Merge tag 'drm-fixes-for-v4.14-rc1' of git://people.freedesktop.org/~airlied/linux
[sfrench/cifs-2.6.git] / arch / sparc / mm / init_64.c
1 /*
2  *  arch/sparc64/mm/init.c
3  *
4  *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
5  *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6  */
7  
8 #include <linux/extable.h>
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/string.h>
12 #include <linux/init.h>
13 #include <linux/bootmem.h>
14 #include <linux/mm.h>
15 #include <linux/hugetlb.h>
16 #include <linux/initrd.h>
17 #include <linux/swap.h>
18 #include <linux/pagemap.h>
19 #include <linux/poison.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/kprobes.h>
23 #include <linux/cache.h>
24 #include <linux/sort.h>
25 #include <linux/ioport.h>
26 #include <linux/percpu.h>
27 #include <linux/memblock.h>
28 #include <linux/mmzone.h>
29 #include <linux/gfp.h>
30
31 #include <asm/head.h>
32 #include <asm/page.h>
33 #include <asm/pgalloc.h>
34 #include <asm/pgtable.h>
35 #include <asm/oplib.h>
36 #include <asm/iommu.h>
37 #include <asm/io.h>
38 #include <linux/uaccess.h>
39 #include <asm/mmu_context.h>
40 #include <asm/tlbflush.h>
41 #include <asm/dma.h>
42 #include <asm/starfire.h>
43 #include <asm/tlb.h>
44 #include <asm/spitfire.h>
45 #include <asm/sections.h>
46 #include <asm/tsb.h>
47 #include <asm/hypervisor.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/cpudata.h>
51 #include <asm/setup.h>
52 #include <asm/irq.h>
53
54 #include "init_64.h"
55
56 unsigned long kern_linear_pte_xor[4] __read_mostly;
57 static unsigned long page_cache4v_flag;
58
59 /* A bitmap, two bits for every 256MB of physical memory.  These two
60  * bits determine what page size we use for kernel linear
61  * translations.  They form an index into kern_linear_pte_xor[].  The
62  * value in the indexed slot is XOR'd with the TLB miss virtual
63  * address to form the resulting TTE.  The mapping is:
64  *
65  *      0       ==>     4MB
66  *      1       ==>     256MB
67  *      2       ==>     2GB
68  *      3       ==>     16GB
69  *
70  * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
71  * support 2GB pages, and hopefully future cpus will support the 16GB
72  * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
73  * if these larger page sizes are not supported by the cpu.
74  *
75  * It would be nice to determine this from the machine description
76  * 'cpu' properties, but we need to have this table setup before the
77  * MDESC is initialized.
78  */
79
80 #ifndef CONFIG_DEBUG_PAGEALLOC
81 /* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
82  * Space is allocated for this right after the trap table in
83  * arch/sparc64/kernel/head.S
84  */
85 extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
86 #endif
87 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
88
89 static unsigned long cpu_pgsz_mask;
90
91 #define MAX_BANKS       1024
92
93 static struct linux_prom64_registers pavail[MAX_BANKS];
94 static int pavail_ents;
95
96 u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
97
98 static int cmp_p64(const void *a, const void *b)
99 {
100         const struct linux_prom64_registers *x = a, *y = b;
101
102         if (x->phys_addr > y->phys_addr)
103                 return 1;
104         if (x->phys_addr < y->phys_addr)
105                 return -1;
106         return 0;
107 }
108
109 static void __init read_obp_memory(const char *property,
110                                    struct linux_prom64_registers *regs,
111                                    int *num_ents)
112 {
113         phandle node = prom_finddevice("/memory");
114         int prop_size = prom_getproplen(node, property);
115         int ents, ret, i;
116
117         ents = prop_size / sizeof(struct linux_prom64_registers);
118         if (ents > MAX_BANKS) {
119                 prom_printf("The machine has more %s property entries than "
120                             "this kernel can support (%d).\n",
121                             property, MAX_BANKS);
122                 prom_halt();
123         }
124
125         ret = prom_getproperty(node, property, (char *) regs, prop_size);
126         if (ret == -1) {
127                 prom_printf("Couldn't get %s property from /memory.\n",
128                                 property);
129                 prom_halt();
130         }
131
132         /* Sanitize what we got from the firmware, by page aligning
133          * everything.
134          */
135         for (i = 0; i < ents; i++) {
136                 unsigned long base, size;
137
138                 base = regs[i].phys_addr;
139                 size = regs[i].reg_size;
140
141                 size &= PAGE_MASK;
142                 if (base & ~PAGE_MASK) {
143                         unsigned long new_base = PAGE_ALIGN(base);
144
145                         size -= new_base - base;
146                         if ((long) size < 0L)
147                                 size = 0UL;
148                         base = new_base;
149                 }
150                 if (size == 0UL) {
151                         /* If it is empty, simply get rid of it.
152                          * This simplifies the logic of the other
153                          * functions that process these arrays.
154                          */
155                         memmove(&regs[i], &regs[i + 1],
156                                 (ents - i - 1) * sizeof(regs[0]));
157                         i--;
158                         ents--;
159                         continue;
160                 }
161                 regs[i].phys_addr = base;
162                 regs[i].reg_size = size;
163         }
164
165         *num_ents = ents;
166
167         sort(regs, ents, sizeof(struct linux_prom64_registers),
168              cmp_p64, NULL);
169 }
170
171 /* Kernel physical address base and size in bytes.  */
172 unsigned long kern_base __read_mostly;
173 unsigned long kern_size __read_mostly;
174
175 /* Initial ramdisk setup */
176 extern unsigned long sparc_ramdisk_image64;
177 extern unsigned int sparc_ramdisk_image;
178 extern unsigned int sparc_ramdisk_size;
179
180 struct page *mem_map_zero __read_mostly;
181 EXPORT_SYMBOL(mem_map_zero);
182
183 unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
184
185 unsigned long sparc64_kern_pri_context __read_mostly;
186 unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
187 unsigned long sparc64_kern_sec_context __read_mostly;
188
189 int num_kernel_image_mappings;
190
191 #ifdef CONFIG_DEBUG_DCFLUSH
192 atomic_t dcpage_flushes = ATOMIC_INIT(0);
193 #ifdef CONFIG_SMP
194 atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
195 #endif
196 #endif
197
198 inline void flush_dcache_page_impl(struct page *page)
199 {
200         BUG_ON(tlb_type == hypervisor);
201 #ifdef CONFIG_DEBUG_DCFLUSH
202         atomic_inc(&dcpage_flushes);
203 #endif
204
205 #ifdef DCACHE_ALIASING_POSSIBLE
206         __flush_dcache_page(page_address(page),
207                             ((tlb_type == spitfire) &&
208                              page_mapping(page) != NULL));
209 #else
210         if (page_mapping(page) != NULL &&
211             tlb_type == spitfire)
212                 __flush_icache_page(__pa(page_address(page)));
213 #endif
214 }
215
216 #define PG_dcache_dirty         PG_arch_1
217 #define PG_dcache_cpu_shift     32UL
218 #define PG_dcache_cpu_mask      \
219         ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
220
221 #define dcache_dirty_cpu(page) \
222         (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
223
224 static inline void set_dcache_dirty(struct page *page, int this_cpu)
225 {
226         unsigned long mask = this_cpu;
227         unsigned long non_cpu_bits;
228
229         non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
230         mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
231
232         __asm__ __volatile__("1:\n\t"
233                              "ldx       [%2], %%g7\n\t"
234                              "and       %%g7, %1, %%g1\n\t"
235                              "or        %%g1, %0, %%g1\n\t"
236                              "casx      [%2], %%g7, %%g1\n\t"
237                              "cmp       %%g7, %%g1\n\t"
238                              "bne,pn    %%xcc, 1b\n\t"
239                              " nop"
240                              : /* no outputs */
241                              : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
242                              : "g1", "g7");
243 }
244
245 static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
246 {
247         unsigned long mask = (1UL << PG_dcache_dirty);
248
249         __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
250                              "1:\n\t"
251                              "ldx       [%2], %%g7\n\t"
252                              "srlx      %%g7, %4, %%g1\n\t"
253                              "and       %%g1, %3, %%g1\n\t"
254                              "cmp       %%g1, %0\n\t"
255                              "bne,pn    %%icc, 2f\n\t"
256                              " andn     %%g7, %1, %%g1\n\t"
257                              "casx      [%2], %%g7, %%g1\n\t"
258                              "cmp       %%g7, %%g1\n\t"
259                              "bne,pn    %%xcc, 1b\n\t"
260                              " nop\n"
261                              "2:"
262                              : /* no outputs */
263                              : "r" (cpu), "r" (mask), "r" (&page->flags),
264                                "i" (PG_dcache_cpu_mask),
265                                "i" (PG_dcache_cpu_shift)
266                              : "g1", "g7");
267 }
268
269 static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
270 {
271         unsigned long tsb_addr = (unsigned long) ent;
272
273         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
274                 tsb_addr = __pa(tsb_addr);
275
276         __tsb_insert(tsb_addr, tag, pte);
277 }
278
279 unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
280
281 static void flush_dcache(unsigned long pfn)
282 {
283         struct page *page;
284
285         page = pfn_to_page(pfn);
286         if (page) {
287                 unsigned long pg_flags;
288
289                 pg_flags = page->flags;
290                 if (pg_flags & (1UL << PG_dcache_dirty)) {
291                         int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
292                                    PG_dcache_cpu_mask);
293                         int this_cpu = get_cpu();
294
295                         /* This is just to optimize away some function calls
296                          * in the SMP case.
297                          */
298                         if (cpu == this_cpu)
299                                 flush_dcache_page_impl(page);
300                         else
301                                 smp_flush_dcache_page_impl(page, cpu);
302
303                         clear_dcache_dirty_cpu(page, cpu);
304
305                         put_cpu();
306                 }
307         }
308 }
309
310 /* mm->context.lock must be held */
311 static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
312                                     unsigned long tsb_hash_shift, unsigned long address,
313                                     unsigned long tte)
314 {
315         struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
316         unsigned long tag;
317
318         if (unlikely(!tsb))
319                 return;
320
321         tsb += ((address >> tsb_hash_shift) &
322                 (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
323         tag = (address >> 22UL);
324         tsb_insert(tsb, tag, tte);
325 }
326
327 #ifdef CONFIG_HUGETLB_PAGE
328 static void __init add_huge_page_size(unsigned long size)
329 {
330         unsigned int order;
331
332         if (size_to_hstate(size))
333                 return;
334
335         order = ilog2(size) - PAGE_SHIFT;
336         hugetlb_add_hstate(order);
337 }
338
339 static int __init hugetlbpage_init(void)
340 {
341         add_huge_page_size(1UL << HPAGE_64K_SHIFT);
342         add_huge_page_size(1UL << HPAGE_SHIFT);
343         add_huge_page_size(1UL << HPAGE_256MB_SHIFT);
344         add_huge_page_size(1UL << HPAGE_2GB_SHIFT);
345
346         return 0;
347 }
348
349 arch_initcall(hugetlbpage_init);
350
351 static void __init pud_huge_patch(void)
352 {
353         struct pud_huge_patch_entry *p;
354         unsigned long addr;
355
356         p = &__pud_huge_patch;
357         addr = p->addr;
358         *(unsigned int *)addr = p->insn;
359
360         __asm__ __volatile__("flush %0" : : "r" (addr));
361 }
362
363 static int __init setup_hugepagesz(char *string)
364 {
365         unsigned long long hugepage_size;
366         unsigned int hugepage_shift;
367         unsigned short hv_pgsz_idx;
368         unsigned int hv_pgsz_mask;
369         int rc = 0;
370
371         hugepage_size = memparse(string, &string);
372         hugepage_shift = ilog2(hugepage_size);
373
374         switch (hugepage_shift) {
375         case HPAGE_16GB_SHIFT:
376                 hv_pgsz_mask = HV_PGSZ_MASK_16GB;
377                 hv_pgsz_idx = HV_PGSZ_IDX_16GB;
378                 pud_huge_patch();
379                 break;
380         case HPAGE_2GB_SHIFT:
381                 hv_pgsz_mask = HV_PGSZ_MASK_2GB;
382                 hv_pgsz_idx = HV_PGSZ_IDX_2GB;
383                 break;
384         case HPAGE_256MB_SHIFT:
385                 hv_pgsz_mask = HV_PGSZ_MASK_256MB;
386                 hv_pgsz_idx = HV_PGSZ_IDX_256MB;
387                 break;
388         case HPAGE_SHIFT:
389                 hv_pgsz_mask = HV_PGSZ_MASK_4MB;
390                 hv_pgsz_idx = HV_PGSZ_IDX_4MB;
391                 break;
392         case HPAGE_64K_SHIFT:
393                 hv_pgsz_mask = HV_PGSZ_MASK_64K;
394                 hv_pgsz_idx = HV_PGSZ_IDX_64K;
395                 break;
396         default:
397                 hv_pgsz_mask = 0;
398         }
399
400         if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) {
401                 hugetlb_bad_size();
402                 pr_err("hugepagesz=%llu not supported by MMU.\n",
403                         hugepage_size);
404                 goto out;
405         }
406
407         add_huge_page_size(hugepage_size);
408         rc = 1;
409
410 out:
411         return rc;
412 }
413 __setup("hugepagesz=", setup_hugepagesz);
414 #endif  /* CONFIG_HUGETLB_PAGE */
415
416 void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
417 {
418         struct mm_struct *mm;
419         unsigned long flags;
420         bool is_huge_tsb;
421         pte_t pte = *ptep;
422
423         if (tlb_type != hypervisor) {
424                 unsigned long pfn = pte_pfn(pte);
425
426                 if (pfn_valid(pfn))
427                         flush_dcache(pfn);
428         }
429
430         mm = vma->vm_mm;
431
432         /* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
433         if (!pte_accessible(mm, pte))
434                 return;
435
436         spin_lock_irqsave(&mm->context.lock, flags);
437
438         is_huge_tsb = false;
439 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
440         if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
441                 unsigned long hugepage_size = PAGE_SIZE;
442
443                 if (is_vm_hugetlb_page(vma))
444                         hugepage_size = huge_page_size(hstate_vma(vma));
445
446                 if (hugepage_size >= PUD_SIZE) {
447                         unsigned long mask = 0x1ffc00000UL;
448
449                         /* Transfer bits [32:22] from address to resolve
450                          * at 4M granularity.
451                          */
452                         pte_val(pte) &= ~mask;
453                         pte_val(pte) |= (address & mask);
454                 } else if (hugepage_size >= PMD_SIZE) {
455                         /* We are fabricating 8MB pages using 4MB
456                          * real hw pages.
457                          */
458                         pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
459                 }
460
461                 if (hugepage_size >= PMD_SIZE) {
462                         __update_mmu_tsb_insert(mm, MM_TSB_HUGE,
463                                 REAL_HPAGE_SHIFT, address, pte_val(pte));
464                         is_huge_tsb = true;
465                 }
466         }
467 #endif
468         if (!is_huge_tsb)
469                 __update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
470                                         address, pte_val(pte));
471
472         spin_unlock_irqrestore(&mm->context.lock, flags);
473 }
474
475 void flush_dcache_page(struct page *page)
476 {
477         struct address_space *mapping;
478         int this_cpu;
479
480         if (tlb_type == hypervisor)
481                 return;
482
483         /* Do not bother with the expensive D-cache flush if it
484          * is merely the zero page.  The 'bigcore' testcase in GDB
485          * causes this case to run millions of times.
486          */
487         if (page == ZERO_PAGE(0))
488                 return;
489
490         this_cpu = get_cpu();
491
492         mapping = page_mapping(page);
493         if (mapping && !mapping_mapped(mapping)) {
494                 int dirty = test_bit(PG_dcache_dirty, &page->flags);
495                 if (dirty) {
496                         int dirty_cpu = dcache_dirty_cpu(page);
497
498                         if (dirty_cpu == this_cpu)
499                                 goto out;
500                         smp_flush_dcache_page_impl(page, dirty_cpu);
501                 }
502                 set_dcache_dirty(page, this_cpu);
503         } else {
504                 /* We could delay the flush for the !page_mapping
505                  * case too.  But that case is for exec env/arg
506                  * pages and those are %99 certainly going to get
507                  * faulted into the tlb (and thus flushed) anyways.
508                  */
509                 flush_dcache_page_impl(page);
510         }
511
512 out:
513         put_cpu();
514 }
515 EXPORT_SYMBOL(flush_dcache_page);
516
517 void __kprobes flush_icache_range(unsigned long start, unsigned long end)
518 {
519         /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
520         if (tlb_type == spitfire) {
521                 unsigned long kaddr;
522
523                 /* This code only runs on Spitfire cpus so this is
524                  * why we can assume _PAGE_PADDR_4U.
525                  */
526                 for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
527                         unsigned long paddr, mask = _PAGE_PADDR_4U;
528
529                         if (kaddr >= PAGE_OFFSET)
530                                 paddr = kaddr & mask;
531                         else {
532                                 pgd_t *pgdp = pgd_offset_k(kaddr);
533                                 pud_t *pudp = pud_offset(pgdp, kaddr);
534                                 pmd_t *pmdp = pmd_offset(pudp, kaddr);
535                                 pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
536
537                                 paddr = pte_val(*ptep) & mask;
538                         }
539                         __flush_icache_page(paddr);
540                 }
541         }
542 }
543 EXPORT_SYMBOL(flush_icache_range);
544
545 void mmu_info(struct seq_file *m)
546 {
547         static const char *pgsz_strings[] = {
548                 "8K", "64K", "512K", "4MB", "32MB",
549                 "256MB", "2GB", "16GB",
550         };
551         int i, printed;
552
553         if (tlb_type == cheetah)
554                 seq_printf(m, "MMU Type\t: Cheetah\n");
555         else if (tlb_type == cheetah_plus)
556                 seq_printf(m, "MMU Type\t: Cheetah+\n");
557         else if (tlb_type == spitfire)
558                 seq_printf(m, "MMU Type\t: Spitfire\n");
559         else if (tlb_type == hypervisor)
560                 seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
561         else
562                 seq_printf(m, "MMU Type\t: ???\n");
563
564         seq_printf(m, "MMU PGSZs\t: ");
565         printed = 0;
566         for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
567                 if (cpu_pgsz_mask & (1UL << i)) {
568                         seq_printf(m, "%s%s",
569                                    printed ? "," : "", pgsz_strings[i]);
570                         printed++;
571                 }
572         }
573         seq_putc(m, '\n');
574
575 #ifdef CONFIG_DEBUG_DCFLUSH
576         seq_printf(m, "DCPageFlushes\t: %d\n",
577                    atomic_read(&dcpage_flushes));
578 #ifdef CONFIG_SMP
579         seq_printf(m, "DCPageFlushesXC\t: %d\n",
580                    atomic_read(&dcpage_flushes_xcall));
581 #endif /* CONFIG_SMP */
582 #endif /* CONFIG_DEBUG_DCFLUSH */
583 }
584
585 struct linux_prom_translation prom_trans[512] __read_mostly;
586 unsigned int prom_trans_ents __read_mostly;
587
588 unsigned long kern_locked_tte_data;
589
590 /* The obp translations are saved based on 8k pagesize, since obp can
591  * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
592  * HI_OBP_ADDRESS range are handled in ktlb.S.
593  */
594 static inline int in_obp_range(unsigned long vaddr)
595 {
596         return (vaddr >= LOW_OBP_ADDRESS &&
597                 vaddr < HI_OBP_ADDRESS);
598 }
599
600 static int cmp_ptrans(const void *a, const void *b)
601 {
602         const struct linux_prom_translation *x = a, *y = b;
603
604         if (x->virt > y->virt)
605                 return 1;
606         if (x->virt < y->virt)
607                 return -1;
608         return 0;
609 }
610
611 /* Read OBP translations property into 'prom_trans[]'.  */
612 static void __init read_obp_translations(void)
613 {
614         int n, node, ents, first, last, i;
615
616         node = prom_finddevice("/virtual-memory");
617         n = prom_getproplen(node, "translations");
618         if (unlikely(n == 0 || n == -1)) {
619                 prom_printf("prom_mappings: Couldn't get size.\n");
620                 prom_halt();
621         }
622         if (unlikely(n > sizeof(prom_trans))) {
623                 prom_printf("prom_mappings: Size %d is too big.\n", n);
624                 prom_halt();
625         }
626
627         if ((n = prom_getproperty(node, "translations",
628                                   (char *)&prom_trans[0],
629                                   sizeof(prom_trans))) == -1) {
630                 prom_printf("prom_mappings: Couldn't get property.\n");
631                 prom_halt();
632         }
633
634         n = n / sizeof(struct linux_prom_translation);
635
636         ents = n;
637
638         sort(prom_trans, ents, sizeof(struct linux_prom_translation),
639              cmp_ptrans, NULL);
640
641         /* Now kick out all the non-OBP entries.  */
642         for (i = 0; i < ents; i++) {
643                 if (in_obp_range(prom_trans[i].virt))
644                         break;
645         }
646         first = i;
647         for (; i < ents; i++) {
648                 if (!in_obp_range(prom_trans[i].virt))
649                         break;
650         }
651         last = i;
652
653         for (i = 0; i < (last - first); i++) {
654                 struct linux_prom_translation *src = &prom_trans[i + first];
655                 struct linux_prom_translation *dest = &prom_trans[i];
656
657                 *dest = *src;
658         }
659         for (; i < ents; i++) {
660                 struct linux_prom_translation *dest = &prom_trans[i];
661                 dest->virt = dest->size = dest->data = 0x0UL;
662         }
663
664         prom_trans_ents = last - first;
665
666         if (tlb_type == spitfire) {
667                 /* Clear diag TTE bits. */
668                 for (i = 0; i < prom_trans_ents; i++)
669                         prom_trans[i].data &= ~0x0003fe0000000000UL;
670         }
671
672         /* Force execute bit on.  */
673         for (i = 0; i < prom_trans_ents; i++)
674                 prom_trans[i].data |= (tlb_type == hypervisor ?
675                                        _PAGE_EXEC_4V : _PAGE_EXEC_4U);
676 }
677
678 static void __init hypervisor_tlb_lock(unsigned long vaddr,
679                                        unsigned long pte,
680                                        unsigned long mmu)
681 {
682         unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
683
684         if (ret != 0) {
685                 prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
686                             "errors with %lx\n", vaddr, 0, pte, mmu, ret);
687                 prom_halt();
688         }
689 }
690
691 static unsigned long kern_large_tte(unsigned long paddr);
692
693 static void __init remap_kernel(void)
694 {
695         unsigned long phys_page, tte_vaddr, tte_data;
696         int i, tlb_ent = sparc64_highest_locked_tlbent();
697
698         tte_vaddr = (unsigned long) KERNBASE;
699         phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
700         tte_data = kern_large_tte(phys_page);
701
702         kern_locked_tte_data = tte_data;
703
704         /* Now lock us into the TLBs via Hypervisor or OBP. */
705         if (tlb_type == hypervisor) {
706                 for (i = 0; i < num_kernel_image_mappings; i++) {
707                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
708                         hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
709                         tte_vaddr += 0x400000;
710                         tte_data += 0x400000;
711                 }
712         } else {
713                 for (i = 0; i < num_kernel_image_mappings; i++) {
714                         prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
715                         prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
716                         tte_vaddr += 0x400000;
717                         tte_data += 0x400000;
718                 }
719                 sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
720         }
721         if (tlb_type == cheetah_plus) {
722                 sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
723                                             CTX_CHEETAH_PLUS_NUC);
724                 sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
725                 sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
726         }
727 }
728
729
730 static void __init inherit_prom_mappings(void)
731 {
732         /* Now fixup OBP's idea about where we really are mapped. */
733         printk("Remapping the kernel... ");
734         remap_kernel();
735         printk("done.\n");
736 }
737
738 void prom_world(int enter)
739 {
740         if (!enter)
741                 set_fs(get_fs());
742
743         __asm__ __volatile__("flushw");
744 }
745
746 void __flush_dcache_range(unsigned long start, unsigned long end)
747 {
748         unsigned long va;
749
750         if (tlb_type == spitfire) {
751                 int n = 0;
752
753                 for (va = start; va < end; va += 32) {
754                         spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
755                         if (++n >= 512)
756                                 break;
757                 }
758         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
759                 start = __pa(start);
760                 end = __pa(end);
761                 for (va = start; va < end; va += 32)
762                         __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
763                                              "membar #Sync"
764                                              : /* no outputs */
765                                              : "r" (va),
766                                                "i" (ASI_DCACHE_INVALIDATE));
767         }
768 }
769 EXPORT_SYMBOL(__flush_dcache_range);
770
771 /* get_new_mmu_context() uses "cache + 1".  */
772 DEFINE_SPINLOCK(ctx_alloc_lock);
773 unsigned long tlb_context_cache = CTX_FIRST_VERSION;
774 #define MAX_CTX_NR      (1UL << CTX_NR_BITS)
775 #define CTX_BMAP_SLOTS  BITS_TO_LONGS(MAX_CTX_NR)
776 DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
777 DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
778
779 static void mmu_context_wrap(void)
780 {
781         unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
782         unsigned long new_ver, new_ctx, old_ctx;
783         struct mm_struct *mm;
784         int cpu;
785
786         bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
787
788         /* Reserve kernel context */
789         set_bit(0, mmu_context_bmap);
790
791         new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
792         if (unlikely(new_ver == 0))
793                 new_ver = CTX_FIRST_VERSION;
794         tlb_context_cache = new_ver;
795
796         /*
797          * Make sure that any new mm that are added into per_cpu_secondary_mm,
798          * are going to go through get_new_mmu_context() path.
799          */
800         mb();
801
802         /*
803          * Updated versions to current on those CPUs that had valid secondary
804          * contexts
805          */
806         for_each_online_cpu(cpu) {
807                 /*
808                  * If a new mm is stored after we took this mm from the array,
809                  * it will go into get_new_mmu_context() path, because we
810                  * already bumped the version in tlb_context_cache.
811                  */
812                 mm = per_cpu(per_cpu_secondary_mm, cpu);
813
814                 if (unlikely(!mm || mm == &init_mm))
815                         continue;
816
817                 old_ctx = mm->context.sparc64_ctx_val;
818                 if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
819                         new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
820                         set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
821                         mm->context.sparc64_ctx_val = new_ctx;
822                 }
823         }
824 }
825
826 /* Caller does TLB context flushing on local CPU if necessary.
827  * The caller also ensures that CTX_VALID(mm->context) is false.
828  *
829  * We must be careful about boundary cases so that we never
830  * let the user have CTX 0 (nucleus) or we ever use a CTX
831  * version of zero (and thus NO_CONTEXT would not be caught
832  * by version mis-match tests in mmu_context.h).
833  *
834  * Always invoked with interrupts disabled.
835  */
836 void get_new_mmu_context(struct mm_struct *mm)
837 {
838         unsigned long ctx, new_ctx;
839         unsigned long orig_pgsz_bits;
840
841         spin_lock(&ctx_alloc_lock);
842 retry:
843         /* wrap might have happened, test again if our context became valid */
844         if (unlikely(CTX_VALID(mm->context)))
845                 goto out;
846         orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
847         ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
848         new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
849         if (new_ctx >= (1 << CTX_NR_BITS)) {
850                 new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
851                 if (new_ctx >= ctx) {
852                         mmu_context_wrap();
853                         goto retry;
854                 }
855         }
856         if (mm->context.sparc64_ctx_val)
857                 cpumask_clear(mm_cpumask(mm));
858         mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
859         new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
860         tlb_context_cache = new_ctx;
861         mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
862 out:
863         spin_unlock(&ctx_alloc_lock);
864 }
865
866 static int numa_enabled = 1;
867 static int numa_debug;
868
869 static int __init early_numa(char *p)
870 {
871         if (!p)
872                 return 0;
873
874         if (strstr(p, "off"))
875                 numa_enabled = 0;
876
877         if (strstr(p, "debug"))
878                 numa_debug = 1;
879
880         return 0;
881 }
882 early_param("numa", early_numa);
883
884 #define numadbg(f, a...) \
885 do {    if (numa_debug) \
886                 printk(KERN_INFO f, ## a); \
887 } while (0)
888
889 static void __init find_ramdisk(unsigned long phys_base)
890 {
891 #ifdef CONFIG_BLK_DEV_INITRD
892         if (sparc_ramdisk_image || sparc_ramdisk_image64) {
893                 unsigned long ramdisk_image;
894
895                 /* Older versions of the bootloader only supported a
896                  * 32-bit physical address for the ramdisk image
897                  * location, stored at sparc_ramdisk_image.  Newer
898                  * SILO versions set sparc_ramdisk_image to zero and
899                  * provide a full 64-bit physical address at
900                  * sparc_ramdisk_image64.
901                  */
902                 ramdisk_image = sparc_ramdisk_image;
903                 if (!ramdisk_image)
904                         ramdisk_image = sparc_ramdisk_image64;
905
906                 /* Another bootloader quirk.  The bootloader normalizes
907                  * the physical address to KERNBASE, so we have to
908                  * factor that back out and add in the lowest valid
909                  * physical page address to get the true physical address.
910                  */
911                 ramdisk_image -= KERNBASE;
912                 ramdisk_image += phys_base;
913
914                 numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
915                         ramdisk_image, sparc_ramdisk_size);
916
917                 initrd_start = ramdisk_image;
918                 initrd_end = ramdisk_image + sparc_ramdisk_size;
919
920                 memblock_reserve(initrd_start, sparc_ramdisk_size);
921
922                 initrd_start += PAGE_OFFSET;
923                 initrd_end += PAGE_OFFSET;
924         }
925 #endif
926 }
927
928 struct node_mem_mask {
929         unsigned long mask;
930         unsigned long match;
931 };
932 static struct node_mem_mask node_masks[MAX_NUMNODES];
933 static int num_node_masks;
934
935 #ifdef CONFIG_NEED_MULTIPLE_NODES
936
937 struct mdesc_mlgroup {
938         u64     node;
939         u64     latency;
940         u64     match;
941         u64     mask;
942 };
943
944 static struct mdesc_mlgroup *mlgroups;
945 static int num_mlgroups;
946
947 int numa_cpu_lookup_table[NR_CPUS];
948 cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
949
950 struct mdesc_mblock {
951         u64     base;
952         u64     size;
953         u64     offset; /* RA-to-PA */
954 };
955 static struct mdesc_mblock *mblocks;
956 static int num_mblocks;
957
958 static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
959 {
960         struct mdesc_mblock *m = NULL;
961         int i;
962
963         for (i = 0; i < num_mblocks; i++) {
964                 m = &mblocks[i];
965
966                 if (addr >= m->base &&
967                     addr < (m->base + m->size)) {
968                         break;
969                 }
970         }
971
972         return m;
973 }
974
975 static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
976 {
977         int prev_nid, new_nid;
978
979         prev_nid = -1;
980         for ( ; start < end; start += PAGE_SIZE) {
981                 for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
982                         struct node_mem_mask *p = &node_masks[new_nid];
983
984                         if ((start & p->mask) == p->match) {
985                                 if (prev_nid == -1)
986                                         prev_nid = new_nid;
987                                 break;
988                         }
989                 }
990
991                 if (new_nid == num_node_masks) {
992                         prev_nid = 0;
993                         WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
994                                   start);
995                         break;
996                 }
997
998                 if (prev_nid != new_nid)
999                         break;
1000         }
1001         *nid = prev_nid;
1002
1003         return start > end ? end : start;
1004 }
1005
1006 static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
1007 {
1008         u64 ret_end, pa_start, m_mask, m_match, m_end;
1009         struct mdesc_mblock *mblock;
1010         int _nid, i;
1011
1012         if (tlb_type != hypervisor)
1013                 return memblock_nid_range_sun4u(start, end, nid);
1014
1015         mblock = addr_to_mblock(start);
1016         if (!mblock) {
1017                 WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
1018                           start);
1019
1020                 _nid = 0;
1021                 ret_end = end;
1022                 goto done;
1023         }
1024
1025         pa_start = start + mblock->offset;
1026         m_match = 0;
1027         m_mask = 0;
1028
1029         for (_nid = 0; _nid < num_node_masks; _nid++) {
1030                 struct node_mem_mask *const m = &node_masks[_nid];
1031
1032                 if ((pa_start & m->mask) == m->match) {
1033                         m_match = m->match;
1034                         m_mask = m->mask;
1035                         break;
1036                 }
1037         }
1038
1039         if (num_node_masks == _nid) {
1040                 /* We could not find NUMA group, so default to 0, but lets
1041                  * search for latency group, so we could calculate the correct
1042                  * end address that we return
1043                  */
1044                 _nid = 0;
1045
1046                 for (i = 0; i < num_mlgroups; i++) {
1047                         struct mdesc_mlgroup *const m = &mlgroups[i];
1048
1049                         if ((pa_start & m->mask) == m->match) {
1050                                 m_match = m->match;
1051                                 m_mask = m->mask;
1052                                 break;
1053                         }
1054                 }
1055
1056                 if (i == num_mlgroups) {
1057                         WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1058                                   start);
1059
1060                         ret_end = end;
1061                         goto done;
1062                 }
1063         }
1064
1065         /*
1066          * Each latency group has match and mask, and each memory block has an
1067          * offset.  An address belongs to a latency group if its address matches
1068          * the following formula: ((addr + offset) & mask) == match
1069          * It is, however, slow to check every single page if it matches a
1070          * particular latency group. As optimization we calculate end value by
1071          * using bit arithmetics.
1072          */
1073         m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1074         m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1075         ret_end = m_end > end ? end : m_end;
1076
1077 done:
1078         *nid = _nid;
1079         return ret_end;
1080 }
1081 #endif
1082
1083 /* This must be invoked after performing all of the necessary
1084  * memblock_set_node() calls for 'nid'.  We need to be able to get
1085  * correct data from get_pfn_range_for_nid().
1086  */
1087 static void __init allocate_node_data(int nid)
1088 {
1089         struct pglist_data *p;
1090         unsigned long start_pfn, end_pfn;
1091 #ifdef CONFIG_NEED_MULTIPLE_NODES
1092         unsigned long paddr;
1093
1094         paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
1095         if (!paddr) {
1096                 prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1097                 prom_halt();
1098         }
1099         NODE_DATA(nid) = __va(paddr);
1100         memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
1101
1102         NODE_DATA(nid)->node_id = nid;
1103 #endif
1104
1105         p = NODE_DATA(nid);
1106
1107         get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1108         p->node_start_pfn = start_pfn;
1109         p->node_spanned_pages = end_pfn - start_pfn;
1110 }
1111
1112 static void init_node_masks_nonnuma(void)
1113 {
1114 #ifdef CONFIG_NEED_MULTIPLE_NODES
1115         int i;
1116 #endif
1117
1118         numadbg("Initializing tables for non-numa.\n");
1119
1120         node_masks[0].mask = 0;
1121         node_masks[0].match = 0;
1122         num_node_masks = 1;
1123
1124 #ifdef CONFIG_NEED_MULTIPLE_NODES
1125         for (i = 0; i < NR_CPUS; i++)
1126                 numa_cpu_lookup_table[i] = 0;
1127
1128         cpumask_setall(&numa_cpumask_lookup_table[0]);
1129 #endif
1130 }
1131
1132 #ifdef CONFIG_NEED_MULTIPLE_NODES
1133 struct pglist_data *node_data[MAX_NUMNODES];
1134
1135 EXPORT_SYMBOL(numa_cpu_lookup_table);
1136 EXPORT_SYMBOL(numa_cpumask_lookup_table);
1137 EXPORT_SYMBOL(node_data);
1138
1139 static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1140                                    u32 cfg_handle)
1141 {
1142         u64 arc;
1143
1144         mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1145                 u64 target = mdesc_arc_target(md, arc);
1146                 const u64 *val;
1147
1148                 val = mdesc_get_property(md, target,
1149                                          "cfg-handle", NULL);
1150                 if (val && *val == cfg_handle)
1151                         return 0;
1152         }
1153         return -ENODEV;
1154 }
1155
1156 static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1157                                     u32 cfg_handle)
1158 {
1159         u64 arc, candidate, best_latency = ~(u64)0;
1160
1161         candidate = MDESC_NODE_NULL;
1162         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1163                 u64 target = mdesc_arc_target(md, arc);
1164                 const char *name = mdesc_node_name(md, target);
1165                 const u64 *val;
1166
1167                 if (strcmp(name, "pio-latency-group"))
1168                         continue;
1169
1170                 val = mdesc_get_property(md, target, "latency", NULL);
1171                 if (!val)
1172                         continue;
1173
1174                 if (*val < best_latency) {
1175                         candidate = target;
1176                         best_latency = *val;
1177                 }
1178         }
1179
1180         if (candidate == MDESC_NODE_NULL)
1181                 return -ENODEV;
1182
1183         return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1184 }
1185
1186 int of_node_to_nid(struct device_node *dp)
1187 {
1188         const struct linux_prom64_registers *regs;
1189         struct mdesc_handle *md;
1190         u32 cfg_handle;
1191         int count, nid;
1192         u64 grp;
1193
1194         /* This is the right thing to do on currently supported
1195          * SUN4U NUMA platforms as well, as the PCI controller does
1196          * not sit behind any particular memory controller.
1197          */
1198         if (!mlgroups)
1199                 return -1;
1200
1201         regs = of_get_property(dp, "reg", NULL);
1202         if (!regs)
1203                 return -1;
1204
1205         cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1206
1207         md = mdesc_grab();
1208
1209         count = 0;
1210         nid = -1;
1211         mdesc_for_each_node_by_name(md, grp, "group") {
1212                 if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1213                         nid = count;
1214                         break;
1215                 }
1216                 count++;
1217         }
1218
1219         mdesc_release(md);
1220
1221         return nid;
1222 }
1223
1224 static void __init add_node_ranges(void)
1225 {
1226         struct memblock_region *reg;
1227         unsigned long prev_max;
1228
1229 memblock_resized:
1230         prev_max = memblock.memory.max;
1231
1232         for_each_memblock(memory, reg) {
1233                 unsigned long size = reg->size;
1234                 unsigned long start, end;
1235
1236                 start = reg->base;
1237                 end = start + size;
1238                 while (start < end) {
1239                         unsigned long this_end;
1240                         int nid;
1241
1242                         this_end = memblock_nid_range(start, end, &nid);
1243
1244                         numadbg("Setting memblock NUMA node nid[%d] "
1245                                 "start[%lx] end[%lx]\n",
1246                                 nid, start, this_end);
1247
1248                         memblock_set_node(start, this_end - start,
1249                                           &memblock.memory, nid);
1250                         if (memblock.memory.max != prev_max)
1251                                 goto memblock_resized;
1252                         start = this_end;
1253                 }
1254         }
1255 }
1256
1257 static int __init grab_mlgroups(struct mdesc_handle *md)
1258 {
1259         unsigned long paddr;
1260         int count = 0;
1261         u64 node;
1262
1263         mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1264                 count++;
1265         if (!count)
1266                 return -ENOENT;
1267
1268         paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1269                           SMP_CACHE_BYTES);
1270         if (!paddr)
1271                 return -ENOMEM;
1272
1273         mlgroups = __va(paddr);
1274         num_mlgroups = count;
1275
1276         count = 0;
1277         mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1278                 struct mdesc_mlgroup *m = &mlgroups[count++];
1279                 const u64 *val;
1280
1281                 m->node = node;
1282
1283                 val = mdesc_get_property(md, node, "latency", NULL);
1284                 m->latency = *val;
1285                 val = mdesc_get_property(md, node, "address-match", NULL);
1286                 m->match = *val;
1287                 val = mdesc_get_property(md, node, "address-mask", NULL);
1288                 m->mask = *val;
1289
1290                 numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1291                         "match[%llx] mask[%llx]\n",
1292                         count - 1, m->node, m->latency, m->match, m->mask);
1293         }
1294
1295         return 0;
1296 }
1297
1298 static int __init grab_mblocks(struct mdesc_handle *md)
1299 {
1300         unsigned long paddr;
1301         int count = 0;
1302         u64 node;
1303
1304         mdesc_for_each_node_by_name(md, node, "mblock")
1305                 count++;
1306         if (!count)
1307                 return -ENOENT;
1308
1309         paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1310                           SMP_CACHE_BYTES);
1311         if (!paddr)
1312                 return -ENOMEM;
1313
1314         mblocks = __va(paddr);
1315         num_mblocks = count;
1316
1317         count = 0;
1318         mdesc_for_each_node_by_name(md, node, "mblock") {
1319                 struct mdesc_mblock *m = &mblocks[count++];
1320                 const u64 *val;
1321
1322                 val = mdesc_get_property(md, node, "base", NULL);
1323                 m->base = *val;
1324                 val = mdesc_get_property(md, node, "size", NULL);
1325                 m->size = *val;
1326                 val = mdesc_get_property(md, node,
1327                                          "address-congruence-offset", NULL);
1328
1329                 /* The address-congruence-offset property is optional.
1330                  * Explicity zero it be identifty this.
1331                  */
1332                 if (val)
1333                         m->offset = *val;
1334                 else
1335                         m->offset = 0UL;
1336
1337                 numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1338                         count - 1, m->base, m->size, m->offset);
1339         }
1340
1341         return 0;
1342 }
1343
1344 static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1345                                                u64 grp, cpumask_t *mask)
1346 {
1347         u64 arc;
1348
1349         cpumask_clear(mask);
1350
1351         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1352                 u64 target = mdesc_arc_target(md, arc);
1353                 const char *name = mdesc_node_name(md, target);
1354                 const u64 *id;
1355
1356                 if (strcmp(name, "cpu"))
1357                         continue;
1358                 id = mdesc_get_property(md, target, "id", NULL);
1359                 if (*id < nr_cpu_ids)
1360                         cpumask_set_cpu(*id, mask);
1361         }
1362 }
1363
1364 static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1365 {
1366         int i;
1367
1368         for (i = 0; i < num_mlgroups; i++) {
1369                 struct mdesc_mlgroup *m = &mlgroups[i];
1370                 if (m->node == node)
1371                         return m;
1372         }
1373         return NULL;
1374 }
1375
1376 int __node_distance(int from, int to)
1377 {
1378         if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1379                 pr_warn("Returning default NUMA distance value for %d->%d\n",
1380                         from, to);
1381                 return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1382         }
1383         return numa_latency[from][to];
1384 }
1385
1386 static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1387 {
1388         int i;
1389
1390         for (i = 0; i < MAX_NUMNODES; i++) {
1391                 struct node_mem_mask *n = &node_masks[i];
1392
1393                 if ((grp->mask == n->mask) && (grp->match == n->match))
1394                         break;
1395         }
1396         return i;
1397 }
1398
1399 static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1400                                                  u64 grp, int index)
1401 {
1402         u64 arc;
1403
1404         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1405                 int tnode;
1406                 u64 target = mdesc_arc_target(md, arc);
1407                 struct mdesc_mlgroup *m = find_mlgroup(target);
1408
1409                 if (!m)
1410                         continue;
1411                 tnode = find_best_numa_node_for_mlgroup(m);
1412                 if (tnode == MAX_NUMNODES)
1413                         continue;
1414                 numa_latency[index][tnode] = m->latency;
1415         }
1416 }
1417
1418 static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1419                                       int index)
1420 {
1421         struct mdesc_mlgroup *candidate = NULL;
1422         u64 arc, best_latency = ~(u64)0;
1423         struct node_mem_mask *n;
1424
1425         mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1426                 u64 target = mdesc_arc_target(md, arc);
1427                 struct mdesc_mlgroup *m = find_mlgroup(target);
1428                 if (!m)
1429                         continue;
1430                 if (m->latency < best_latency) {
1431                         candidate = m;
1432                         best_latency = m->latency;
1433                 }
1434         }
1435         if (!candidate)
1436                 return -ENOENT;
1437
1438         if (num_node_masks != index) {
1439                 printk(KERN_ERR "Inconsistent NUMA state, "
1440                        "index[%d] != num_node_masks[%d]\n",
1441                        index, num_node_masks);
1442                 return -EINVAL;
1443         }
1444
1445         n = &node_masks[num_node_masks++];
1446
1447         n->mask = candidate->mask;
1448         n->match = candidate->match;
1449
1450         numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1451                 index, n->mask, n->match, candidate->latency);
1452
1453         return 0;
1454 }
1455
1456 static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1457                                          int index)
1458 {
1459         cpumask_t mask;
1460         int cpu;
1461
1462         numa_parse_mdesc_group_cpus(md, grp, &mask);
1463
1464         for_each_cpu(cpu, &mask)
1465                 numa_cpu_lookup_table[cpu] = index;
1466         cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1467
1468         if (numa_debug) {
1469                 printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1470                 for_each_cpu(cpu, &mask)
1471                         printk("%d ", cpu);
1472                 printk("]\n");
1473         }
1474
1475         return numa_attach_mlgroup(md, grp, index);
1476 }
1477
1478 static int __init numa_parse_mdesc(void)
1479 {
1480         struct mdesc_handle *md = mdesc_grab();
1481         int i, j, err, count;
1482         u64 node;
1483
1484         node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1485         if (node == MDESC_NODE_NULL) {
1486                 mdesc_release(md);
1487                 return -ENOENT;
1488         }
1489
1490         err = grab_mblocks(md);
1491         if (err < 0)
1492                 goto out;
1493
1494         err = grab_mlgroups(md);
1495         if (err < 0)
1496                 goto out;
1497
1498         count = 0;
1499         mdesc_for_each_node_by_name(md, node, "group") {
1500                 err = numa_parse_mdesc_group(md, node, count);
1501                 if (err < 0)
1502                         break;
1503                 count++;
1504         }
1505
1506         count = 0;
1507         mdesc_for_each_node_by_name(md, node, "group") {
1508                 find_numa_latencies_for_group(md, node, count);
1509                 count++;
1510         }
1511
1512         /* Normalize numa latency matrix according to ACPI SLIT spec. */
1513         for (i = 0; i < MAX_NUMNODES; i++) {
1514                 u64 self_latency = numa_latency[i][i];
1515
1516                 for (j = 0; j < MAX_NUMNODES; j++) {
1517                         numa_latency[i][j] =
1518                                 (numa_latency[i][j] * LOCAL_DISTANCE) /
1519                                 self_latency;
1520                 }
1521         }
1522
1523         add_node_ranges();
1524
1525         for (i = 0; i < num_node_masks; i++) {
1526                 allocate_node_data(i);
1527                 node_set_online(i);
1528         }
1529
1530         err = 0;
1531 out:
1532         mdesc_release(md);
1533         return err;
1534 }
1535
1536 static int __init numa_parse_jbus(void)
1537 {
1538         unsigned long cpu, index;
1539
1540         /* NUMA node id is encoded in bits 36 and higher, and there is
1541          * a 1-to-1 mapping from CPU ID to NUMA node ID.
1542          */
1543         index = 0;
1544         for_each_present_cpu(cpu) {
1545                 numa_cpu_lookup_table[cpu] = index;
1546                 cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1547                 node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1548                 node_masks[index].match = cpu << 36UL;
1549
1550                 index++;
1551         }
1552         num_node_masks = index;
1553
1554         add_node_ranges();
1555
1556         for (index = 0; index < num_node_masks; index++) {
1557                 allocate_node_data(index);
1558                 node_set_online(index);
1559         }
1560
1561         return 0;
1562 }
1563
1564 static int __init numa_parse_sun4u(void)
1565 {
1566         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1567                 unsigned long ver;
1568
1569                 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
1570                 if ((ver >> 32UL) == __JALAPENO_ID ||
1571                     (ver >> 32UL) == __SERRANO_ID)
1572                         return numa_parse_jbus();
1573         }
1574         return -1;
1575 }
1576
1577 static int __init bootmem_init_numa(void)
1578 {
1579         int i, j;
1580         int err = -1;
1581
1582         numadbg("bootmem_init_numa()\n");
1583
1584         /* Some sane defaults for numa latency values */
1585         for (i = 0; i < MAX_NUMNODES; i++) {
1586                 for (j = 0; j < MAX_NUMNODES; j++)
1587                         numa_latency[i][j] = (i == j) ?
1588                                 LOCAL_DISTANCE : REMOTE_DISTANCE;
1589         }
1590
1591         if (numa_enabled) {
1592                 if (tlb_type == hypervisor)
1593                         err = numa_parse_mdesc();
1594                 else
1595                         err = numa_parse_sun4u();
1596         }
1597         return err;
1598 }
1599
1600 #else
1601
1602 static int bootmem_init_numa(void)
1603 {
1604         return -1;
1605 }
1606
1607 #endif
1608
1609 static void __init bootmem_init_nonnuma(void)
1610 {
1611         unsigned long top_of_ram = memblock_end_of_DRAM();
1612         unsigned long total_ram = memblock_phys_mem_size();
1613
1614         numadbg("bootmem_init_nonnuma()\n");
1615
1616         printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1617                top_of_ram, total_ram);
1618         printk(KERN_INFO "Memory hole size: %ldMB\n",
1619                (top_of_ram - total_ram) >> 20);
1620
1621         init_node_masks_nonnuma();
1622         memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1623         allocate_node_data(0);
1624         node_set_online(0);
1625 }
1626
1627 static unsigned long __init bootmem_init(unsigned long phys_base)
1628 {
1629         unsigned long end_pfn;
1630
1631         end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1632         max_pfn = max_low_pfn = end_pfn;
1633         min_low_pfn = (phys_base >> PAGE_SHIFT);
1634
1635         if (bootmem_init_numa() < 0)
1636                 bootmem_init_nonnuma();
1637
1638         /* Dump memblock with node info. */
1639         memblock_dump_all();
1640
1641         /* XXX cpu notifier XXX */
1642
1643         sparse_memory_present_with_active_regions(MAX_NUMNODES);
1644         sparse_init();
1645
1646         return end_pfn;
1647 }
1648
1649 static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1650 static int pall_ents __initdata;
1651
1652 static unsigned long max_phys_bits = 40;
1653
1654 bool kern_addr_valid(unsigned long addr)
1655 {
1656         pgd_t *pgd;
1657         pud_t *pud;
1658         pmd_t *pmd;
1659         pte_t *pte;
1660
1661         if ((long)addr < 0L) {
1662                 unsigned long pa = __pa(addr);
1663
1664                 if ((pa >> max_phys_bits) != 0UL)
1665                         return false;
1666
1667                 return pfn_valid(pa >> PAGE_SHIFT);
1668         }
1669
1670         if (addr >= (unsigned long) KERNBASE &&
1671             addr < (unsigned long)&_end)
1672                 return true;
1673
1674         pgd = pgd_offset_k(addr);
1675         if (pgd_none(*pgd))
1676                 return 0;
1677
1678         pud = pud_offset(pgd, addr);
1679         if (pud_none(*pud))
1680                 return 0;
1681
1682         if (pud_large(*pud))
1683                 return pfn_valid(pud_pfn(*pud));
1684
1685         pmd = pmd_offset(pud, addr);
1686         if (pmd_none(*pmd))
1687                 return 0;
1688
1689         if (pmd_large(*pmd))
1690                 return pfn_valid(pmd_pfn(*pmd));
1691
1692         pte = pte_offset_kernel(pmd, addr);
1693         if (pte_none(*pte))
1694                 return 0;
1695
1696         return pfn_valid(pte_pfn(*pte));
1697 }
1698 EXPORT_SYMBOL(kern_addr_valid);
1699
1700 static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1701                                               unsigned long vend,
1702                                               pud_t *pud)
1703 {
1704         const unsigned long mask16gb = (1UL << 34) - 1UL;
1705         u64 pte_val = vstart;
1706
1707         /* Each PUD is 8GB */
1708         if ((vstart & mask16gb) ||
1709             (vend - vstart <= mask16gb)) {
1710                 pte_val ^= kern_linear_pte_xor[2];
1711                 pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1712
1713                 return vstart + PUD_SIZE;
1714         }
1715
1716         pte_val ^= kern_linear_pte_xor[3];
1717         pte_val |= _PAGE_PUD_HUGE;
1718
1719         vend = vstart + mask16gb + 1UL;
1720         while (vstart < vend) {
1721                 pud_val(*pud) = pte_val;
1722
1723                 pte_val += PUD_SIZE;
1724                 vstart += PUD_SIZE;
1725                 pud++;
1726         }
1727         return vstart;
1728 }
1729
1730 static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1731                                    bool guard)
1732 {
1733         if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1734                 return true;
1735
1736         return false;
1737 }
1738
1739 static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1740                                               unsigned long vend,
1741                                               pmd_t *pmd)
1742 {
1743         const unsigned long mask256mb = (1UL << 28) - 1UL;
1744         const unsigned long mask2gb = (1UL << 31) - 1UL;
1745         u64 pte_val = vstart;
1746
1747         /* Each PMD is 8MB */
1748         if ((vstart & mask256mb) ||
1749             (vend - vstart <= mask256mb)) {
1750                 pte_val ^= kern_linear_pte_xor[0];
1751                 pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1752
1753                 return vstart + PMD_SIZE;
1754         }
1755
1756         if ((vstart & mask2gb) ||
1757             (vend - vstart <= mask2gb)) {
1758                 pte_val ^= kern_linear_pte_xor[1];
1759                 pte_val |= _PAGE_PMD_HUGE;
1760                 vend = vstart + mask256mb + 1UL;
1761         } else {
1762                 pte_val ^= kern_linear_pte_xor[2];
1763                 pte_val |= _PAGE_PMD_HUGE;
1764                 vend = vstart + mask2gb + 1UL;
1765         }
1766
1767         while (vstart < vend) {
1768                 pmd_val(*pmd) = pte_val;
1769
1770                 pte_val += PMD_SIZE;
1771                 vstart += PMD_SIZE;
1772                 pmd++;
1773         }
1774
1775         return vstart;
1776 }
1777
1778 static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1779                                    bool guard)
1780 {
1781         if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1782                 return true;
1783
1784         return false;
1785 }
1786
1787 static unsigned long __ref kernel_map_range(unsigned long pstart,
1788                                             unsigned long pend, pgprot_t prot,
1789                                             bool use_huge)
1790 {
1791         unsigned long vstart = PAGE_OFFSET + pstart;
1792         unsigned long vend = PAGE_OFFSET + pend;
1793         unsigned long alloc_bytes = 0UL;
1794
1795         if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1796                 prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1797                             vstart, vend);
1798                 prom_halt();
1799         }
1800
1801         while (vstart < vend) {
1802                 unsigned long this_end, paddr = __pa(vstart);
1803                 pgd_t *pgd = pgd_offset_k(vstart);
1804                 pud_t *pud;
1805                 pmd_t *pmd;
1806                 pte_t *pte;
1807
1808                 if (pgd_none(*pgd)) {
1809                         pud_t *new;
1810
1811                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1812                         alloc_bytes += PAGE_SIZE;
1813                         pgd_populate(&init_mm, pgd, new);
1814                 }
1815                 pud = pud_offset(pgd, vstart);
1816                 if (pud_none(*pud)) {
1817                         pmd_t *new;
1818
1819                         if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1820                                 vstart = kernel_map_hugepud(vstart, vend, pud);
1821                                 continue;
1822                         }
1823                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1824                         alloc_bytes += PAGE_SIZE;
1825                         pud_populate(&init_mm, pud, new);
1826                 }
1827
1828                 pmd = pmd_offset(pud, vstart);
1829                 if (pmd_none(*pmd)) {
1830                         pte_t *new;
1831
1832                         if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1833                                 vstart = kernel_map_hugepmd(vstart, vend, pmd);
1834                                 continue;
1835                         }
1836                         new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1837                         alloc_bytes += PAGE_SIZE;
1838                         pmd_populate_kernel(&init_mm, pmd, new);
1839                 }
1840
1841                 pte = pte_offset_kernel(pmd, vstart);
1842                 this_end = (vstart + PMD_SIZE) & PMD_MASK;
1843                 if (this_end > vend)
1844                         this_end = vend;
1845
1846                 while (vstart < this_end) {
1847                         pte_val(*pte) = (paddr | pgprot_val(prot));
1848
1849                         vstart += PAGE_SIZE;
1850                         paddr += PAGE_SIZE;
1851                         pte++;
1852                 }
1853         }
1854
1855         return alloc_bytes;
1856 }
1857
1858 static void __init flush_all_kernel_tsbs(void)
1859 {
1860         int i;
1861
1862         for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1863                 struct tsb *ent = &swapper_tsb[i];
1864
1865                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1866         }
1867 #ifndef CONFIG_DEBUG_PAGEALLOC
1868         for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1869                 struct tsb *ent = &swapper_4m_tsb[i];
1870
1871                 ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1872         }
1873 #endif
1874 }
1875
1876 extern unsigned int kvmap_linear_patch[1];
1877
1878 static void __init kernel_physical_mapping_init(void)
1879 {
1880         unsigned long i, mem_alloced = 0UL;
1881         bool use_huge = true;
1882
1883 #ifdef CONFIG_DEBUG_PAGEALLOC
1884         use_huge = false;
1885 #endif
1886         for (i = 0; i < pall_ents; i++) {
1887                 unsigned long phys_start, phys_end;
1888
1889                 phys_start = pall[i].phys_addr;
1890                 phys_end = phys_start + pall[i].reg_size;
1891
1892                 mem_alloced += kernel_map_range(phys_start, phys_end,
1893                                                 PAGE_KERNEL, use_huge);
1894         }
1895
1896         printk("Allocated %ld bytes for kernel page tables.\n",
1897                mem_alloced);
1898
1899         kvmap_linear_patch[0] = 0x01000000; /* nop */
1900         flushi(&kvmap_linear_patch[0]);
1901
1902         flush_all_kernel_tsbs();
1903
1904         __flush_tlb_all();
1905 }
1906
1907 #ifdef CONFIG_DEBUG_PAGEALLOC
1908 void __kernel_map_pages(struct page *page, int numpages, int enable)
1909 {
1910         unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1911         unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1912
1913         kernel_map_range(phys_start, phys_end,
1914                          (enable ? PAGE_KERNEL : __pgprot(0)), false);
1915
1916         flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1917                                PAGE_OFFSET + phys_end);
1918
1919         /* we should perform an IPI and flush all tlbs,
1920          * but that can deadlock->flush only current cpu.
1921          */
1922         __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1923                                  PAGE_OFFSET + phys_end);
1924 }
1925 #endif
1926
1927 unsigned long __init find_ecache_flush_span(unsigned long size)
1928 {
1929         int i;
1930
1931         for (i = 0; i < pavail_ents; i++) {
1932                 if (pavail[i].reg_size >= size)
1933                         return pavail[i].phys_addr;
1934         }
1935
1936         return ~0UL;
1937 }
1938
1939 unsigned long PAGE_OFFSET;
1940 EXPORT_SYMBOL(PAGE_OFFSET);
1941
1942 unsigned long VMALLOC_END   = 0x0000010000000000UL;
1943 EXPORT_SYMBOL(VMALLOC_END);
1944
1945 unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1946 unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1947
1948 static void __init setup_page_offset(void)
1949 {
1950         if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1951                 /* Cheetah/Panther support a full 64-bit virtual
1952                  * address, so we can use all that our page tables
1953                  * support.
1954                  */
1955                 sparc64_va_hole_top =    0xfff0000000000000UL;
1956                 sparc64_va_hole_bottom = 0x0010000000000000UL;
1957
1958                 max_phys_bits = 42;
1959         } else if (tlb_type == hypervisor) {
1960                 switch (sun4v_chip_type) {
1961                 case SUN4V_CHIP_NIAGARA1:
1962                 case SUN4V_CHIP_NIAGARA2:
1963                         /* T1 and T2 support 48-bit virtual addresses.  */
1964                         sparc64_va_hole_top =    0xffff800000000000UL;
1965                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1966
1967                         max_phys_bits = 39;
1968                         break;
1969                 case SUN4V_CHIP_NIAGARA3:
1970                         /* T3 supports 48-bit virtual addresses.  */
1971                         sparc64_va_hole_top =    0xffff800000000000UL;
1972                         sparc64_va_hole_bottom = 0x0000800000000000UL;
1973
1974                         max_phys_bits = 43;
1975                         break;
1976                 case SUN4V_CHIP_NIAGARA4:
1977                 case SUN4V_CHIP_NIAGARA5:
1978                 case SUN4V_CHIP_SPARC64X:
1979                 case SUN4V_CHIP_SPARC_M6:
1980                         /* T4 and later support 52-bit virtual addresses.  */
1981                         sparc64_va_hole_top =    0xfff8000000000000UL;
1982                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1983                         max_phys_bits = 47;
1984                         break;
1985                 case SUN4V_CHIP_SPARC_M7:
1986                 case SUN4V_CHIP_SPARC_SN:
1987                         /* M7 and later support 52-bit virtual addresses.  */
1988                         sparc64_va_hole_top =    0xfff8000000000000UL;
1989                         sparc64_va_hole_bottom = 0x0008000000000000UL;
1990                         max_phys_bits = 49;
1991                         break;
1992                 case SUN4V_CHIP_SPARC_M8:
1993                 default:
1994                         /* M8 and later support 54-bit virtual addresses.
1995                          * However, restricting M8 and above VA bits to 53
1996                          * as 4-level page table cannot support more than
1997                          * 53 VA bits.
1998                          */
1999                         sparc64_va_hole_top =    0xfff0000000000000UL;
2000                         sparc64_va_hole_bottom = 0x0010000000000000UL;
2001                         max_phys_bits = 51;
2002                         break;
2003                 }
2004         }
2005
2006         if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2007                 prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2008                             max_phys_bits);
2009                 prom_halt();
2010         }
2011
2012         PAGE_OFFSET = sparc64_va_hole_top;
2013         VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2014                        (sparc64_va_hole_bottom >> 2));
2015
2016         pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2017                 PAGE_OFFSET, max_phys_bits);
2018         pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2019                 VMALLOC_START, VMALLOC_END);
2020         pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2021                 VMEMMAP_BASE, VMEMMAP_BASE << 1);
2022 }
2023
2024 static void __init tsb_phys_patch(void)
2025 {
2026         struct tsb_ldquad_phys_patch_entry *pquad;
2027         struct tsb_phys_patch_entry *p;
2028
2029         pquad = &__tsb_ldquad_phys_patch;
2030         while (pquad < &__tsb_ldquad_phys_patch_end) {
2031                 unsigned long addr = pquad->addr;
2032
2033                 if (tlb_type == hypervisor)
2034                         *(unsigned int *) addr = pquad->sun4v_insn;
2035                 else
2036                         *(unsigned int *) addr = pquad->sun4u_insn;
2037                 wmb();
2038                 __asm__ __volatile__("flush     %0"
2039                                      : /* no outputs */
2040                                      : "r" (addr));
2041
2042                 pquad++;
2043         }
2044
2045         p = &__tsb_phys_patch;
2046         while (p < &__tsb_phys_patch_end) {
2047                 unsigned long addr = p->addr;
2048
2049                 *(unsigned int *) addr = p->insn;
2050                 wmb();
2051                 __asm__ __volatile__("flush     %0"
2052                                      : /* no outputs */
2053                                      : "r" (addr));
2054
2055                 p++;
2056         }
2057 }
2058
2059 /* Don't mark as init, we give this to the Hypervisor.  */
2060 #ifndef CONFIG_DEBUG_PAGEALLOC
2061 #define NUM_KTSB_DESCR  2
2062 #else
2063 #define NUM_KTSB_DESCR  1
2064 #endif
2065 static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2066
2067 /* The swapper TSBs are loaded with a base sequence of:
2068  *
2069  *      sethi   %uhi(SYMBOL), REG1
2070  *      sethi   %hi(SYMBOL), REG2
2071  *      or      REG1, %ulo(SYMBOL), REG1
2072  *      or      REG2, %lo(SYMBOL), REG2
2073  *      sllx    REG1, 32, REG1
2074  *      or      REG1, REG2, REG1
2075  *
2076  * When we use physical addressing for the TSB accesses, we patch the
2077  * first four instructions in the above sequence.
2078  */
2079
2080 static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2081 {
2082         unsigned long high_bits, low_bits;
2083
2084         high_bits = (pa >> 32) & 0xffffffff;
2085         low_bits = (pa >> 0) & 0xffffffff;
2086
2087         while (start < end) {
2088                 unsigned int *ia = (unsigned int *)(unsigned long)*start;
2089
2090                 ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2091                 __asm__ __volatile__("flush     %0" : : "r" (ia));
2092
2093                 ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2094                 __asm__ __volatile__("flush     %0" : : "r" (ia + 1));
2095
2096                 ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2097                 __asm__ __volatile__("flush     %0" : : "r" (ia + 2));
2098
2099                 ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2100                 __asm__ __volatile__("flush     %0" : : "r" (ia + 3));
2101
2102                 start++;
2103         }
2104 }
2105
2106 static void ktsb_phys_patch(void)
2107 {
2108         extern unsigned int __swapper_tsb_phys_patch;
2109         extern unsigned int __swapper_tsb_phys_patch_end;
2110         unsigned long ktsb_pa;
2111
2112         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2113         patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2114                             &__swapper_tsb_phys_patch_end, ktsb_pa);
2115 #ifndef CONFIG_DEBUG_PAGEALLOC
2116         {
2117         extern unsigned int __swapper_4m_tsb_phys_patch;
2118         extern unsigned int __swapper_4m_tsb_phys_patch_end;
2119         ktsb_pa = (kern_base +
2120                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2121         patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2122                             &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2123         }
2124 #endif
2125 }
2126
2127 static void __init sun4v_ktsb_init(void)
2128 {
2129         unsigned long ktsb_pa;
2130
2131         /* First KTSB for PAGE_SIZE mappings.  */
2132         ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2133
2134         switch (PAGE_SIZE) {
2135         case 8 * 1024:
2136         default:
2137                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2138                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2139                 break;
2140
2141         case 64 * 1024:
2142                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2143                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2144                 break;
2145
2146         case 512 * 1024:
2147                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2148                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2149                 break;
2150
2151         case 4 * 1024 * 1024:
2152                 ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2153                 ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2154                 break;
2155         }
2156
2157         ktsb_descr[0].assoc = 1;
2158         ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2159         ktsb_descr[0].ctx_idx = 0;
2160         ktsb_descr[0].tsb_base = ktsb_pa;
2161         ktsb_descr[0].resv = 0;
2162
2163 #ifndef CONFIG_DEBUG_PAGEALLOC
2164         /* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2165         ktsb_pa = (kern_base +
2166                    ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2167
2168         ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2169         ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2170                                     HV_PGSZ_MASK_256MB |
2171                                     HV_PGSZ_MASK_2GB |
2172                                     HV_PGSZ_MASK_16GB) &
2173                                    cpu_pgsz_mask);
2174         ktsb_descr[1].assoc = 1;
2175         ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2176         ktsb_descr[1].ctx_idx = 0;
2177         ktsb_descr[1].tsb_base = ktsb_pa;
2178         ktsb_descr[1].resv = 0;
2179 #endif
2180 }
2181
2182 void sun4v_ktsb_register(void)
2183 {
2184         unsigned long pa, ret;
2185
2186         pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2187
2188         ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2189         if (ret != 0) {
2190                 prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2191                             "errors with %lx\n", pa, ret);
2192                 prom_halt();
2193         }
2194 }
2195
2196 static void __init sun4u_linear_pte_xor_finalize(void)
2197 {
2198 #ifndef CONFIG_DEBUG_PAGEALLOC
2199         /* This is where we would add Panther support for
2200          * 32MB and 256MB pages.
2201          */
2202 #endif
2203 }
2204
2205 static void __init sun4v_linear_pte_xor_finalize(void)
2206 {
2207         unsigned long pagecv_flag;
2208
2209         /* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2210          * enables MCD error. Do not set bit 9 on M7 processor.
2211          */
2212         switch (sun4v_chip_type) {
2213         case SUN4V_CHIP_SPARC_M7:
2214         case SUN4V_CHIP_SPARC_M8:
2215         case SUN4V_CHIP_SPARC_SN:
2216                 pagecv_flag = 0x00;
2217                 break;
2218         default:
2219                 pagecv_flag = _PAGE_CV_4V;
2220                 break;
2221         }
2222 #ifndef CONFIG_DEBUG_PAGEALLOC
2223         if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2224                 kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2225                         PAGE_OFFSET;
2226                 kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2227                                            _PAGE_P_4V | _PAGE_W_4V);
2228         } else {
2229                 kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2230         }
2231
2232         if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2233                 kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2234                         PAGE_OFFSET;
2235                 kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2236                                            _PAGE_P_4V | _PAGE_W_4V);
2237         } else {
2238                 kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2239         }
2240
2241         if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2242                 kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2243                         PAGE_OFFSET;
2244                 kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2245                                            _PAGE_P_4V | _PAGE_W_4V);
2246         } else {
2247                 kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2248         }
2249 #endif
2250 }
2251
2252 /* paging_init() sets up the page tables */
2253
2254 static unsigned long last_valid_pfn;
2255
2256 static void sun4u_pgprot_init(void);
2257 static void sun4v_pgprot_init(void);
2258
2259 static phys_addr_t __init available_memory(void)
2260 {
2261         phys_addr_t available = 0ULL;
2262         phys_addr_t pa_start, pa_end;
2263         u64 i;
2264
2265         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2266                                 &pa_end, NULL)
2267                 available = available + (pa_end  - pa_start);
2268
2269         return available;
2270 }
2271
2272 #define _PAGE_CACHE_4U  (_PAGE_CP_4U | _PAGE_CV_4U)
2273 #define _PAGE_CACHE_4V  (_PAGE_CP_4V | _PAGE_CV_4V)
2274 #define __DIRTY_BITS_4U  (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2275 #define __DIRTY_BITS_4V  (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2276 #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2277 #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2278
2279 /* We need to exclude reserved regions. This exclusion will include
2280  * vmlinux and initrd. To be more precise the initrd size could be used to
2281  * compute a new lower limit because it is freed later during initialization.
2282  */
2283 static void __init reduce_memory(phys_addr_t limit_ram)
2284 {
2285         phys_addr_t avail_ram = available_memory();
2286         phys_addr_t pa_start, pa_end;
2287         u64 i;
2288
2289         if (limit_ram >= avail_ram)
2290                 return;
2291
2292         for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2293                                 &pa_end, NULL) {
2294                 phys_addr_t region_size = pa_end - pa_start;
2295                 phys_addr_t clip_start = pa_start;
2296
2297                 avail_ram = avail_ram - region_size;
2298                 /* Are we consuming too much? */
2299                 if (avail_ram < limit_ram) {
2300                         phys_addr_t give_back = limit_ram - avail_ram;
2301
2302                         region_size = region_size - give_back;
2303                         clip_start = clip_start + give_back;
2304                 }
2305
2306                 memblock_remove(clip_start, region_size);
2307
2308                 if (avail_ram <= limit_ram)
2309                         break;
2310                 i = 0UL;
2311         }
2312 }
2313
2314 void __init paging_init(void)
2315 {
2316         unsigned long end_pfn, shift, phys_base;
2317         unsigned long real_end, i;
2318
2319         setup_page_offset();
2320
2321         /* These build time checkes make sure that the dcache_dirty_cpu()
2322          * page->flags usage will work.
2323          *
2324          * When a page gets marked as dcache-dirty, we store the
2325          * cpu number starting at bit 32 in the page->flags.  Also,
2326          * functions like clear_dcache_dirty_cpu use the cpu mask
2327          * in 13-bit signed-immediate instruction fields.
2328          */
2329
2330         /*
2331          * Page flags must not reach into upper 32 bits that are used
2332          * for the cpu number
2333          */
2334         BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2335
2336         /*
2337          * The bit fields placed in the high range must not reach below
2338          * the 32 bit boundary. Otherwise we cannot place the cpu field
2339          * at the 32 bit boundary.
2340          */
2341         BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2342                 ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2343
2344         BUILD_BUG_ON(NR_CPUS > 4096);
2345
2346         kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2347         kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2348
2349         /* Invalidate both kernel TSBs.  */
2350         memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2351 #ifndef CONFIG_DEBUG_PAGEALLOC
2352         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2353 #endif
2354
2355         /* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2356          * bit on M7 processor. This is a conflicting usage of the same
2357          * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2358          * Detection error on all pages and this will lead to problems
2359          * later. Kernel does not run with MCD enabled and hence rest
2360          * of the required steps to fully configure memory corruption
2361          * detection are not taken. We need to ensure TTE.mcde is not
2362          * set on M7 processor. Compute the value of cacheability
2363          * flag for use later taking this into consideration.
2364          */
2365         switch (sun4v_chip_type) {
2366         case SUN4V_CHIP_SPARC_M7:
2367         case SUN4V_CHIP_SPARC_M8:
2368         case SUN4V_CHIP_SPARC_SN:
2369                 page_cache4v_flag = _PAGE_CP_4V;
2370                 break;
2371         default:
2372                 page_cache4v_flag = _PAGE_CACHE_4V;
2373                 break;
2374         }
2375
2376         if (tlb_type == hypervisor)
2377                 sun4v_pgprot_init();
2378         else
2379                 sun4u_pgprot_init();
2380
2381         if (tlb_type == cheetah_plus ||
2382             tlb_type == hypervisor) {
2383                 tsb_phys_patch();
2384                 ktsb_phys_patch();
2385         }
2386
2387         if (tlb_type == hypervisor)
2388                 sun4v_patch_tlb_handlers();
2389
2390         /* Find available physical memory...
2391          *
2392          * Read it twice in order to work around a bug in openfirmware.
2393          * The call to grab this table itself can cause openfirmware to
2394          * allocate memory, which in turn can take away some space from
2395          * the list of available memory.  Reading it twice makes sure
2396          * we really do get the final value.
2397          */
2398         read_obp_translations();
2399         read_obp_memory("reg", &pall[0], &pall_ents);
2400         read_obp_memory("available", &pavail[0], &pavail_ents);
2401         read_obp_memory("available", &pavail[0], &pavail_ents);
2402
2403         phys_base = 0xffffffffffffffffUL;
2404         for (i = 0; i < pavail_ents; i++) {
2405                 phys_base = min(phys_base, pavail[i].phys_addr);
2406                 memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2407         }
2408
2409         memblock_reserve(kern_base, kern_size);
2410
2411         find_ramdisk(phys_base);
2412
2413         if (cmdline_memory_size)
2414                 reduce_memory(cmdline_memory_size);
2415
2416         memblock_allow_resize();
2417         memblock_dump_all();
2418
2419         set_bit(0, mmu_context_bmap);
2420
2421         shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2422
2423         real_end = (unsigned long)_end;
2424         num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2425         printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2426                num_kernel_image_mappings);
2427
2428         /* Set kernel pgd to upper alias so physical page computations
2429          * work.
2430          */
2431         init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2432         
2433         memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2434
2435         inherit_prom_mappings();
2436         
2437         /* Ok, we can use our TLB miss and window trap handlers safely.  */
2438         setup_tba();
2439
2440         __flush_tlb_all();
2441
2442         prom_build_devicetree();
2443         of_populate_present_mask();
2444 #ifndef CONFIG_SMP
2445         of_fill_in_cpu_data();
2446 #endif
2447
2448         if (tlb_type == hypervisor) {
2449                 sun4v_mdesc_init();
2450                 mdesc_populate_present_mask(cpu_all_mask);
2451 #ifndef CONFIG_SMP
2452                 mdesc_fill_in_cpu_data(cpu_all_mask);
2453 #endif
2454                 mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2455
2456                 sun4v_linear_pte_xor_finalize();
2457
2458                 sun4v_ktsb_init();
2459                 sun4v_ktsb_register();
2460         } else {
2461                 unsigned long impl, ver;
2462
2463                 cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2464                                  HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2465
2466                 __asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2467                 impl = ((ver >> 32) & 0xffff);
2468                 if (impl == PANTHER_IMPL)
2469                         cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2470                                           HV_PGSZ_MASK_256MB);
2471
2472                 sun4u_linear_pte_xor_finalize();
2473         }
2474
2475         /* Flush the TLBs and the 4M TSB so that the updated linear
2476          * pte XOR settings are realized for all mappings.
2477          */
2478         __flush_tlb_all();
2479 #ifndef CONFIG_DEBUG_PAGEALLOC
2480         memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2481 #endif
2482         __flush_tlb_all();
2483
2484         /* Setup bootmem... */
2485         last_valid_pfn = end_pfn = bootmem_init(phys_base);
2486
2487         kernel_physical_mapping_init();
2488
2489         {
2490                 unsigned long max_zone_pfns[MAX_NR_ZONES];
2491
2492                 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2493
2494                 max_zone_pfns[ZONE_NORMAL] = end_pfn;
2495
2496                 free_area_init_nodes(max_zone_pfns);
2497         }
2498
2499         printk("Booting Linux...\n");
2500 }
2501
2502 int page_in_phys_avail(unsigned long paddr)
2503 {
2504         int i;
2505
2506         paddr &= PAGE_MASK;
2507
2508         for (i = 0; i < pavail_ents; i++) {
2509                 unsigned long start, end;
2510
2511                 start = pavail[i].phys_addr;
2512                 end = start + pavail[i].reg_size;
2513
2514                 if (paddr >= start && paddr < end)
2515                         return 1;
2516         }
2517         if (paddr >= kern_base && paddr < (kern_base + kern_size))
2518                 return 1;
2519 #ifdef CONFIG_BLK_DEV_INITRD
2520         if (paddr >= __pa(initrd_start) &&
2521             paddr < __pa(PAGE_ALIGN(initrd_end)))
2522                 return 1;
2523 #endif
2524
2525         return 0;
2526 }
2527
2528 static void __init register_page_bootmem_info(void)
2529 {
2530 #ifdef CONFIG_NEED_MULTIPLE_NODES
2531         int i;
2532
2533         for_each_online_node(i)
2534                 if (NODE_DATA(i)->node_spanned_pages)
2535                         register_page_bootmem_info_node(NODE_DATA(i));
2536 #endif
2537 }
2538 void __init mem_init(void)
2539 {
2540         high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2541
2542         register_page_bootmem_info();
2543         free_all_bootmem();
2544
2545         /*
2546          * Set up the zero page, mark it reserved, so that page count
2547          * is not manipulated when freeing the page from user ptes.
2548          */
2549         mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2550         if (mem_map_zero == NULL) {
2551                 prom_printf("paging_init: Cannot alloc zero page.\n");
2552                 prom_halt();
2553         }
2554         mark_page_reserved(mem_map_zero);
2555
2556         mem_init_print_info(NULL);
2557
2558         if (tlb_type == cheetah || tlb_type == cheetah_plus)
2559                 cheetah_ecache_flush_init();
2560 }
2561
2562 void free_initmem(void)
2563 {
2564         unsigned long addr, initend;
2565         int do_free = 1;
2566
2567         /* If the physical memory maps were trimmed by kernel command
2568          * line options, don't even try freeing this initmem stuff up.
2569          * The kernel image could have been in the trimmed out region
2570          * and if so the freeing below will free invalid page structs.
2571          */
2572         if (cmdline_memory_size)
2573                 do_free = 0;
2574
2575         /*
2576          * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2577          */
2578         addr = PAGE_ALIGN((unsigned long)(__init_begin));
2579         initend = (unsigned long)(__init_end) & PAGE_MASK;
2580         for (; addr < initend; addr += PAGE_SIZE) {
2581                 unsigned long page;
2582
2583                 page = (addr +
2584                         ((unsigned long) __va(kern_base)) -
2585                         ((unsigned long) KERNBASE));
2586                 memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2587
2588                 if (do_free)
2589                         free_reserved_page(virt_to_page(page));
2590         }
2591 }
2592
2593 #ifdef CONFIG_BLK_DEV_INITRD
2594 void free_initrd_mem(unsigned long start, unsigned long end)
2595 {
2596         free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2597                            "initrd");
2598 }
2599 #endif
2600
2601 pgprot_t PAGE_KERNEL __read_mostly;
2602 EXPORT_SYMBOL(PAGE_KERNEL);
2603
2604 pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2605 pgprot_t PAGE_COPY __read_mostly;
2606
2607 pgprot_t PAGE_SHARED __read_mostly;
2608 EXPORT_SYMBOL(PAGE_SHARED);
2609
2610 unsigned long pg_iobits __read_mostly;
2611
2612 unsigned long _PAGE_IE __read_mostly;
2613 EXPORT_SYMBOL(_PAGE_IE);
2614
2615 unsigned long _PAGE_E __read_mostly;
2616 EXPORT_SYMBOL(_PAGE_E);
2617
2618 unsigned long _PAGE_CACHE __read_mostly;
2619 EXPORT_SYMBOL(_PAGE_CACHE);
2620
2621 #ifdef CONFIG_SPARSEMEM_VMEMMAP
2622 int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2623                                int node)
2624 {
2625         unsigned long pte_base;
2626
2627         pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2628                     _PAGE_CP_4U | _PAGE_CV_4U |
2629                     _PAGE_P_4U | _PAGE_W_4U);
2630         if (tlb_type == hypervisor)
2631                 pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2632                             page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2633
2634         pte_base |= _PAGE_PMD_HUGE;
2635
2636         vstart = vstart & PMD_MASK;
2637         vend = ALIGN(vend, PMD_SIZE);
2638         for (; vstart < vend; vstart += PMD_SIZE) {
2639                 pgd_t *pgd = pgd_offset_k(vstart);
2640                 unsigned long pte;
2641                 pud_t *pud;
2642                 pmd_t *pmd;
2643
2644                 if (pgd_none(*pgd)) {
2645                         pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2646
2647                         if (!new)
2648                                 return -ENOMEM;
2649                         pgd_populate(&init_mm, pgd, new);
2650                 }
2651
2652                 pud = pud_offset(pgd, vstart);
2653                 if (pud_none(*pud)) {
2654                         pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2655
2656                         if (!new)
2657                                 return -ENOMEM;
2658                         pud_populate(&init_mm, pud, new);
2659                 }
2660
2661                 pmd = pmd_offset(pud, vstart);
2662
2663                 pte = pmd_val(*pmd);
2664                 if (!(pte & _PAGE_VALID)) {
2665                         void *block = vmemmap_alloc_block(PMD_SIZE, node);
2666
2667                         if (!block)
2668                                 return -ENOMEM;
2669
2670                         pmd_val(*pmd) = pte_base | __pa(block);
2671                 }
2672         }
2673
2674         return 0;
2675 }
2676
2677 void vmemmap_free(unsigned long start, unsigned long end)
2678 {
2679 }
2680 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
2681
2682 static void prot_init_common(unsigned long page_none,
2683                              unsigned long page_shared,
2684                              unsigned long page_copy,
2685                              unsigned long page_readonly,
2686                              unsigned long page_exec_bit)
2687 {
2688         PAGE_COPY = __pgprot(page_copy);
2689         PAGE_SHARED = __pgprot(page_shared);
2690
2691         protection_map[0x0] = __pgprot(page_none);
2692         protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2693         protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2694         protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2695         protection_map[0x4] = __pgprot(page_readonly);
2696         protection_map[0x5] = __pgprot(page_readonly);
2697         protection_map[0x6] = __pgprot(page_copy);
2698         protection_map[0x7] = __pgprot(page_copy);
2699         protection_map[0x8] = __pgprot(page_none);
2700         protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2701         protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2702         protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2703         protection_map[0xc] = __pgprot(page_readonly);
2704         protection_map[0xd] = __pgprot(page_readonly);
2705         protection_map[0xe] = __pgprot(page_shared);
2706         protection_map[0xf] = __pgprot(page_shared);
2707 }
2708
2709 static void __init sun4u_pgprot_init(void)
2710 {
2711         unsigned long page_none, page_shared, page_copy, page_readonly;
2712         unsigned long page_exec_bit;
2713         int i;
2714
2715         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2716                                 _PAGE_CACHE_4U | _PAGE_P_4U |
2717                                 __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2718                                 _PAGE_EXEC_4U);
2719         PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2720                                        _PAGE_CACHE_4U | _PAGE_P_4U |
2721                                        __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2722                                        _PAGE_EXEC_4U | _PAGE_L_4U);
2723
2724         _PAGE_IE = _PAGE_IE_4U;
2725         _PAGE_E = _PAGE_E_4U;
2726         _PAGE_CACHE = _PAGE_CACHE_4U;
2727
2728         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2729                      __ACCESS_BITS_4U | _PAGE_E_4U);
2730
2731 #ifdef CONFIG_DEBUG_PAGEALLOC
2732         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2733 #else
2734         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2735                 PAGE_OFFSET;
2736 #endif
2737         kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2738                                    _PAGE_P_4U | _PAGE_W_4U);
2739
2740         for (i = 1; i < 4; i++)
2741                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2742
2743         _PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2744                               _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2745                               _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2746
2747
2748         page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2749         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2750                        __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2751         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2752                        __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2753         page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2754                            __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2755
2756         page_exec_bit = _PAGE_EXEC_4U;
2757
2758         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2759                          page_exec_bit);
2760 }
2761
2762 static void __init sun4v_pgprot_init(void)
2763 {
2764         unsigned long page_none, page_shared, page_copy, page_readonly;
2765         unsigned long page_exec_bit;
2766         int i;
2767
2768         PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2769                                 page_cache4v_flag | _PAGE_P_4V |
2770                                 __ACCESS_BITS_4V | __DIRTY_BITS_4V |
2771                                 _PAGE_EXEC_4V);
2772         PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2773
2774         _PAGE_IE = _PAGE_IE_4V;
2775         _PAGE_E = _PAGE_E_4V;
2776         _PAGE_CACHE = page_cache4v_flag;
2777
2778 #ifdef CONFIG_DEBUG_PAGEALLOC
2779         kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2780 #else
2781         kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2782                 PAGE_OFFSET;
2783 #endif
2784         kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2785                                    _PAGE_W_4V);
2786
2787         for (i = 1; i < 4; i++)
2788                 kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2789
2790         pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2791                      __ACCESS_BITS_4V | _PAGE_E_4V);
2792
2793         _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2794                              _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2795                              _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2796                              _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2797
2798         page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2799         page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2800                        __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2801         page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2802                        __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2803         page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2804                          __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2805
2806         page_exec_bit = _PAGE_EXEC_4V;
2807
2808         prot_init_common(page_none, page_shared, page_copy, page_readonly,
2809                          page_exec_bit);
2810 }
2811
2812 unsigned long pte_sz_bits(unsigned long sz)
2813 {
2814         if (tlb_type == hypervisor) {
2815                 switch (sz) {
2816                 case 8 * 1024:
2817                 default:
2818                         return _PAGE_SZ8K_4V;
2819                 case 64 * 1024:
2820                         return _PAGE_SZ64K_4V;
2821                 case 512 * 1024:
2822                         return _PAGE_SZ512K_4V;
2823                 case 4 * 1024 * 1024:
2824                         return _PAGE_SZ4MB_4V;
2825                 }
2826         } else {
2827                 switch (sz) {
2828                 case 8 * 1024:
2829                 default:
2830                         return _PAGE_SZ8K_4U;
2831                 case 64 * 1024:
2832                         return _PAGE_SZ64K_4U;
2833                 case 512 * 1024:
2834                         return _PAGE_SZ512K_4U;
2835                 case 4 * 1024 * 1024:
2836                         return _PAGE_SZ4MB_4U;
2837                 }
2838         }
2839 }
2840
2841 pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2842 {
2843         pte_t pte;
2844
2845         pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2846         pte_val(pte) |= (((unsigned long)space) << 32);
2847         pte_val(pte) |= pte_sz_bits(page_size);
2848
2849         return pte;
2850 }
2851
2852 static unsigned long kern_large_tte(unsigned long paddr)
2853 {
2854         unsigned long val;
2855
2856         val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2857                _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2858                _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2859         if (tlb_type == hypervisor)
2860                 val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2861                        page_cache4v_flag | _PAGE_P_4V |
2862                        _PAGE_EXEC_4V | _PAGE_W_4V);
2863
2864         return val | paddr;
2865 }
2866
2867 /* If not locked, zap it. */
2868 void __flush_tlb_all(void)
2869 {
2870         unsigned long pstate;
2871         int i;
2872
2873         __asm__ __volatile__("flushw\n\t"
2874                              "rdpr      %%pstate, %0\n\t"
2875                              "wrpr      %0, %1, %%pstate"
2876                              : "=r" (pstate)
2877                              : "i" (PSTATE_IE));
2878         if (tlb_type == hypervisor) {
2879                 sun4v_mmu_demap_all();
2880         } else if (tlb_type == spitfire) {
2881                 for (i = 0; i < 64; i++) {
2882                         /* Spitfire Errata #32 workaround */
2883                         /* NOTE: Always runs on spitfire, so no
2884                          *       cheetah+ page size encodings.
2885                          */
2886                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2887                                              "flush     %%g6"
2888                                              : /* No outputs */
2889                                              : "r" (0),
2890                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2891
2892                         if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2893                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2894                                                      "membar #Sync"
2895                                                      : /* no outputs */
2896                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2897                                 spitfire_put_dtlb_data(i, 0x0UL);
2898                         }
2899
2900                         /* Spitfire Errata #32 workaround */
2901                         /* NOTE: Always runs on spitfire, so no
2902                          *       cheetah+ page size encodings.
2903                          */
2904                         __asm__ __volatile__("stxa      %0, [%1] %2\n\t"
2905                                              "flush     %%g6"
2906                                              : /* No outputs */
2907                                              : "r" (0),
2908                                              "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2909
2910                         if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2911                                 __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2912                                                      "membar #Sync"
2913                                                      : /* no outputs */
2914                                                      : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2915                                 spitfire_put_itlb_data(i, 0x0UL);
2916                         }
2917                 }
2918         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2919                 cheetah_flush_dtlb_all();
2920                 cheetah_flush_itlb_all();
2921         }
2922         __asm__ __volatile__("wrpr      %0, 0, %%pstate"
2923                              : : "r" (pstate));
2924 }
2925
2926 pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2927                             unsigned long address)
2928 {
2929         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2930         pte_t *pte = NULL;
2931
2932         if (page)
2933                 pte = (pte_t *) page_address(page);
2934
2935         return pte;
2936 }
2937
2938 pgtable_t pte_alloc_one(struct mm_struct *mm,
2939                         unsigned long address)
2940 {
2941         struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2942         if (!page)
2943                 return NULL;
2944         if (!pgtable_page_ctor(page)) {
2945                 free_hot_cold_page(page, 0);
2946                 return NULL;
2947         }
2948         return (pte_t *) page_address(page);
2949 }
2950
2951 void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2952 {
2953         free_page((unsigned long)pte);
2954 }
2955
2956 static void __pte_free(pgtable_t pte)
2957 {
2958         struct page *page = virt_to_page(pte);
2959
2960         pgtable_page_dtor(page);
2961         __free_page(page);
2962 }
2963
2964 void pte_free(struct mm_struct *mm, pgtable_t pte)
2965 {
2966         __pte_free(pte);
2967 }
2968
2969 void pgtable_free(void *table, bool is_page)
2970 {
2971         if (is_page)
2972                 __pte_free(table);
2973         else
2974                 kmem_cache_free(pgtable_cache, table);
2975 }
2976
2977 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2978 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2979                           pmd_t *pmd)
2980 {
2981         unsigned long pte, flags;
2982         struct mm_struct *mm;
2983         pmd_t entry = *pmd;
2984
2985         if (!pmd_large(entry) || !pmd_young(entry))
2986                 return;
2987
2988         pte = pmd_val(entry);
2989
2990         /* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2991         if (!(pte & _PAGE_VALID))
2992                 return;
2993
2994         /* We are fabricating 8MB pages using 4MB real hw pages.  */
2995         pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2996
2997         mm = vma->vm_mm;
2998
2999         spin_lock_irqsave(&mm->context.lock, flags);
3000
3001         if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
3002                 __update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
3003                                         addr, pte);
3004
3005         spin_unlock_irqrestore(&mm->context.lock, flags);
3006 }
3007 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3008
3009 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
3010 static void context_reload(void *__data)
3011 {
3012         struct mm_struct *mm = __data;
3013
3014         if (mm == current->mm)
3015                 load_secondary_context(mm);
3016 }
3017
3018 void hugetlb_setup(struct pt_regs *regs)
3019 {
3020         struct mm_struct *mm = current->mm;
3021         struct tsb_config *tp;
3022
3023         if (faulthandler_disabled() || !mm) {
3024                 const struct exception_table_entry *entry;
3025
3026                 entry = search_exception_tables(regs->tpc);
3027                 if (entry) {
3028                         regs->tpc = entry->fixup;
3029                         regs->tnpc = regs->tpc + 4;
3030                         return;
3031                 }
3032                 pr_alert("Unexpected HugeTLB setup in atomic context.\n");
3033                 die_if_kernel("HugeTSB in atomic", regs);
3034         }
3035
3036         tp = &mm->context.tsb_block[MM_TSB_HUGE];
3037         if (likely(tp->tsb == NULL))
3038                 tsb_grow(mm, MM_TSB_HUGE, 0);
3039
3040         tsb_context_switch(mm);
3041         smp_tsb_sync(mm);
3042
3043         /* On UltraSPARC-III+ and later, configure the second half of
3044          * the Data-TLB for huge pages.
3045          */
3046         if (tlb_type == cheetah_plus) {
3047                 bool need_context_reload = false;
3048                 unsigned long ctx;
3049
3050                 spin_lock_irq(&ctx_alloc_lock);
3051                 ctx = mm->context.sparc64_ctx_val;
3052                 ctx &= ~CTX_PGSZ_MASK;
3053                 ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3054                 ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3055
3056                 if (ctx != mm->context.sparc64_ctx_val) {
3057                         /* When changing the page size fields, we
3058                          * must perform a context flush so that no
3059                          * stale entries match.  This flush must
3060                          * occur with the original context register
3061                          * settings.
3062                          */
3063                         do_flush_tlb_mm(mm);
3064
3065                         /* Reload the context register of all processors
3066                          * also executing in this address space.
3067                          */
3068                         mm->context.sparc64_ctx_val = ctx;
3069                         need_context_reload = true;
3070                 }
3071                 spin_unlock_irq(&ctx_alloc_lock);
3072
3073                 if (need_context_reload)
3074                         on_each_cpu(context_reload, mm, 0);
3075         }
3076 }
3077 #endif
3078
3079 static struct resource code_resource = {
3080         .name   = "Kernel code",
3081         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3082 };
3083
3084 static struct resource data_resource = {
3085         .name   = "Kernel data",
3086         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3087 };
3088
3089 static struct resource bss_resource = {
3090         .name   = "Kernel bss",
3091         .flags  = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3092 };
3093
3094 static inline resource_size_t compute_kern_paddr(void *addr)
3095 {
3096         return (resource_size_t) (addr - KERNBASE + kern_base);
3097 }
3098
3099 static void __init kernel_lds_init(void)
3100 {
3101         code_resource.start = compute_kern_paddr(_text);
3102         code_resource.end   = compute_kern_paddr(_etext - 1);
3103         data_resource.start = compute_kern_paddr(_etext);
3104         data_resource.end   = compute_kern_paddr(_edata - 1);
3105         bss_resource.start  = compute_kern_paddr(__bss_start);
3106         bss_resource.end    = compute_kern_paddr(_end - 1);
3107 }
3108
3109 static int __init report_memory(void)
3110 {
3111         int i;
3112         struct resource *res;
3113
3114         kernel_lds_init();
3115
3116         for (i = 0; i < pavail_ents; i++) {
3117                 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3118
3119                 if (!res) {
3120                         pr_warn("Failed to allocate source.\n");
3121                         break;
3122                 }
3123
3124                 res->name = "System RAM";
3125                 res->start = pavail[i].phys_addr;
3126                 res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3127                 res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3128
3129                 if (insert_resource(&iomem_resource, res) < 0) {
3130                         pr_warn("Resource insertion failed.\n");
3131                         break;
3132                 }
3133
3134                 insert_resource(res, &code_resource);
3135                 insert_resource(res, &data_resource);
3136                 insert_resource(res, &bss_resource);
3137         }
3138
3139         return 0;
3140 }
3141 arch_initcall(report_memory);
3142
3143 #ifdef CONFIG_SMP
3144 #define do_flush_tlb_kernel_range       smp_flush_tlb_kernel_range
3145 #else
3146 #define do_flush_tlb_kernel_range       __flush_tlb_kernel_range
3147 #endif
3148
3149 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3150 {
3151         if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3152                 if (start < LOW_OBP_ADDRESS) {
3153                         flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3154                         do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3155                 }
3156                 if (end > HI_OBP_ADDRESS) {
3157                         flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3158                         do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3159                 }
3160         } else {
3161                 flush_tsb_kernel_range(start, end);
3162                 do_flush_tlb_kernel_range(start, end);
3163         }
3164 }