Merge branch 'work.afs' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / arch / um / drivers / vector_kern.c
1 /*
2  * Copyright (C) 2017 - Cambridge Greys Limited
3  * Copyright (C) 2011 - 2014 Cisco Systems Inc
4  * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
5  * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
6  * James Leu (jleu@mindspring.net).
7  * Copyright (C) 2001 by various other people who didn't put their name here.
8  * Licensed under the GPL.
9  */
10
11 #include <linux/version.h>
12 #include <linux/memblock.h>
13 #include <linux/etherdevice.h>
14 #include <linux/ethtool.h>
15 #include <linux/inetdevice.h>
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/netdevice.h>
19 #include <linux/platform_device.h>
20 #include <linux/rtnetlink.h>
21 #include <linux/skbuff.h>
22 #include <linux/slab.h>
23 #include <linux/interrupt.h>
24 #include <init.h>
25 #include <irq_kern.h>
26 #include <irq_user.h>
27 #include <net_kern.h>
28 #include <os.h>
29 #include "mconsole_kern.h"
30 #include "vector_user.h"
31 #include "vector_kern.h"
32
33 /*
34  * Adapted from network devices with the following major changes:
35  * All transports are static - simplifies the code significantly
36  * Multiple FDs/IRQs per device
37  * Vector IO optionally used for read/write, falling back to legacy
38  * based on configuration and/or availability
39  * Configuration is no longer positional - L2TPv3 and GRE require up to
40  * 10 parameters, passing this as positional is not fit for purpose.
41  * Only socket transports are supported
42  */
43
44
45 #define DRIVER_NAME "uml-vector"
46 #define DRIVER_VERSION "01"
47 struct vector_cmd_line_arg {
48         struct list_head list;
49         int unit;
50         char *arguments;
51 };
52
53 struct vector_device {
54         struct list_head list;
55         struct net_device *dev;
56         struct platform_device pdev;
57         int unit;
58         int opened;
59 };
60
61 static LIST_HEAD(vec_cmd_line);
62
63 static DEFINE_SPINLOCK(vector_devices_lock);
64 static LIST_HEAD(vector_devices);
65
66 static int driver_registered;
67
68 static void vector_eth_configure(int n, struct arglist *def);
69
70 /* Argument accessors to set variables (and/or set default values)
71  * mtu, buffer sizing, default headroom, etc
72  */
73
74 #define DEFAULT_HEADROOM 2
75 #define SAFETY_MARGIN 32
76 #define DEFAULT_VECTOR_SIZE 64
77 #define TX_SMALL_PACKET 128
78 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
79
80 static const struct {
81         const char string[ETH_GSTRING_LEN];
82 } ethtool_stats_keys[] = {
83         { "rx_queue_max" },
84         { "rx_queue_running_average" },
85         { "tx_queue_max" },
86         { "tx_queue_running_average" },
87         { "rx_encaps_errors" },
88         { "tx_timeout_count" },
89         { "tx_restart_queue" },
90         { "tx_kicks" },
91         { "tx_flow_control_xon" },
92         { "tx_flow_control_xoff" },
93         { "rx_csum_offload_good" },
94         { "rx_csum_offload_errors"},
95         { "sg_ok"},
96         { "sg_linearized"},
97 };
98
99 #define VECTOR_NUM_STATS        ARRAY_SIZE(ethtool_stats_keys)
100
101 static void vector_reset_stats(struct vector_private *vp)
102 {
103         vp->estats.rx_queue_max = 0;
104         vp->estats.rx_queue_running_average = 0;
105         vp->estats.tx_queue_max = 0;
106         vp->estats.tx_queue_running_average = 0;
107         vp->estats.rx_encaps_errors = 0;
108         vp->estats.tx_timeout_count = 0;
109         vp->estats.tx_restart_queue = 0;
110         vp->estats.tx_kicks = 0;
111         vp->estats.tx_flow_control_xon = 0;
112         vp->estats.tx_flow_control_xoff = 0;
113         vp->estats.sg_ok = 0;
114         vp->estats.sg_linearized = 0;
115 }
116
117 static int get_mtu(struct arglist *def)
118 {
119         char *mtu = uml_vector_fetch_arg(def, "mtu");
120         long result;
121
122         if (mtu != NULL) {
123                 if (kstrtoul(mtu, 10, &result) == 0)
124                         return result;
125         }
126         return ETH_MAX_PACKET;
127 }
128
129 static int get_depth(struct arglist *def)
130 {
131         char *mtu = uml_vector_fetch_arg(def, "depth");
132         long result;
133
134         if (mtu != NULL) {
135                 if (kstrtoul(mtu, 10, &result) == 0)
136                         return result;
137         }
138         return DEFAULT_VECTOR_SIZE;
139 }
140
141 static int get_headroom(struct arglist *def)
142 {
143         char *mtu = uml_vector_fetch_arg(def, "headroom");
144         long result;
145
146         if (mtu != NULL) {
147                 if (kstrtoul(mtu, 10, &result) == 0)
148                         return result;
149         }
150         return DEFAULT_HEADROOM;
151 }
152
153 static int get_req_size(struct arglist *def)
154 {
155         char *gro = uml_vector_fetch_arg(def, "gro");
156         long result;
157
158         if (gro != NULL) {
159                 if (kstrtoul(gro, 10, &result) == 0) {
160                         if (result > 0)
161                                 return 65536;
162                 }
163         }
164         return get_mtu(def) + ETH_HEADER_OTHER +
165                 get_headroom(def) + SAFETY_MARGIN;
166 }
167
168
169 static int get_transport_options(struct arglist *def)
170 {
171         char *transport = uml_vector_fetch_arg(def, "transport");
172         char *vector = uml_vector_fetch_arg(def, "vec");
173
174         int vec_rx = VECTOR_RX;
175         int vec_tx = VECTOR_TX;
176         long parsed;
177
178         if (vector != NULL) {
179                 if (kstrtoul(vector, 10, &parsed) == 0) {
180                         if (parsed == 0) {
181                                 vec_rx = 0;
182                                 vec_tx = 0;
183                         }
184                 }
185         }
186
187
188         if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
189                 return (vec_rx | VECTOR_BPF);
190         if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
191                 return (vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
192         return (vec_rx | vec_tx);
193 }
194
195
196 /* A mini-buffer for packet drop read
197  * All of our supported transports are datagram oriented and we always
198  * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
199  * than the packet size it still counts as full packet read and will
200  * clean the incoming stream to keep sigio/epoll happy
201  */
202
203 #define DROP_BUFFER_SIZE 32
204
205 static char *drop_buffer;
206
207 /* Array backed queues optimized for bulk enqueue/dequeue and
208  * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios.
209  * For more details and full design rationale see
210  * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt
211  */
212
213
214 /*
215  * Advance the mmsg queue head by n = advance. Resets the queue to
216  * maximum enqueue/dequeue-at-once capacity if possible. Called by
217  * dequeuers. Caller must hold the head_lock!
218  */
219
220 static int vector_advancehead(struct vector_queue *qi, int advance)
221 {
222         int queue_depth;
223
224         qi->head =
225                 (qi->head + advance)
226                         % qi->max_depth;
227
228
229         spin_lock(&qi->tail_lock);
230         qi->queue_depth -= advance;
231
232         /* we are at 0, use this to
233          * reset head and tail so we can use max size vectors
234          */
235
236         if (qi->queue_depth == 0) {
237                 qi->head = 0;
238                 qi->tail = 0;
239         }
240         queue_depth = qi->queue_depth;
241         spin_unlock(&qi->tail_lock);
242         return queue_depth;
243 }
244
245 /*      Advance the queue tail by n = advance.
246  *      This is called by enqueuers which should hold the
247  *      head lock already
248  */
249
250 static int vector_advancetail(struct vector_queue *qi, int advance)
251 {
252         int queue_depth;
253
254         qi->tail =
255                 (qi->tail + advance)
256                         % qi->max_depth;
257         spin_lock(&qi->head_lock);
258         qi->queue_depth += advance;
259         queue_depth = qi->queue_depth;
260         spin_unlock(&qi->head_lock);
261         return queue_depth;
262 }
263
264 static int prep_msg(struct vector_private *vp,
265         struct sk_buff *skb,
266         struct iovec *iov)
267 {
268         int iov_index = 0;
269         int nr_frags, frag;
270         skb_frag_t *skb_frag;
271
272         nr_frags = skb_shinfo(skb)->nr_frags;
273         if (nr_frags > MAX_IOV_SIZE) {
274                 if (skb_linearize(skb) != 0)
275                         goto drop;
276         }
277         if (vp->header_size > 0) {
278                 iov[iov_index].iov_len = vp->header_size;
279                 vp->form_header(iov[iov_index].iov_base, skb, vp);
280                 iov_index++;
281         }
282         iov[iov_index].iov_base = skb->data;
283         if (nr_frags > 0) {
284                 iov[iov_index].iov_len = skb->len - skb->data_len;
285                 vp->estats.sg_ok++;
286         } else
287                 iov[iov_index].iov_len = skb->len;
288         iov_index++;
289         for (frag = 0; frag < nr_frags; frag++) {
290                 skb_frag = &skb_shinfo(skb)->frags[frag];
291                 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
292                 iov[iov_index].iov_len = skb_frag_size(skb_frag);
293                 iov_index++;
294         }
295         return iov_index;
296 drop:
297         return -1;
298 }
299 /*
300  * Generic vector enqueue with support for forming headers using transport
301  * specific callback. Allows GRE, L2TPv3, RAW and other transports
302  * to use a common enqueue procedure in vector mode
303  */
304
305 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
306 {
307         struct vector_private *vp = netdev_priv(qi->dev);
308         int queue_depth;
309         int packet_len;
310         struct mmsghdr *mmsg_vector = qi->mmsg_vector;
311         int iov_count;
312
313         spin_lock(&qi->tail_lock);
314         spin_lock(&qi->head_lock);
315         queue_depth = qi->queue_depth;
316         spin_unlock(&qi->head_lock);
317
318         if (skb)
319                 packet_len = skb->len;
320
321         if (queue_depth < qi->max_depth) {
322
323                 *(qi->skbuff_vector + qi->tail) = skb;
324                 mmsg_vector += qi->tail;
325                 iov_count = prep_msg(
326                         vp,
327                         skb,
328                         mmsg_vector->msg_hdr.msg_iov
329                 );
330                 if (iov_count < 1)
331                         goto drop;
332                 mmsg_vector->msg_hdr.msg_iovlen = iov_count;
333                 mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
334                 mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
335                 queue_depth = vector_advancetail(qi, 1);
336         } else
337                 goto drop;
338         spin_unlock(&qi->tail_lock);
339         return queue_depth;
340 drop:
341         qi->dev->stats.tx_dropped++;
342         if (skb != NULL) {
343                 packet_len = skb->len;
344                 dev_consume_skb_any(skb);
345                 netdev_completed_queue(qi->dev, 1, packet_len);
346         }
347         spin_unlock(&qi->tail_lock);
348         return queue_depth;
349 }
350
351 static int consume_vector_skbs(struct vector_queue *qi, int count)
352 {
353         struct sk_buff *skb;
354         int skb_index;
355         int bytes_compl = 0;
356
357         for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
358                 skb = *(qi->skbuff_vector + skb_index);
359                 /* mark as empty to ensure correct destruction if
360                  * needed
361                  */
362                 bytes_compl += skb->len;
363                 *(qi->skbuff_vector + skb_index) = NULL;
364                 dev_consume_skb_any(skb);
365         }
366         qi->dev->stats.tx_bytes += bytes_compl;
367         qi->dev->stats.tx_packets += count;
368         netdev_completed_queue(qi->dev, count, bytes_compl);
369         return vector_advancehead(qi, count);
370 }
371
372 /*
373  * Generic vector deque via sendmmsg with support for forming headers
374  * using transport specific callback. Allows GRE, L2TPv3, RAW and
375  * other transports to use a common dequeue procedure in vector mode
376  */
377
378
379 static int vector_send(struct vector_queue *qi)
380 {
381         struct vector_private *vp = netdev_priv(qi->dev);
382         struct mmsghdr *send_from;
383         int result = 0, send_len, queue_depth = qi->max_depth;
384
385         if (spin_trylock(&qi->head_lock)) {
386                 if (spin_trylock(&qi->tail_lock)) {
387                         /* update queue_depth to current value */
388                         queue_depth = qi->queue_depth;
389                         spin_unlock(&qi->tail_lock);
390                         while (queue_depth > 0) {
391                                 /* Calculate the start of the vector */
392                                 send_len = queue_depth;
393                                 send_from = qi->mmsg_vector;
394                                 send_from += qi->head;
395                                 /* Adjust vector size if wraparound */
396                                 if (send_len + qi->head > qi->max_depth)
397                                         send_len = qi->max_depth - qi->head;
398                                 /* Try to TX as many packets as possible */
399                                 if (send_len > 0) {
400                                         result = uml_vector_sendmmsg(
401                                                  vp->fds->tx_fd,
402                                                  send_from,
403                                                  send_len,
404                                                  0
405                                         );
406                                         vp->in_write_poll =
407                                                 (result != send_len);
408                                 }
409                                 /* For some of the sendmmsg error scenarios
410                                  * we may end being unsure in the TX success
411                                  * for all packets. It is safer to declare
412                                  * them all TX-ed and blame the network.
413                                  */
414                                 if (result < 0) {
415                                         if (net_ratelimit())
416                                                 netdev_err(vp->dev, "sendmmsg err=%i\n",
417                                                         result);
418                                         result = send_len;
419                                 }
420                                 if (result > 0) {
421                                         queue_depth =
422                                                 consume_vector_skbs(qi, result);
423                                         /* This is equivalent to an TX IRQ.
424                                          * Restart the upper layers to feed us
425                                          * more packets.
426                                          */
427                                         if (result > vp->estats.tx_queue_max)
428                                                 vp->estats.tx_queue_max = result;
429                                         vp->estats.tx_queue_running_average =
430                                                 (vp->estats.tx_queue_running_average + result) >> 1;
431                                 }
432                                 netif_trans_update(qi->dev);
433                                 netif_wake_queue(qi->dev);
434                                 /* if TX is busy, break out of the send loop,
435                                  *  poll write IRQ will reschedule xmit for us
436                                  */
437                                 if (result != send_len) {
438                                         vp->estats.tx_restart_queue++;
439                                         break;
440                                 }
441                         }
442                 }
443                 spin_unlock(&qi->head_lock);
444         } else {
445                 tasklet_schedule(&vp->tx_poll);
446         }
447         return queue_depth;
448 }
449
450 /* Queue destructor. Deliberately stateless so we can use
451  * it in queue cleanup if initialization fails.
452  */
453
454 static void destroy_queue(struct vector_queue *qi)
455 {
456         int i;
457         struct iovec *iov;
458         struct vector_private *vp = netdev_priv(qi->dev);
459         struct mmsghdr *mmsg_vector;
460
461         if (qi == NULL)
462                 return;
463         /* deallocate any skbuffs - we rely on any unused to be
464          * set to NULL.
465          */
466         if (qi->skbuff_vector != NULL) {
467                 for (i = 0; i < qi->max_depth; i++) {
468                         if (*(qi->skbuff_vector + i) != NULL)
469                                 dev_kfree_skb_any(*(qi->skbuff_vector + i));
470                 }
471                 kfree(qi->skbuff_vector);
472         }
473         /* deallocate matching IOV structures including header buffs */
474         if (qi->mmsg_vector != NULL) {
475                 mmsg_vector = qi->mmsg_vector;
476                 for (i = 0; i < qi->max_depth; i++) {
477                         iov = mmsg_vector->msg_hdr.msg_iov;
478                         if (iov != NULL) {
479                                 if ((vp->header_size > 0) &&
480                                         (iov->iov_base != NULL))
481                                         kfree(iov->iov_base);
482                                 kfree(iov);
483                         }
484                         mmsg_vector++;
485                 }
486                 kfree(qi->mmsg_vector);
487         }
488         kfree(qi);
489 }
490
491 /*
492  * Queue constructor. Create a queue with a given side.
493  */
494 static struct vector_queue *create_queue(
495         struct vector_private *vp,
496         int max_size,
497         int header_size,
498         int num_extra_frags)
499 {
500         struct vector_queue *result;
501         int i;
502         struct iovec *iov;
503         struct mmsghdr *mmsg_vector;
504
505         result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
506         if (result == NULL)
507                 return NULL;
508         result->max_depth = max_size;
509         result->dev = vp->dev;
510         result->mmsg_vector = kmalloc(
511                 (sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
512         if (result->mmsg_vector == NULL)
513                 goto out_mmsg_fail;
514         result->skbuff_vector = kmalloc(
515                 (sizeof(void *) * max_size), GFP_KERNEL);
516         if (result->skbuff_vector == NULL)
517                 goto out_skb_fail;
518
519         /* further failures can be handled safely by destroy_queue*/
520
521         mmsg_vector = result->mmsg_vector;
522         for (i = 0; i < max_size; i++) {
523                 /* Clear all pointers - we use non-NULL as marking on
524                  * what to free on destruction
525                  */
526                 *(result->skbuff_vector + i) = NULL;
527                 mmsg_vector->msg_hdr.msg_iov = NULL;
528                 mmsg_vector++;
529         }
530         mmsg_vector = result->mmsg_vector;
531         result->max_iov_frags = num_extra_frags;
532         for (i = 0; i < max_size; i++) {
533                 if (vp->header_size > 0)
534                         iov = kmalloc_array(3 + num_extra_frags,
535                                             sizeof(struct iovec),
536                                             GFP_KERNEL
537                         );
538                 else
539                         iov = kmalloc_array(2 + num_extra_frags,
540                                             sizeof(struct iovec),
541                                             GFP_KERNEL
542                         );
543                 if (iov == NULL)
544                         goto out_fail;
545                 mmsg_vector->msg_hdr.msg_iov = iov;
546                 mmsg_vector->msg_hdr.msg_iovlen = 1;
547                 mmsg_vector->msg_hdr.msg_control = NULL;
548                 mmsg_vector->msg_hdr.msg_controllen = 0;
549                 mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
550                 mmsg_vector->msg_hdr.msg_name = NULL;
551                 mmsg_vector->msg_hdr.msg_namelen = 0;
552                 if (vp->header_size > 0) {
553                         iov->iov_base = kmalloc(header_size, GFP_KERNEL);
554                         if (iov->iov_base == NULL)
555                                 goto out_fail;
556                         iov->iov_len = header_size;
557                         mmsg_vector->msg_hdr.msg_iovlen = 2;
558                         iov++;
559                 }
560                 iov->iov_base = NULL;
561                 iov->iov_len = 0;
562                 mmsg_vector++;
563         }
564         spin_lock_init(&result->head_lock);
565         spin_lock_init(&result->tail_lock);
566         result->queue_depth = 0;
567         result->head = 0;
568         result->tail = 0;
569         return result;
570 out_skb_fail:
571         kfree(result->mmsg_vector);
572 out_mmsg_fail:
573         kfree(result);
574         return NULL;
575 out_fail:
576         destroy_queue(result);
577         return NULL;
578 }
579
580 /*
581  * We do not use the RX queue as a proper wraparound queue for now
582  * This is not necessary because the consumption via netif_rx()
583  * happens in-line. While we can try using the return code of
584  * netif_rx() for flow control there are no drivers doing this today.
585  * For this RX specific use we ignore the tail/head locks and
586  * just read into a prepared queue filled with skbuffs.
587  */
588
589 static struct sk_buff *prep_skb(
590         struct vector_private *vp,
591         struct user_msghdr *msg)
592 {
593         int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
594         struct sk_buff *result;
595         int iov_index = 0, len;
596         struct iovec *iov = msg->msg_iov;
597         int err, nr_frags, frag;
598         skb_frag_t *skb_frag;
599
600         if (vp->req_size <= linear)
601                 len = linear;
602         else
603                 len = vp->req_size;
604         result = alloc_skb_with_frags(
605                 linear,
606                 len - vp->max_packet,
607                 3,
608                 &err,
609                 GFP_ATOMIC
610         );
611         if (vp->header_size > 0)
612                 iov_index++;
613         if (result == NULL) {
614                 iov[iov_index].iov_base = NULL;
615                 iov[iov_index].iov_len = 0;
616                 goto done;
617         }
618         skb_reserve(result, vp->headroom);
619         result->dev = vp->dev;
620         skb_put(result, vp->max_packet);
621         result->data_len = len - vp->max_packet;
622         result->len += len - vp->max_packet;
623         skb_reset_mac_header(result);
624         result->ip_summed = CHECKSUM_NONE;
625         iov[iov_index].iov_base = result->data;
626         iov[iov_index].iov_len = vp->max_packet;
627         iov_index++;
628
629         nr_frags = skb_shinfo(result)->nr_frags;
630         for (frag = 0; frag < nr_frags; frag++) {
631                 skb_frag = &skb_shinfo(result)->frags[frag];
632                 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
633                 if (iov[iov_index].iov_base != NULL)
634                         iov[iov_index].iov_len = skb_frag_size(skb_frag);
635                 else
636                         iov[iov_index].iov_len = 0;
637                 iov_index++;
638         }
639 done:
640         msg->msg_iovlen = iov_index;
641         return result;
642 }
643
644
645 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/
646
647 static void prep_queue_for_rx(struct vector_queue *qi)
648 {
649         struct vector_private *vp = netdev_priv(qi->dev);
650         struct mmsghdr *mmsg_vector = qi->mmsg_vector;
651         void **skbuff_vector = qi->skbuff_vector;
652         int i;
653
654         if (qi->queue_depth == 0)
655                 return;
656         for (i = 0; i < qi->queue_depth; i++) {
657                 /* it is OK if allocation fails - recvmmsg with NULL data in
658                  * iov argument still performs an RX, just drops the packet
659                  * This allows us stop faffing around with a "drop buffer"
660                  */
661
662                 *skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
663                 skbuff_vector++;
664                 mmsg_vector++;
665         }
666         qi->queue_depth = 0;
667 }
668
669 static struct vector_device *find_device(int n)
670 {
671         struct vector_device *device;
672         struct list_head *ele;
673
674         spin_lock(&vector_devices_lock);
675         list_for_each(ele, &vector_devices) {
676                 device = list_entry(ele, struct vector_device, list);
677                 if (device->unit == n)
678                         goto out;
679         }
680         device = NULL;
681  out:
682         spin_unlock(&vector_devices_lock);
683         return device;
684 }
685
686 static int vector_parse(char *str, int *index_out, char **str_out,
687                         char **error_out)
688 {
689         int n, len, err;
690         char *start = str;
691
692         len = strlen(str);
693
694         while ((*str != ':') && (strlen(str) > 1))
695                 str++;
696         if (*str != ':') {
697                 *error_out = "Expected ':' after device number";
698                 return -EINVAL;
699         }
700         *str = '\0';
701
702         err = kstrtouint(start, 0, &n);
703         if (err < 0) {
704                 *error_out = "Bad device number";
705                 return err;
706         }
707
708         str++;
709         if (find_device(n)) {
710                 *error_out = "Device already configured";
711                 return -EINVAL;
712         }
713
714         *index_out = n;
715         *str_out = str;
716         return 0;
717 }
718
719 static int vector_config(char *str, char **error_out)
720 {
721         int err, n;
722         char *params;
723         struct arglist *parsed;
724
725         err = vector_parse(str, &n, &params, error_out);
726         if (err != 0)
727                 return err;
728
729         /* This string is broken up and the pieces used by the underlying
730          * driver. We should copy it to make sure things do not go wrong
731          * later.
732          */
733
734         params = kstrdup(params, GFP_KERNEL);
735         if (params == NULL) {
736                 *error_out = "vector_config failed to strdup string";
737                 return -ENOMEM;
738         }
739
740         parsed = uml_parse_vector_ifspec(params);
741
742         if (parsed == NULL) {
743                 *error_out = "vector_config failed to parse parameters";
744                 return -EINVAL;
745         }
746
747         vector_eth_configure(n, parsed);
748         return 0;
749 }
750
751 static int vector_id(char **str, int *start_out, int *end_out)
752 {
753         char *end;
754         int n;
755
756         n = simple_strtoul(*str, &end, 0);
757         if ((*end != '\0') || (end == *str))
758                 return -1;
759
760         *start_out = n;
761         *end_out = n;
762         *str = end;
763         return n;
764 }
765
766 static int vector_remove(int n, char **error_out)
767 {
768         struct vector_device *vec_d;
769         struct net_device *dev;
770         struct vector_private *vp;
771
772         vec_d = find_device(n);
773         if (vec_d == NULL)
774                 return -ENODEV;
775         dev = vec_d->dev;
776         vp = netdev_priv(dev);
777         if (vp->fds != NULL)
778                 return -EBUSY;
779         unregister_netdev(dev);
780         platform_device_unregister(&vec_d->pdev);
781         return 0;
782 }
783
784 /*
785  * There is no shared per-transport initialization code, so
786  * we will just initialize each interface one by one and
787  * add them to a list
788  */
789
790 static struct platform_driver uml_net_driver = {
791         .driver = {
792                 .name = DRIVER_NAME,
793         },
794 };
795
796
797 static void vector_device_release(struct device *dev)
798 {
799         struct vector_device *device = dev_get_drvdata(dev);
800         struct net_device *netdev = device->dev;
801
802         list_del(&device->list);
803         kfree(device);
804         free_netdev(netdev);
805 }
806
807 /* Bog standard recv using recvmsg - not used normally unless the user
808  * explicitly specifies not to use recvmmsg vector RX.
809  */
810
811 static int vector_legacy_rx(struct vector_private *vp)
812 {
813         int pkt_len;
814         struct user_msghdr hdr;
815         struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
816         int iovpos = 0;
817         struct sk_buff *skb;
818         int header_check;
819
820         hdr.msg_name = NULL;
821         hdr.msg_namelen = 0;
822         hdr.msg_iov = (struct iovec *) &iov;
823         hdr.msg_control = NULL;
824         hdr.msg_controllen = 0;
825         hdr.msg_flags = 0;
826
827         if (vp->header_size > 0) {
828                 iov[0].iov_base = vp->header_rxbuffer;
829                 iov[0].iov_len = vp->header_size;
830         }
831
832         skb = prep_skb(vp, &hdr);
833
834         if (skb == NULL) {
835                 /* Read a packet into drop_buffer and don't do
836                  * anything with it.
837                  */
838                 iov[iovpos].iov_base = drop_buffer;
839                 iov[iovpos].iov_len = DROP_BUFFER_SIZE;
840                 hdr.msg_iovlen = 1;
841                 vp->dev->stats.rx_dropped++;
842         }
843
844         pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
845
846         if (skb != NULL) {
847                 if (pkt_len > vp->header_size) {
848                         if (vp->header_size > 0) {
849                                 header_check = vp->verify_header(
850                                         vp->header_rxbuffer, skb, vp);
851                                 if (header_check < 0) {
852                                         dev_kfree_skb_irq(skb);
853                                         vp->dev->stats.rx_dropped++;
854                                         vp->estats.rx_encaps_errors++;
855                                         return 0;
856                                 }
857                                 if (header_check > 0) {
858                                         vp->estats.rx_csum_offload_good++;
859                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
860                                 }
861                         }
862                         pskb_trim(skb, pkt_len - vp->rx_header_size);
863                         skb->protocol = eth_type_trans(skb, skb->dev);
864                         vp->dev->stats.rx_bytes += skb->len;
865                         vp->dev->stats.rx_packets++;
866                         netif_rx(skb);
867                 } else {
868                         dev_kfree_skb_irq(skb);
869                 }
870         }
871         return pkt_len;
872 }
873
874 /*
875  * Packet at a time TX which falls back to vector TX if the
876  * underlying transport is busy.
877  */
878
879
880
881 static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
882 {
883         struct iovec iov[3 + MAX_IOV_SIZE];
884         int iov_count, pkt_len = 0;
885
886         iov[0].iov_base = vp->header_txbuffer;
887         iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
888
889         if (iov_count < 1)
890                 goto drop;
891         pkt_len = uml_vector_writev(
892                 vp->fds->tx_fd,
893                 (struct iovec *) &iov,
894                 iov_count
895         );
896
897         netif_trans_update(vp->dev);
898         netif_wake_queue(vp->dev);
899
900         if (pkt_len > 0) {
901                 vp->dev->stats.tx_bytes += skb->len;
902                 vp->dev->stats.tx_packets++;
903         } else {
904                 vp->dev->stats.tx_dropped++;
905         }
906         consume_skb(skb);
907         return pkt_len;
908 drop:
909         vp->dev->stats.tx_dropped++;
910         consume_skb(skb);
911         return pkt_len;
912 }
913
914 /*
915  * Receive as many messages as we can in one call using the special
916  * mmsg vector matched to an skb vector which we prepared earlier.
917  */
918
919 static int vector_mmsg_rx(struct vector_private *vp)
920 {
921         int packet_count, i;
922         struct vector_queue *qi = vp->rx_queue;
923         struct sk_buff *skb;
924         struct mmsghdr *mmsg_vector = qi->mmsg_vector;
925         void **skbuff_vector = qi->skbuff_vector;
926         int header_check;
927
928         /* Refresh the vector and make sure it is with new skbs and the
929          * iovs are updated to point to them.
930          */
931
932         prep_queue_for_rx(qi);
933
934         /* Fire the Lazy Gun - get as many packets as we can in one go. */
935
936         packet_count = uml_vector_recvmmsg(
937                 vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0);
938
939         if (packet_count <= 0)
940                 return packet_count;
941
942         /* We treat packet processing as enqueue, buffer refresh as dequeue
943          * The queue_depth tells us how many buffers have been used and how
944          * many do we need to prep the next time prep_queue_for_rx() is called.
945          */
946
947         qi->queue_depth = packet_count;
948
949         for (i = 0; i < packet_count; i++) {
950                 skb = (*skbuff_vector);
951                 if (mmsg_vector->msg_len > vp->header_size) {
952                         if (vp->header_size > 0) {
953                                 header_check = vp->verify_header(
954                                         mmsg_vector->msg_hdr.msg_iov->iov_base,
955                                         skb,
956                                         vp
957                                 );
958                                 if (header_check < 0) {
959                                 /* Overlay header failed to verify - discard.
960                                  * We can actually keep this skb and reuse it,
961                                  * but that will make the prep logic too
962                                  * complex.
963                                  */
964                                         dev_kfree_skb_irq(skb);
965                                         vp->estats.rx_encaps_errors++;
966                                         continue;
967                                 }
968                                 if (header_check > 0) {
969                                         vp->estats.rx_csum_offload_good++;
970                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
971                                 }
972                         }
973                         pskb_trim(skb,
974                                 mmsg_vector->msg_len - vp->rx_header_size);
975                         skb->protocol = eth_type_trans(skb, skb->dev);
976                         /*
977                          * We do not need to lock on updating stats here
978                          * The interrupt loop is non-reentrant.
979                          */
980                         vp->dev->stats.rx_bytes += skb->len;
981                         vp->dev->stats.rx_packets++;
982                         netif_rx(skb);
983                 } else {
984                         /* Overlay header too short to do anything - discard.
985                          * We can actually keep this skb and reuse it,
986                          * but that will make the prep logic too complex.
987                          */
988                         if (skb != NULL)
989                                 dev_kfree_skb_irq(skb);
990                 }
991                 (*skbuff_vector) = NULL;
992                 /* Move to the next buffer element */
993                 mmsg_vector++;
994                 skbuff_vector++;
995         }
996         if (packet_count > 0) {
997                 if (vp->estats.rx_queue_max < packet_count)
998                         vp->estats.rx_queue_max = packet_count;
999                 vp->estats.rx_queue_running_average =
1000                         (vp->estats.rx_queue_running_average + packet_count) >> 1;
1001         }
1002         return packet_count;
1003 }
1004
1005 static void vector_rx(struct vector_private *vp)
1006 {
1007         int err;
1008
1009         if ((vp->options & VECTOR_RX) > 0)
1010                 while ((err = vector_mmsg_rx(vp)) > 0)
1011                         ;
1012         else
1013                 while ((err = vector_legacy_rx(vp)) > 0)
1014                         ;
1015         if ((err != 0) && net_ratelimit())
1016                 netdev_err(vp->dev, "vector_rx: error(%d)\n", err);
1017 }
1018
1019 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1020 {
1021         struct vector_private *vp = netdev_priv(dev);
1022         int queue_depth = 0;
1023
1024         if ((vp->options & VECTOR_TX) == 0) {
1025                 writev_tx(vp, skb);
1026                 return NETDEV_TX_OK;
1027         }
1028
1029         /* We do BQL only in the vector path, no point doing it in
1030          * packet at a time mode as there is no device queue
1031          */
1032
1033         netdev_sent_queue(vp->dev, skb->len);
1034         queue_depth = vector_enqueue(vp->tx_queue, skb);
1035
1036         /* if the device queue is full, stop the upper layers and
1037          * flush it.
1038          */
1039
1040         if (queue_depth >= vp->tx_queue->max_depth - 1) {
1041                 vp->estats.tx_kicks++;
1042                 netif_stop_queue(dev);
1043                 vector_send(vp->tx_queue);
1044                 return NETDEV_TX_OK;
1045         }
1046         if (skb->xmit_more) {
1047                 mod_timer(&vp->tl, vp->coalesce);
1048                 return NETDEV_TX_OK;
1049         }
1050         if (skb->len < TX_SMALL_PACKET) {
1051                 vp->estats.tx_kicks++;
1052                 vector_send(vp->tx_queue);
1053         } else
1054                 tasklet_schedule(&vp->tx_poll);
1055         return NETDEV_TX_OK;
1056 }
1057
1058 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1059 {
1060         struct net_device *dev = dev_id;
1061         struct vector_private *vp = netdev_priv(dev);
1062
1063         if (!netif_running(dev))
1064                 return IRQ_NONE;
1065         vector_rx(vp);
1066         return IRQ_HANDLED;
1067
1068 }
1069
1070 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1071 {
1072         struct net_device *dev = dev_id;
1073         struct vector_private *vp = netdev_priv(dev);
1074
1075         if (!netif_running(dev))
1076                 return IRQ_NONE;
1077         /* We need to pay attention to it only if we got
1078          * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1079          * we ignore it. In the future, it may be worth
1080          * it to improve the IRQ controller a bit to make
1081          * tweaking the IRQ mask less costly
1082          */
1083
1084         if (vp->in_write_poll)
1085                 tasklet_schedule(&vp->tx_poll);
1086         return IRQ_HANDLED;
1087
1088 }
1089
1090 static int irq_rr;
1091
1092 static int vector_net_close(struct net_device *dev)
1093 {
1094         struct vector_private *vp = netdev_priv(dev);
1095         unsigned long flags;
1096
1097         netif_stop_queue(dev);
1098         del_timer(&vp->tl);
1099
1100         if (vp->fds == NULL)
1101                 return 0;
1102
1103         /* Disable and free all IRQS */
1104         if (vp->rx_irq > 0) {
1105                 um_free_irq(vp->rx_irq, dev);
1106                 vp->rx_irq = 0;
1107         }
1108         if (vp->tx_irq > 0) {
1109                 um_free_irq(vp->tx_irq, dev);
1110                 vp->tx_irq = 0;
1111         }
1112         tasklet_kill(&vp->tx_poll);
1113         if (vp->fds->rx_fd > 0) {
1114                 os_close_file(vp->fds->rx_fd);
1115                 vp->fds->rx_fd = -1;
1116         }
1117         if (vp->fds->tx_fd > 0) {
1118                 os_close_file(vp->fds->tx_fd);
1119                 vp->fds->tx_fd = -1;
1120         }
1121         kfree(vp->bpf);
1122         kfree(vp->fds->remote_addr);
1123         kfree(vp->transport_data);
1124         kfree(vp->header_rxbuffer);
1125         kfree(vp->header_txbuffer);
1126         if (vp->rx_queue != NULL)
1127                 destroy_queue(vp->rx_queue);
1128         if (vp->tx_queue != NULL)
1129                 destroy_queue(vp->tx_queue);
1130         kfree(vp->fds);
1131         vp->fds = NULL;
1132         spin_lock_irqsave(&vp->lock, flags);
1133         vp->opened = false;
1134         spin_unlock_irqrestore(&vp->lock, flags);
1135         return 0;
1136 }
1137
1138 /* TX tasklet */
1139
1140 static void vector_tx_poll(unsigned long data)
1141 {
1142         struct vector_private *vp = (struct vector_private *)data;
1143
1144         vp->estats.tx_kicks++;
1145         vector_send(vp->tx_queue);
1146 }
1147 static void vector_reset_tx(struct work_struct *work)
1148 {
1149         struct vector_private *vp =
1150                 container_of(work, struct vector_private, reset_tx);
1151         netdev_reset_queue(vp->dev);
1152         netif_start_queue(vp->dev);
1153         netif_wake_queue(vp->dev);
1154 }
1155 static int vector_net_open(struct net_device *dev)
1156 {
1157         struct vector_private *vp = netdev_priv(dev);
1158         unsigned long flags;
1159         int err = -EINVAL;
1160         struct vector_device *vdevice;
1161
1162         spin_lock_irqsave(&vp->lock, flags);
1163         if (vp->opened) {
1164                 spin_unlock_irqrestore(&vp->lock, flags);
1165                 return -ENXIO;
1166         }
1167         vp->opened = true;
1168         spin_unlock_irqrestore(&vp->lock, flags);
1169
1170         vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1171
1172         if (vp->fds == NULL)
1173                 goto out_close;
1174
1175         if (build_transport_data(vp) < 0)
1176                 goto out_close;
1177
1178         if ((vp->options & VECTOR_RX) > 0) {
1179                 vp->rx_queue = create_queue(
1180                         vp,
1181                         get_depth(vp->parsed),
1182                         vp->rx_header_size,
1183                         MAX_IOV_SIZE
1184                 );
1185                 vp->rx_queue->queue_depth = get_depth(vp->parsed);
1186         } else {
1187                 vp->header_rxbuffer = kmalloc(
1188                         vp->rx_header_size,
1189                         GFP_KERNEL
1190                 );
1191                 if (vp->header_rxbuffer == NULL)
1192                         goto out_close;
1193         }
1194         if ((vp->options & VECTOR_TX) > 0) {
1195                 vp->tx_queue = create_queue(
1196                         vp,
1197                         get_depth(vp->parsed),
1198                         vp->header_size,
1199                         MAX_IOV_SIZE
1200                 );
1201         } else {
1202                 vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1203                 if (vp->header_txbuffer == NULL)
1204                         goto out_close;
1205         }
1206
1207         /* READ IRQ */
1208         err = um_request_irq(
1209                 irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1210                         IRQ_READ, vector_rx_interrupt,
1211                         IRQF_SHARED, dev->name, dev);
1212         if (err != 0) {
1213                 netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1214                 err = -ENETUNREACH;
1215                 goto out_close;
1216         }
1217         vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1218         dev->irq = irq_rr + VECTOR_BASE_IRQ;
1219         irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1220
1221         /* WRITE IRQ - we need it only if we have vector TX */
1222         if ((vp->options & VECTOR_TX) > 0) {
1223                 err = um_request_irq(
1224                         irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1225                                 IRQ_WRITE, vector_tx_interrupt,
1226                                 IRQF_SHARED, dev->name, dev);
1227                 if (err != 0) {
1228                         netdev_err(dev,
1229                                 "vector_open: failed to get tx irq(%d)\n", err);
1230                         err = -ENETUNREACH;
1231                         goto out_close;
1232                 }
1233                 vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1234                 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1235         }
1236
1237         if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1238                 if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1239                         vp->options |= VECTOR_BPF;
1240         }
1241         if ((vp->options & VECTOR_BPF) != 0)
1242                 vp->bpf = uml_vector_default_bpf(vp->fds->rx_fd, dev->dev_addr);
1243
1244         netif_start_queue(dev);
1245
1246         /* clear buffer - it can happen that the host side of the interface
1247          * is full when we get here. In this case, new data is never queued,
1248          * SIGIOs never arrive, and the net never works.
1249          */
1250
1251         vector_rx(vp);
1252
1253         vector_reset_stats(vp);
1254         vdevice = find_device(vp->unit);
1255         vdevice->opened = 1;
1256
1257         if ((vp->options & VECTOR_TX) != 0)
1258                 add_timer(&vp->tl);
1259         return 0;
1260 out_close:
1261         vector_net_close(dev);
1262         return err;
1263 }
1264
1265
1266 static void vector_net_set_multicast_list(struct net_device *dev)
1267 {
1268         /* TODO: - we can do some BPF games here */
1269         return;
1270 }
1271
1272 static void vector_net_tx_timeout(struct net_device *dev)
1273 {
1274         struct vector_private *vp = netdev_priv(dev);
1275
1276         vp->estats.tx_timeout_count++;
1277         netif_trans_update(dev);
1278         schedule_work(&vp->reset_tx);
1279 }
1280
1281 static netdev_features_t vector_fix_features(struct net_device *dev,
1282         netdev_features_t features)
1283 {
1284         features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1285         return features;
1286 }
1287
1288 static int vector_set_features(struct net_device *dev,
1289         netdev_features_t features)
1290 {
1291         struct vector_private *vp = netdev_priv(dev);
1292         /* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1293          * no way to negotiate it on raw sockets, so we can change
1294          * only our side.
1295          */
1296         if (features & NETIF_F_GRO)
1297                 /* All new frame buffers will be GRO-sized */
1298                 vp->req_size = 65536;
1299         else
1300                 /* All new frame buffers will be normal sized */
1301                 vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1302         return 0;
1303 }
1304
1305 #ifdef CONFIG_NET_POLL_CONTROLLER
1306 static void vector_net_poll_controller(struct net_device *dev)
1307 {
1308         disable_irq(dev->irq);
1309         vector_rx_interrupt(dev->irq, dev);
1310         enable_irq(dev->irq);
1311 }
1312 #endif
1313
1314 static void vector_net_get_drvinfo(struct net_device *dev,
1315                                 struct ethtool_drvinfo *info)
1316 {
1317         strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1318         strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
1319 }
1320
1321 static void vector_get_ringparam(struct net_device *netdev,
1322                                 struct ethtool_ringparam *ring)
1323 {
1324         struct vector_private *vp = netdev_priv(netdev);
1325
1326         ring->rx_max_pending = vp->rx_queue->max_depth;
1327         ring->tx_max_pending = vp->tx_queue->max_depth;
1328         ring->rx_pending = vp->rx_queue->max_depth;
1329         ring->tx_pending = vp->tx_queue->max_depth;
1330 }
1331
1332 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1333 {
1334         switch (stringset) {
1335         case ETH_SS_TEST:
1336                 *buf = '\0';
1337                 break;
1338         case ETH_SS_STATS:
1339                 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1340                 break;
1341         default:
1342                 WARN_ON(1);
1343                 break;
1344         }
1345 }
1346
1347 static int vector_get_sset_count(struct net_device *dev, int sset)
1348 {
1349         switch (sset) {
1350         case ETH_SS_TEST:
1351                 return 0;
1352         case ETH_SS_STATS:
1353                 return VECTOR_NUM_STATS;
1354         default:
1355                 return -EOPNOTSUPP;
1356         }
1357 }
1358
1359 static void vector_get_ethtool_stats(struct net_device *dev,
1360         struct ethtool_stats *estats,
1361         u64 *tmp_stats)
1362 {
1363         struct vector_private *vp = netdev_priv(dev);
1364
1365         memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
1366 }
1367
1368 static int vector_get_coalesce(struct net_device *netdev,
1369                                         struct ethtool_coalesce *ec)
1370 {
1371         struct vector_private *vp = netdev_priv(netdev);
1372
1373         ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1374         return 0;
1375 }
1376
1377 static int vector_set_coalesce(struct net_device *netdev,
1378                                         struct ethtool_coalesce *ec)
1379 {
1380         struct vector_private *vp = netdev_priv(netdev);
1381
1382         vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1383         if (vp->coalesce == 0)
1384                 vp->coalesce = 1;
1385         return 0;
1386 }
1387
1388 static const struct ethtool_ops vector_net_ethtool_ops = {
1389         .get_drvinfo    = vector_net_get_drvinfo,
1390         .get_link       = ethtool_op_get_link,
1391         .get_ts_info    = ethtool_op_get_ts_info,
1392         .get_ringparam  = vector_get_ringparam,
1393         .get_strings    = vector_get_strings,
1394         .get_sset_count = vector_get_sset_count,
1395         .get_ethtool_stats = vector_get_ethtool_stats,
1396         .get_coalesce   = vector_get_coalesce,
1397         .set_coalesce   = vector_set_coalesce,
1398 };
1399
1400
1401 static const struct net_device_ops vector_netdev_ops = {
1402         .ndo_open               = vector_net_open,
1403         .ndo_stop               = vector_net_close,
1404         .ndo_start_xmit         = vector_net_start_xmit,
1405         .ndo_set_rx_mode        = vector_net_set_multicast_list,
1406         .ndo_tx_timeout         = vector_net_tx_timeout,
1407         .ndo_set_mac_address    = eth_mac_addr,
1408         .ndo_validate_addr      = eth_validate_addr,
1409         .ndo_fix_features       = vector_fix_features,
1410         .ndo_set_features       = vector_set_features,
1411 #ifdef CONFIG_NET_POLL_CONTROLLER
1412         .ndo_poll_controller = vector_net_poll_controller,
1413 #endif
1414 };
1415
1416
1417 static void vector_timer_expire(struct timer_list *t)
1418 {
1419         struct vector_private *vp = from_timer(vp, t, tl);
1420
1421         vp->estats.tx_kicks++;
1422         vector_send(vp->tx_queue);
1423 }
1424
1425 static void vector_eth_configure(
1426                 int n,
1427                 struct arglist *def
1428         )
1429 {
1430         struct vector_device *device;
1431         struct net_device *dev;
1432         struct vector_private *vp;
1433         int err;
1434
1435         device = kzalloc(sizeof(*device), GFP_KERNEL);
1436         if (device == NULL) {
1437                 printk(KERN_ERR "eth_configure failed to allocate struct "
1438                                  "vector_device\n");
1439                 return;
1440         }
1441         dev = alloc_etherdev(sizeof(struct vector_private));
1442         if (dev == NULL) {
1443                 printk(KERN_ERR "eth_configure: failed to allocate struct "
1444                                  "net_device for vec%d\n", n);
1445                 goto out_free_device;
1446         }
1447
1448         dev->mtu = get_mtu(def);
1449
1450         INIT_LIST_HEAD(&device->list);
1451         device->unit = n;
1452
1453         /* If this name ends up conflicting with an existing registered
1454          * netdevice, that is OK, register_netdev{,ice}() will notice this
1455          * and fail.
1456          */
1457         snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1458         uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1459         vp = netdev_priv(dev);
1460
1461         /* sysfs register */
1462         if (!driver_registered) {
1463                 platform_driver_register(&uml_net_driver);
1464                 driver_registered = 1;
1465         }
1466         device->pdev.id = n;
1467         device->pdev.name = DRIVER_NAME;
1468         device->pdev.dev.release = vector_device_release;
1469         dev_set_drvdata(&device->pdev.dev, device);
1470         if (platform_device_register(&device->pdev))
1471                 goto out_free_netdev;
1472         SET_NETDEV_DEV(dev, &device->pdev.dev);
1473
1474         device->dev = dev;
1475
1476         *vp = ((struct vector_private)
1477                 {
1478                 .list                   = LIST_HEAD_INIT(vp->list),
1479                 .dev                    = dev,
1480                 .unit                   = n,
1481                 .options                = get_transport_options(def),
1482                 .rx_irq                 = 0,
1483                 .tx_irq                 = 0,
1484                 .parsed                 = def,
1485                 .max_packet             = get_mtu(def) + ETH_HEADER_OTHER,
1486                 /* TODO - we need to calculate headroom so that ip header
1487                  * is 16 byte aligned all the time
1488                  */
1489                 .headroom               = get_headroom(def),
1490                 .form_header            = NULL,
1491                 .verify_header          = NULL,
1492                 .header_rxbuffer        = NULL,
1493                 .header_txbuffer        = NULL,
1494                 .header_size            = 0,
1495                 .rx_header_size         = 0,
1496                 .rexmit_scheduled       = false,
1497                 .opened                 = false,
1498                 .transport_data         = NULL,
1499                 .in_write_poll          = false,
1500                 .coalesce               = 2,
1501                 .req_size               = get_req_size(def)
1502                 });
1503
1504         dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
1505         tasklet_init(&vp->tx_poll, vector_tx_poll, (unsigned long)vp);
1506         INIT_WORK(&vp->reset_tx, vector_reset_tx);
1507
1508         timer_setup(&vp->tl, vector_timer_expire, 0);
1509         spin_lock_init(&vp->lock);
1510
1511         /* FIXME */
1512         dev->netdev_ops = &vector_netdev_ops;
1513         dev->ethtool_ops = &vector_net_ethtool_ops;
1514         dev->watchdog_timeo = (HZ >> 1);
1515         /* primary IRQ - fixme */
1516         dev->irq = 0; /* we will adjust this once opened */
1517
1518         rtnl_lock();
1519         err = register_netdevice(dev);
1520         rtnl_unlock();
1521         if (err)
1522                 goto out_undo_user_init;
1523
1524         spin_lock(&vector_devices_lock);
1525         list_add(&device->list, &vector_devices);
1526         spin_unlock(&vector_devices_lock);
1527
1528         return;
1529
1530 out_undo_user_init:
1531         return;
1532 out_free_netdev:
1533         free_netdev(dev);
1534 out_free_device:
1535         kfree(device);
1536 }
1537
1538
1539
1540
1541 /*
1542  * Invoked late in the init
1543  */
1544
1545 static int __init vector_init(void)
1546 {
1547         struct list_head *ele;
1548         struct vector_cmd_line_arg *def;
1549         struct arglist *parsed;
1550
1551         list_for_each(ele, &vec_cmd_line) {
1552                 def = list_entry(ele, struct vector_cmd_line_arg, list);
1553                 parsed = uml_parse_vector_ifspec(def->arguments);
1554                 if (parsed != NULL)
1555                         vector_eth_configure(def->unit, parsed);
1556         }
1557         return 0;
1558 }
1559
1560
1561 /* Invoked at initial argument parsing, only stores
1562  * arguments until a proper vector_init is called
1563  * later
1564  */
1565
1566 static int __init vector_setup(char *str)
1567 {
1568         char *error;
1569         int n, err;
1570         struct vector_cmd_line_arg *new;
1571
1572         err = vector_parse(str, &n, &str, &error);
1573         if (err) {
1574                 printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n",
1575                                  str, error);
1576                 return 1;
1577         }
1578         new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES);
1579         INIT_LIST_HEAD(&new->list);
1580         new->unit = n;
1581         new->arguments = str;
1582         list_add_tail(&new->list, &vec_cmd_line);
1583         return 1;
1584 }
1585
1586 __setup("vec", vector_setup);
1587 __uml_help(vector_setup,
1588 "vec[0-9]+:<option>=<value>,<option>=<value>\n"
1589 "        Configure a vector io network device.\n\n"
1590 );
1591
1592 late_initcall(vector_init);
1593
1594 static struct mc_device vector_mc = {
1595         .list           = LIST_HEAD_INIT(vector_mc.list),
1596         .name           = "vec",
1597         .config         = vector_config,
1598         .get_config     = NULL,
1599         .id             = vector_id,
1600         .remove         = vector_remove,
1601 };
1602
1603 #ifdef CONFIG_INET
1604 static int vector_inetaddr_event(
1605         struct notifier_block *this,
1606         unsigned long event,
1607         void *ptr)
1608 {
1609         return NOTIFY_DONE;
1610 }
1611
1612 static struct notifier_block vector_inetaddr_notifier = {
1613         .notifier_call          = vector_inetaddr_event,
1614 };
1615
1616 static void inet_register(void)
1617 {
1618         register_inetaddr_notifier(&vector_inetaddr_notifier);
1619 }
1620 #else
1621 static inline void inet_register(void)
1622 {
1623 }
1624 #endif
1625
1626 static int vector_net_init(void)
1627 {
1628         mconsole_register_dev(&vector_mc);
1629         inet_register();
1630         return 0;
1631 }
1632
1633 __initcall(vector_net_init);
1634
1635
1636