Merge tag 'drm-misc-next-2017-04-07' of git://anongit.freedesktop.org/git/drm-misc...
[sfrench/cifs-2.6.git] / arch / sparc / mm / tsb.c
1 /* arch/sparc64/mm/tsb.c
2  *
3  * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
4  */
5
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <linux/slab.h>
9 #include <linux/mm_types.h>
10
11 #include <asm/page.h>
12 #include <asm/pgtable.h>
13 #include <asm/mmu_context.h>
14 #include <asm/setup.h>
15 #include <asm/tsb.h>
16 #include <asm/tlb.h>
17 #include <asm/oplib.h>
18
19 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
20
21 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
22 {
23         vaddr >>= hash_shift;
24         return vaddr & (nentries - 1);
25 }
26
27 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
28 {
29         return (tag == (vaddr >> 22));
30 }
31
32 static void flush_tsb_kernel_range_scan(unsigned long start, unsigned long end)
33 {
34         unsigned long idx;
35
36         for (idx = 0; idx < KERNEL_TSB_NENTRIES; idx++) {
37                 struct tsb *ent = &swapper_tsb[idx];
38                 unsigned long match = idx << 13;
39
40                 match |= (ent->tag << 22);
41                 if (match >= start && match < end)
42                         ent->tag = (1UL << TSB_TAG_INVALID_BIT);
43         }
44 }
45
46 /* TSB flushes need only occur on the processor initiating the address
47  * space modification, not on each cpu the address space has run on.
48  * Only the TLB flush needs that treatment.
49  */
50
51 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
52 {
53         unsigned long v;
54
55         if ((end - start) >> PAGE_SHIFT >= 2 * KERNEL_TSB_NENTRIES)
56                 return flush_tsb_kernel_range_scan(start, end);
57
58         for (v = start; v < end; v += PAGE_SIZE) {
59                 unsigned long hash = tsb_hash(v, PAGE_SHIFT,
60                                               KERNEL_TSB_NENTRIES);
61                 struct tsb *ent = &swapper_tsb[hash];
62
63                 if (tag_compare(ent->tag, v))
64                         ent->tag = (1UL << TSB_TAG_INVALID_BIT);
65         }
66 }
67
68 static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
69                                   unsigned long hash_shift,
70                                   unsigned long nentries)
71 {
72         unsigned long tag, ent, hash;
73
74         v &= ~0x1UL;
75         hash = tsb_hash(v, hash_shift, nentries);
76         ent = tsb + (hash * sizeof(struct tsb));
77         tag = (v >> 22UL);
78
79         tsb_flush(ent, tag);
80 }
81
82 static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
83                             unsigned long tsb, unsigned long nentries)
84 {
85         unsigned long i;
86
87         for (i = 0; i < tb->tlb_nr; i++)
88                 __flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
89 }
90
91 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
92 static void __flush_huge_tsb_one_entry(unsigned long tsb, unsigned long v,
93                                        unsigned long hash_shift,
94                                        unsigned long nentries,
95                                        unsigned int hugepage_shift)
96 {
97         unsigned int hpage_entries;
98         unsigned int i;
99
100         hpage_entries = 1 << (hugepage_shift - hash_shift);
101         for (i = 0; i < hpage_entries; i++)
102                 __flush_tsb_one_entry(tsb, v + (i << hash_shift), hash_shift,
103                                       nentries);
104 }
105
106 static void __flush_huge_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
107                                  unsigned long tsb, unsigned long nentries,
108                                  unsigned int hugepage_shift)
109 {
110         unsigned long i;
111
112         for (i = 0; i < tb->tlb_nr; i++)
113                 __flush_huge_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift,
114                                            nentries, hugepage_shift);
115 }
116 #endif
117
118 void flush_tsb_user(struct tlb_batch *tb)
119 {
120         struct mm_struct *mm = tb->mm;
121         unsigned long nentries, base, flags;
122
123         spin_lock_irqsave(&mm->context.lock, flags);
124
125         if (tb->hugepage_shift < REAL_HPAGE_SHIFT) {
126                 base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
127                 nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
128                 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
129                         base = __pa(base);
130                 if (tb->hugepage_shift == PAGE_SHIFT)
131                         __flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
132 #if defined(CONFIG_HUGETLB_PAGE)
133                 else
134                         __flush_huge_tsb_one(tb, PAGE_SHIFT, base, nentries,
135                                              tb->hugepage_shift);
136 #endif
137         }
138 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
139         else if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
140                 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
141                 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
142                 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
143                         base = __pa(base);
144                 __flush_huge_tsb_one(tb, REAL_HPAGE_SHIFT, base, nentries,
145                                      tb->hugepage_shift);
146         }
147 #endif
148         spin_unlock_irqrestore(&mm->context.lock, flags);
149 }
150
151 void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr,
152                          unsigned int hugepage_shift)
153 {
154         unsigned long nentries, base, flags;
155
156         spin_lock_irqsave(&mm->context.lock, flags);
157
158         if (hugepage_shift < REAL_HPAGE_SHIFT) {
159                 base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
160                 nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
161                 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
162                         base = __pa(base);
163                 if (hugepage_shift == PAGE_SHIFT)
164                         __flush_tsb_one_entry(base, vaddr, PAGE_SHIFT,
165                                               nentries);
166 #if defined(CONFIG_HUGETLB_PAGE)
167                 else
168                         __flush_huge_tsb_one_entry(base, vaddr, PAGE_SHIFT,
169                                                    nentries, hugepage_shift);
170 #endif
171         }
172 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
173         else if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
174                 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
175                 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
176                 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
177                         base = __pa(base);
178                 __flush_huge_tsb_one_entry(base, vaddr, REAL_HPAGE_SHIFT,
179                                            nentries, hugepage_shift);
180         }
181 #endif
182         spin_unlock_irqrestore(&mm->context.lock, flags);
183 }
184
185 #define HV_PGSZ_IDX_BASE        HV_PGSZ_IDX_8K
186 #define HV_PGSZ_MASK_BASE       HV_PGSZ_MASK_8K
187
188 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
189 #define HV_PGSZ_IDX_HUGE        HV_PGSZ_IDX_4MB
190 #define HV_PGSZ_MASK_HUGE       HV_PGSZ_MASK_4MB
191 #endif
192
193 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
194 {
195         unsigned long tsb_reg, base, tsb_paddr;
196         unsigned long page_sz, tte;
197
198         mm->context.tsb_block[tsb_idx].tsb_nentries =
199                 tsb_bytes / sizeof(struct tsb);
200
201         switch (tsb_idx) {
202         case MM_TSB_BASE:
203                 base = TSBMAP_8K_BASE;
204                 break;
205 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
206         case MM_TSB_HUGE:
207                 base = TSBMAP_4M_BASE;
208                 break;
209 #endif
210         default:
211                 BUG();
212         }
213
214         tte = pgprot_val(PAGE_KERNEL_LOCKED);
215         tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
216         BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
217
218         /* Use the smallest page size that can map the whole TSB
219          * in one TLB entry.
220          */
221         switch (tsb_bytes) {
222         case 8192 << 0:
223                 tsb_reg = 0x0UL;
224 #ifdef DCACHE_ALIASING_POSSIBLE
225                 base += (tsb_paddr & 8192);
226 #endif
227                 page_sz = 8192;
228                 break;
229
230         case 8192 << 1:
231                 tsb_reg = 0x1UL;
232                 page_sz = 64 * 1024;
233                 break;
234
235         case 8192 << 2:
236                 tsb_reg = 0x2UL;
237                 page_sz = 64 * 1024;
238                 break;
239
240         case 8192 << 3:
241                 tsb_reg = 0x3UL;
242                 page_sz = 64 * 1024;
243                 break;
244
245         case 8192 << 4:
246                 tsb_reg = 0x4UL;
247                 page_sz = 512 * 1024;
248                 break;
249
250         case 8192 << 5:
251                 tsb_reg = 0x5UL;
252                 page_sz = 512 * 1024;
253                 break;
254
255         case 8192 << 6:
256                 tsb_reg = 0x6UL;
257                 page_sz = 512 * 1024;
258                 break;
259
260         case 8192 << 7:
261                 tsb_reg = 0x7UL;
262                 page_sz = 4 * 1024 * 1024;
263                 break;
264
265         default:
266                 printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
267                        current->comm, current->pid, tsb_bytes);
268                 do_exit(SIGSEGV);
269         }
270         tte |= pte_sz_bits(page_sz);
271
272         if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
273                 /* Physical mapping, no locked TLB entry for TSB.  */
274                 tsb_reg |= tsb_paddr;
275
276                 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
277                 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
278                 mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
279         } else {
280                 tsb_reg |= base;
281                 tsb_reg |= (tsb_paddr & (page_sz - 1UL));
282                 tte |= (tsb_paddr & ~(page_sz - 1UL));
283
284                 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
285                 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
286                 mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
287         }
288
289         /* Setup the Hypervisor TSB descriptor.  */
290         if (tlb_type == hypervisor) {
291                 struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
292
293                 switch (tsb_idx) {
294                 case MM_TSB_BASE:
295                         hp->pgsz_idx = HV_PGSZ_IDX_BASE;
296                         break;
297 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
298                 case MM_TSB_HUGE:
299                         hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
300                         break;
301 #endif
302                 default:
303                         BUG();
304                 }
305                 hp->assoc = 1;
306                 hp->num_ttes = tsb_bytes / 16;
307                 hp->ctx_idx = 0;
308                 switch (tsb_idx) {
309                 case MM_TSB_BASE:
310                         hp->pgsz_mask = HV_PGSZ_MASK_BASE;
311                         break;
312 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
313                 case MM_TSB_HUGE:
314                         hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
315                         break;
316 #endif
317                 default:
318                         BUG();
319                 }
320                 hp->tsb_base = tsb_paddr;
321                 hp->resv = 0;
322         }
323 }
324
325 struct kmem_cache *pgtable_cache __read_mostly;
326
327 static struct kmem_cache *tsb_caches[8] __read_mostly;
328
329 static const char *tsb_cache_names[8] = {
330         "tsb_8KB",
331         "tsb_16KB",
332         "tsb_32KB",
333         "tsb_64KB",
334         "tsb_128KB",
335         "tsb_256KB",
336         "tsb_512KB",
337         "tsb_1MB",
338 };
339
340 void __init pgtable_cache_init(void)
341 {
342         unsigned long i;
343
344         pgtable_cache = kmem_cache_create("pgtable_cache",
345                                           PAGE_SIZE, PAGE_SIZE,
346                                           0,
347                                           _clear_page);
348         if (!pgtable_cache) {
349                 prom_printf("pgtable_cache_init(): Could not create!\n");
350                 prom_halt();
351         }
352
353         for (i = 0; i < ARRAY_SIZE(tsb_cache_names); i++) {
354                 unsigned long size = 8192 << i;
355                 const char *name = tsb_cache_names[i];
356
357                 tsb_caches[i] = kmem_cache_create(name,
358                                                   size, size,
359                                                   0, NULL);
360                 if (!tsb_caches[i]) {
361                         prom_printf("Could not create %s cache\n", name);
362                         prom_halt();
363                 }
364         }
365 }
366
367 int sysctl_tsb_ratio = -2;
368
369 static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
370 {
371         unsigned long num_ents = (new_size / sizeof(struct tsb));
372
373         if (sysctl_tsb_ratio < 0)
374                 return num_ents - (num_ents >> -sysctl_tsb_ratio);
375         else
376                 return num_ents + (num_ents >> sysctl_tsb_ratio);
377 }
378
379 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
380  * do_sparc64_fault() invokes this routine to try and grow it.
381  *
382  * When we reach the maximum TSB size supported, we stick ~0UL into
383  * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
384  * will not trigger any longer.
385  *
386  * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
387  * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
388  * must be 512K aligned.  It also must be physically contiguous, so we
389  * cannot use vmalloc().
390  *
391  * The idea here is to grow the TSB when the RSS of the process approaches
392  * the number of entries that the current TSB can hold at once.  Currently,
393  * we trigger when the RSS hits 3/4 of the TSB capacity.
394  */
395 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
396 {
397         unsigned long max_tsb_size = 1 * 1024 * 1024;
398         unsigned long new_size, old_size, flags;
399         struct tsb *old_tsb, *new_tsb;
400         unsigned long new_cache_index, old_cache_index;
401         unsigned long new_rss_limit;
402         gfp_t gfp_flags;
403
404         if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
405                 max_tsb_size = (PAGE_SIZE << MAX_ORDER);
406
407         new_cache_index = 0;
408         for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
409                 new_rss_limit = tsb_size_to_rss_limit(new_size);
410                 if (new_rss_limit > rss)
411                         break;
412                 new_cache_index++;
413         }
414
415         if (new_size == max_tsb_size)
416                 new_rss_limit = ~0UL;
417
418 retry_tsb_alloc:
419         gfp_flags = GFP_KERNEL;
420         if (new_size > (PAGE_SIZE * 2))
421                 gfp_flags |= __GFP_NOWARN | __GFP_NORETRY;
422
423         new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
424                                         gfp_flags, numa_node_id());
425         if (unlikely(!new_tsb)) {
426                 /* Not being able to fork due to a high-order TSB
427                  * allocation failure is very bad behavior.  Just back
428                  * down to a 0-order allocation and force no TSB
429                  * growing for this address space.
430                  */
431                 if (mm->context.tsb_block[tsb_index].tsb == NULL &&
432                     new_cache_index > 0) {
433                         new_cache_index = 0;
434                         new_size = 8192;
435                         new_rss_limit = ~0UL;
436                         goto retry_tsb_alloc;
437                 }
438
439                 /* If we failed on a TSB grow, we are under serious
440                  * memory pressure so don't try to grow any more.
441                  */
442                 if (mm->context.tsb_block[tsb_index].tsb != NULL)
443                         mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
444                 return;
445         }
446
447         /* Mark all tags as invalid.  */
448         tsb_init(new_tsb, new_size);
449
450         /* Ok, we are about to commit the changes.  If we are
451          * growing an existing TSB the locking is very tricky,
452          * so WATCH OUT!
453          *
454          * We have to hold mm->context.lock while committing to the
455          * new TSB, this synchronizes us with processors in
456          * flush_tsb_user() and switch_mm() for this address space.
457          *
458          * But even with that lock held, processors run asynchronously
459          * accessing the old TSB via TLB miss handling.  This is OK
460          * because those actions are just propagating state from the
461          * Linux page tables into the TSB, page table mappings are not
462          * being changed.  If a real fault occurs, the processor will
463          * synchronize with us when it hits flush_tsb_user(), this is
464          * also true for the case where vmscan is modifying the page
465          * tables.  The only thing we need to be careful with is to
466          * skip any locked TSB entries during copy_tsb().
467          *
468          * When we finish committing to the new TSB, we have to drop
469          * the lock and ask all other cpus running this address space
470          * to run tsb_context_switch() to see the new TSB table.
471          */
472         spin_lock_irqsave(&mm->context.lock, flags);
473
474         old_tsb = mm->context.tsb_block[tsb_index].tsb;
475         old_cache_index =
476                 (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
477         old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
478                     sizeof(struct tsb));
479
480
481         /* Handle multiple threads trying to grow the TSB at the same time.
482          * One will get in here first, and bump the size and the RSS limit.
483          * The others will get in here next and hit this check.
484          */
485         if (unlikely(old_tsb &&
486                      (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
487                 spin_unlock_irqrestore(&mm->context.lock, flags);
488
489                 kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
490                 return;
491         }
492
493         mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
494
495         if (old_tsb) {
496                 extern void copy_tsb(unsigned long old_tsb_base,
497                                      unsigned long old_tsb_size,
498                                      unsigned long new_tsb_base,
499                                      unsigned long new_tsb_size);
500                 unsigned long old_tsb_base = (unsigned long) old_tsb;
501                 unsigned long new_tsb_base = (unsigned long) new_tsb;
502
503                 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
504                         old_tsb_base = __pa(old_tsb_base);
505                         new_tsb_base = __pa(new_tsb_base);
506                 }
507                 copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
508         }
509
510         mm->context.tsb_block[tsb_index].tsb = new_tsb;
511         setup_tsb_params(mm, tsb_index, new_size);
512
513         spin_unlock_irqrestore(&mm->context.lock, flags);
514
515         /* If old_tsb is NULL, we're being invoked for the first time
516          * from init_new_context().
517          */
518         if (old_tsb) {
519                 /* Reload it on the local cpu.  */
520                 tsb_context_switch(mm);
521
522                 /* Now force other processors to do the same.  */
523                 preempt_disable();
524                 smp_tsb_sync(mm);
525                 preempt_enable();
526
527                 /* Now it is safe to free the old tsb.  */
528                 kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
529         }
530 }
531
532 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
533 {
534         unsigned long mm_rss = get_mm_rss(mm);
535 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
536         unsigned long saved_hugetlb_pte_count;
537         unsigned long saved_thp_pte_count;
538 #endif
539         unsigned int i;
540
541         spin_lock_init(&mm->context.lock);
542
543         mm->context.sparc64_ctx_val = 0UL;
544
545 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
546         /* We reset them to zero because the fork() page copying
547          * will re-increment the counters as the parent PTEs are
548          * copied into the child address space.
549          */
550         saved_hugetlb_pte_count = mm->context.hugetlb_pte_count;
551         saved_thp_pte_count = mm->context.thp_pte_count;
552         mm->context.hugetlb_pte_count = 0;
553         mm->context.thp_pte_count = 0;
554
555         mm_rss -= saved_thp_pte_count * (HPAGE_SIZE / PAGE_SIZE);
556 #endif
557
558         /* copy_mm() copies over the parent's mm_struct before calling
559          * us, so we need to zero out the TSB pointer or else tsb_grow()
560          * will be confused and think there is an older TSB to free up.
561          */
562         for (i = 0; i < MM_NUM_TSBS; i++)
563                 mm->context.tsb_block[i].tsb = NULL;
564
565         /* If this is fork, inherit the parent's TSB size.  We would
566          * grow it to that size on the first page fault anyways.
567          */
568         tsb_grow(mm, MM_TSB_BASE, mm_rss);
569
570 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
571         if (unlikely(saved_hugetlb_pte_count + saved_thp_pte_count))
572                 tsb_grow(mm, MM_TSB_HUGE,
573                          (saved_hugetlb_pte_count + saved_thp_pte_count) *
574                          REAL_HPAGE_PER_HPAGE);
575 #endif
576
577         if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
578                 return -ENOMEM;
579
580         return 0;
581 }
582
583 static void tsb_destroy_one(struct tsb_config *tp)
584 {
585         unsigned long cache_index;
586
587         if (!tp->tsb)
588                 return;
589         cache_index = tp->tsb_reg_val & 0x7UL;
590         kmem_cache_free(tsb_caches[cache_index], tp->tsb);
591         tp->tsb = NULL;
592         tp->tsb_reg_val = 0UL;
593 }
594
595 void destroy_context(struct mm_struct *mm)
596 {
597         unsigned long flags, i;
598
599         for (i = 0; i < MM_NUM_TSBS; i++)
600                 tsb_destroy_one(&mm->context.tsb_block[i]);
601
602         spin_lock_irqsave(&ctx_alloc_lock, flags);
603
604         if (CTX_VALID(mm->context)) {
605                 unsigned long nr = CTX_NRBITS(mm->context);
606                 mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
607         }
608
609         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
610 }