Merge branches 'work.misc' and 'work.dcache' of git://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / arch / sparc / mm / srmmu.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * srmmu.c:  SRMMU specific routines for memory management.
4  *
5  * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
6  * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
7  * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
8  * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
9  * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
10  */
11
12 #include <linux/seq_file.h>
13 #include <linux/spinlock.h>
14 #include <linux/bootmem.h>
15 #include <linux/pagemap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/kdebug.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/init.h>
21 #include <linux/log2.h>
22 #include <linux/gfp.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25
26 #include <asm/mmu_context.h>
27 #include <asm/cacheflush.h>
28 #include <asm/tlbflush.h>
29 #include <asm/io-unit.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32 #include <asm/bitext.h>
33 #include <asm/vaddrs.h>
34 #include <asm/cache.h>
35 #include <asm/traps.h>
36 #include <asm/oplib.h>
37 #include <asm/mbus.h>
38 #include <asm/page.h>
39 #include <asm/asi.h>
40 #include <asm/smp.h>
41 #include <asm/io.h>
42
43 /* Now the cpu specific definitions. */
44 #include <asm/turbosparc.h>
45 #include <asm/tsunami.h>
46 #include <asm/viking.h>
47 #include <asm/swift.h>
48 #include <asm/leon.h>
49 #include <asm/mxcc.h>
50 #include <asm/ross.h>
51
52 #include "mm_32.h"
53
54 enum mbus_module srmmu_modtype;
55 static unsigned int hwbug_bitmask;
56 int vac_cache_size;
57 EXPORT_SYMBOL(vac_cache_size);
58 int vac_line_size;
59
60 extern struct resource sparc_iomap;
61
62 extern unsigned long last_valid_pfn;
63
64 static pgd_t *srmmu_swapper_pg_dir;
65
66 const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
67 EXPORT_SYMBOL(sparc32_cachetlb_ops);
68
69 #ifdef CONFIG_SMP
70 const struct sparc32_cachetlb_ops *local_ops;
71
72 #define FLUSH_BEGIN(mm)
73 #define FLUSH_END
74 #else
75 #define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
76 #define FLUSH_END       }
77 #endif
78
79 int flush_page_for_dma_global = 1;
80
81 char *srmmu_name;
82
83 ctxd_t *srmmu_ctx_table_phys;
84 static ctxd_t *srmmu_context_table;
85
86 int viking_mxcc_present;
87 static DEFINE_SPINLOCK(srmmu_context_spinlock);
88
89 static int is_hypersparc;
90
91 static int srmmu_cache_pagetables;
92
93 /* these will be initialized in srmmu_nocache_calcsize() */
94 static unsigned long srmmu_nocache_size;
95 static unsigned long srmmu_nocache_end;
96
97 /* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
98 #define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
99
100 /* The context table is a nocache user with the biggest alignment needs. */
101 #define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
102
103 void *srmmu_nocache_pool;
104 static struct bit_map srmmu_nocache_map;
105
106 static inline int srmmu_pmd_none(pmd_t pmd)
107 { return !(pmd_val(pmd) & 0xFFFFFFF); }
108
109 /* XXX should we hyper_flush_whole_icache here - Anton */
110 static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
111 {
112         pte_t pte;
113
114         pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
115         set_pte((pte_t *)ctxp, pte);
116 }
117
118 /*
119  * Locations of MSI Registers.
120  */
121 #define MSI_MBUS_ARBEN  0xe0001008      /* MBus Arbiter Enable register */
122
123 /*
124  * Useful bits in the MSI Registers.
125  */
126 #define MSI_ASYNC_MODE  0x80000000      /* Operate the MSI asynchronously */
127
128 static void msi_set_sync(void)
129 {
130         __asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
131                               "andn %%g3, %2, %%g3\n\t"
132                               "sta %%g3, [%0] %1\n\t" : :
133                               "r" (MSI_MBUS_ARBEN),
134                               "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
135 }
136
137 void pmd_set(pmd_t *pmdp, pte_t *ptep)
138 {
139         unsigned long ptp;      /* Physical address, shifted right by 4 */
140         int i;
141
142         ptp = __nocache_pa(ptep) >> 4;
143         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
144                 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
145                 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
146         }
147 }
148
149 void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
150 {
151         unsigned long ptp;      /* Physical address, shifted right by 4 */
152         int i;
153
154         ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);      /* watch for overflow */
155         for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
156                 set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
157                 ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
158         }
159 }
160
161 /* Find an entry in the third-level page table.. */
162 pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
163 {
164         void *pte;
165
166         pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
167         return (pte_t *) pte +
168             ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
169 }
170
171 /*
172  * size: bytes to allocate in the nocache area.
173  * align: bytes, number to align at.
174  * Returns the virtual address of the allocated area.
175  */
176 static void *__srmmu_get_nocache(int size, int align)
177 {
178         int offset;
179         unsigned long addr;
180
181         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
182                 printk(KERN_ERR "Size 0x%x too small for nocache request\n",
183                        size);
184                 size = SRMMU_NOCACHE_BITMAP_SHIFT;
185         }
186         if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
187                 printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
188                        size);
189                 size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
190         }
191         BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
192
193         offset = bit_map_string_get(&srmmu_nocache_map,
194                                     size >> SRMMU_NOCACHE_BITMAP_SHIFT,
195                                     align >> SRMMU_NOCACHE_BITMAP_SHIFT);
196         if (offset == -1) {
197                 printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
198                        size, (int) srmmu_nocache_size,
199                        srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
200                 return NULL;
201         }
202
203         addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
204         return (void *)addr;
205 }
206
207 void *srmmu_get_nocache(int size, int align)
208 {
209         void *tmp;
210
211         tmp = __srmmu_get_nocache(size, align);
212
213         if (tmp)
214                 memset(tmp, 0, size);
215
216         return tmp;
217 }
218
219 void srmmu_free_nocache(void *addr, int size)
220 {
221         unsigned long vaddr;
222         int offset;
223
224         vaddr = (unsigned long)addr;
225         if (vaddr < SRMMU_NOCACHE_VADDR) {
226                 printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
227                     vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
228                 BUG();
229         }
230         if (vaddr + size > srmmu_nocache_end) {
231                 printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
232                     vaddr, srmmu_nocache_end);
233                 BUG();
234         }
235         if (!is_power_of_2(size)) {
236                 printk("Size 0x%x is not a power of 2\n", size);
237                 BUG();
238         }
239         if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
240                 printk("Size 0x%x is too small\n", size);
241                 BUG();
242         }
243         if (vaddr & (size - 1)) {
244                 printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
245                 BUG();
246         }
247
248         offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
249         size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
250
251         bit_map_clear(&srmmu_nocache_map, offset, size);
252 }
253
254 static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
255                                                  unsigned long end);
256
257 /* Return how much physical memory we have.  */
258 static unsigned long __init probe_memory(void)
259 {
260         unsigned long total = 0;
261         int i;
262
263         for (i = 0; sp_banks[i].num_bytes; i++)
264                 total += sp_banks[i].num_bytes;
265
266         return total;
267 }
268
269 /*
270  * Reserve nocache dynamically proportionally to the amount of
271  * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
272  */
273 static void __init srmmu_nocache_calcsize(void)
274 {
275         unsigned long sysmemavail = probe_memory() / 1024;
276         int srmmu_nocache_npages;
277
278         srmmu_nocache_npages =
279                 sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
280
281  /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
282         // if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
283         if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
284                 srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
285
286         /* anything above 1280 blows up */
287         if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
288                 srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
289
290         srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
291         srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
292 }
293
294 static void __init srmmu_nocache_init(void)
295 {
296         void *srmmu_nocache_bitmap;
297         unsigned int bitmap_bits;
298         pgd_t *pgd;
299         pmd_t *pmd;
300         pte_t *pte;
301         unsigned long paddr, vaddr;
302         unsigned long pteval;
303
304         bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
305
306         srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
307                 SRMMU_NOCACHE_ALIGN_MAX, 0UL);
308         memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
309
310         srmmu_nocache_bitmap =
311                 __alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
312                                 SMP_CACHE_BYTES, 0UL);
313         bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
314
315         srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
316         memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
317         init_mm.pgd = srmmu_swapper_pg_dir;
318
319         srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
320
321         paddr = __pa((unsigned long)srmmu_nocache_pool);
322         vaddr = SRMMU_NOCACHE_VADDR;
323
324         while (vaddr < srmmu_nocache_end) {
325                 pgd = pgd_offset_k(vaddr);
326                 pmd = pmd_offset(__nocache_fix(pgd), vaddr);
327                 pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
328
329                 pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
330
331                 if (srmmu_cache_pagetables)
332                         pteval |= SRMMU_CACHE;
333
334                 set_pte(__nocache_fix(pte), __pte(pteval));
335
336                 vaddr += PAGE_SIZE;
337                 paddr += PAGE_SIZE;
338         }
339
340         flush_cache_all();
341         flush_tlb_all();
342 }
343
344 pgd_t *get_pgd_fast(void)
345 {
346         pgd_t *pgd = NULL;
347
348         pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
349         if (pgd) {
350                 pgd_t *init = pgd_offset_k(0);
351                 memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
352                 memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
353                                                 (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
354         }
355
356         return pgd;
357 }
358
359 /*
360  * Hardware needs alignment to 256 only, but we align to whole page size
361  * to reduce fragmentation problems due to the buddy principle.
362  * XXX Provide actual fragmentation statistics in /proc.
363  *
364  * Alignments up to the page size are the same for physical and virtual
365  * addresses of the nocache area.
366  */
367 pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
368 {
369         unsigned long pte;
370         struct page *page;
371
372         if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
373                 return NULL;
374         page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
375         if (!pgtable_page_ctor(page)) {
376                 __free_page(page);
377                 return NULL;
378         }
379         return page;
380 }
381
382 void pte_free(struct mm_struct *mm, pgtable_t pte)
383 {
384         unsigned long p;
385
386         pgtable_page_dtor(pte);
387         p = (unsigned long)page_address(pte);   /* Cached address (for test) */
388         if (p == 0)
389                 BUG();
390         p = page_to_pfn(pte) << PAGE_SHIFT;     /* Physical address */
391
392         /* free non cached virtual address*/
393         srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
394 }
395
396 /* context handling - a dynamically sized pool is used */
397 #define NO_CONTEXT      -1
398
399 struct ctx_list {
400         struct ctx_list *next;
401         struct ctx_list *prev;
402         unsigned int ctx_number;
403         struct mm_struct *ctx_mm;
404 };
405
406 static struct ctx_list *ctx_list_pool;
407 static struct ctx_list ctx_free;
408 static struct ctx_list ctx_used;
409
410 /* At boot time we determine the number of contexts */
411 static int num_contexts;
412
413 static inline void remove_from_ctx_list(struct ctx_list *entry)
414 {
415         entry->next->prev = entry->prev;
416         entry->prev->next = entry->next;
417 }
418
419 static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
420 {
421         entry->next = head;
422         (entry->prev = head->prev)->next = entry;
423         head->prev = entry;
424 }
425 #define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
426 #define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
427
428
429 static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
430 {
431         struct ctx_list *ctxp;
432
433         ctxp = ctx_free.next;
434         if (ctxp != &ctx_free) {
435                 remove_from_ctx_list(ctxp);
436                 add_to_used_ctxlist(ctxp);
437                 mm->context = ctxp->ctx_number;
438                 ctxp->ctx_mm = mm;
439                 return;
440         }
441         ctxp = ctx_used.next;
442         if (ctxp->ctx_mm == old_mm)
443                 ctxp = ctxp->next;
444         if (ctxp == &ctx_used)
445                 panic("out of mmu contexts");
446         flush_cache_mm(ctxp->ctx_mm);
447         flush_tlb_mm(ctxp->ctx_mm);
448         remove_from_ctx_list(ctxp);
449         add_to_used_ctxlist(ctxp);
450         ctxp->ctx_mm->context = NO_CONTEXT;
451         ctxp->ctx_mm = mm;
452         mm->context = ctxp->ctx_number;
453 }
454
455 static inline void free_context(int context)
456 {
457         struct ctx_list *ctx_old;
458
459         ctx_old = ctx_list_pool + context;
460         remove_from_ctx_list(ctx_old);
461         add_to_free_ctxlist(ctx_old);
462 }
463
464 static void __init sparc_context_init(int numctx)
465 {
466         int ctx;
467         unsigned long size;
468
469         size = numctx * sizeof(struct ctx_list);
470         ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
471
472         for (ctx = 0; ctx < numctx; ctx++) {
473                 struct ctx_list *clist;
474
475                 clist = (ctx_list_pool + ctx);
476                 clist->ctx_number = ctx;
477                 clist->ctx_mm = NULL;
478         }
479         ctx_free.next = ctx_free.prev = &ctx_free;
480         ctx_used.next = ctx_used.prev = &ctx_used;
481         for (ctx = 0; ctx < numctx; ctx++)
482                 add_to_free_ctxlist(ctx_list_pool + ctx);
483 }
484
485 void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
486                struct task_struct *tsk)
487 {
488         unsigned long flags;
489
490         if (mm->context == NO_CONTEXT) {
491                 spin_lock_irqsave(&srmmu_context_spinlock, flags);
492                 alloc_context(old_mm, mm);
493                 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
494                 srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
495         }
496
497         if (sparc_cpu_model == sparc_leon)
498                 leon_switch_mm();
499
500         if (is_hypersparc)
501                 hyper_flush_whole_icache();
502
503         srmmu_set_context(mm->context);
504 }
505
506 /* Low level IO area allocation on the SRMMU. */
507 static inline void srmmu_mapioaddr(unsigned long physaddr,
508                                    unsigned long virt_addr, int bus_type)
509 {
510         pgd_t *pgdp;
511         pmd_t *pmdp;
512         pte_t *ptep;
513         unsigned long tmp;
514
515         physaddr &= PAGE_MASK;
516         pgdp = pgd_offset_k(virt_addr);
517         pmdp = pmd_offset(pgdp, virt_addr);
518         ptep = pte_offset_kernel(pmdp, virt_addr);
519         tmp = (physaddr >> 4) | SRMMU_ET_PTE;
520
521         /* I need to test whether this is consistent over all
522          * sun4m's.  The bus_type represents the upper 4 bits of
523          * 36-bit physical address on the I/O space lines...
524          */
525         tmp |= (bus_type << 28);
526         tmp |= SRMMU_PRIV;
527         __flush_page_to_ram(virt_addr);
528         set_pte(ptep, __pte(tmp));
529 }
530
531 void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
532                       unsigned long xva, unsigned int len)
533 {
534         while (len != 0) {
535                 len -= PAGE_SIZE;
536                 srmmu_mapioaddr(xpa, xva, bus);
537                 xva += PAGE_SIZE;
538                 xpa += PAGE_SIZE;
539         }
540         flush_tlb_all();
541 }
542
543 static inline void srmmu_unmapioaddr(unsigned long virt_addr)
544 {
545         pgd_t *pgdp;
546         pmd_t *pmdp;
547         pte_t *ptep;
548
549         pgdp = pgd_offset_k(virt_addr);
550         pmdp = pmd_offset(pgdp, virt_addr);
551         ptep = pte_offset_kernel(pmdp, virt_addr);
552
553         /* No need to flush uncacheable page. */
554         __pte_clear(ptep);
555 }
556
557 void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
558 {
559         while (len != 0) {
560                 len -= PAGE_SIZE;
561                 srmmu_unmapioaddr(virt_addr);
562                 virt_addr += PAGE_SIZE;
563         }
564         flush_tlb_all();
565 }
566
567 /* tsunami.S */
568 extern void tsunami_flush_cache_all(void);
569 extern void tsunami_flush_cache_mm(struct mm_struct *mm);
570 extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
571 extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
572 extern void tsunami_flush_page_to_ram(unsigned long page);
573 extern void tsunami_flush_page_for_dma(unsigned long page);
574 extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
575 extern void tsunami_flush_tlb_all(void);
576 extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
577 extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
578 extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
579 extern void tsunami_setup_blockops(void);
580
581 /* swift.S */
582 extern void swift_flush_cache_all(void);
583 extern void swift_flush_cache_mm(struct mm_struct *mm);
584 extern void swift_flush_cache_range(struct vm_area_struct *vma,
585                                     unsigned long start, unsigned long end);
586 extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
587 extern void swift_flush_page_to_ram(unsigned long page);
588 extern void swift_flush_page_for_dma(unsigned long page);
589 extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
590 extern void swift_flush_tlb_all(void);
591 extern void swift_flush_tlb_mm(struct mm_struct *mm);
592 extern void swift_flush_tlb_range(struct vm_area_struct *vma,
593                                   unsigned long start, unsigned long end);
594 extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
595
596 #if 0  /* P3: deadwood to debug precise flushes on Swift. */
597 void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
598 {
599         int cctx, ctx1;
600
601         page &= PAGE_MASK;
602         if ((ctx1 = vma->vm_mm->context) != -1) {
603                 cctx = srmmu_get_context();
604 /* Is context # ever different from current context? P3 */
605                 if (cctx != ctx1) {
606                         printk("flush ctx %02x curr %02x\n", ctx1, cctx);
607                         srmmu_set_context(ctx1);
608                         swift_flush_page(page);
609                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
610                                         "r" (page), "i" (ASI_M_FLUSH_PROBE));
611                         srmmu_set_context(cctx);
612                 } else {
613                          /* Rm. prot. bits from virt. c. */
614                         /* swift_flush_cache_all(); */
615                         /* swift_flush_cache_page(vma, page); */
616                         swift_flush_page(page);
617
618                         __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
619                                 "r" (page), "i" (ASI_M_FLUSH_PROBE));
620                         /* same as above: srmmu_flush_tlb_page() */
621                 }
622         }
623 }
624 #endif
625
626 /*
627  * The following are all MBUS based SRMMU modules, and therefore could
628  * be found in a multiprocessor configuration.  On the whole, these
629  * chips seems to be much more touchy about DVMA and page tables
630  * with respect to cache coherency.
631  */
632
633 /* viking.S */
634 extern void viking_flush_cache_all(void);
635 extern void viking_flush_cache_mm(struct mm_struct *mm);
636 extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
637                                      unsigned long end);
638 extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
639 extern void viking_flush_page_to_ram(unsigned long page);
640 extern void viking_flush_page_for_dma(unsigned long page);
641 extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
642 extern void viking_flush_page(unsigned long page);
643 extern void viking_mxcc_flush_page(unsigned long page);
644 extern void viking_flush_tlb_all(void);
645 extern void viking_flush_tlb_mm(struct mm_struct *mm);
646 extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
647                                    unsigned long end);
648 extern void viking_flush_tlb_page(struct vm_area_struct *vma,
649                                   unsigned long page);
650 extern void sun4dsmp_flush_tlb_all(void);
651 extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
652 extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
653                                    unsigned long end);
654 extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
655                                   unsigned long page);
656
657 /* hypersparc.S */
658 extern void hypersparc_flush_cache_all(void);
659 extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
660 extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
661 extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
662 extern void hypersparc_flush_page_to_ram(unsigned long page);
663 extern void hypersparc_flush_page_for_dma(unsigned long page);
664 extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
665 extern void hypersparc_flush_tlb_all(void);
666 extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
667 extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
668 extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
669 extern void hypersparc_setup_blockops(void);
670
671 /*
672  * NOTE: All of this startup code assumes the low 16mb (approx.) of
673  *       kernel mappings are done with one single contiguous chunk of
674  *       ram.  On small ram machines (classics mainly) we only get
675  *       around 8mb mapped for us.
676  */
677
678 static void __init early_pgtable_allocfail(char *type)
679 {
680         prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
681         prom_halt();
682 }
683
684 static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
685                                                         unsigned long end)
686 {
687         pgd_t *pgdp;
688         pmd_t *pmdp;
689         pte_t *ptep;
690
691         while (start < end) {
692                 pgdp = pgd_offset_k(start);
693                 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
694                         pmdp = __srmmu_get_nocache(
695                             SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
696                         if (pmdp == NULL)
697                                 early_pgtable_allocfail("pmd");
698                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
699                         pgd_set(__nocache_fix(pgdp), pmdp);
700                 }
701                 pmdp = pmd_offset(__nocache_fix(pgdp), start);
702                 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
703                         ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
704                         if (ptep == NULL)
705                                 early_pgtable_allocfail("pte");
706                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
707                         pmd_set(__nocache_fix(pmdp), ptep);
708                 }
709                 if (start > (0xffffffffUL - PMD_SIZE))
710                         break;
711                 start = (start + PMD_SIZE) & PMD_MASK;
712         }
713 }
714
715 static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
716                                                   unsigned long end)
717 {
718         pgd_t *pgdp;
719         pmd_t *pmdp;
720         pte_t *ptep;
721
722         while (start < end) {
723                 pgdp = pgd_offset_k(start);
724                 if (pgd_none(*pgdp)) {
725                         pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
726                         if (pmdp == NULL)
727                                 early_pgtable_allocfail("pmd");
728                         memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
729                         pgd_set(pgdp, pmdp);
730                 }
731                 pmdp = pmd_offset(pgdp, start);
732                 if (srmmu_pmd_none(*pmdp)) {
733                         ptep = __srmmu_get_nocache(PTE_SIZE,
734                                                              PTE_SIZE);
735                         if (ptep == NULL)
736                                 early_pgtable_allocfail("pte");
737                         memset(ptep, 0, PTE_SIZE);
738                         pmd_set(pmdp, ptep);
739                 }
740                 if (start > (0xffffffffUL - PMD_SIZE))
741                         break;
742                 start = (start + PMD_SIZE) & PMD_MASK;
743         }
744 }
745
746 /* These flush types are not available on all chips... */
747 static inline unsigned long srmmu_probe(unsigned long vaddr)
748 {
749         unsigned long retval;
750
751         if (sparc_cpu_model != sparc_leon) {
752
753                 vaddr &= PAGE_MASK;
754                 __asm__ __volatile__("lda [%1] %2, %0\n\t" :
755                                      "=r" (retval) :
756                                      "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
757         } else {
758                 retval = leon_swprobe(vaddr, NULL);
759         }
760         return retval;
761 }
762
763 /*
764  * This is much cleaner than poking around physical address space
765  * looking at the prom's page table directly which is what most
766  * other OS's do.  Yuck... this is much better.
767  */
768 static void __init srmmu_inherit_prom_mappings(unsigned long start,
769                                                unsigned long end)
770 {
771         unsigned long probed;
772         unsigned long addr;
773         pgd_t *pgdp;
774         pmd_t *pmdp;
775         pte_t *ptep;
776         int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
777
778         while (start <= end) {
779                 if (start == 0)
780                         break; /* probably wrap around */
781                 if (start == 0xfef00000)
782                         start = KADB_DEBUGGER_BEGVM;
783                 probed = srmmu_probe(start);
784                 if (!probed) {
785                         /* continue probing until we find an entry */
786                         start += PAGE_SIZE;
787                         continue;
788                 }
789
790                 /* A red snapper, see what it really is. */
791                 what = 0;
792                 addr = start - PAGE_SIZE;
793
794                 if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
795                         if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
796                                 what = 1;
797                 }
798
799                 if (!(start & ~(SRMMU_PGDIR_MASK))) {
800                         if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
801                                 what = 2;
802                 }
803
804                 pgdp = pgd_offset_k(start);
805                 if (what == 2) {
806                         *(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
807                         start += SRMMU_PGDIR_SIZE;
808                         continue;
809                 }
810                 if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
811                         pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
812                                                    SRMMU_PMD_TABLE_SIZE);
813                         if (pmdp == NULL)
814                                 early_pgtable_allocfail("pmd");
815                         memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
816                         pgd_set(__nocache_fix(pgdp), pmdp);
817                 }
818                 pmdp = pmd_offset(__nocache_fix(pgdp), start);
819                 if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
820                         ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
821                         if (ptep == NULL)
822                                 early_pgtable_allocfail("pte");
823                         memset(__nocache_fix(ptep), 0, PTE_SIZE);
824                         pmd_set(__nocache_fix(pmdp), ptep);
825                 }
826                 if (what == 1) {
827                         /* We bend the rule where all 16 PTPs in a pmd_t point
828                          * inside the same PTE page, and we leak a perfectly
829                          * good hardware PTE piece. Alternatives seem worse.
830                          */
831                         unsigned int x; /* Index of HW PMD in soft cluster */
832                         unsigned long *val;
833                         x = (start >> PMD_SHIFT) & 15;
834                         val = &pmdp->pmdv[x];
835                         *(unsigned long *)__nocache_fix(val) = probed;
836                         start += SRMMU_REAL_PMD_SIZE;
837                         continue;
838                 }
839                 ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
840                 *(pte_t *)__nocache_fix(ptep) = __pte(probed);
841                 start += PAGE_SIZE;
842         }
843 }
844
845 #define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
846
847 /* Create a third-level SRMMU 16MB page mapping. */
848 static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
849 {
850         pgd_t *pgdp = pgd_offset_k(vaddr);
851         unsigned long big_pte;
852
853         big_pte = KERNEL_PTE(phys_base >> 4);
854         *(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
855 }
856
857 /* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
858 static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
859 {
860         unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
861         unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
862         unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
863         /* Map "low" memory only */
864         const unsigned long min_vaddr = PAGE_OFFSET;
865         const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
866
867         if (vstart < min_vaddr || vstart >= max_vaddr)
868                 return vstart;
869
870         if (vend > max_vaddr || vend < min_vaddr)
871                 vend = max_vaddr;
872
873         while (vstart < vend) {
874                 do_large_mapping(vstart, pstart);
875                 vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
876         }
877         return vstart;
878 }
879
880 static void __init map_kernel(void)
881 {
882         int i;
883
884         if (phys_base > 0) {
885                 do_large_mapping(PAGE_OFFSET, phys_base);
886         }
887
888         for (i = 0; sp_banks[i].num_bytes != 0; i++) {
889                 map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
890         }
891 }
892
893 void (*poke_srmmu)(void) = NULL;
894
895 void __init srmmu_paging_init(void)
896 {
897         int i;
898         phandle cpunode;
899         char node_str[128];
900         pgd_t *pgd;
901         pmd_t *pmd;
902         pte_t *pte;
903         unsigned long pages_avail;
904
905         init_mm.context = (unsigned long) NO_CONTEXT;
906         sparc_iomap.start = SUN4M_IOBASE_VADDR; /* 16MB of IOSPACE on all sun4m's. */
907
908         if (sparc_cpu_model == sun4d)
909                 num_contexts = 65536; /* We know it is Viking */
910         else {
911                 /* Find the number of contexts on the srmmu. */
912                 cpunode = prom_getchild(prom_root_node);
913                 num_contexts = 0;
914                 while (cpunode != 0) {
915                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
916                         if (!strcmp(node_str, "cpu")) {
917                                 num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
918                                 break;
919                         }
920                         cpunode = prom_getsibling(cpunode);
921                 }
922         }
923
924         if (!num_contexts) {
925                 prom_printf("Something wrong, can't find cpu node in paging_init.\n");
926                 prom_halt();
927         }
928
929         pages_avail = 0;
930         last_valid_pfn = bootmem_init(&pages_avail);
931
932         srmmu_nocache_calcsize();
933         srmmu_nocache_init();
934         srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
935         map_kernel();
936
937         /* ctx table has to be physically aligned to its size */
938         srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
939         srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
940
941         for (i = 0; i < num_contexts; i++)
942                 srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
943
944         flush_cache_all();
945         srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
946 #ifdef CONFIG_SMP
947         /* Stop from hanging here... */
948         local_ops->tlb_all();
949 #else
950         flush_tlb_all();
951 #endif
952         poke_srmmu();
953
954         srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
955         srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
956
957         srmmu_allocate_ptable_skeleton(
958                 __fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
959         srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
960
961         pgd = pgd_offset_k(PKMAP_BASE);
962         pmd = pmd_offset(pgd, PKMAP_BASE);
963         pte = pte_offset_kernel(pmd, PKMAP_BASE);
964         pkmap_page_table = pte;
965
966         flush_cache_all();
967         flush_tlb_all();
968
969         sparc_context_init(num_contexts);
970
971         kmap_init();
972
973         {
974                 unsigned long zones_size[MAX_NR_ZONES];
975                 unsigned long zholes_size[MAX_NR_ZONES];
976                 unsigned long npages;
977                 int znum;
978
979                 for (znum = 0; znum < MAX_NR_ZONES; znum++)
980                         zones_size[znum] = zholes_size[znum] = 0;
981
982                 npages = max_low_pfn - pfn_base;
983
984                 zones_size[ZONE_DMA] = npages;
985                 zholes_size[ZONE_DMA] = npages - pages_avail;
986
987                 npages = highend_pfn - max_low_pfn;
988                 zones_size[ZONE_HIGHMEM] = npages;
989                 zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
990
991                 free_area_init_node(0, zones_size, pfn_base, zholes_size);
992         }
993 }
994
995 void mmu_info(struct seq_file *m)
996 {
997         seq_printf(m,
998                    "MMU type\t: %s\n"
999                    "contexts\t: %d\n"
1000                    "nocache total\t: %ld\n"
1001                    "nocache used\t: %d\n",
1002                    srmmu_name,
1003                    num_contexts,
1004                    srmmu_nocache_size,
1005                    srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1006 }
1007
1008 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
1009 {
1010         mm->context = NO_CONTEXT;
1011         return 0;
1012 }
1013
1014 void destroy_context(struct mm_struct *mm)
1015 {
1016         unsigned long flags;
1017
1018         if (mm->context != NO_CONTEXT) {
1019                 flush_cache_mm(mm);
1020                 srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1021                 flush_tlb_mm(mm);
1022                 spin_lock_irqsave(&srmmu_context_spinlock, flags);
1023                 free_context(mm->context);
1024                 spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1025                 mm->context = NO_CONTEXT;
1026         }
1027 }
1028
1029 /* Init various srmmu chip types. */
1030 static void __init srmmu_is_bad(void)
1031 {
1032         prom_printf("Could not determine SRMMU chip type.\n");
1033         prom_halt();
1034 }
1035
1036 static void __init init_vac_layout(void)
1037 {
1038         phandle nd;
1039         int cache_lines;
1040         char node_str[128];
1041 #ifdef CONFIG_SMP
1042         int cpu = 0;
1043         unsigned long max_size = 0;
1044         unsigned long min_line_size = 0x10000000;
1045 #endif
1046
1047         nd = prom_getchild(prom_root_node);
1048         while ((nd = prom_getsibling(nd)) != 0) {
1049                 prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1050                 if (!strcmp(node_str, "cpu")) {
1051                         vac_line_size = prom_getint(nd, "cache-line-size");
1052                         if (vac_line_size == -1) {
1053                                 prom_printf("can't determine cache-line-size, halting.\n");
1054                                 prom_halt();
1055                         }
1056                         cache_lines = prom_getint(nd, "cache-nlines");
1057                         if (cache_lines == -1) {
1058                                 prom_printf("can't determine cache-nlines, halting.\n");
1059                                 prom_halt();
1060                         }
1061
1062                         vac_cache_size = cache_lines * vac_line_size;
1063 #ifdef CONFIG_SMP
1064                         if (vac_cache_size > max_size)
1065                                 max_size = vac_cache_size;
1066                         if (vac_line_size < min_line_size)
1067                                 min_line_size = vac_line_size;
1068                         //FIXME: cpus not contiguous!!
1069                         cpu++;
1070                         if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1071                                 break;
1072 #else
1073                         break;
1074 #endif
1075                 }
1076         }
1077         if (nd == 0) {
1078                 prom_printf("No CPU nodes found, halting.\n");
1079                 prom_halt();
1080         }
1081 #ifdef CONFIG_SMP
1082         vac_cache_size = max_size;
1083         vac_line_size = min_line_size;
1084 #endif
1085         printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1086                (int)vac_cache_size, (int)vac_line_size);
1087 }
1088
1089 static void poke_hypersparc(void)
1090 {
1091         volatile unsigned long clear;
1092         unsigned long mreg = srmmu_get_mmureg();
1093
1094         hyper_flush_unconditional_combined();
1095
1096         mreg &= ~(HYPERSPARC_CWENABLE);
1097         mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1098         mreg |= (HYPERSPARC_CMODE);
1099
1100         srmmu_set_mmureg(mreg);
1101
1102 #if 0 /* XXX I think this is bad news... -DaveM */
1103         hyper_clear_all_tags();
1104 #endif
1105
1106         put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1107         hyper_flush_whole_icache();
1108         clear = srmmu_get_faddr();
1109         clear = srmmu_get_fstatus();
1110 }
1111
1112 static const struct sparc32_cachetlb_ops hypersparc_ops = {
1113         .cache_all      = hypersparc_flush_cache_all,
1114         .cache_mm       = hypersparc_flush_cache_mm,
1115         .cache_page     = hypersparc_flush_cache_page,
1116         .cache_range    = hypersparc_flush_cache_range,
1117         .tlb_all        = hypersparc_flush_tlb_all,
1118         .tlb_mm         = hypersparc_flush_tlb_mm,
1119         .tlb_page       = hypersparc_flush_tlb_page,
1120         .tlb_range      = hypersparc_flush_tlb_range,
1121         .page_to_ram    = hypersparc_flush_page_to_ram,
1122         .sig_insns      = hypersparc_flush_sig_insns,
1123         .page_for_dma   = hypersparc_flush_page_for_dma,
1124 };
1125
1126 static void __init init_hypersparc(void)
1127 {
1128         srmmu_name = "ROSS HyperSparc";
1129         srmmu_modtype = HyperSparc;
1130
1131         init_vac_layout();
1132
1133         is_hypersparc = 1;
1134         sparc32_cachetlb_ops = &hypersparc_ops;
1135
1136         poke_srmmu = poke_hypersparc;
1137
1138         hypersparc_setup_blockops();
1139 }
1140
1141 static void poke_swift(void)
1142 {
1143         unsigned long mreg;
1144
1145         /* Clear any crap from the cache or else... */
1146         swift_flush_cache_all();
1147
1148         /* Enable I & D caches */
1149         mreg = srmmu_get_mmureg();
1150         mreg |= (SWIFT_IE | SWIFT_DE);
1151         /*
1152          * The Swift branch folding logic is completely broken.  At
1153          * trap time, if things are just right, if can mistakenly
1154          * think that a trap is coming from kernel mode when in fact
1155          * it is coming from user mode (it mis-executes the branch in
1156          * the trap code).  So you see things like crashme completely
1157          * hosing your machine which is completely unacceptable.  Turn
1158          * this shit off... nice job Fujitsu.
1159          */
1160         mreg &= ~(SWIFT_BF);
1161         srmmu_set_mmureg(mreg);
1162 }
1163
1164 static const struct sparc32_cachetlb_ops swift_ops = {
1165         .cache_all      = swift_flush_cache_all,
1166         .cache_mm       = swift_flush_cache_mm,
1167         .cache_page     = swift_flush_cache_page,
1168         .cache_range    = swift_flush_cache_range,
1169         .tlb_all        = swift_flush_tlb_all,
1170         .tlb_mm         = swift_flush_tlb_mm,
1171         .tlb_page       = swift_flush_tlb_page,
1172         .tlb_range      = swift_flush_tlb_range,
1173         .page_to_ram    = swift_flush_page_to_ram,
1174         .sig_insns      = swift_flush_sig_insns,
1175         .page_for_dma   = swift_flush_page_for_dma,
1176 };
1177
1178 #define SWIFT_MASKID_ADDR  0x10003018
1179 static void __init init_swift(void)
1180 {
1181         unsigned long swift_rev;
1182
1183         __asm__ __volatile__("lda [%1] %2, %0\n\t"
1184                              "srl %0, 0x18, %0\n\t" :
1185                              "=r" (swift_rev) :
1186                              "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1187         srmmu_name = "Fujitsu Swift";
1188         switch (swift_rev) {
1189         case 0x11:
1190         case 0x20:
1191         case 0x23:
1192         case 0x30:
1193                 srmmu_modtype = Swift_lots_o_bugs;
1194                 hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1195                 /*
1196                  * Gee george, I wonder why Sun is so hush hush about
1197                  * this hardware bug... really braindamage stuff going
1198                  * on here.  However I think we can find a way to avoid
1199                  * all of the workaround overhead under Linux.  Basically,
1200                  * any page fault can cause kernel pages to become user
1201                  * accessible (the mmu gets confused and clears some of
1202                  * the ACC bits in kernel ptes).  Aha, sounds pretty
1203                  * horrible eh?  But wait, after extensive testing it appears
1204                  * that if you use pgd_t level large kernel pte's (like the
1205                  * 4MB pages on the Pentium) the bug does not get tripped
1206                  * at all.  This avoids almost all of the major overhead.
1207                  * Welcome to a world where your vendor tells you to,
1208                  * "apply this kernel patch" instead of "sorry for the
1209                  * broken hardware, send it back and we'll give you
1210                  * properly functioning parts"
1211                  */
1212                 break;
1213         case 0x25:
1214         case 0x31:
1215                 srmmu_modtype = Swift_bad_c;
1216                 hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1217                 /*
1218                  * You see Sun allude to this hardware bug but never
1219                  * admit things directly, they'll say things like,
1220                  * "the Swift chip cache problems" or similar.
1221                  */
1222                 break;
1223         default:
1224                 srmmu_modtype = Swift_ok;
1225                 break;
1226         }
1227
1228         sparc32_cachetlb_ops = &swift_ops;
1229         flush_page_for_dma_global = 0;
1230
1231         /*
1232          * Are you now convinced that the Swift is one of the
1233          * biggest VLSI abortions of all time?  Bravo Fujitsu!
1234          * Fujitsu, the !#?!%$'d up processor people.  I bet if
1235          * you examined the microcode of the Swift you'd find
1236          * XXX's all over the place.
1237          */
1238         poke_srmmu = poke_swift;
1239 }
1240
1241 static void turbosparc_flush_cache_all(void)
1242 {
1243         flush_user_windows();
1244         turbosparc_idflash_clear();
1245 }
1246
1247 static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1248 {
1249         FLUSH_BEGIN(mm)
1250         flush_user_windows();
1251         turbosparc_idflash_clear();
1252         FLUSH_END
1253 }
1254
1255 static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1256 {
1257         FLUSH_BEGIN(vma->vm_mm)
1258         flush_user_windows();
1259         turbosparc_idflash_clear();
1260         FLUSH_END
1261 }
1262
1263 static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1264 {
1265         FLUSH_BEGIN(vma->vm_mm)
1266         flush_user_windows();
1267         if (vma->vm_flags & VM_EXEC)
1268                 turbosparc_flush_icache();
1269         turbosparc_flush_dcache();
1270         FLUSH_END
1271 }
1272
1273 /* TurboSparc is copy-back, if we turn it on, but this does not work. */
1274 static void turbosparc_flush_page_to_ram(unsigned long page)
1275 {
1276 #ifdef TURBOSPARC_WRITEBACK
1277         volatile unsigned long clear;
1278
1279         if (srmmu_probe(page))
1280                 turbosparc_flush_page_cache(page);
1281         clear = srmmu_get_fstatus();
1282 #endif
1283 }
1284
1285 static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1286 {
1287 }
1288
1289 static void turbosparc_flush_page_for_dma(unsigned long page)
1290 {
1291         turbosparc_flush_dcache();
1292 }
1293
1294 static void turbosparc_flush_tlb_all(void)
1295 {
1296         srmmu_flush_whole_tlb();
1297 }
1298
1299 static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1300 {
1301         FLUSH_BEGIN(mm)
1302         srmmu_flush_whole_tlb();
1303         FLUSH_END
1304 }
1305
1306 static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1307 {
1308         FLUSH_BEGIN(vma->vm_mm)
1309         srmmu_flush_whole_tlb();
1310         FLUSH_END
1311 }
1312
1313 static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1314 {
1315         FLUSH_BEGIN(vma->vm_mm)
1316         srmmu_flush_whole_tlb();
1317         FLUSH_END
1318 }
1319
1320
1321 static void poke_turbosparc(void)
1322 {
1323         unsigned long mreg = srmmu_get_mmureg();
1324         unsigned long ccreg;
1325
1326         /* Clear any crap from the cache or else... */
1327         turbosparc_flush_cache_all();
1328         /* Temporarily disable I & D caches */
1329         mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1330         mreg &= ~(TURBOSPARC_PCENABLE);         /* Don't check parity */
1331         srmmu_set_mmureg(mreg);
1332
1333         ccreg = turbosparc_get_ccreg();
1334
1335 #ifdef TURBOSPARC_WRITEBACK
1336         ccreg |= (TURBOSPARC_SNENABLE);         /* Do DVMA snooping in Dcache */
1337         ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1338                         /* Write-back D-cache, emulate VLSI
1339                          * abortion number three, not number one */
1340 #else
1341         /* For now let's play safe, optimize later */
1342         ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1343                         /* Do DVMA snooping in Dcache, Write-thru D-cache */
1344         ccreg &= ~(TURBOSPARC_uS2);
1345                         /* Emulate VLSI abortion number three, not number one */
1346 #endif
1347
1348         switch (ccreg & 7) {
1349         case 0: /* No SE cache */
1350         case 7: /* Test mode */
1351                 break;
1352         default:
1353                 ccreg |= (TURBOSPARC_SCENABLE);
1354         }
1355         turbosparc_set_ccreg(ccreg);
1356
1357         mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1358         mreg |= (TURBOSPARC_ICSNOOP);           /* Icache snooping on */
1359         srmmu_set_mmureg(mreg);
1360 }
1361
1362 static const struct sparc32_cachetlb_ops turbosparc_ops = {
1363         .cache_all      = turbosparc_flush_cache_all,
1364         .cache_mm       = turbosparc_flush_cache_mm,
1365         .cache_page     = turbosparc_flush_cache_page,
1366         .cache_range    = turbosparc_flush_cache_range,
1367         .tlb_all        = turbosparc_flush_tlb_all,
1368         .tlb_mm         = turbosparc_flush_tlb_mm,
1369         .tlb_page       = turbosparc_flush_tlb_page,
1370         .tlb_range      = turbosparc_flush_tlb_range,
1371         .page_to_ram    = turbosparc_flush_page_to_ram,
1372         .sig_insns      = turbosparc_flush_sig_insns,
1373         .page_for_dma   = turbosparc_flush_page_for_dma,
1374 };
1375
1376 static void __init init_turbosparc(void)
1377 {
1378         srmmu_name = "Fujitsu TurboSparc";
1379         srmmu_modtype = TurboSparc;
1380         sparc32_cachetlb_ops = &turbosparc_ops;
1381         poke_srmmu = poke_turbosparc;
1382 }
1383
1384 static void poke_tsunami(void)
1385 {
1386         unsigned long mreg = srmmu_get_mmureg();
1387
1388         tsunami_flush_icache();
1389         tsunami_flush_dcache();
1390         mreg &= ~TSUNAMI_ITD;
1391         mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1392         srmmu_set_mmureg(mreg);
1393 }
1394
1395 static const struct sparc32_cachetlb_ops tsunami_ops = {
1396         .cache_all      = tsunami_flush_cache_all,
1397         .cache_mm       = tsunami_flush_cache_mm,
1398         .cache_page     = tsunami_flush_cache_page,
1399         .cache_range    = tsunami_flush_cache_range,
1400         .tlb_all        = tsunami_flush_tlb_all,
1401         .tlb_mm         = tsunami_flush_tlb_mm,
1402         .tlb_page       = tsunami_flush_tlb_page,
1403         .tlb_range      = tsunami_flush_tlb_range,
1404         .page_to_ram    = tsunami_flush_page_to_ram,
1405         .sig_insns      = tsunami_flush_sig_insns,
1406         .page_for_dma   = tsunami_flush_page_for_dma,
1407 };
1408
1409 static void __init init_tsunami(void)
1410 {
1411         /*
1412          * Tsunami's pretty sane, Sun and TI actually got it
1413          * somewhat right this time.  Fujitsu should have
1414          * taken some lessons from them.
1415          */
1416
1417         srmmu_name = "TI Tsunami";
1418         srmmu_modtype = Tsunami;
1419         sparc32_cachetlb_ops = &tsunami_ops;
1420         poke_srmmu = poke_tsunami;
1421
1422         tsunami_setup_blockops();
1423 }
1424
1425 static void poke_viking(void)
1426 {
1427         unsigned long mreg = srmmu_get_mmureg();
1428         static int smp_catch;
1429
1430         if (viking_mxcc_present) {
1431                 unsigned long mxcc_control = mxcc_get_creg();
1432
1433                 mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1434                 mxcc_control &= ~(MXCC_CTL_RRC);
1435                 mxcc_set_creg(mxcc_control);
1436
1437                 /*
1438                  * We don't need memory parity checks.
1439                  * XXX This is a mess, have to dig out later. ecd.
1440                 viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1441                  */
1442
1443                 /* We do cache ptables on MXCC. */
1444                 mreg |= VIKING_TCENABLE;
1445         } else {
1446                 unsigned long bpreg;
1447
1448                 mreg &= ~(VIKING_TCENABLE);
1449                 if (smp_catch++) {
1450                         /* Must disable mixed-cmd mode here for other cpu's. */
1451                         bpreg = viking_get_bpreg();
1452                         bpreg &= ~(VIKING_ACTION_MIX);
1453                         viking_set_bpreg(bpreg);
1454
1455                         /* Just in case PROM does something funny. */
1456                         msi_set_sync();
1457                 }
1458         }
1459
1460         mreg |= VIKING_SPENABLE;
1461         mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1462         mreg |= VIKING_SBENABLE;
1463         mreg &= ~(VIKING_ACENABLE);
1464         srmmu_set_mmureg(mreg);
1465 }
1466
1467 static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1468         .cache_all      = viking_flush_cache_all,
1469         .cache_mm       = viking_flush_cache_mm,
1470         .cache_page     = viking_flush_cache_page,
1471         .cache_range    = viking_flush_cache_range,
1472         .tlb_all        = viking_flush_tlb_all,
1473         .tlb_mm         = viking_flush_tlb_mm,
1474         .tlb_page       = viking_flush_tlb_page,
1475         .tlb_range      = viking_flush_tlb_range,
1476         .page_to_ram    = viking_flush_page_to_ram,
1477         .sig_insns      = viking_flush_sig_insns,
1478         .page_for_dma   = viking_flush_page_for_dma,
1479 };
1480
1481 #ifdef CONFIG_SMP
1482 /* On sun4d the cpu broadcasts local TLB flushes, so we can just
1483  * perform the local TLB flush and all the other cpus will see it.
1484  * But, unfortunately, there is a bug in the sun4d XBUS backplane
1485  * that requires that we add some synchronization to these flushes.
1486  *
1487  * The bug is that the fifo which keeps track of all the pending TLB
1488  * broadcasts in the system is an entry or two too small, so if we
1489  * have too many going at once we'll overflow that fifo and lose a TLB
1490  * flush resulting in corruption.
1491  *
1492  * Our workaround is to take a global spinlock around the TLB flushes,
1493  * which guarentees we won't ever have too many pending.  It's a big
1494  * hammer, but a semaphore like system to make sure we only have N TLB
1495  * flushes going at once will require SMP locking anyways so there's
1496  * no real value in trying any harder than this.
1497  */
1498 static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1499         .cache_all      = viking_flush_cache_all,
1500         .cache_mm       = viking_flush_cache_mm,
1501         .cache_page     = viking_flush_cache_page,
1502         .cache_range    = viking_flush_cache_range,
1503         .tlb_all        = sun4dsmp_flush_tlb_all,
1504         .tlb_mm         = sun4dsmp_flush_tlb_mm,
1505         .tlb_page       = sun4dsmp_flush_tlb_page,
1506         .tlb_range      = sun4dsmp_flush_tlb_range,
1507         .page_to_ram    = viking_flush_page_to_ram,
1508         .sig_insns      = viking_flush_sig_insns,
1509         .page_for_dma   = viking_flush_page_for_dma,
1510 };
1511 #endif
1512
1513 static void __init init_viking(void)
1514 {
1515         unsigned long mreg = srmmu_get_mmureg();
1516
1517         /* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1518         if (mreg & VIKING_MMODE) {
1519                 srmmu_name = "TI Viking";
1520                 viking_mxcc_present = 0;
1521                 msi_set_sync();
1522
1523                 /*
1524                  * We need this to make sure old viking takes no hits
1525                  * on it's cache for dma snoops to workaround the
1526                  * "load from non-cacheable memory" interrupt bug.
1527                  * This is only necessary because of the new way in
1528                  * which we use the IOMMU.
1529                  */
1530                 viking_ops.page_for_dma = viking_flush_page;
1531 #ifdef CONFIG_SMP
1532                 viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1533 #endif
1534                 flush_page_for_dma_global = 0;
1535         } else {
1536                 srmmu_name = "TI Viking/MXCC";
1537                 viking_mxcc_present = 1;
1538                 srmmu_cache_pagetables = 1;
1539         }
1540
1541         sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1542                 &viking_ops;
1543 #ifdef CONFIG_SMP
1544         if (sparc_cpu_model == sun4d)
1545                 sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1546                         &viking_sun4d_smp_ops;
1547 #endif
1548
1549         poke_srmmu = poke_viking;
1550 }
1551
1552 /* Probe for the srmmu chip version. */
1553 static void __init get_srmmu_type(void)
1554 {
1555         unsigned long mreg, psr;
1556         unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1557
1558         srmmu_modtype = SRMMU_INVAL_MOD;
1559         hwbug_bitmask = 0;
1560
1561         mreg = srmmu_get_mmureg(); psr = get_psr();
1562         mod_typ = (mreg & 0xf0000000) >> 28;
1563         mod_rev = (mreg & 0x0f000000) >> 24;
1564         psr_typ = (psr >> 28) & 0xf;
1565         psr_vers = (psr >> 24) & 0xf;
1566
1567         /* First, check for sparc-leon. */
1568         if (sparc_cpu_model == sparc_leon) {
1569                 init_leon();
1570                 return;
1571         }
1572
1573         /* Second, check for HyperSparc or Cypress. */
1574         if (mod_typ == 1) {
1575                 switch (mod_rev) {
1576                 case 7:
1577                         /* UP or MP Hypersparc */
1578                         init_hypersparc();
1579                         break;
1580                 case 0:
1581                 case 2:
1582                 case 10:
1583                 case 11:
1584                 case 12:
1585                 case 13:
1586                 case 14:
1587                 case 15:
1588                 default:
1589                         prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1590                         prom_halt();
1591                         break;
1592                 }
1593                 return;
1594         }
1595
1596         /* Now Fujitsu TurboSparc. It might happen that it is
1597          * in Swift emulation mode, so we will check later...
1598          */
1599         if (psr_typ == 0 && psr_vers == 5) {
1600                 init_turbosparc();
1601                 return;
1602         }
1603
1604         /* Next check for Fujitsu Swift. */
1605         if (psr_typ == 0 && psr_vers == 4) {
1606                 phandle cpunode;
1607                 char node_str[128];
1608
1609                 /* Look if it is not a TurboSparc emulating Swift... */
1610                 cpunode = prom_getchild(prom_root_node);
1611                 while ((cpunode = prom_getsibling(cpunode)) != 0) {
1612                         prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1613                         if (!strcmp(node_str, "cpu")) {
1614                                 if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1615                                     prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1616                                         init_turbosparc();
1617                                         return;
1618                                 }
1619                                 break;
1620                         }
1621                 }
1622
1623                 init_swift();
1624                 return;
1625         }
1626
1627         /* Now the Viking family of srmmu. */
1628         if (psr_typ == 4 &&
1629            ((psr_vers == 0) ||
1630             ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1631                 init_viking();
1632                 return;
1633         }
1634
1635         /* Finally the Tsunami. */
1636         if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1637                 init_tsunami();
1638                 return;
1639         }
1640
1641         /* Oh well */
1642         srmmu_is_bad();
1643 }
1644
1645 #ifdef CONFIG_SMP
1646 /* Local cross-calls. */
1647 static void smp_flush_page_for_dma(unsigned long page)
1648 {
1649         xc1((smpfunc_t) local_ops->page_for_dma, page);
1650         local_ops->page_for_dma(page);
1651 }
1652
1653 static void smp_flush_cache_all(void)
1654 {
1655         xc0((smpfunc_t) local_ops->cache_all);
1656         local_ops->cache_all();
1657 }
1658
1659 static void smp_flush_tlb_all(void)
1660 {
1661         xc0((smpfunc_t) local_ops->tlb_all);
1662         local_ops->tlb_all();
1663 }
1664
1665 static void smp_flush_cache_mm(struct mm_struct *mm)
1666 {
1667         if (mm->context != NO_CONTEXT) {
1668                 cpumask_t cpu_mask;
1669                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1670                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1671                 if (!cpumask_empty(&cpu_mask))
1672                         xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1673                 local_ops->cache_mm(mm);
1674         }
1675 }
1676
1677 static void smp_flush_tlb_mm(struct mm_struct *mm)
1678 {
1679         if (mm->context != NO_CONTEXT) {
1680                 cpumask_t cpu_mask;
1681                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1682                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1683                 if (!cpumask_empty(&cpu_mask)) {
1684                         xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1685                         if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1686                                 cpumask_copy(mm_cpumask(mm),
1687                                              cpumask_of(smp_processor_id()));
1688                 }
1689                 local_ops->tlb_mm(mm);
1690         }
1691 }
1692
1693 static void smp_flush_cache_range(struct vm_area_struct *vma,
1694                                   unsigned long start,
1695                                   unsigned long end)
1696 {
1697         struct mm_struct *mm = vma->vm_mm;
1698
1699         if (mm->context != NO_CONTEXT) {
1700                 cpumask_t cpu_mask;
1701                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1702                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1703                 if (!cpumask_empty(&cpu_mask))
1704                         xc3((smpfunc_t) local_ops->cache_range,
1705                             (unsigned long) vma, start, end);
1706                 local_ops->cache_range(vma, start, end);
1707         }
1708 }
1709
1710 static void smp_flush_tlb_range(struct vm_area_struct *vma,
1711                                 unsigned long start,
1712                                 unsigned long end)
1713 {
1714         struct mm_struct *mm = vma->vm_mm;
1715
1716         if (mm->context != NO_CONTEXT) {
1717                 cpumask_t cpu_mask;
1718                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1719                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1720                 if (!cpumask_empty(&cpu_mask))
1721                         xc3((smpfunc_t) local_ops->tlb_range,
1722                             (unsigned long) vma, start, end);
1723                 local_ops->tlb_range(vma, start, end);
1724         }
1725 }
1726
1727 static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1728 {
1729         struct mm_struct *mm = vma->vm_mm;
1730
1731         if (mm->context != NO_CONTEXT) {
1732                 cpumask_t cpu_mask;
1733                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1734                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1735                 if (!cpumask_empty(&cpu_mask))
1736                         xc2((smpfunc_t) local_ops->cache_page,
1737                             (unsigned long) vma, page);
1738                 local_ops->cache_page(vma, page);
1739         }
1740 }
1741
1742 static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1743 {
1744         struct mm_struct *mm = vma->vm_mm;
1745
1746         if (mm->context != NO_CONTEXT) {
1747                 cpumask_t cpu_mask;
1748                 cpumask_copy(&cpu_mask, mm_cpumask(mm));
1749                 cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1750                 if (!cpumask_empty(&cpu_mask))
1751                         xc2((smpfunc_t) local_ops->tlb_page,
1752                             (unsigned long) vma, page);
1753                 local_ops->tlb_page(vma, page);
1754         }
1755 }
1756
1757 static void smp_flush_page_to_ram(unsigned long page)
1758 {
1759         /* Current theory is that those who call this are the one's
1760          * who have just dirtied their cache with the pages contents
1761          * in kernel space, therefore we only run this on local cpu.
1762          *
1763          * XXX This experiment failed, research further... -DaveM
1764          */
1765 #if 1
1766         xc1((smpfunc_t) local_ops->page_to_ram, page);
1767 #endif
1768         local_ops->page_to_ram(page);
1769 }
1770
1771 static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1772 {
1773         cpumask_t cpu_mask;
1774         cpumask_copy(&cpu_mask, mm_cpumask(mm));
1775         cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1776         if (!cpumask_empty(&cpu_mask))
1777                 xc2((smpfunc_t) local_ops->sig_insns,
1778                     (unsigned long) mm, insn_addr);
1779         local_ops->sig_insns(mm, insn_addr);
1780 }
1781
1782 static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1783         .cache_all      = smp_flush_cache_all,
1784         .cache_mm       = smp_flush_cache_mm,
1785         .cache_page     = smp_flush_cache_page,
1786         .cache_range    = smp_flush_cache_range,
1787         .tlb_all        = smp_flush_tlb_all,
1788         .tlb_mm         = smp_flush_tlb_mm,
1789         .tlb_page       = smp_flush_tlb_page,
1790         .tlb_range      = smp_flush_tlb_range,
1791         .page_to_ram    = smp_flush_page_to_ram,
1792         .sig_insns      = smp_flush_sig_insns,
1793         .page_for_dma   = smp_flush_page_for_dma,
1794 };
1795 #endif
1796
1797 /* Load up routines and constants for sun4m and sun4d mmu */
1798 void __init load_mmu(void)
1799 {
1800         /* Functions */
1801         get_srmmu_type();
1802
1803 #ifdef CONFIG_SMP
1804         /* El switcheroo... */
1805         local_ops = sparc32_cachetlb_ops;
1806
1807         if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1808                 smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1809                 smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1810                 smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1811                 smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1812         }
1813
1814         if (poke_srmmu == poke_viking) {
1815                 /* Avoid unnecessary cross calls. */
1816                 smp_cachetlb_ops.cache_all = local_ops->cache_all;
1817                 smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1818                 smp_cachetlb_ops.cache_range = local_ops->cache_range;
1819                 smp_cachetlb_ops.cache_page = local_ops->cache_page;
1820
1821                 smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1822                 smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1823                 smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1824         }
1825
1826         /* It really is const after this point. */
1827         sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1828                 &smp_cachetlb_ops;
1829 #endif
1830
1831         if (sparc_cpu_model == sun4d)
1832                 ld_mmu_iounit();
1833         else
1834                 ld_mmu_iommu();
1835 #ifdef CONFIG_SMP
1836         if (sparc_cpu_model == sun4d)
1837                 sun4d_init_smp();
1838         else if (sparc_cpu_model == sparc_leon)
1839                 leon_init_smp();
1840         else
1841                 sun4m_init_smp();
1842 #endif
1843 }