Merge branch 'for-linus-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad...
[sfrench/cifs-2.6.git] / arch / x86 / events / intel / bts.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BTS PMU driver for perf
4  * Copyright (c) 2013-2014, Intel Corporation.
5  */
6
7 #undef DEBUG
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/bitops.h>
12 #include <linux/types.h>
13 #include <linux/slab.h>
14 #include <linux/debugfs.h>
15 #include <linux/device.h>
16 #include <linux/coredump.h>
17
18 #include <linux/sizes.h>
19 #include <asm/perf_event.h>
20
21 #include "../perf_event.h"
22
23 struct bts_ctx {
24         struct perf_output_handle       handle;
25         struct debug_store              ds_back;
26         int                             state;
27 };
28
29 /* BTS context states: */
30 enum {
31         /* no ongoing AUX transactions */
32         BTS_STATE_STOPPED = 0,
33         /* AUX transaction is on, BTS tracing is disabled */
34         BTS_STATE_INACTIVE,
35         /* AUX transaction is on, BTS tracing is running */
36         BTS_STATE_ACTIVE,
37 };
38
39 static DEFINE_PER_CPU(struct bts_ctx, bts_ctx);
40
41 #define BTS_RECORD_SIZE         24
42 #define BTS_SAFETY_MARGIN       4080
43
44 struct bts_phys {
45         struct page     *page;
46         unsigned long   size;
47         unsigned long   offset;
48         unsigned long   displacement;
49 };
50
51 struct bts_buffer {
52         size_t          real_size;      /* multiple of BTS_RECORD_SIZE */
53         unsigned int    nr_pages;
54         unsigned int    nr_bufs;
55         unsigned int    cur_buf;
56         bool            snapshot;
57         local_t         data_size;
58         local_t         head;
59         unsigned long   end;
60         void            **data_pages;
61         struct bts_phys buf[0];
62 };
63
64 static struct pmu bts_pmu;
65
66 static size_t buf_size(struct page *page)
67 {
68         return 1 << (PAGE_SHIFT + page_private(page));
69 }
70
71 static void *
72 bts_buffer_setup_aux(struct perf_event *event, void **pages,
73                      int nr_pages, bool overwrite)
74 {
75         struct bts_buffer *buf;
76         struct page *page;
77         int cpu = event->cpu;
78         int node = (cpu == -1) ? cpu : cpu_to_node(cpu);
79         unsigned long offset;
80         size_t size = nr_pages << PAGE_SHIFT;
81         int pg, nbuf, pad;
82
83         /* count all the high order buffers */
84         for (pg = 0, nbuf = 0; pg < nr_pages;) {
85                 page = virt_to_page(pages[pg]);
86                 if (WARN_ON_ONCE(!PagePrivate(page) && nr_pages > 1))
87                         return NULL;
88                 pg += 1 << page_private(page);
89                 nbuf++;
90         }
91
92         /*
93          * to avoid interrupts in overwrite mode, only allow one physical
94          */
95         if (overwrite && nbuf > 1)
96                 return NULL;
97
98         buf = kzalloc_node(offsetof(struct bts_buffer, buf[nbuf]), GFP_KERNEL, node);
99         if (!buf)
100                 return NULL;
101
102         buf->nr_pages = nr_pages;
103         buf->nr_bufs = nbuf;
104         buf->snapshot = overwrite;
105         buf->data_pages = pages;
106         buf->real_size = size - size % BTS_RECORD_SIZE;
107
108         for (pg = 0, nbuf = 0, offset = 0, pad = 0; nbuf < buf->nr_bufs; nbuf++) {
109                 unsigned int __nr_pages;
110
111                 page = virt_to_page(pages[pg]);
112                 __nr_pages = PagePrivate(page) ? 1 << page_private(page) : 1;
113                 buf->buf[nbuf].page = page;
114                 buf->buf[nbuf].offset = offset;
115                 buf->buf[nbuf].displacement = (pad ? BTS_RECORD_SIZE - pad : 0);
116                 buf->buf[nbuf].size = buf_size(page) - buf->buf[nbuf].displacement;
117                 pad = buf->buf[nbuf].size % BTS_RECORD_SIZE;
118                 buf->buf[nbuf].size -= pad;
119
120                 pg += __nr_pages;
121                 offset += __nr_pages << PAGE_SHIFT;
122         }
123
124         return buf;
125 }
126
127 static void bts_buffer_free_aux(void *data)
128 {
129         kfree(data);
130 }
131
132 static unsigned long bts_buffer_offset(struct bts_buffer *buf, unsigned int idx)
133 {
134         return buf->buf[idx].offset + buf->buf[idx].displacement;
135 }
136
137 static void
138 bts_config_buffer(struct bts_buffer *buf)
139 {
140         int cpu = raw_smp_processor_id();
141         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
142         struct bts_phys *phys = &buf->buf[buf->cur_buf];
143         unsigned long index, thresh = 0, end = phys->size;
144         struct page *page = phys->page;
145
146         index = local_read(&buf->head);
147
148         if (!buf->snapshot) {
149                 if (buf->end < phys->offset + buf_size(page))
150                         end = buf->end - phys->offset - phys->displacement;
151
152                 index -= phys->offset + phys->displacement;
153
154                 if (end - index > BTS_SAFETY_MARGIN)
155                         thresh = end - BTS_SAFETY_MARGIN;
156                 else if (end - index > BTS_RECORD_SIZE)
157                         thresh = end - BTS_RECORD_SIZE;
158                 else
159                         thresh = end;
160         }
161
162         ds->bts_buffer_base = (u64)(long)page_address(page) + phys->displacement;
163         ds->bts_index = ds->bts_buffer_base + index;
164         ds->bts_absolute_maximum = ds->bts_buffer_base + end;
165         ds->bts_interrupt_threshold = !buf->snapshot
166                 ? ds->bts_buffer_base + thresh
167                 : ds->bts_absolute_maximum + BTS_RECORD_SIZE;
168 }
169
170 static void bts_buffer_pad_out(struct bts_phys *phys, unsigned long head)
171 {
172         unsigned long index = head - phys->offset;
173
174         memset(page_address(phys->page) + index, 0, phys->size - index);
175 }
176
177 static void bts_update(struct bts_ctx *bts)
178 {
179         int cpu = raw_smp_processor_id();
180         struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
181         struct bts_buffer *buf = perf_get_aux(&bts->handle);
182         unsigned long index = ds->bts_index - ds->bts_buffer_base, old, head;
183
184         if (!buf)
185                 return;
186
187         head = index + bts_buffer_offset(buf, buf->cur_buf);
188         old = local_xchg(&buf->head, head);
189
190         if (!buf->snapshot) {
191                 if (old == head)
192                         return;
193
194                 if (ds->bts_index >= ds->bts_absolute_maximum)
195                         perf_aux_output_flag(&bts->handle,
196                                              PERF_AUX_FLAG_TRUNCATED);
197
198                 /*
199                  * old and head are always in the same physical buffer, so we
200                  * can subtract them to get the data size.
201                  */
202                 local_add(head - old, &buf->data_size);
203         } else {
204                 local_set(&buf->data_size, head);
205         }
206 }
207
208 static int
209 bts_buffer_reset(struct bts_buffer *buf, struct perf_output_handle *handle);
210
211 /*
212  * Ordering PMU callbacks wrt themselves and the PMI is done by means
213  * of bts::state, which:
214  *  - is set when bts::handle::event is valid, that is, between
215  *    perf_aux_output_begin() and perf_aux_output_end();
216  *  - is zero otherwise;
217  *  - is ordered against bts::handle::event with a compiler barrier.
218  */
219
220 static void __bts_event_start(struct perf_event *event)
221 {
222         struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
223         struct bts_buffer *buf = perf_get_aux(&bts->handle);
224         u64 config = 0;
225
226         if (!buf->snapshot)
227                 config |= ARCH_PERFMON_EVENTSEL_INT;
228         if (!event->attr.exclude_kernel)
229                 config |= ARCH_PERFMON_EVENTSEL_OS;
230         if (!event->attr.exclude_user)
231                 config |= ARCH_PERFMON_EVENTSEL_USR;
232
233         bts_config_buffer(buf);
234
235         /*
236          * local barrier to make sure that ds configuration made it
237          * before we enable BTS and bts::state goes ACTIVE
238          */
239         wmb();
240
241         /* INACTIVE/STOPPED -> ACTIVE */
242         WRITE_ONCE(bts->state, BTS_STATE_ACTIVE);
243
244         intel_pmu_enable_bts(config);
245
246 }
247
248 static void bts_event_start(struct perf_event *event, int flags)
249 {
250         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
251         struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
252         struct bts_buffer *buf;
253
254         buf = perf_aux_output_begin(&bts->handle, event);
255         if (!buf)
256                 goto fail_stop;
257
258         if (bts_buffer_reset(buf, &bts->handle))
259                 goto fail_end_stop;
260
261         bts->ds_back.bts_buffer_base = cpuc->ds->bts_buffer_base;
262         bts->ds_back.bts_absolute_maximum = cpuc->ds->bts_absolute_maximum;
263         bts->ds_back.bts_interrupt_threshold = cpuc->ds->bts_interrupt_threshold;
264
265         perf_event_itrace_started(event);
266         event->hw.state = 0;
267
268         __bts_event_start(event);
269
270         return;
271
272 fail_end_stop:
273         perf_aux_output_end(&bts->handle, 0);
274
275 fail_stop:
276         event->hw.state = PERF_HES_STOPPED;
277 }
278
279 static void __bts_event_stop(struct perf_event *event, int state)
280 {
281         struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
282
283         /* ACTIVE -> INACTIVE(PMI)/STOPPED(->stop()) */
284         WRITE_ONCE(bts->state, state);
285
286         /*
287          * No extra synchronization is mandated by the documentation to have
288          * BTS data stores globally visible.
289          */
290         intel_pmu_disable_bts();
291 }
292
293 static void bts_event_stop(struct perf_event *event, int flags)
294 {
295         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
296         struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
297         struct bts_buffer *buf = NULL;
298         int state = READ_ONCE(bts->state);
299
300         if (state == BTS_STATE_ACTIVE)
301                 __bts_event_stop(event, BTS_STATE_STOPPED);
302
303         if (state != BTS_STATE_STOPPED)
304                 buf = perf_get_aux(&bts->handle);
305
306         event->hw.state |= PERF_HES_STOPPED;
307
308         if (flags & PERF_EF_UPDATE) {
309                 bts_update(bts);
310
311                 if (buf) {
312                         if (buf->snapshot)
313                                 bts->handle.head =
314                                         local_xchg(&buf->data_size,
315                                                    buf->nr_pages << PAGE_SHIFT);
316                         perf_aux_output_end(&bts->handle,
317                                             local_xchg(&buf->data_size, 0));
318                 }
319
320                 cpuc->ds->bts_index = bts->ds_back.bts_buffer_base;
321                 cpuc->ds->bts_buffer_base = bts->ds_back.bts_buffer_base;
322                 cpuc->ds->bts_absolute_maximum = bts->ds_back.bts_absolute_maximum;
323                 cpuc->ds->bts_interrupt_threshold = bts->ds_back.bts_interrupt_threshold;
324         }
325 }
326
327 void intel_bts_enable_local(void)
328 {
329         struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
330         int state = READ_ONCE(bts->state);
331
332         /*
333          * Here we transition from INACTIVE to ACTIVE;
334          * if we instead are STOPPED from the interrupt handler,
335          * stay that way. Can't be ACTIVE here though.
336          */
337         if (WARN_ON_ONCE(state == BTS_STATE_ACTIVE))
338                 return;
339
340         if (state == BTS_STATE_STOPPED)
341                 return;
342
343         if (bts->handle.event)
344                 __bts_event_start(bts->handle.event);
345 }
346
347 void intel_bts_disable_local(void)
348 {
349         struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
350
351         /*
352          * Here we transition from ACTIVE to INACTIVE;
353          * do nothing for STOPPED or INACTIVE.
354          */
355         if (READ_ONCE(bts->state) != BTS_STATE_ACTIVE)
356                 return;
357
358         if (bts->handle.event)
359                 __bts_event_stop(bts->handle.event, BTS_STATE_INACTIVE);
360 }
361
362 static int
363 bts_buffer_reset(struct bts_buffer *buf, struct perf_output_handle *handle)
364 {
365         unsigned long head, space, next_space, pad, gap, skip, wakeup;
366         unsigned int next_buf;
367         struct bts_phys *phys, *next_phys;
368         int ret;
369
370         if (buf->snapshot)
371                 return 0;
372
373         head = handle->head & ((buf->nr_pages << PAGE_SHIFT) - 1);
374
375         phys = &buf->buf[buf->cur_buf];
376         space = phys->offset + phys->displacement + phys->size - head;
377         pad = space;
378         if (space > handle->size) {
379                 space = handle->size;
380                 space -= space % BTS_RECORD_SIZE;
381         }
382         if (space <= BTS_SAFETY_MARGIN) {
383                 /* See if next phys buffer has more space */
384                 next_buf = buf->cur_buf + 1;
385                 if (next_buf >= buf->nr_bufs)
386                         next_buf = 0;
387                 next_phys = &buf->buf[next_buf];
388                 gap = buf_size(phys->page) - phys->displacement - phys->size +
389                       next_phys->displacement;
390                 skip = pad + gap;
391                 if (handle->size >= skip) {
392                         next_space = next_phys->size;
393                         if (next_space + skip > handle->size) {
394                                 next_space = handle->size - skip;
395                                 next_space -= next_space % BTS_RECORD_SIZE;
396                         }
397                         if (next_space > space || !space) {
398                                 if (pad)
399                                         bts_buffer_pad_out(phys, head);
400                                 ret = perf_aux_output_skip(handle, skip);
401                                 if (ret)
402                                         return ret;
403                                 /* Advance to next phys buffer */
404                                 phys = next_phys;
405                                 space = next_space;
406                                 head = phys->offset + phys->displacement;
407                                 /*
408                                  * After this, cur_buf and head won't match ds
409                                  * anymore, so we must not be racing with
410                                  * bts_update().
411                                  */
412                                 buf->cur_buf = next_buf;
413                                 local_set(&buf->head, head);
414                         }
415                 }
416         }
417
418         /* Don't go far beyond wakeup watermark */
419         wakeup = BTS_SAFETY_MARGIN + BTS_RECORD_SIZE + handle->wakeup -
420                  handle->head;
421         if (space > wakeup) {
422                 space = wakeup;
423                 space -= space % BTS_RECORD_SIZE;
424         }
425
426         buf->end = head + space;
427
428         /*
429          * If we have no space, the lost notification would have been sent when
430          * we hit absolute_maximum - see bts_update()
431          */
432         if (!space)
433                 return -ENOSPC;
434
435         return 0;
436 }
437
438 int intel_bts_interrupt(void)
439 {
440         struct debug_store *ds = this_cpu_ptr(&cpu_hw_events)->ds;
441         struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
442         struct perf_event *event = bts->handle.event;
443         struct bts_buffer *buf;
444         s64 old_head;
445         int err = -ENOSPC, handled = 0;
446
447         /*
448          * The only surefire way of knowing if this NMI is ours is by checking
449          * the write ptr against the PMI threshold.
450          */
451         if (ds && (ds->bts_index >= ds->bts_interrupt_threshold))
452                 handled = 1;
453
454         /*
455          * this is wrapped in intel_bts_enable_local/intel_bts_disable_local,
456          * so we can only be INACTIVE or STOPPED
457          */
458         if (READ_ONCE(bts->state) == BTS_STATE_STOPPED)
459                 return handled;
460
461         buf = perf_get_aux(&bts->handle);
462         if (!buf)
463                 return handled;
464
465         /*
466          * Skip snapshot counters: they don't use the interrupt, but
467          * there's no other way of telling, because the pointer will
468          * keep moving
469          */
470         if (buf->snapshot)
471                 return 0;
472
473         old_head = local_read(&buf->head);
474         bts_update(bts);
475
476         /* no new data */
477         if (old_head == local_read(&buf->head))
478                 return handled;
479
480         perf_aux_output_end(&bts->handle, local_xchg(&buf->data_size, 0));
481
482         buf = perf_aux_output_begin(&bts->handle, event);
483         if (buf)
484                 err = bts_buffer_reset(buf, &bts->handle);
485
486         if (err) {
487                 WRITE_ONCE(bts->state, BTS_STATE_STOPPED);
488
489                 if (buf) {
490                         /*
491                          * BTS_STATE_STOPPED should be visible before
492                          * cleared handle::event
493                          */
494                         barrier();
495                         perf_aux_output_end(&bts->handle, 0);
496                 }
497         }
498
499         return 1;
500 }
501
502 static void bts_event_del(struct perf_event *event, int mode)
503 {
504         bts_event_stop(event, PERF_EF_UPDATE);
505 }
506
507 static int bts_event_add(struct perf_event *event, int mode)
508 {
509         struct bts_ctx *bts = this_cpu_ptr(&bts_ctx);
510         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
511         struct hw_perf_event *hwc = &event->hw;
512
513         event->hw.state = PERF_HES_STOPPED;
514
515         if (test_bit(INTEL_PMC_IDX_FIXED_BTS, cpuc->active_mask))
516                 return -EBUSY;
517
518         if (bts->handle.event)
519                 return -EBUSY;
520
521         if (mode & PERF_EF_START) {
522                 bts_event_start(event, 0);
523                 if (hwc->state & PERF_HES_STOPPED)
524                         return -EINVAL;
525         }
526
527         return 0;
528 }
529
530 static void bts_event_destroy(struct perf_event *event)
531 {
532         x86_release_hardware();
533         x86_del_exclusive(x86_lbr_exclusive_bts);
534 }
535
536 static int bts_event_init(struct perf_event *event)
537 {
538         int ret;
539
540         if (event->attr.type != bts_pmu.type)
541                 return -ENOENT;
542
543         /*
544          * BTS leaks kernel addresses even when CPL0 tracing is
545          * disabled, so disallow intel_bts driver for unprivileged
546          * users on paranoid systems since it provides trace data
547          * to the user in a zero-copy fashion.
548          *
549          * Note that the default paranoia setting permits unprivileged
550          * users to profile the kernel.
551          */
552         if (event->attr.exclude_kernel && perf_paranoid_kernel() &&
553             !capable(CAP_SYS_ADMIN))
554                 return -EACCES;
555
556         if (x86_add_exclusive(x86_lbr_exclusive_bts))
557                 return -EBUSY;
558
559         ret = x86_reserve_hardware();
560         if (ret) {
561                 x86_del_exclusive(x86_lbr_exclusive_bts);
562                 return ret;
563         }
564
565         event->destroy = bts_event_destroy;
566
567         return 0;
568 }
569
570 static void bts_event_read(struct perf_event *event)
571 {
572 }
573
574 static __init int bts_init(void)
575 {
576         if (!boot_cpu_has(X86_FEATURE_DTES64) || !x86_pmu.bts)
577                 return -ENODEV;
578
579         if (boot_cpu_has(X86_FEATURE_PTI)) {
580                 /*
581                  * BTS hardware writes through a virtual memory map we must
582                  * either use the kernel physical map, or the user mapping of
583                  * the AUX buffer.
584                  *
585                  * However, since this driver supports per-CPU and per-task inherit
586                  * we cannot use the user mapping since it will not be available
587                  * if we're not running the owning process.
588                  *
589                  * With PTI we can't use the kernal map either, because its not
590                  * there when we run userspace.
591                  *
592                  * For now, disable this driver when using PTI.
593                  */
594                 return -ENODEV;
595         }
596
597         bts_pmu.capabilities    = PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_ITRACE |
598                                   PERF_PMU_CAP_EXCLUSIVE;
599         bts_pmu.task_ctx_nr     = perf_sw_context;
600         bts_pmu.event_init      = bts_event_init;
601         bts_pmu.add             = bts_event_add;
602         bts_pmu.del             = bts_event_del;
603         bts_pmu.start           = bts_event_start;
604         bts_pmu.stop            = bts_event_stop;
605         bts_pmu.read            = bts_event_read;
606         bts_pmu.setup_aux       = bts_buffer_setup_aux;
607         bts_pmu.free_aux        = bts_buffer_free_aux;
608
609         return perf_pmu_register(&bts_pmu, "intel_bts", -1);
610 }
611 arch_initcall(bts_init);