Merge tag 'armsoc-dt' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[sfrench/cifs-2.6.git] / arch / um / kernel / process.c
1 /*
2  * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk})
3  * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
4  * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
5  * Copyright 2003 PathScale, Inc.
6  * Licensed under the GPL
7  */
8
9 #include <linux/stddef.h>
10 #include <linux/err.h>
11 #include <linux/hardirq.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/personality.h>
15 #include <linux/proc_fs.h>
16 #include <linux/ptrace.h>
17 #include <linux/random.h>
18 #include <linux/slab.h>
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/seq_file.h>
24 #include <linux/tick.h>
25 #include <linux/threads.h>
26 #include <linux/tracehook.h>
27 #include <asm/current.h>
28 #include <asm/pgtable.h>
29 #include <asm/mmu_context.h>
30 #include <linux/uaccess.h>
31 #include <as-layout.h>
32 #include <kern_util.h>
33 #include <os.h>
34 #include <skas.h>
35 #include <timer-internal.h>
36
37 /*
38  * This is a per-cpu array.  A processor only modifies its entry and it only
39  * cares about its entry, so it's OK if another processor is modifying its
40  * entry.
41  */
42 struct cpu_task cpu_tasks[NR_CPUS] = { [0 ... NR_CPUS - 1] = { -1, NULL } };
43
44 static inline int external_pid(void)
45 {
46         /* FIXME: Need to look up userspace_pid by cpu */
47         return userspace_pid[0];
48 }
49
50 int pid_to_processor_id(int pid)
51 {
52         int i;
53
54         for (i = 0; i < ncpus; i++) {
55                 if (cpu_tasks[i].pid == pid)
56                         return i;
57         }
58         return -1;
59 }
60
61 void free_stack(unsigned long stack, int order)
62 {
63         free_pages(stack, order);
64 }
65
66 unsigned long alloc_stack(int order, int atomic)
67 {
68         unsigned long page;
69         gfp_t flags = GFP_KERNEL;
70
71         if (atomic)
72                 flags = GFP_ATOMIC;
73         page = __get_free_pages(flags, order);
74
75         return page;
76 }
77
78 static inline void set_current(struct task_struct *task)
79 {
80         cpu_tasks[task_thread_info(task)->cpu] = ((struct cpu_task)
81                 { external_pid(), task });
82 }
83
84 extern void arch_switch_to(struct task_struct *to);
85
86 void *__switch_to(struct task_struct *from, struct task_struct *to)
87 {
88         to->thread.prev_sched = from;
89         set_current(to);
90
91         switch_threads(&from->thread.switch_buf, &to->thread.switch_buf);
92         arch_switch_to(current);
93
94         return current->thread.prev_sched;
95 }
96
97 void interrupt_end(void)
98 {
99         struct pt_regs *regs = &current->thread.regs;
100
101         if (need_resched())
102                 schedule();
103         if (test_thread_flag(TIF_SIGPENDING))
104                 do_signal(regs);
105         if (test_and_clear_thread_flag(TIF_NOTIFY_RESUME))
106                 tracehook_notify_resume(regs);
107 }
108
109 int get_current_pid(void)
110 {
111         return task_pid_nr(current);
112 }
113
114 /*
115  * This is called magically, by its address being stuffed in a jmp_buf
116  * and being longjmp-d to.
117  */
118 void new_thread_handler(void)
119 {
120         int (*fn)(void *), n;
121         void *arg;
122
123         if (current->thread.prev_sched != NULL)
124                 schedule_tail(current->thread.prev_sched);
125         current->thread.prev_sched = NULL;
126
127         fn = current->thread.request.u.thread.proc;
128         arg = current->thread.request.u.thread.arg;
129
130         /*
131          * callback returns only if the kernel thread execs a process
132          */
133         n = fn(arg);
134         userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
135 }
136
137 /* Called magically, see new_thread_handler above */
138 void fork_handler(void)
139 {
140         force_flush_all();
141
142         schedule_tail(current->thread.prev_sched);
143
144         /*
145          * XXX: if interrupt_end() calls schedule, this call to
146          * arch_switch_to isn't needed. We could want to apply this to
147          * improve performance. -bb
148          */
149         arch_switch_to(current);
150
151         current->thread.prev_sched = NULL;
152
153         userspace(&current->thread.regs.regs, current_thread_info()->aux_fp_regs);
154 }
155
156 int copy_thread(unsigned long clone_flags, unsigned long sp,
157                 unsigned long arg, struct task_struct * p)
158 {
159         void (*handler)(void);
160         int kthread = current->flags & PF_KTHREAD;
161         int ret = 0;
162
163         p->thread = (struct thread_struct) INIT_THREAD;
164
165         if (!kthread) {
166                 memcpy(&p->thread.regs.regs, current_pt_regs(),
167                        sizeof(p->thread.regs.regs));
168                 PT_REGS_SET_SYSCALL_RETURN(&p->thread.regs, 0);
169                 if (sp != 0)
170                         REGS_SP(p->thread.regs.regs.gp) = sp;
171
172                 handler = fork_handler;
173
174                 arch_copy_thread(&current->thread.arch, &p->thread.arch);
175         } else {
176                 get_safe_registers(p->thread.regs.regs.gp, p->thread.regs.regs.fp);
177                 p->thread.request.u.thread.proc = (int (*)(void *))sp;
178                 p->thread.request.u.thread.arg = (void *)arg;
179                 handler = new_thread_handler;
180         }
181
182         new_thread(task_stack_page(p), &p->thread.switch_buf, handler);
183
184         if (!kthread) {
185                 clear_flushed_tls(p);
186
187                 /*
188                  * Set a new TLS for the child thread?
189                  */
190                 if (clone_flags & CLONE_SETTLS)
191                         ret = arch_copy_tls(p);
192         }
193
194         return ret;
195 }
196
197 void initial_thread_cb(void (*proc)(void *), void *arg)
198 {
199         int save_kmalloc_ok = kmalloc_ok;
200
201         kmalloc_ok = 0;
202         initial_thread_cb_skas(proc, arg);
203         kmalloc_ok = save_kmalloc_ok;
204 }
205
206 static void time_travel_sleep(unsigned long long duration)
207 {
208         unsigned long long next = time_travel_time + duration;
209
210         if (time_travel_mode != TT_MODE_INFCPU)
211                 os_timer_disable();
212
213         if (time_travel_timer_mode != TT_TMR_DISABLED ||
214             time_travel_timer_expiry < next) {
215                 if (time_travel_timer_mode == TT_TMR_ONESHOT)
216                         time_travel_set_timer_mode(TT_TMR_DISABLED);
217                 /*
218                  * time_travel_time will be adjusted in the timer
219                  * IRQ handler so it works even when the signal
220                  * comes from the OS timer
221                  */
222                 deliver_alarm();
223         } else {
224                 time_travel_set_time(next);
225         }
226
227         if (time_travel_mode != TT_MODE_INFCPU) {
228                 if (time_travel_timer_mode == TT_TMR_PERIODIC)
229                         os_timer_set_interval(time_travel_timer_interval);
230                 else if (time_travel_timer_mode == TT_TMR_ONESHOT)
231                         os_timer_one_shot(time_travel_timer_expiry - next);
232         }
233 }
234
235 static void um_idle_sleep(void)
236 {
237         unsigned long long duration = UM_NSEC_PER_SEC;
238
239         if (time_travel_mode != TT_MODE_OFF) {
240                 time_travel_sleep(duration);
241         } else {
242                 os_idle_sleep(duration);
243         }
244 }
245
246 void arch_cpu_idle(void)
247 {
248         cpu_tasks[current_thread_info()->cpu].pid = os_getpid();
249         um_idle_sleep();
250         local_irq_enable();
251 }
252
253 int __cant_sleep(void) {
254         return in_atomic() || irqs_disabled() || in_interrupt();
255         /* Is in_interrupt() really needed? */
256 }
257
258 int user_context(unsigned long sp)
259 {
260         unsigned long stack;
261
262         stack = sp & (PAGE_MASK << CONFIG_KERNEL_STACK_ORDER);
263         return stack != (unsigned long) current_thread_info();
264 }
265
266 extern exitcall_t __uml_exitcall_begin, __uml_exitcall_end;
267
268 void do_uml_exitcalls(void)
269 {
270         exitcall_t *call;
271
272         call = &__uml_exitcall_end;
273         while (--call >= &__uml_exitcall_begin)
274                 (*call)();
275 }
276
277 char *uml_strdup(const char *string)
278 {
279         return kstrdup(string, GFP_KERNEL);
280 }
281 EXPORT_SYMBOL(uml_strdup);
282
283 int copy_to_user_proc(void __user *to, void *from, int size)
284 {
285         return copy_to_user(to, from, size);
286 }
287
288 int copy_from_user_proc(void *to, void __user *from, int size)
289 {
290         return copy_from_user(to, from, size);
291 }
292
293 int clear_user_proc(void __user *buf, int size)
294 {
295         return clear_user(buf, size);
296 }
297
298 int cpu(void)
299 {
300         return current_thread_info()->cpu;
301 }
302
303 static atomic_t using_sysemu = ATOMIC_INIT(0);
304 int sysemu_supported;
305
306 void set_using_sysemu(int value)
307 {
308         if (value > sysemu_supported)
309                 return;
310         atomic_set(&using_sysemu, value);
311 }
312
313 int get_using_sysemu(void)
314 {
315         return atomic_read(&using_sysemu);
316 }
317
318 static int sysemu_proc_show(struct seq_file *m, void *v)
319 {
320         seq_printf(m, "%d\n", get_using_sysemu());
321         return 0;
322 }
323
324 static int sysemu_proc_open(struct inode *inode, struct file *file)
325 {
326         return single_open(file, sysemu_proc_show, NULL);
327 }
328
329 static ssize_t sysemu_proc_write(struct file *file, const char __user *buf,
330                                  size_t count, loff_t *pos)
331 {
332         char tmp[2];
333
334         if (copy_from_user(tmp, buf, 1))
335                 return -EFAULT;
336
337         if (tmp[0] >= '0' && tmp[0] <= '2')
338                 set_using_sysemu(tmp[0] - '0');
339         /* We use the first char, but pretend to write everything */
340         return count;
341 }
342
343 static const struct file_operations sysemu_proc_fops = {
344         .owner          = THIS_MODULE,
345         .open           = sysemu_proc_open,
346         .read           = seq_read,
347         .llseek         = seq_lseek,
348         .release        = single_release,
349         .write          = sysemu_proc_write,
350 };
351
352 int __init make_proc_sysemu(void)
353 {
354         struct proc_dir_entry *ent;
355         if (!sysemu_supported)
356                 return 0;
357
358         ent = proc_create("sysemu", 0600, NULL, &sysemu_proc_fops);
359
360         if (ent == NULL)
361         {
362                 printk(KERN_WARNING "Failed to register /proc/sysemu\n");
363                 return 0;
364         }
365
366         return 0;
367 }
368
369 late_initcall(make_proc_sysemu);
370
371 int singlestepping(void * t)
372 {
373         struct task_struct *task = t ? t : current;
374
375         if (!(task->ptrace & PT_DTRACE))
376                 return 0;
377
378         if (task->thread.singlestep_syscall)
379                 return 1;
380
381         return 2;
382 }
383
384 /*
385  * Only x86 and x86_64 have an arch_align_stack().
386  * All other arches have "#define arch_align_stack(x) (x)"
387  * in their asm/exec.h
388  * As this is included in UML from asm-um/system-generic.h,
389  * we can use it to behave as the subarch does.
390  */
391 #ifndef arch_align_stack
392 unsigned long arch_align_stack(unsigned long sp)
393 {
394         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
395                 sp -= get_random_int() % 8192;
396         return sp & ~0xf;
397 }
398 #endif
399
400 unsigned long get_wchan(struct task_struct *p)
401 {
402         unsigned long stack_page, sp, ip;
403         bool seen_sched = 0;
404
405         if ((p == NULL) || (p == current) || (p->state == TASK_RUNNING))
406                 return 0;
407
408         stack_page = (unsigned long) task_stack_page(p);
409         /* Bail if the process has no kernel stack for some reason */
410         if (stack_page == 0)
411                 return 0;
412
413         sp = p->thread.switch_buf->JB_SP;
414         /*
415          * Bail if the stack pointer is below the bottom of the kernel
416          * stack for some reason
417          */
418         if (sp < stack_page)
419                 return 0;
420
421         while (sp < stack_page + THREAD_SIZE) {
422                 ip = *((unsigned long *) sp);
423                 if (in_sched_functions(ip))
424                         /* Ignore everything until we're above the scheduler */
425                         seen_sched = 1;
426                 else if (kernel_text_address(ip) && seen_sched)
427                         return ip;
428
429                 sp += sizeof(unsigned long);
430         }
431
432         return 0;
433 }
434
435 int elf_core_copy_fpregs(struct task_struct *t, elf_fpregset_t *fpu)
436 {
437         int cpu = current_thread_info()->cpu;
438
439         return save_i387_registers(userspace_pid[cpu], (unsigned long *) fpu);
440 }
441