_id = -1;
3268         }
3269         return regs;
3270 }
3271
3272 static struct intel_excl_cntrs *allocate_excl_cntrs(int cpu)
3273 {
3274         struct intel_excl_cntrs *c;
3275
3276         c = kzalloc_node(sizeof(struct intel_excl_cntrs),
3277                          GFP_KERNEL, cpu_to_node(cpu));
3278         if (c) {
3279                 raw_spin_lock_init(&c->lock);
3280                 c->core_id = -1;
3281         }
3282         return c;
3283 }
3284
3285 static int intel_pmu_cpu_prepare(int cpu)
3286 {
3287         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3288
3289         if (x86_pmu.extra_regs || x86_pmu.lbr_sel_map) {
3290                 cpuc->shared_regs = allocate_shared_regs(cpu);
3291                 if (!cpuc->shared_regs)
3292                         goto err;
3293         }
3294
3295         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3296                 size_t sz = X86_PMC_IDX_MAX * sizeof(struct event_constraint);
3297
3298                 cpuc->constraint_list = kzalloc(sz, GFP_KERNEL);
3299                 if (!cpuc->constraint_list)
3300                         goto err_shared_regs;
3301
3302                 cpuc->excl_cntrs = allocate_excl_cntrs(cpu);
3303                 if (!cpuc->excl_cntrs)
3304                         goto err_constraint_list;
3305
3306                 cpuc->excl_thread_id = 0;
3307         }
3308
3309         return 0;
3310
3311 err_constraint_list:
3312         kfree(cpuc->constraint_list);
3313         cpuc->constraint_list = NULL;
3314
3315 err_shared_regs:
3316         kfree(cpuc->shared_regs);
3317         cpuc->shared_regs = NULL;
3318
3319 err:
3320         return -ENOMEM;
3321 }
3322
3323 static void flip_smm_bit(void *data)
3324 {
3325         unsigned long set = *(unsigned long *)data;
3326
3327         if (set > 0) {
3328                 msr_set_bit(MSR_IA32_DEBUGCTLMSR,
3329                             DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3330         } else {
3331                 msr_clear_bit(MSR_IA32_DEBUGCTLMSR,
3332                               DEBUGCTLMSR_FREEZE_IN_SMM_BIT);
3333         }
3334 }
3335
3336 static void intel_pmu_cpu_starting(int cpu)
3337 {
3338         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3339         int core_id = topology_core_id(cpu);
3340         int i;
3341
3342         init_debug_store_on_cpu(cpu);
3343         /*
3344          * Deal with CPUs that don't clear their LBRs on power-up.
3345          */
3346         intel_pmu_lbr_reset();
3347
3348         cpuc->lbr_sel = NULL;
3349
3350         if (x86_pmu.version > 1)
3351                 flip_smm_bit(&x86_pmu.attr_freeze_on_smi);
3352
3353         if (!cpuc->shared_regs)
3354                 return;
3355
3356         if (!(x86_pmu.flags & PMU_FL_NO_HT_SHARING)) {
3357                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3358                         struct intel_shared_regs *pc;
3359
3360                         pc = per_cpu(cpu_hw_events, i).shared_regs;
3361                         if (pc && pc->core_id == core_id) {
3362                                 cpuc->kfree_on_online[0] = cpuc->shared_regs;
3363                                 cpuc->shared_regs = pc;
3364                                 break;
3365                         }
3366                 }
3367                 cpuc->shared_regs->core_id = core_id;
3368                 cpuc->shared_regs->refcnt++;
3369         }
3370
3371         if (x86_pmu.lbr_sel_map)
3372                 cpuc->lbr_sel = &cpuc->shared_regs->regs[EXTRA_REG_LBR];
3373
3374         if (x86_pmu.flags & PMU_FL_EXCL_CNTRS) {
3375                 for_each_cpu(i, topology_sibling_cpumask(cpu)) {
3376                         struct cpu_hw_events *sibling;
3377                         struct intel_excl_cntrs *c;
3378
3379                         sibling = &per_cpu(cpu_hw_events, i);
3380                         c = sibling->excl_cntrs;
3381                         if (c && c->core_id == core_id) {
3382                                 cpuc->kfree_on_online[1] = cpuc->excl_cntrs;
3383                                 cpuc->excl_cntrs = c;
3384                                 if (!sibling->excl_thread_id)
3385                                         cpuc->excl_thread_id = 1;
3386                                 break;
3387                         }
3388                 }
3389                 cpuc->excl_cntrs->core_id = core_id;
3390                 cpuc->excl_cntrs->refcnt++;
3391         }
3392 }
3393
3394 static void free_excl_cntrs(int cpu)
3395 {
3396         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3397         struct intel_excl_cntrs *c;
3398
3399         c = cpuc->excl_cntrs;
3400         if (c) {
3401                 if (c->core_id == -1 || --c->refcnt == 0)
3402                         kfree(c);
3403                 cpuc->excl_cntrs = NULL;
3404                 kfree(cpuc->constraint_list);
3405                 cpuc->constraint_list = NULL;
3406         }
3407 }
3408
3409 static void intel_pmu_cpu_dying(int cpu)
3410 {
3411         struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
3412         struct intel_shared_regs *pc;
3413
3414         pc = cpuc->shared_regs;
3415         if (pc) {
3416                 if (pc->core_id == -1 || --pc->refcnt == 0)
3417                         kfree(pc);
3418                 cpuc->shared_regs = NULL;
3419         }
3420
3421         free_excl_cntrs(cpu);
3422
3423         fini_debug_store_on_cpu(cpu);
3424 }
3425
3426 static void intel_pmu_sched_task(struct perf_event_context *ctx,
3427                                  bool sched_in)
3428 {
3429         intel_pmu_pebs_sched_task(ctx, sched_in);
3430         intel_pmu_lbr_sched_task(ctx, sched_in);
3431 }
3432
3433 PMU_FORMAT_ATTR(offcore_rsp, "config1:0-63");
3434
3435 PMU_FORMAT_ATTR(ldlat, "config1:0-15");
3436
3437 PMU_FORMAT_ATTR(frontend, "config1:0-23");
3438
3439 static struct attribute *intel_arch3_formats_attr[] = {
3440         &format_attr_event.attr,
3441         &format_attr_umask.attr,
3442         &format_attr_edge.attr,
3443         &format_attr_pc.attr,
3444         &format_attr_any.attr,
3445         &format_attr_inv.attr,
3446         &format_attr_cmask.attr,
3447         NULL,
3448 };
3449
3450 static struct attribute *hsw_format_attr[] = {
3451         &format_attr_in_tx.attr,
3452         &format_attr_in_tx_cp.attr,
3453         &format_attr_offcore_rsp.attr,
3454         &format_attr_ldlat.attr,
3455         NULL
3456 };
3457
3458 static struct attribute *nhm_format_attr[] = {
3459         &format_attr_offcore_rsp.attr,
3460         &format_attr_ldlat.attr,
3461         NULL
3462 };
3463
3464 static struct attribute *slm_format_attr[] = {
3465         &format_attr_offcore_rsp.attr,
3466         NULL
3467 };
3468
3469 static struct attribute *skl_format_attr[] = {
3470         &format_attr_frontend.attr,
3471         NULL,
3472 };
3473
3474 static __initconst const struct x86_pmu core_pmu = {
3475         .name                   = "core",
3476         .handle_irq             = x86_pmu_handle_irq,
3477         .disable_all            = x86_pmu_disable_all,
3478         .enable_all             = core_pmu_enable_all,
3479         .enable                 = core_pmu_enable_event,
3480         .disable                = x86_pmu_disable_event,
3481         .hw_config              = x86_pmu_hw_config,
3482         .schedule_events        = x86_schedule_events,
3483         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3484         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3485         .event_map              = intel_pmu_event_map,
3486         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3487         .apic                   = 1,
3488         .large_pebs_flags       = LARGE_PEBS_FLAGS,
3489
3490         /*
3491          * Intel PMCs cannot be accessed sanely above 32-bit width,
3492          * so we install an artificial 1<<31 period regardless of
3493          * the generic event period:
3494          */
3495         .max_period             = (1ULL<<31) - 1,
3496         .get_event_constraints  = intel_get_event_constraints,
3497         .put_event_constraints  = intel_put_event_constraints,
3498         .event_constraints      = intel_core_event_constraints,
3499         .guest_get_msrs         = core_guest_get_msrs,
3500         .format_attrs           = intel_arch_formats_attr,
3501         .events_sysfs_show      = intel_event_sysfs_show,
3502
3503         /*
3504          * Virtual (or funny metal) CPU can define x86_pmu.extra_regs
3505          * together with PMU version 1 and thus be using core_pmu with
3506          * shared_regs. We need following callbacks here to allocate
3507          * it properly.
3508          */
3509         .cpu_prepare            = intel_pmu_cpu_prepare,
3510         .cpu_starting           = intel_pmu_cpu_starting,
3511         .cpu_dying              = intel_pmu_cpu_dying,
3512 };
3513
3514 static struct attribute *intel_pmu_attrs[];
3515
3516 static __initconst const struct x86_pmu intel_pmu = {
3517         .name                   = "Intel",
3518         .handle_irq             = intel_pmu_handle_irq,
3519         .disable_all            = intel_pmu_disable_all,
3520         .enable_all             = intel_pmu_enable_all,
3521         .enable                 = intel_pmu_enable_event,
3522         .disable                = intel_pmu_disable_event,
3523         .add                    = intel_pmu_add_event,
3524         .del                    = intel_pmu_del_event,
3525         .read                   = intel_pmu_read_event,
3526         .hw_config              = intel_pmu_hw_config,
3527         .schedule_events        = x86_schedule_events,
3528         .eventsel               = MSR_ARCH_PERFMON_EVENTSEL0,
3529         .perfctr                = MSR_ARCH_PERFMON_PERFCTR0,
3530         .event_map              = intel_pmu_event_map,
3531         .max_events             = ARRAY_SIZE(intel_perfmon_event_map),
3532         .apic                   = 1,
3533         .large_pebs_flags       = LARGE_PEBS_FLAGS,
3534         /*
3535          * Intel PMCs cannot be accessed sanely above 32 bit width,
3536          * so we install an artificial 1<<31 period regardless of
3537          * the generic event period:
3538          */
3539         .max_period             = (1ULL << 31) - 1,
3540         .get_event_constraints  = intel_get_event_constraints,
3541         .put_event_constraints  = intel_put_event_constraints,
3542         .pebs_aliases           = intel_pebs_aliases_core2,
3543
3544         .format_attrs           = intel_arch3_formats_attr,
3545         .events_sysfs_show      = intel_event_sysfs_show,
3546
3547         .attrs                  = intel_pmu_attrs,
3548
3549         .cpu_prepare            = intel_pmu_cpu_prepare,
3550         .cpu_starting           = intel_pmu_cpu_starting,
3551         .cpu_dying              = intel_pmu_cpu_dying,
3552         .guest_get_msrs         = intel_guest_get_msrs,
3553         .sched_task             = intel_pmu_sched_task,
3554 };
3555
3556 static __init void intel_clovertown_quirk(void)
3557 {
3558         /*
3559          * PEBS is unreliable due to:
3560          *
3561          *   AJ67  - PEBS may experience CPL leaks
3562          *   AJ68  - PEBS PMI may be delayed by one event
3563          *   AJ69  - GLOBAL_STATUS[62] will only be set when DEBUGCTL[12]
3564          *   AJ106 - FREEZE_LBRS_ON_PMI doesn't work in combination with PEBS
3565          *
3566          * AJ67 could be worked around by restricting the OS/USR flags.
3567          * AJ69 could be worked around by setting PMU_FREEZE_ON_PMI.
3568          *
3569          * AJ106 could possibly be worked around by not allowing LBR
3570          *       usage from PEBS, including the fixup.
3571          * AJ68  could possibly be worked around by always programming
3572          *       a pebs_event_reset[0] value and coping with the lost events.
3573          *
3574          * But taken together it might just make sense to not enable PEBS on
3575          * these chips.
3576          */
3577         pr_warn("PEBS disabled due to CPU errata\n");
3578         x86_pmu.pebs = 0;
3579         x86_pmu.pebs_constraints = NULL;
3580 }
3581
3582 static int intel_snb_pebs_broken(int cpu)
3583 {
3584         u32 rev = UINT_MAX; /* default to broken for unknown models */
3585
3586         switch (cpu_data(cpu).x86_model) {
3587         case INTEL_FAM6_SANDYBRIDGE:
3588                 rev = 0x28;
3589                 break;
3590
3591         case INTEL_FAM6_SANDYBRIDGE_X:
3592                 switch (cpu_data(cpu).x86_stepping) {
3593                 case 6: rev = 0x618; break;
3594                 case 7: rev = 0x70c; break;
3595                 }
3596         }
3597
3598         return (cpu_data(cpu).microcode < rev);
3599 }
3600
3601 static void intel_snb_check_microcode(void)
3602 {
3603         int pebs_broken = 0;
3604         int cpu;
3605
3606         for_each_online_cpu(cpu) {
3607                 if ((pebs_broken = intel_snb_pebs_broken(cpu)))
3608                         break;
3609         }
3610
3611         if (pebs_broken == x86_pmu.pebs_broken)
3612                 return;
3613
3614         /*
3615          * Serialized by the microcode lock..
3616          */
3617         if (x86_pmu.pebs_broken) {
3618                 pr_info("PEBS enabled due to microcode update\n");
3619                 x86_pmu.pebs_broken = 0;
3620         } else {
3621                 pr_info("PEBS disabled due to CPU errata, please upgrade microcode\n");
3622                 x86_pmu.pebs_broken = 1;
3623         }
3624 }
3625
3626 static bool is_lbr_from(unsigned long msr)
3627 {
3628         unsigned long lbr_from_nr = x86_pmu.lbr_from + x86_pmu.lbr_nr;
3629
3630         return x86_pmu.lbr_from <= msr && msr < lbr_from_nr;
3631 }
3632
3633 /*
3634  * Under certain circumstances, access certain MSR may cause #GP.
3635  * The function tests if the input MSR can be safely accessed.
3636  */
3637 static bool check_msr(unsigned long msr, u64 mask)
3638 {
3639         u64 val_old, val_new, val_tmp;
3640
3641         /*
3642          * Read the current value, change it and read it back to see if it
3643          * matches, this is needed to detect certain hardware emulators
3644          * (qemu/kvm) that don't trap on the MSR access and always return 0s.
3645          */
3646         if (rdmsrl_safe(msr, &val_old))
3647                 return false;
3648
3649         /*
3650          * Only change the bits which can be updated by wrmsrl.
3651          */
3652         val_tmp = val_old ^ mask;
3653
3654         if (is_lbr_from(msr))
3655                 val_tmp = lbr_from_signext_quirk_wr(val_tmp);
3656
3657         if (wrmsrl_safe(msr, val_tmp) ||
3658             rdmsrl_safe(msr, &val_new))
3659                 return false;
3660
3661         /*
3662          * Quirk only affects validation in wrmsr(), so wrmsrl()'s value
3663          * should equal rdmsrl()'s even with the quirk.
3664          */
3665         if (val_new != val_tmp)
3666                 return false;
3667
3668         if (is_lbr_from(msr))
3669                 val_old = lbr_from_signext_quirk_wr(val_old);
3670
3671         /* Here it's sure that the MSR can be safely accessed.
3672          * Restore the old value and return.
3673          */
3674         wrmsrl(msr, val_old);
3675
3676         return true;
3677 }
3678
3679 static __init void intel_sandybridge_quirk(void)
3680 {
3681         x86_pmu.check_microcode = intel_snb_check_microcode;
3682         cpus_read_lock();
3683         intel_snb_check_microcode();
3684         cpus_read_unlock();
3685 }
3686
3687 static const struct { int id; char *name; } intel_arch_events_map[] __initconst = {
3688         { PERF_COUNT_HW_CPU_CYCLES, "cpu cycles" },
3689         { PERF_COUNT_HW_INSTRUCTIONS, "instructions" },
3690         { PERF_COUNT_HW_BUS_CYCLES, "bus cycles" },
3691         { PERF_COUNT_HW_CACHE_REFERENCES, "cache references" },
3692         { PERF_COUNT_HW_CACHE_MISSES, "cache misses" },
3693         { PERF_COUNT_HW_BRANCH_INSTRUCTIONS, "branch instructions" },
3694         { PERF_COUNT_HW_BRANCH_MISSES, "branch misses" },
3695 };
3696
3697 static __init void intel_arch_events_quirk(void)
3698 {
3699         int bit;
3700
3701         /* disable event that reported as not presend by cpuid */
3702         for_each_set_bit(bit, x86_pmu.events_mask, ARRAY_SIZE(intel_arch_events_map)) {
3703                 intel_perfmon_event_map[intel_arch_events_map[bit].id] = 0;
3704                 pr_warn("CPUID marked event: \'%s\' unavailable\n",
3705                         intel_arch_events_map[bit].name);
3706         }
3707 }
3708
3709 static __init void intel_nehalem_quirk(void)
3710 {
3711         union cpuid10_ebx ebx;
3712
3713         ebx.full = x86_pmu.events_maskl;
3714         if (ebx.split.no_branch_misses_retired) {
3715                 /*
3716                  * Erratum AAJ80 detected, we work it around by using
3717                  * the BR_MISP_EXEC.ANY event. This will over-count
3718                  * branch-misses, but it's still much better than the
3719                  * architectural event which is often completely bogus:
3720                  */
3721                 intel_perfmon_event_map[PERF_COUNT_HW_BRANCH_MISSES] = 0x7f89;
3722                 ebx.split.no_branch_misses_retired = 0;
3723                 x86_pmu.events_maskl = ebx.full;
3724                 pr_info("CPU erratum AAJ80 worked around\n");
3725         }
3726 }
3727
3728 /*
3729  * enable software workaround for errata:
3730  * SNB: BJ122
3731  * IVB: BV98
3732  * HSW: HSD29
3733  *
3734  * Only needed when HT is enabled. However detecting
3735  * if HT is enabled is difficult (model specific). So instead,
3736  * we enable the workaround in the early boot, and verify if
3737  * it is needed in a later initcall phase once we have valid
3738  * topology information to check if HT is actually enabled
3739  */
3740 static __init void intel_ht_bug(void)
3741 {
3742         x86_pmu.flags |= PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED;
3743
3744         x86_pmu.start_scheduling = intel_start_scheduling;
3745         x86_pmu.commit_scheduling = intel_commit_scheduling;
3746         x86_pmu.stop_scheduling = intel_stop_scheduling;
3747 }
3748
3749 EVENT_ATTR_STR(mem-loads,       mem_ld_hsw,     "event=0xcd,umask=0x1,ldlat=3");
3750 EVENT_ATTR_STR(mem-stores,      mem_st_hsw,     "event=0xd0,umask=0x82")
3751
3752 /* Haswell special events */
3753 EVENT_ATTR_STR(tx-start,        tx_start,       "event=0xc9,umask=0x1");
3754 EVENT_ATTR_STR(tx-commit,       tx_commit,      "event=0xc9,umask=0x2");
3755 EVENT_ATTR_STR(tx-abort,        tx_abort,       "event=0xc9,umask=0x4");
3756 EVENT_ATTR_STR(tx-capacity,     tx_capacity,    "event=0x54,umask=0x2");
3757 EVENT_ATTR_STR(tx-conflict,     tx_conflict,    "event=0x54,umask=0x1");
3758 EVENT_ATTR_STR(el-start,        el_start,       "event=0xc8,umask=0x1");
3759 EVENT_ATTR_STR(el-commit,       el_commit,      "event=0xc8,umask=0x2");
3760 EVENT_ATTR_STR(el-abort,        el_abort,       "event=0xc8,umask=0x4");
3761 EVENT_ATTR_STR(el-capacity,     el_capacity,    "event=0x54,umask=0x2");
3762 EVENT_ATTR_STR(el-conflict,     el_conflict,    "event=0x54,umask=0x1");
3763 EVENT_ATTR_STR(cycles-t,        cycles_t,       "event=0x3c,in_tx=1");
3764 EVENT_ATTR_STR(cycles-ct,       cycles_ct,      "event=0x3c,in_tx=1,in_tx_cp=1");
3765
3766 static struct attribute *hsw_events_attrs[] = {
3767         EVENT_PTR(mem_ld_hsw),
3768         EVENT_PTR(mem_st_hsw),
3769         EVENT_PTR(td_slots_issued),
3770         EVENT_PTR(td_slots_retired),
3771         EVENT_PTR(td_fetch_bubbles),
3772         EVENT_PTR(td_total_slots),
3773         EVENT_PTR(td_total_slots_scale),
3774         EVENT_PTR(td_recovery_bubbles),
3775         EVENT_PTR(td_recovery_bubbles_scale),
3776         NULL
3777 };
3778
3779 static struct attribute *hsw_tsx_events_attrs[] = {
3780         EVENT_PTR(tx_start),
3781         EVENT_PTR(tx_commit),
3782         EVENT_PTR(tx_abort),
3783         EVENT_PTR(tx_capacity),
3784         EVENT_PTR(tx_conflict),
3785         EVENT_PTR(el_start),
3786         EVENT_PTR(el_commit),
3787         EVENT_PTR(el_abort),
3788         EVENT_PTR(el_capacity),
3789         EVENT_PTR(el_conflict),
3790         EVENT_PTR(cycles_t),
3791         EVENT_PTR(cycles_ct),
3792         NULL
3793 };
3794
3795 static __init struct attribute **get_hsw_events_attrs(void)
3796 {
3797         return boot_cpu_has(X86_FEATURE_RTM) ?
3798                 merge_attr(hsw_events_attrs, hsw_tsx_events_attrs) :
3799                 hsw_events_attrs;
3800 }
3801
3802 static ssize_t freeze_on_smi_show(struct device *cdev,
3803                                   struct device_attribute *attr,
3804                                   char *buf)
3805 {
3806         return sprintf(buf, "%lu\n", x86_pmu.attr_freeze_on_smi);
3807 }
3808
3809 static DEFINE_MUTEX(freeze_on_smi_mutex);
3810
3811 static ssize_t freeze_on_smi_store(struct device *cdev,
3812                                    struct device_attribute *attr,
3813                                    const char *buf, size_t count)
3814 {
3815         unsigned long val;
3816         ssize_t ret;
3817
3818         ret = kstrtoul(buf, 0, &val);
3819         if (ret)
3820                 return ret;
3821
3822         if (val > 1)
3823                 return -EINVAL;
3824
3825         mutex_lock(&freeze_on_smi_mutex);
3826
3827         if (x86_pmu.attr_freeze_on_smi == val)
3828                 goto done;
3829
3830         x86_pmu.attr_freeze_on_smi = val;
3831
3832         get_online_cpus();
3833         on_each_cpu(flip_smm_bit, &val, 1);
3834         put_online_cpus();
3835 done:
3836         mutex_unlock(&freeze_on_smi_mutex);
3837
3838         return count;
3839 }
3840
3841 static DEVICE_ATTR_RW(freeze_on_smi);
3842
3843 static ssize_t branches_show(struct device *cdev,
3844                              struct device_attribute *attr,
3845                              char *buf)
3846 {
3847         return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
3848 }
3849
3850 static DEVICE_ATTR_RO(branches);
3851
3852 static struct attribute *lbr_attrs[] = {
3853         &dev_attr_branches.attr,
3854         NULL
3855 };
3856
3857 static char pmu_name_str[30];
3858
3859 static ssize_t pmu_name_show(struct device *cdev,
3860                              struct device_attribute *attr,
3861                              char *buf)
3862 {
3863         return snprintf(buf, PAGE_SIZE, "%s\n", pmu_name_str);
3864 }
3865
3866 static DEVICE_ATTR_RO(pmu_name);
3867
3868 static struct attribute *intel_pmu_caps_attrs[] = {
3869        &dev_attr_pmu_name.attr,
3870        NULL
3871 };
3872
3873 static struct attribute *intel_pmu_attrs[] = {
3874         &dev_attr_freeze_on_smi.attr,
3875         NULL,
3876 };
3877
3878 __init int intel_pmu_init(void)
3879 {
3880         struct attribute **extra_attr = NULL;
3881         struct attribute **to_free = NULL;
3882         union cpuid10_edx edx;
3883         union cpuid10_eax eax;
3884         union cpuid10_ebx ebx;
3885         struct event_constraint *c;
3886         unsigned int unused;
3887         struct extra_reg *er;
3888         int version, i;
3889         char *name;
3890
3891         if (!cpu_has(&boot_cpu_data, X86_FEATURE_ARCH_PERFMON)) {
3892                 switch (boot_cpu_data.x86) {
3893                 case 0x6:
3894                         return p6_pmu_init();
3895                 case 0xb:
3896                         return knc_pmu_init();
3897                 case 0xf:
3898                         return p4_pmu_init();
3899                 }
3900                 return -ENODEV;
3901         }
3902
3903         /*
3904          * Check whether the Architectural PerfMon supports
3905          * Branch Misses Retired hw_event or not.
3906          */
3907         cpuid(10, &eax.full, &ebx.full, &unused, &edx.full);
3908         if (eax.split.mask_length < ARCH_PERFMON_EVENTS_COUNT)
3909                 return -ENODEV;
3910
3911         version = eax.split.version_id;
3912         if (version < 2)
3913                 x86_pmu = core_pmu;
3914         else
3915                 x86_pmu = intel_pmu;
3916
3917         x86_pmu.version                 = version;
3918         x86_pmu.num_counters            = eax.split.num_counters;
3919         x86_pmu.cntval_bits             = eax.split.bit_width;
3920         x86_pmu.cntval_mask             = (1ULL << eax.split.bit_width) - 1;
3921
3922         x86_pmu.events_maskl            = ebx.full;
3923         x86_pmu.events_mask_len         = eax.split.mask_length;
3924
3925         x86_pmu.max_pebs_events         = min_t(unsigned, MAX_PEBS_EVENTS, x86_pmu.num_counters);
3926
3927         /*
3928          * Quirk: v2 perfmon does not report fixed-purpose events, so
3929          * assume at least 3 events, when not running in a hypervisor:
3930          */
3931         if (version > 1) {
3932                 int assume = 3 * !boot_cpu_has(X86_FEATURE_HYPERVISOR);
3933
3934                 x86_pmu.num_counters_fixed =
3935                         max((int)edx.split.num_counters_fixed, assume);
3936         }
3937
3938         if (boot_cpu_has(X86_FEATURE_PDCM)) {
3939                 u64 capabilities;
3940
3941                 rdmsrl(MSR_IA32_PERF_CAPABILITIES, capabilities);
3942                 x86_pmu.intel_cap.capabilities = capabilities;
3943         }
3944
3945         intel_ds_init();
3946
3947         x86_add_quirk(intel_arch_events_quirk); /* Install first, so it runs last */
3948
3949         /*
3950          * Install the hw-cache-events table:
3951          */
3952         switch (boot_cpu_data.x86_model) {
3953         case INTEL_FAM6_CORE_YONAH:
3954                 pr_cont("Core events, ");
3955                 name = "core";
3956                 break;
3957
3958         case INTEL_FAM6_CORE2_MEROM:
3959                 x86_add_quirk(intel_clovertown_quirk);
3960         case INTEL_FAM6_CORE2_MEROM_L:
3961         case INTEL_FAM6_CORE2_PENRYN:
3962         case INTEL_FAM6_CORE2_DUNNINGTON:
3963                 memcpy(hw_cache_event_ids, core2_hw_cache_event_ids,
3964                        sizeof(hw_cache_event_ids));
3965
3966                 intel_pmu_lbr_init_core();
3967
3968                 x86_pmu.event_constraints = intel_core2_event_constraints;
3969                 x86_pmu.pebs_constraints = intel_core2_pebs_event_constraints;
3970                 pr_cont("Core2 events, ");
3971                 name = "core2";
3972                 break;
3973
3974         case INTEL_FAM6_NEHALEM:
3975         case INTEL_FAM6_NEHALEM_EP:
3976         case INTEL_FAM6_NEHALEM_EX:
3977                 memcpy(hw_cache_event_ids, nehalem_hw_cache_event_ids,
3978                        sizeof(hw_cache_event_ids));
3979                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
3980                        sizeof(hw_cache_extra_regs));
3981
3982                 intel_pmu_lbr_init_nhm();
3983
3984                 x86_pmu.event_constraints = intel_nehalem_event_constraints;
3985                 x86_pmu.pebs_constraints = intel_nehalem_pebs_event_constraints;
3986                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
3987                 x86_pmu.extra_regs = intel_nehalem_extra_regs;
3988
3989                 x86_pmu.cpu_events = nhm_events_attrs;
3990
3991                 /* UOPS_ISSUED.STALLED_CYCLES */
3992                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
3993                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
3994                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
3995                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
3996                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
3997
3998                 intel_pmu_pebs_data_source_nhm();
3999                 x86_add_quirk(intel_nehalem_quirk);
4000                 x86_pmu.pebs_no_tlb = 1;
4001                 extra_attr = nhm_format_attr;
4002
4003                 pr_cont("Nehalem events, ");
4004                 name = "nehalem";
4005                 break;
4006
4007         case INTEL_FAM6_ATOM_PINEVIEW:
4008         case INTEL_FAM6_ATOM_LINCROFT:
4009         case INTEL_FAM6_ATOM_PENWELL:
4010         case INTEL_FAM6_ATOM_CLOVERVIEW:
4011         case INTEL_FAM6_ATOM_CEDARVIEW:
4012                 memcpy(hw_cache_event_ids, atom_hw_cache_event_ids,
4013                        sizeof(hw_cache_event_ids));
4014
4015                 intel_pmu_lbr_init_atom();
4016
4017                 x86_pmu.event_constraints = intel_gen_event_constraints;
4018                 x86_pmu.pebs_constraints = intel_atom_pebs_event_constraints;
4019                 x86_pmu.pebs_aliases = intel_pebs_aliases_core2;
4020                 pr_cont("Atom events, ");
4021                 name = "bonnell";
4022                 break;
4023
4024         case INTEL_FAM6_ATOM_SILVERMONT1:
4025         case INTEL_FAM6_ATOM_SILVERMONT2:
4026         case INTEL_FAM6_ATOM_AIRMONT:
4027                 memcpy(hw_cache_event_ids, slm_hw_cache_event_ids,
4028                         sizeof(hw_cache_event_ids));
4029                 memcpy(hw_cache_extra_regs, slm_hw_cache_extra_regs,
4030                        sizeof(hw_cache_extra_regs));
4031
4032                 intel_pmu_lbr_init_slm();
4033
4034                 x86_pmu.event_constraints = intel_slm_event_constraints;
4035                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4036                 x86_pmu.extra_regs = intel_slm_extra_regs;
4037                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4038                 x86_pmu.cpu_events = slm_events_attrs;
4039                 extra_attr = slm_format_attr;
4040                 pr_cont("Silvermont events, ");
4041                 name = "silvermont";
4042                 break;
4043
4044         case INTEL_FAM6_ATOM_GOLDMONT:
4045         case INTEL_FAM6_ATOM_DENVERTON:
4046                 memcpy(hw_cache_event_ids, glm_hw_cache_event_ids,
4047                        sizeof(hw_cache_event_ids));
4048                 memcpy(hw_cache_extra_regs, glm_hw_cache_extra_regs,
4049                        sizeof(hw_cache_extra_regs));
4050
4051                 intel_pmu_lbr_init_skl();
4052
4053                 x86_pmu.event_constraints = intel_slm_event_constraints;
4054                 x86_pmu.pebs_constraints = intel_glm_pebs_event_constraints;
4055                 x86_pmu.extra_regs = intel_glm_extra_regs;
4056                 /*
4057                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4058                  * for precise cycles.
4059                  * :pp is identical to :ppp
4060                  */
4061                 x86_pmu.pebs_aliases = NULL;
4062                 x86_pmu.pebs_prec_dist = true;
4063                 x86_pmu.lbr_pt_coexist = true;
4064                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4065                 x86_pmu.cpu_events = glm_events_attrs;
4066                 extra_attr = slm_format_attr;
4067                 pr_cont("Goldmont events, ");
4068                 name = "goldmont";
4069                 break;
4070
4071         case INTEL_FAM6_ATOM_GEMINI_LAKE:
4072                 memcpy(hw_cache_event_ids, glp_hw_cache_event_ids,
4073                        sizeof(hw_cache_event_ids));
4074                 memcpy(hw_cache_extra_regs, glp_hw_cache_extra_regs,
4075                        sizeof(hw_cache_extra_regs));
4076
4077                 intel_pmu_lbr_init_skl();
4078
4079                 x86_pmu.event_constraints = intel_slm_event_constraints;
4080                 x86_pmu.extra_regs = intel_glm_extra_regs;
4081                 /*
4082                  * It's recommended to use CPU_CLK_UNHALTED.CORE_P + NPEBS
4083                  * for precise cycles.
4084                  */
4085                 x86_pmu.pebs_aliases = NULL;
4086                 x86_pmu.pebs_prec_dist = true;
4087                 x86_pmu.lbr_pt_coexist = true;
4088                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4089                 x86_pmu.flags |= PMU_FL_PEBS_ALL;
4090                 x86_pmu.get_event_constraints = glp_get_event_constraints;
4091                 x86_pmu.cpu_events = glm_events_attrs;
4092                 /* Goldmont Plus has 4-wide pipeline */
4093                 event_attr_td_total_slots_scale_glm.event_str = "4";
4094                 extra_attr = slm_format_attr;
4095                 pr_cont("Goldmont plus events, ");
4096                 name = "goldmont_plus";
4097                 break;
4098
4099         case INTEL_FAM6_WESTMERE:
4100         case INTEL_FAM6_WESTMERE_EP:
4101         case INTEL_FAM6_WESTMERE_EX:
4102                 memcpy(hw_cache_event_ids, westmere_hw_cache_event_ids,
4103                        sizeof(hw_cache_event_ids));
4104                 memcpy(hw_cache_extra_regs, nehalem_hw_cache_extra_regs,
4105                        sizeof(hw_cache_extra_regs));
4106
4107                 intel_pmu_lbr_init_nhm();
4108
4109                 x86_pmu.event_constraints = intel_westmere_event_constraints;
4110                 x86_pmu.enable_all = intel_pmu_nhm_enable_all;
4111                 x86_pmu.pebs_constraints = intel_westmere_pebs_event_constraints;
4112                 x86_pmu.extra_regs = intel_westmere_extra_regs;
4113                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4114
4115                 x86_pmu.cpu_events = nhm_events_attrs;
4116
4117                 /* UOPS_ISSUED.STALLED_CYCLES */
4118                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4119                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4120                 /* UOPS_EXECUTED.CORE_ACTIVE_CYCLES,c=1,i=1 */
4121                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4122                         X86_CONFIG(.event=0xb1, .umask=0x3f, .inv=1, .cmask=1);
4123
4124                 intel_pmu_pebs_data_source_nhm();
4125                 extra_attr = nhm_format_attr;
4126                 pr_cont("Westmere events, ");
4127                 name = "westmere";
4128                 break;
4129
4130         case INTEL_FAM6_SANDYBRIDGE:
4131         case INTEL_FAM6_SANDYBRIDGE_X:
4132                 x86_add_quirk(intel_sandybridge_quirk);
4133                 x86_add_quirk(intel_ht_bug);
4134                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4135                        sizeof(hw_cache_event_ids));
4136                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4137                        sizeof(hw_cache_extra_regs));
4138
4139                 intel_pmu_lbr_init_snb();
4140
4141                 x86_pmu.event_constraints = intel_snb_event_constraints;
4142                 x86_pmu.pebs_constraints = intel_snb_pebs_event_constraints;
4143                 x86_pmu.pebs_aliases = intel_pebs_aliases_snb;
4144                 if (boot_cpu_data.x86_model == INTEL_FAM6_SANDYBRIDGE_X)
4145                         x86_pmu.extra_regs = intel_snbep_extra_regs;
4146                 else
4147                         x86_pmu.extra_regs = intel_snb_extra_regs;
4148
4149
4150                 /* all extra regs are per-cpu when HT is on */
4151                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4152                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4153
4154                 x86_pmu.cpu_events = snb_events_attrs;
4155
4156                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4157                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4158                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4159                 /* UOPS_DISPATCHED.THREAD,c=1,i=1 to count stall cycles*/
4160                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_BACKEND] =
4161                         X86_CONFIG(.event=0xb1, .umask=0x01, .inv=1, .cmask=1);
4162
4163                 extra_attr = nhm_format_attr;
4164
4165                 pr_cont("SandyBridge events, ");
4166                 name = "sandybridge";
4167                 break;
4168
4169         case INTEL_FAM6_IVYBRIDGE:
4170         case INTEL_FAM6_IVYBRIDGE_X:
4171                 x86_add_quirk(intel_ht_bug);
4172                 memcpy(hw_cache_event_ids, snb_hw_cache_event_ids,
4173                        sizeof(hw_cache_event_ids));
4174                 /* dTLB-load-misses on IVB is different than SNB */
4175                 hw_cache_event_ids[C(DTLB)][C(OP_READ)][C(RESULT_MISS)] = 0x8108; /* DTLB_LOAD_MISSES.DEMAND_LD_MISS_CAUSES_A_WALK */
4176
4177                 memcpy(hw_cache_extra_regs, snb_hw_cache_extra_regs,
4178                        sizeof(hw_cache_extra_regs));
4179
4180                 intel_pmu_lbr_init_snb();
4181
4182                 x86_pmu.event_constraints = intel_ivb_event_constraints;
4183                 x86_pmu.pebs_constraints = intel_ivb_pebs_event_constraints;
4184                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4185                 x86_pmu.pebs_prec_dist = true;
4186                 if (boot_cpu_data.x86_model == INTEL_FAM6_IVYBRIDGE_X)
4187                         x86_pmu.extra_regs = intel_snbep_extra_regs;
4188                 else
4189                         x86_pmu.extra_regs = intel_snb_extra_regs;
4190                 /* all extra regs are per-cpu when HT is on */
4191                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4192                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4193
4194                 x86_pmu.cpu_events = snb_events_attrs;
4195
4196                 /* UOPS_ISSUED.ANY,c=1,i=1 to count stall cycles */
4197                 intel_perfmon_event_map[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] =
4198                         X86_CONFIG(.event=0x0e, .umask=0x01, .inv=1, .cmask=1);
4199
4200                 extra_attr = nhm_format_attr;
4201
4202                 pr_cont("IvyBridge events, ");
4203                 name = "ivybridge";
4204                 break;
4205
4206
4207         case INTEL_FAM6_HASWELL_CORE:
4208         case INTEL_FAM6_HASWELL_X:
4209         case INTEL_FAM6_HASWELL_ULT:
4210         case INTEL_FAM6_HASWELL_GT3E:
4211                 x86_add_quirk(intel_ht_bug);
4212                 x86_pmu.late_ack = true;
4213                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4214                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4215
4216                 intel_pmu_lbr_init_hsw();
4217
4218                 x86_pmu.event_constraints = intel_hsw_event_constraints;
4219                 x86_pmu.pebs_constraints = intel_hsw_pebs_event_constraints;
4220                 x86_pmu.extra_regs = intel_snbep_extra_regs;
4221                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4222                 x86_pmu.pebs_prec_dist = true;
4223                 /* all extra regs are per-cpu when HT is on */
4224                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4225                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4226
4227                 x86_pmu.hw_config = hsw_hw_config;
4228                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4229                 x86_pmu.cpu_events = get_hsw_events_attrs();
4230                 x86_pmu.lbr_double_abort = true;
4231                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4232                         hsw_format_attr : nhm_format_attr;
4233                 pr_cont("Haswell events, ");
4234                 name = "haswell";
4235                 break;
4236
4237         case INTEL_FAM6_BROADWELL_CORE:
4238         case INTEL_FAM6_BROADWELL_XEON_D:
4239         case INTEL_FAM6_BROADWELL_GT3E:
4240         case INTEL_FAM6_BROADWELL_X:
4241                 x86_pmu.late_ack = true;
4242                 memcpy(hw_cache_event_ids, hsw_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4243                 memcpy(hw_cache_extra_regs, hsw_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4244
4245                 /* L3_MISS_LOCAL_DRAM is BIT(26) in Broadwell */
4246                 hw_cache_extra_regs[C(LL)][C(OP_READ)][C(RESULT_MISS)] = HSW_DEMAND_READ |
4247                                                                          BDW_L3_MISS|HSW_SNOOP_DRAM;
4248                 hw_cache_extra_regs[C(LL)][C(OP_WRITE)][C(RESULT_MISS)] = HSW_DEMAND_WRITE|BDW_L3_MISS|
4249                                                                           HSW_SNOOP_DRAM;
4250                 hw_cache_extra_regs[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)] = HSW_DEMAND_READ|
4251                                                                              BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4252                 hw_cache_extra_regs[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = HSW_DEMAND_WRITE|
4253                                                                               BDW_L3_MISS_LOCAL|HSW_SNOOP_DRAM;
4254
4255                 intel_pmu_lbr_init_hsw();
4256
4257                 x86_pmu.event_constraints = intel_bdw_event_constraints;
4258                 x86_pmu.pebs_constraints = intel_bdw_pebs_event_constraints;
4259                 x86_pmu.extra_regs = intel_snbep_extra_regs;
4260                 x86_pmu.pebs_aliases = intel_pebs_aliases_ivb;
4261                 x86_pmu.pebs_prec_dist = true;
4262                 /* all extra regs are per-cpu when HT is on */
4263                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4264                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4265
4266                 x86_pmu.hw_config = hsw_hw_config;
4267                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4268                 x86_pmu.cpu_events = get_hsw_events_attrs();
4269                 x86_pmu.limit_period = bdw_limit_period;
4270                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4271                         hsw_format_attr : nhm_format_attr;
4272                 pr_cont("Broadwell events, ");
4273                 name = "broadwell";
4274                 break;
4275
4276         case INTEL_FAM6_XEON_PHI_KNL:
4277         case INTEL_FAM6_XEON_PHI_KNM:
4278                 memcpy(hw_cache_event_ids,
4279                        slm_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4280                 memcpy(hw_cache_extra_regs,
4281                        knl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4282                 intel_pmu_lbr_init_knl();
4283
4284                 x86_pmu.event_constraints = intel_slm_event_constraints;
4285                 x86_pmu.pebs_constraints = intel_slm_pebs_event_constraints;
4286                 x86_pmu.extra_regs = intel_knl_extra_regs;
4287
4288                 /* all extra regs are per-cpu when HT is on */
4289                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4290                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4291                 extra_attr = slm_format_attr;
4292                 pr_cont("Knights Landing/Mill events, ");
4293                 name = "knights-landing";
4294                 break;
4295
4296         case INTEL_FAM6_SKYLAKE_MOBILE:
4297         case INTEL_FAM6_SKYLAKE_DESKTOP:
4298         case INTEL_FAM6_SKYLAKE_X:
4299         case INTEL_FAM6_KABYLAKE_MOBILE:
4300         case INTEL_FAM6_KABYLAKE_DESKTOP:
4301                 x86_pmu.late_ack = true;
4302                 memcpy(hw_cache_event_ids, skl_hw_cache_event_ids, sizeof(hw_cache_event_ids));
4303                 memcpy(hw_cache_extra_regs, skl_hw_cache_extra_regs, sizeof(hw_cache_extra_regs));
4304                 intel_pmu_lbr_init_skl();
4305
4306                 /* INT_MISC.RECOVERY_CYCLES has umask 1 in Skylake */
4307                 event_attr_td_recovery_bubbles.event_str_noht =
4308                         "event=0xd,umask=0x1,cmask=1";
4309                 event_attr_td_recovery_bubbles.event_str_ht =
4310                         "event=0xd,umask=0x1,cmask=1,any=1";
4311
4312                 x86_pmu.event_constraints = intel_skl_event_constraints;
4313                 x86_pmu.pebs_constraints = intel_skl_pebs_event_constraints;
4314                 x86_pmu.extra_regs = intel_skl_extra_regs;
4315                 x86_pmu.pebs_aliases = intel_pebs_aliases_skl;
4316                 x86_pmu.pebs_prec_dist = true;
4317                 /* all extra regs are per-cpu when HT is on */
4318                 x86_pmu.flags |= PMU_FL_HAS_RSP_1;
4319                 x86_pmu.flags |= PMU_FL_NO_HT_SHARING;
4320
4321                 x86_pmu.hw_config = hsw_hw_config;
4322                 x86_pmu.get_event_constraints = hsw_get_event_constraints;
4323                 extra_attr = boot_cpu_has(X86_FEATURE_RTM) ?
4324                         hsw_format_attr : nhm_format_attr;
4325                 extra_attr = merge_attr(extra_attr, skl_format_attr);
4326                 to_free = extra_attr;
4327                 x86_pmu.cpu_events = get_hsw_events_attrs();
4328                 intel_pmu_pebs_data_source_skl(
4329                         boot_cpu_data.x86_model == INTEL_FAM6_SKYLAKE_X);
4330                 pr_cont("Skylake events, ");
4331                 name = "skylake";
4332                 break;
4333
4334         default:
4335                 switch (x86_pmu.version) {
4336                 case 1:
4337                         x86_pmu.event_constraints = intel_v1_event_constraints;
4338                         pr_cont("generic architected perfmon v1, ");
4339                         name = "generic_arch_v1";
4340                         break;
4341                 default:
4342                         /*
4343                          * default constraints for v2 and up
4344                          */
4345                         x86_pmu.event_constraints = intel_gen_event_constraints;
4346                         pr_cont("generic architected perfmon, ");
4347                         name = "generic_arch_v2+";
4348                         break;
4349                 }
4350         }
4351
4352         snprintf(pmu_name_str, sizeof pmu_name_str, "%s", name);
4353
4354         if (version >= 2 && extra_attr) {
4355                 x86_pmu.format_attrs = merge_attr(intel_arch3_formats_attr,
4356                                                   extra_attr);
4357                 WARN_ON(!x86_pmu.format_attrs);
4358         }
4359
4360         if (x86_pmu.num_counters > INTEL_PMC_MAX_GENERIC) {
4361                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
4362                      x86_pmu.num_counters, INTEL_PMC_MAX_GENERIC);
4363                 x86_pmu.num_counters = INTEL_PMC_MAX_GENERIC;
4364         }
4365         x86_pmu.intel_ctrl = (1ULL << x86_pmu.num_counters) - 1;
4366
4367         if (x86_pmu.num_counters_fixed > INTEL_PMC_MAX_FIXED) {
4368                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
4369                      x86_pmu.num_counters_fixed, INTEL_PMC_MAX_FIXED);
4370                 x86_pmu.num_counters_fixed = INTEL_PMC_MAX_FIXED;
4371         }
4372
4373         x86_pmu.intel_ctrl |=
4374                 ((1LL << x86_pmu.num_counters_fixed)-1) << INTEL_PMC_IDX_FIXED;
4375
4376         if (x86_pmu.event_constraints) {
4377                 /*
4378                  * event on fixed counter2 (REF_CYCLES) only works on this
4379                  * counter, so do not extend mask to generic counters
4380                  */
4381                 for_each_event_constraint(c, x86_pmu.event_constraints) {
4382                         if (c->cmask == FIXED_EVENT_FLAGS
4383                             && c->idxmsk64 != INTEL_PMC_MSK_FIXED_REF_CYCLES) {
4384                                 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
4385                         }
4386                         c->idxmsk64 &=
4387                                 ~(~0ULL << (INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed));
4388                         c->weight = hweight64(c->idxmsk64);
4389                 }
4390         }
4391
4392         /*
4393          * Access LBR MSR may cause #GP under certain circumstances.
4394          * E.g. KVM doesn't support LBR MSR
4395          * Check all LBT MSR here.
4396          * Disable LBR access if any LBR MSRs can not be accessed.
4397          */
4398         if (x86_pmu.lbr_nr && !check_msr(x86_pmu.lbr_tos, 0x3UL))
4399                 x86_pmu.lbr_nr = 0;
4400         for (i = 0; i < x86_pmu.lbr_nr; i++) {
4401                 if (!(check_msr(x86_pmu.lbr_from + i, 0xffffUL) &&
4402                       check_msr(x86_pmu.lbr_to + i, 0xffffUL)))
4403                         x86_pmu.lbr_nr = 0;
4404         }
4405
4406         x86_pmu.caps_attrs = intel_pmu_caps_attrs;
4407
4408         if (x86_pmu.lbr_nr) {
4409                 x86_pmu.caps_attrs = merge_attr(x86_pmu.caps_attrs, lbr_attrs);
4410                 pr_cont("%d-deep LBR, ", x86_pmu.lbr_nr);
4411         }
4412
4413         /*
4414          * Access extra MSR may cause #GP under certain circumstances.
4415          * E.g. KVM doesn't support offcore event
4416          * Check all extra_regs here.
4417          */
4418         if (x86_pmu.extra_regs) {
4419                 for (er = x86_pmu.extra_regs; er->msr; er++) {
4420                         er->extra_msr_access = check_msr(er->msr, 0x11UL);
4421                         /* Disable LBR select mapping */
4422                         if ((er->idx == EXTRA_REG_LBR) && !er->extra_msr_access)
4423                                 x86_pmu.lbr_sel_map = NULL;
4424                 }
4425         }
4426
4427         /* Support full width counters using alternative MSR range */
4428         if (x86_pmu.intel_cap.full_width_write) {
4429                 x86_pmu.max_period = x86_pmu.cntval_mask >> 1;
4430                 x86_pmu.perfctr = MSR_IA32_PMC0;
4431                 pr_cont("full-width counters, ");
4432         }
4433
4434         kfree(to_free);
4435         return 0;
4436 }
4437
4438 /*
4439  * HT bug: phase 2 init
4440  * Called once we have valid topology information to check
4441  * whether or not HT is enabled
4442  * If HT is off, then we disable the workaround
4443  */
4444 static __init int fixup_ht_bug(void)
4445 {
4446         int c;
4447         /*
4448          * problem not present on this CPU model, nothing to do
4449          */
4450         if (!(x86_pmu.flags & PMU_FL_EXCL_ENABLED))
4451                 return 0;
4452
4453         if (topology_max_smt_threads() > 1) {
4454                 pr_info("PMU erratum BJ122, BV98, HSD29 worked around, HT is on\n");
4455                 return 0;
4456         }
4457
4458         cpus_read_lock();
4459
4460         hardlockup_detector_perf_stop();
4461
4462         x86_pmu.flags &= ~(PMU_FL_EXCL_CNTRS | PMU_FL_EXCL_ENABLED);
4463
4464         x86_pmu.start_scheduling = NULL;
4465         x86_pmu.commit_scheduling = NULL;
4466         x86_pmu.stop_scheduling = NULL;
4467
4468         hardlockup_detector_perf_restart();
4469
4470         for_each_online_cpu(c)
4471                 free_excl_cntrs(c);
4472
4473         cpus_read_unlock();
4474         pr_info("PMU erratum BJ122, BV98, HSD29 workaround disabled, HT off\n");
4475         return 0;
4476 }
4477 subsys_initcall(fixup_ht_bug)