Merge tag 'v3.6-rc5' into for-linus
[sfrench/cifs-2.6.git] / arch / sparc / kernel / smp_64.c
1 /* smp.c: Sparc64 SMP support.
2  *
3  * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4  */
5
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28
29 #include <asm/head.h>
30 #include <asm/ptrace.h>
31 #include <linux/atomic.h>
32 #include <asm/tlbflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/cpudata.h>
35 #include <asm/hvtramp.h>
36 #include <asm/io.h>
37 #include <asm/timer.h>
38
39 #include <asm/irq.h>
40 #include <asm/irq_regs.h>
41 #include <asm/page.h>
42 #include <asm/pgtable.h>
43 #include <asm/oplib.h>
44 #include <asm/uaccess.h>
45 #include <asm/starfire.h>
46 #include <asm/tlb.h>
47 #include <asm/sections.h>
48 #include <asm/prom.h>
49 #include <asm/mdesc.h>
50 #include <asm/ldc.h>
51 #include <asm/hypervisor.h>
52 #include <asm/pcr.h>
53
54 #include "cpumap.h"
55
56 int sparc64_multi_core __read_mostly;
57
58 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
59 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
60         { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
61
62 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
63 EXPORT_SYMBOL(cpu_core_map);
64
65 static cpumask_t smp_commenced_mask;
66
67 void smp_info(struct seq_file *m)
68 {
69         int i;
70         
71         seq_printf(m, "State:\n");
72         for_each_online_cpu(i)
73                 seq_printf(m, "CPU%d:\t\tonline\n", i);
74 }
75
76 void smp_bogo(struct seq_file *m)
77 {
78         int i;
79         
80         for_each_online_cpu(i)
81                 seq_printf(m,
82                            "Cpu%dClkTck\t: %016lx\n",
83                            i, cpu_data(i).clock_tick);
84 }
85
86 extern void setup_sparc64_timer(void);
87
88 static volatile unsigned long callin_flag = 0;
89
90 void __cpuinit smp_callin(void)
91 {
92         int cpuid = hard_smp_processor_id();
93
94         __local_per_cpu_offset = __per_cpu_offset(cpuid);
95
96         if (tlb_type == hypervisor)
97                 sun4v_ktsb_register();
98
99         __flush_tlb_all();
100
101         setup_sparc64_timer();
102
103         if (cheetah_pcache_forced_on)
104                 cheetah_enable_pcache();
105
106         callin_flag = 1;
107         __asm__ __volatile__("membar #Sync\n\t"
108                              "flush  %%g6" : : : "memory");
109
110         /* Clear this or we will die instantly when we
111          * schedule back to this idler...
112          */
113         current_thread_info()->new_child = 0;
114
115         /* Attach to the address space of init_task. */
116         atomic_inc(&init_mm.mm_count);
117         current->active_mm = &init_mm;
118
119         /* inform the notifiers about the new cpu */
120         notify_cpu_starting(cpuid);
121
122         while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
123                 rmb();
124
125         set_cpu_online(cpuid, true);
126         local_irq_enable();
127
128         /* idle thread is expected to have preempt disabled */
129         preempt_disable();
130 }
131
132 void cpu_panic(void)
133 {
134         printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
135         panic("SMP bolixed\n");
136 }
137
138 /* This tick register synchronization scheme is taken entirely from
139  * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
140  *
141  * The only change I've made is to rework it so that the master
142  * initiates the synchonization instead of the slave. -DaveM
143  */
144
145 #define MASTER  0
146 #define SLAVE   (SMP_CACHE_BYTES/sizeof(unsigned long))
147
148 #define NUM_ROUNDS      64      /* magic value */
149 #define NUM_ITERS       5       /* likewise */
150
151 static DEFINE_SPINLOCK(itc_sync_lock);
152 static unsigned long go[SLAVE + 1];
153
154 #define DEBUG_TICK_SYNC 0
155
156 static inline long get_delta (long *rt, long *master)
157 {
158         unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
159         unsigned long tcenter, t0, t1, tm;
160         unsigned long i;
161
162         for (i = 0; i < NUM_ITERS; i++) {
163                 t0 = tick_ops->get_tick();
164                 go[MASTER] = 1;
165                 membar_safe("#StoreLoad");
166                 while (!(tm = go[SLAVE]))
167                         rmb();
168                 go[SLAVE] = 0;
169                 wmb();
170                 t1 = tick_ops->get_tick();
171
172                 if (t1 - t0 < best_t1 - best_t0)
173                         best_t0 = t0, best_t1 = t1, best_tm = tm;
174         }
175
176         *rt = best_t1 - best_t0;
177         *master = best_tm - best_t0;
178
179         /* average best_t0 and best_t1 without overflow: */
180         tcenter = (best_t0/2 + best_t1/2);
181         if (best_t0 % 2 + best_t1 % 2 == 2)
182                 tcenter++;
183         return tcenter - best_tm;
184 }
185
186 void smp_synchronize_tick_client(void)
187 {
188         long i, delta, adj, adjust_latency = 0, done = 0;
189         unsigned long flags, rt, master_time_stamp;
190 #if DEBUG_TICK_SYNC
191         struct {
192                 long rt;        /* roundtrip time */
193                 long master;    /* master's timestamp */
194                 long diff;      /* difference between midpoint and master's timestamp */
195                 long lat;       /* estimate of itc adjustment latency */
196         } t[NUM_ROUNDS];
197 #endif
198
199         go[MASTER] = 1;
200
201         while (go[MASTER])
202                 rmb();
203
204         local_irq_save(flags);
205         {
206                 for (i = 0; i < NUM_ROUNDS; i++) {
207                         delta = get_delta(&rt, &master_time_stamp);
208                         if (delta == 0)
209                                 done = 1;       /* let's lock on to this... */
210
211                         if (!done) {
212                                 if (i > 0) {
213                                         adjust_latency += -delta;
214                                         adj = -delta + adjust_latency/4;
215                                 } else
216                                         adj = -delta;
217
218                                 tick_ops->add_tick(adj);
219                         }
220 #if DEBUG_TICK_SYNC
221                         t[i].rt = rt;
222                         t[i].master = master_time_stamp;
223                         t[i].diff = delta;
224                         t[i].lat = adjust_latency/4;
225 #endif
226                 }
227         }
228         local_irq_restore(flags);
229
230 #if DEBUG_TICK_SYNC
231         for (i = 0; i < NUM_ROUNDS; i++)
232                 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
233                        t[i].rt, t[i].master, t[i].diff, t[i].lat);
234 #endif
235
236         printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
237                "(last diff %ld cycles, maxerr %lu cycles)\n",
238                smp_processor_id(), delta, rt);
239 }
240
241 static void smp_start_sync_tick_client(int cpu);
242
243 static void smp_synchronize_one_tick(int cpu)
244 {
245         unsigned long flags, i;
246
247         go[MASTER] = 0;
248
249         smp_start_sync_tick_client(cpu);
250
251         /* wait for client to be ready */
252         while (!go[MASTER])
253                 rmb();
254
255         /* now let the client proceed into his loop */
256         go[MASTER] = 0;
257         membar_safe("#StoreLoad");
258
259         spin_lock_irqsave(&itc_sync_lock, flags);
260         {
261                 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
262                         while (!go[MASTER])
263                                 rmb();
264                         go[MASTER] = 0;
265                         wmb();
266                         go[SLAVE] = tick_ops->get_tick();
267                         membar_safe("#StoreLoad");
268                 }
269         }
270         spin_unlock_irqrestore(&itc_sync_lock, flags);
271 }
272
273 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
274 /* XXX Put this in some common place. XXX */
275 static unsigned long kimage_addr_to_ra(void *p)
276 {
277         unsigned long val = (unsigned long) p;
278
279         return kern_base + (val - KERNBASE);
280 }
281
282 static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, void **descrp)
283 {
284         extern unsigned long sparc64_ttable_tl0;
285         extern unsigned long kern_locked_tte_data;
286         struct hvtramp_descr *hdesc;
287         unsigned long trampoline_ra;
288         struct trap_per_cpu *tb;
289         u64 tte_vaddr, tte_data;
290         unsigned long hv_err;
291         int i;
292
293         hdesc = kzalloc(sizeof(*hdesc) +
294                         (sizeof(struct hvtramp_mapping) *
295                          num_kernel_image_mappings - 1),
296                         GFP_KERNEL);
297         if (!hdesc) {
298                 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
299                        "hvtramp_descr.\n");
300                 return;
301         }
302         *descrp = hdesc;
303
304         hdesc->cpu = cpu;
305         hdesc->num_mappings = num_kernel_image_mappings;
306
307         tb = &trap_block[cpu];
308
309         hdesc->fault_info_va = (unsigned long) &tb->fault_info;
310         hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
311
312         hdesc->thread_reg = thread_reg;
313
314         tte_vaddr = (unsigned long) KERNBASE;
315         tte_data = kern_locked_tte_data;
316
317         for (i = 0; i < hdesc->num_mappings; i++) {
318                 hdesc->maps[i].vaddr = tte_vaddr;
319                 hdesc->maps[i].tte   = tte_data;
320                 tte_vaddr += 0x400000;
321                 tte_data  += 0x400000;
322         }
323
324         trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
325
326         hv_err = sun4v_cpu_start(cpu, trampoline_ra,
327                                  kimage_addr_to_ra(&sparc64_ttable_tl0),
328                                  __pa(hdesc));
329         if (hv_err)
330                 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
331                        "gives error %lu\n", hv_err);
332 }
333 #endif
334
335 extern unsigned long sparc64_cpu_startup;
336
337 /* The OBP cpu startup callback truncates the 3rd arg cookie to
338  * 32-bits (I think) so to be safe we have it read the pointer
339  * contained here so we work on >4GB machines. -DaveM
340  */
341 static struct thread_info *cpu_new_thread = NULL;
342
343 static int __cpuinit smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
344 {
345         unsigned long entry =
346                 (unsigned long)(&sparc64_cpu_startup);
347         unsigned long cookie =
348                 (unsigned long)(&cpu_new_thread);
349         void *descr = NULL;
350         int timeout, ret;
351
352         callin_flag = 0;
353         cpu_new_thread = task_thread_info(idle);
354
355         if (tlb_type == hypervisor) {
356 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
357                 if (ldom_domaining_enabled)
358                         ldom_startcpu_cpuid(cpu,
359                                             (unsigned long) cpu_new_thread,
360                                             &descr);
361                 else
362 #endif
363                         prom_startcpu_cpuid(cpu, entry, cookie);
364         } else {
365                 struct device_node *dp = of_find_node_by_cpuid(cpu);
366
367                 prom_startcpu(dp->phandle, entry, cookie);
368         }
369
370         for (timeout = 0; timeout < 50000; timeout++) {
371                 if (callin_flag)
372                         break;
373                 udelay(100);
374         }
375
376         if (callin_flag) {
377                 ret = 0;
378         } else {
379                 printk("Processor %d is stuck.\n", cpu);
380                 ret = -ENODEV;
381         }
382         cpu_new_thread = NULL;
383
384         kfree(descr);
385
386         return ret;
387 }
388
389 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
390 {
391         u64 result, target;
392         int stuck, tmp;
393
394         if (this_is_starfire) {
395                 /* map to real upaid */
396                 cpu = (((cpu & 0x3c) << 1) |
397                         ((cpu & 0x40) >> 4) |
398                         (cpu & 0x3));
399         }
400
401         target = (cpu << 14) | 0x70;
402 again:
403         /* Ok, this is the real Spitfire Errata #54.
404          * One must read back from a UDB internal register
405          * after writes to the UDB interrupt dispatch, but
406          * before the membar Sync for that write.
407          * So we use the high UDB control register (ASI 0x7f,
408          * ADDR 0x20) for the dummy read. -DaveM
409          */
410         tmp = 0x40;
411         __asm__ __volatile__(
412         "wrpr   %1, %2, %%pstate\n\t"
413         "stxa   %4, [%0] %3\n\t"
414         "stxa   %5, [%0+%8] %3\n\t"
415         "add    %0, %8, %0\n\t"
416         "stxa   %6, [%0+%8] %3\n\t"
417         "membar #Sync\n\t"
418         "stxa   %%g0, [%7] %3\n\t"
419         "membar #Sync\n\t"
420         "mov    0x20, %%g1\n\t"
421         "ldxa   [%%g1] 0x7f, %%g0\n\t"
422         "membar #Sync"
423         : "=r" (tmp)
424         : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
425           "r" (data0), "r" (data1), "r" (data2), "r" (target),
426           "r" (0x10), "0" (tmp)
427         : "g1");
428
429         /* NOTE: PSTATE_IE is still clear. */
430         stuck = 100000;
431         do {
432                 __asm__ __volatile__("ldxa [%%g0] %1, %0"
433                         : "=r" (result)
434                         : "i" (ASI_INTR_DISPATCH_STAT));
435                 if (result == 0) {
436                         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
437                                              : : "r" (pstate));
438                         return;
439                 }
440                 stuck -= 1;
441                 if (stuck == 0)
442                         break;
443         } while (result & 0x1);
444         __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
445                              : : "r" (pstate));
446         if (stuck == 0) {
447                 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
448                        smp_processor_id(), result);
449         } else {
450                 udelay(2);
451                 goto again;
452         }
453 }
454
455 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
456 {
457         u64 *mondo, data0, data1, data2;
458         u16 *cpu_list;
459         u64 pstate;
460         int i;
461
462         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
463         cpu_list = __va(tb->cpu_list_pa);
464         mondo = __va(tb->cpu_mondo_block_pa);
465         data0 = mondo[0];
466         data1 = mondo[1];
467         data2 = mondo[2];
468         for (i = 0; i < cnt; i++)
469                 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
470 }
471
472 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
473  * packet, but we have no use for that.  However we do take advantage of
474  * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
475  */
476 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
477 {
478         int nack_busy_id, is_jbus, need_more;
479         u64 *mondo, pstate, ver, busy_mask;
480         u16 *cpu_list;
481
482         cpu_list = __va(tb->cpu_list_pa);
483         mondo = __va(tb->cpu_mondo_block_pa);
484
485         /* Unfortunately, someone at Sun had the brilliant idea to make the
486          * busy/nack fields hard-coded by ITID number for this Ultra-III
487          * derivative processor.
488          */
489         __asm__ ("rdpr %%ver, %0" : "=r" (ver));
490         is_jbus = ((ver >> 32) == __JALAPENO_ID ||
491                    (ver >> 32) == __SERRANO_ID);
492
493         __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
494
495 retry:
496         need_more = 0;
497         __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
498                              : : "r" (pstate), "i" (PSTATE_IE));
499
500         /* Setup the dispatch data registers. */
501         __asm__ __volatile__("stxa      %0, [%3] %6\n\t"
502                              "stxa      %1, [%4] %6\n\t"
503                              "stxa      %2, [%5] %6\n\t"
504                              "membar    #Sync\n\t"
505                              : /* no outputs */
506                              : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
507                                "r" (0x40), "r" (0x50), "r" (0x60),
508                                "i" (ASI_INTR_W));
509
510         nack_busy_id = 0;
511         busy_mask = 0;
512         {
513                 int i;
514
515                 for (i = 0; i < cnt; i++) {
516                         u64 target, nr;
517
518                         nr = cpu_list[i];
519                         if (nr == 0xffff)
520                                 continue;
521
522                         target = (nr << 14) | 0x70;
523                         if (is_jbus) {
524                                 busy_mask |= (0x1UL << (nr * 2));
525                         } else {
526                                 target |= (nack_busy_id << 24);
527                                 busy_mask |= (0x1UL <<
528                                               (nack_busy_id * 2));
529                         }
530                         __asm__ __volatile__(
531                                 "stxa   %%g0, [%0] %1\n\t"
532                                 "membar #Sync\n\t"
533                                 : /* no outputs */
534                                 : "r" (target), "i" (ASI_INTR_W));
535                         nack_busy_id++;
536                         if (nack_busy_id == 32) {
537                                 need_more = 1;
538                                 break;
539                         }
540                 }
541         }
542
543         /* Now, poll for completion. */
544         {
545                 u64 dispatch_stat, nack_mask;
546                 long stuck;
547
548                 stuck = 100000 * nack_busy_id;
549                 nack_mask = busy_mask << 1;
550                 do {
551                         __asm__ __volatile__("ldxa      [%%g0] %1, %0"
552                                              : "=r" (dispatch_stat)
553                                              : "i" (ASI_INTR_DISPATCH_STAT));
554                         if (!(dispatch_stat & (busy_mask | nack_mask))) {
555                                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
556                                                      : : "r" (pstate));
557                                 if (unlikely(need_more)) {
558                                         int i, this_cnt = 0;
559                                         for (i = 0; i < cnt; i++) {
560                                                 if (cpu_list[i] == 0xffff)
561                                                         continue;
562                                                 cpu_list[i] = 0xffff;
563                                                 this_cnt++;
564                                                 if (this_cnt == 32)
565                                                         break;
566                                         }
567                                         goto retry;
568                                 }
569                                 return;
570                         }
571                         if (!--stuck)
572                                 break;
573                 } while (dispatch_stat & busy_mask);
574
575                 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
576                                      : : "r" (pstate));
577
578                 if (dispatch_stat & busy_mask) {
579                         /* Busy bits will not clear, continue instead
580                          * of freezing up on this cpu.
581                          */
582                         printk("CPU[%d]: mondo stuckage result[%016llx]\n",
583                                smp_processor_id(), dispatch_stat);
584                 } else {
585                         int i, this_busy_nack = 0;
586
587                         /* Delay some random time with interrupts enabled
588                          * to prevent deadlock.
589                          */
590                         udelay(2 * nack_busy_id);
591
592                         /* Clear out the mask bits for cpus which did not
593                          * NACK us.
594                          */
595                         for (i = 0; i < cnt; i++) {
596                                 u64 check_mask, nr;
597
598                                 nr = cpu_list[i];
599                                 if (nr == 0xffff)
600                                         continue;
601
602                                 if (is_jbus)
603                                         check_mask = (0x2UL << (2*nr));
604                                 else
605                                         check_mask = (0x2UL <<
606                                                       this_busy_nack);
607                                 if ((dispatch_stat & check_mask) == 0)
608                                         cpu_list[i] = 0xffff;
609                                 this_busy_nack += 2;
610                                 if (this_busy_nack == 64)
611                                         break;
612                         }
613
614                         goto retry;
615                 }
616         }
617 }
618
619 /* Multi-cpu list version.  */
620 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
621 {
622         int retries, this_cpu, prev_sent, i, saw_cpu_error;
623         unsigned long status;
624         u16 *cpu_list;
625
626         this_cpu = smp_processor_id();
627
628         cpu_list = __va(tb->cpu_list_pa);
629
630         saw_cpu_error = 0;
631         retries = 0;
632         prev_sent = 0;
633         do {
634                 int forward_progress, n_sent;
635
636                 status = sun4v_cpu_mondo_send(cnt,
637                                               tb->cpu_list_pa,
638                                               tb->cpu_mondo_block_pa);
639
640                 /* HV_EOK means all cpus received the xcall, we're done.  */
641                 if (likely(status == HV_EOK))
642                         break;
643
644                 /* First, see if we made any forward progress.
645                  *
646                  * The hypervisor indicates successful sends by setting
647                  * cpu list entries to the value 0xffff.
648                  */
649                 n_sent = 0;
650                 for (i = 0; i < cnt; i++) {
651                         if (likely(cpu_list[i] == 0xffff))
652                                 n_sent++;
653                 }
654
655                 forward_progress = 0;
656                 if (n_sent > prev_sent)
657                         forward_progress = 1;
658
659                 prev_sent = n_sent;
660
661                 /* If we get a HV_ECPUERROR, then one or more of the cpus
662                  * in the list are in error state.  Use the cpu_state()
663                  * hypervisor call to find out which cpus are in error state.
664                  */
665                 if (unlikely(status == HV_ECPUERROR)) {
666                         for (i = 0; i < cnt; i++) {
667                                 long err;
668                                 u16 cpu;
669
670                                 cpu = cpu_list[i];
671                                 if (cpu == 0xffff)
672                                         continue;
673
674                                 err = sun4v_cpu_state(cpu);
675                                 if (err == HV_CPU_STATE_ERROR) {
676                                         saw_cpu_error = (cpu + 1);
677                                         cpu_list[i] = 0xffff;
678                                 }
679                         }
680                 } else if (unlikely(status != HV_EWOULDBLOCK))
681                         goto fatal_mondo_error;
682
683                 /* Don't bother rewriting the CPU list, just leave the
684                  * 0xffff and non-0xffff entries in there and the
685                  * hypervisor will do the right thing.
686                  *
687                  * Only advance timeout state if we didn't make any
688                  * forward progress.
689                  */
690                 if (unlikely(!forward_progress)) {
691                         if (unlikely(++retries > 10000))
692                                 goto fatal_mondo_timeout;
693
694                         /* Delay a little bit to let other cpus catch up
695                          * on their cpu mondo queue work.
696                          */
697                         udelay(2 * cnt);
698                 }
699         } while (1);
700
701         if (unlikely(saw_cpu_error))
702                 goto fatal_mondo_cpu_error;
703
704         return;
705
706 fatal_mondo_cpu_error:
707         printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
708                "(including %d) were in error state\n",
709                this_cpu, saw_cpu_error - 1);
710         return;
711
712 fatal_mondo_timeout:
713         printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
714                " progress after %d retries.\n",
715                this_cpu, retries);
716         goto dump_cpu_list_and_out;
717
718 fatal_mondo_error:
719         printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
720                this_cpu, status);
721         printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
722                "mondo_block_pa(%lx)\n",
723                this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
724
725 dump_cpu_list_and_out:
726         printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
727         for (i = 0; i < cnt; i++)
728                 printk("%u ", cpu_list[i]);
729         printk("]\n");
730 }
731
732 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
733
734 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
735 {
736         struct trap_per_cpu *tb;
737         int this_cpu, i, cnt;
738         unsigned long flags;
739         u16 *cpu_list;
740         u64 *mondo;
741
742         /* We have to do this whole thing with interrupts fully disabled.
743          * Otherwise if we send an xcall from interrupt context it will
744          * corrupt both our mondo block and cpu list state.
745          *
746          * One consequence of this is that we cannot use timeout mechanisms
747          * that depend upon interrupts being delivered locally.  So, for
748          * example, we cannot sample jiffies and expect it to advance.
749          *
750          * Fortunately, udelay() uses %stick/%tick so we can use that.
751          */
752         local_irq_save(flags);
753
754         this_cpu = smp_processor_id();
755         tb = &trap_block[this_cpu];
756
757         mondo = __va(tb->cpu_mondo_block_pa);
758         mondo[0] = data0;
759         mondo[1] = data1;
760         mondo[2] = data2;
761         wmb();
762
763         cpu_list = __va(tb->cpu_list_pa);
764
765         /* Setup the initial cpu list.  */
766         cnt = 0;
767         for_each_cpu(i, mask) {
768                 if (i == this_cpu || !cpu_online(i))
769                         continue;
770                 cpu_list[cnt++] = i;
771         }
772
773         if (cnt)
774                 xcall_deliver_impl(tb, cnt);
775
776         local_irq_restore(flags);
777 }
778
779 /* Send cross call to all processors mentioned in MASK_P
780  * except self.  Really, there are only two cases currently,
781  * "cpu_online_mask" and "mm_cpumask(mm)".
782  */
783 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
784 {
785         u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
786
787         xcall_deliver(data0, data1, data2, mask);
788 }
789
790 /* Send cross call to all processors except self. */
791 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
792 {
793         smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
794 }
795
796 extern unsigned long xcall_sync_tick;
797
798 static void smp_start_sync_tick_client(int cpu)
799 {
800         xcall_deliver((u64) &xcall_sync_tick, 0, 0,
801                       cpumask_of(cpu));
802 }
803
804 extern unsigned long xcall_call_function;
805
806 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
807 {
808         xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
809 }
810
811 extern unsigned long xcall_call_function_single;
812
813 void arch_send_call_function_single_ipi(int cpu)
814 {
815         xcall_deliver((u64) &xcall_call_function_single, 0, 0,
816                       cpumask_of(cpu));
817 }
818
819 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
820 {
821         clear_softint(1 << irq);
822         generic_smp_call_function_interrupt();
823 }
824
825 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
826 {
827         clear_softint(1 << irq);
828         generic_smp_call_function_single_interrupt();
829 }
830
831 static void tsb_sync(void *info)
832 {
833         struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
834         struct mm_struct *mm = info;
835
836         /* It is not valid to test "current->active_mm == mm" here.
837          *
838          * The value of "current" is not changed atomically with
839          * switch_mm().  But that's OK, we just need to check the
840          * current cpu's trap block PGD physical address.
841          */
842         if (tp->pgd_paddr == __pa(mm->pgd))
843                 tsb_context_switch(mm);
844 }
845
846 void smp_tsb_sync(struct mm_struct *mm)
847 {
848         smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
849 }
850
851 extern unsigned long xcall_flush_tlb_mm;
852 extern unsigned long xcall_flush_tlb_pending;
853 extern unsigned long xcall_flush_tlb_kernel_range;
854 extern unsigned long xcall_fetch_glob_regs;
855 extern unsigned long xcall_receive_signal;
856 extern unsigned long xcall_new_mmu_context_version;
857 #ifdef CONFIG_KGDB
858 extern unsigned long xcall_kgdb_capture;
859 #endif
860
861 #ifdef DCACHE_ALIASING_POSSIBLE
862 extern unsigned long xcall_flush_dcache_page_cheetah;
863 #endif
864 extern unsigned long xcall_flush_dcache_page_spitfire;
865
866 #ifdef CONFIG_DEBUG_DCFLUSH
867 extern atomic_t dcpage_flushes;
868 extern atomic_t dcpage_flushes_xcall;
869 #endif
870
871 static inline void __local_flush_dcache_page(struct page *page)
872 {
873 #ifdef DCACHE_ALIASING_POSSIBLE
874         __flush_dcache_page(page_address(page),
875                             ((tlb_type == spitfire) &&
876                              page_mapping(page) != NULL));
877 #else
878         if (page_mapping(page) != NULL &&
879             tlb_type == spitfire)
880                 __flush_icache_page(__pa(page_address(page)));
881 #endif
882 }
883
884 void smp_flush_dcache_page_impl(struct page *page, int cpu)
885 {
886         int this_cpu;
887
888         if (tlb_type == hypervisor)
889                 return;
890
891 #ifdef CONFIG_DEBUG_DCFLUSH
892         atomic_inc(&dcpage_flushes);
893 #endif
894
895         this_cpu = get_cpu();
896
897         if (cpu == this_cpu) {
898                 __local_flush_dcache_page(page);
899         } else if (cpu_online(cpu)) {
900                 void *pg_addr = page_address(page);
901                 u64 data0 = 0;
902
903                 if (tlb_type == spitfire) {
904                         data0 = ((u64)&xcall_flush_dcache_page_spitfire);
905                         if (page_mapping(page) != NULL)
906                                 data0 |= ((u64)1 << 32);
907                 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
908 #ifdef DCACHE_ALIASING_POSSIBLE
909                         data0 = ((u64)&xcall_flush_dcache_page_cheetah);
910 #endif
911                 }
912                 if (data0) {
913                         xcall_deliver(data0, __pa(pg_addr),
914                                       (u64) pg_addr, cpumask_of(cpu));
915 #ifdef CONFIG_DEBUG_DCFLUSH
916                         atomic_inc(&dcpage_flushes_xcall);
917 #endif
918                 }
919         }
920
921         put_cpu();
922 }
923
924 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
925 {
926         void *pg_addr;
927         u64 data0;
928
929         if (tlb_type == hypervisor)
930                 return;
931
932         preempt_disable();
933
934 #ifdef CONFIG_DEBUG_DCFLUSH
935         atomic_inc(&dcpage_flushes);
936 #endif
937         data0 = 0;
938         pg_addr = page_address(page);
939         if (tlb_type == spitfire) {
940                 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
941                 if (page_mapping(page) != NULL)
942                         data0 |= ((u64)1 << 32);
943         } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
944 #ifdef DCACHE_ALIASING_POSSIBLE
945                 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
946 #endif
947         }
948         if (data0) {
949                 xcall_deliver(data0, __pa(pg_addr),
950                               (u64) pg_addr, cpu_online_mask);
951 #ifdef CONFIG_DEBUG_DCFLUSH
952                 atomic_inc(&dcpage_flushes_xcall);
953 #endif
954         }
955         __local_flush_dcache_page(page);
956
957         preempt_enable();
958 }
959
960 void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
961 {
962         struct mm_struct *mm;
963         unsigned long flags;
964
965         clear_softint(1 << irq);
966
967         /* See if we need to allocate a new TLB context because
968          * the version of the one we are using is now out of date.
969          */
970         mm = current->active_mm;
971         if (unlikely(!mm || (mm == &init_mm)))
972                 return;
973
974         spin_lock_irqsave(&mm->context.lock, flags);
975
976         if (unlikely(!CTX_VALID(mm->context)))
977                 get_new_mmu_context(mm);
978
979         spin_unlock_irqrestore(&mm->context.lock, flags);
980
981         load_secondary_context(mm);
982         __flush_tlb_mm(CTX_HWBITS(mm->context),
983                        SECONDARY_CONTEXT);
984 }
985
986 void smp_new_mmu_context_version(void)
987 {
988         smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
989 }
990
991 #ifdef CONFIG_KGDB
992 void kgdb_roundup_cpus(unsigned long flags)
993 {
994         smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
995 }
996 #endif
997
998 void smp_fetch_global_regs(void)
999 {
1000         smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1001 }
1002
1003 /* We know that the window frames of the user have been flushed
1004  * to the stack before we get here because all callers of us
1005  * are flush_tlb_*() routines, and these run after flush_cache_*()
1006  * which performs the flushw.
1007  *
1008  * The SMP TLB coherency scheme we use works as follows:
1009  *
1010  * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1011  *    space has (potentially) executed on, this is the heuristic
1012  *    we use to avoid doing cross calls.
1013  *
1014  *    Also, for flushing from kswapd and also for clones, we
1015  *    use cpu_vm_mask as the list of cpus to make run the TLB.
1016  *
1017  * 2) TLB context numbers are shared globally across all processors
1018  *    in the system, this allows us to play several games to avoid
1019  *    cross calls.
1020  *
1021  *    One invariant is that when a cpu switches to a process, and
1022  *    that processes tsk->active_mm->cpu_vm_mask does not have the
1023  *    current cpu's bit set, that tlb context is flushed locally.
1024  *
1025  *    If the address space is non-shared (ie. mm->count == 1) we avoid
1026  *    cross calls when we want to flush the currently running process's
1027  *    tlb state.  This is done by clearing all cpu bits except the current
1028  *    processor's in current->mm->cpu_vm_mask and performing the
1029  *    flush locally only.  This will force any subsequent cpus which run
1030  *    this task to flush the context from the local tlb if the process
1031  *    migrates to another cpu (again).
1032  *
1033  * 3) For shared address spaces (threads) and swapping we bite the
1034  *    bullet for most cases and perform the cross call (but only to
1035  *    the cpus listed in cpu_vm_mask).
1036  *
1037  *    The performance gain from "optimizing" away the cross call for threads is
1038  *    questionable (in theory the big win for threads is the massive sharing of
1039  *    address space state across processors).
1040  */
1041
1042 /* This currently is only used by the hugetlb arch pre-fault
1043  * hook on UltraSPARC-III+ and later when changing the pagesize
1044  * bits of the context register for an address space.
1045  */
1046 void smp_flush_tlb_mm(struct mm_struct *mm)
1047 {
1048         u32 ctx = CTX_HWBITS(mm->context);
1049         int cpu = get_cpu();
1050
1051         if (atomic_read(&mm->mm_users) == 1) {
1052                 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1053                 goto local_flush_and_out;
1054         }
1055
1056         smp_cross_call_masked(&xcall_flush_tlb_mm,
1057                               ctx, 0, 0,
1058                               mm_cpumask(mm));
1059
1060 local_flush_and_out:
1061         __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1062
1063         put_cpu();
1064 }
1065
1066 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1067 {
1068         u32 ctx = CTX_HWBITS(mm->context);
1069         int cpu = get_cpu();
1070
1071         if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1072                 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1073         else
1074                 smp_cross_call_masked(&xcall_flush_tlb_pending,
1075                                       ctx, nr, (unsigned long) vaddrs,
1076                                       mm_cpumask(mm));
1077
1078         __flush_tlb_pending(ctx, nr, vaddrs);
1079
1080         put_cpu();
1081 }
1082
1083 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1084 {
1085         start &= PAGE_MASK;
1086         end    = PAGE_ALIGN(end);
1087         if (start != end) {
1088                 smp_cross_call(&xcall_flush_tlb_kernel_range,
1089                                0, start, end);
1090
1091                 __flush_tlb_kernel_range(start, end);
1092         }
1093 }
1094
1095 /* CPU capture. */
1096 /* #define CAPTURE_DEBUG */
1097 extern unsigned long xcall_capture;
1098
1099 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1100 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1101 static unsigned long penguins_are_doing_time;
1102
1103 void smp_capture(void)
1104 {
1105         int result = atomic_add_ret(1, &smp_capture_depth);
1106
1107         if (result == 1) {
1108                 int ncpus = num_online_cpus();
1109
1110 #ifdef CAPTURE_DEBUG
1111                 printk("CPU[%d]: Sending penguins to jail...",
1112                        smp_processor_id());
1113 #endif
1114                 penguins_are_doing_time = 1;
1115                 atomic_inc(&smp_capture_registry);
1116                 smp_cross_call(&xcall_capture, 0, 0, 0);
1117                 while (atomic_read(&smp_capture_registry) != ncpus)
1118                         rmb();
1119 #ifdef CAPTURE_DEBUG
1120                 printk("done\n");
1121 #endif
1122         }
1123 }
1124
1125 void smp_release(void)
1126 {
1127         if (atomic_dec_and_test(&smp_capture_depth)) {
1128 #ifdef CAPTURE_DEBUG
1129                 printk("CPU[%d]: Giving pardon to "
1130                        "imprisoned penguins\n",
1131                        smp_processor_id());
1132 #endif
1133                 penguins_are_doing_time = 0;
1134                 membar_safe("#StoreLoad");
1135                 atomic_dec(&smp_capture_registry);
1136         }
1137 }
1138
1139 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1140  * set, so they can service tlb flush xcalls...
1141  */
1142 extern void prom_world(int);
1143
1144 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1145 {
1146         clear_softint(1 << irq);
1147
1148         preempt_disable();
1149
1150         __asm__ __volatile__("flushw");
1151         prom_world(1);
1152         atomic_inc(&smp_capture_registry);
1153         membar_safe("#StoreLoad");
1154         while (penguins_are_doing_time)
1155                 rmb();
1156         atomic_dec(&smp_capture_registry);
1157         prom_world(0);
1158
1159         preempt_enable();
1160 }
1161
1162 /* /proc/profile writes can call this, don't __init it please. */
1163 int setup_profiling_timer(unsigned int multiplier)
1164 {
1165         return -EINVAL;
1166 }
1167
1168 void __init smp_prepare_cpus(unsigned int max_cpus)
1169 {
1170 }
1171
1172 void __devinit smp_prepare_boot_cpu(void)
1173 {
1174 }
1175
1176 void __init smp_setup_processor_id(void)
1177 {
1178         if (tlb_type == spitfire)
1179                 xcall_deliver_impl = spitfire_xcall_deliver;
1180         else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1181                 xcall_deliver_impl = cheetah_xcall_deliver;
1182         else
1183                 xcall_deliver_impl = hypervisor_xcall_deliver;
1184 }
1185
1186 void __devinit smp_fill_in_sib_core_maps(void)
1187 {
1188         unsigned int i;
1189
1190         for_each_present_cpu(i) {
1191                 unsigned int j;
1192
1193                 cpumask_clear(&cpu_core_map[i]);
1194                 if (cpu_data(i).core_id == 0) {
1195                         cpumask_set_cpu(i, &cpu_core_map[i]);
1196                         continue;
1197                 }
1198
1199                 for_each_present_cpu(j) {
1200                         if (cpu_data(i).core_id ==
1201                             cpu_data(j).core_id)
1202                                 cpumask_set_cpu(j, &cpu_core_map[i]);
1203                 }
1204         }
1205
1206         for_each_present_cpu(i) {
1207                 unsigned int j;
1208
1209                 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1210                 if (cpu_data(i).proc_id == -1) {
1211                         cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1212                         continue;
1213                 }
1214
1215                 for_each_present_cpu(j) {
1216                         if (cpu_data(i).proc_id ==
1217                             cpu_data(j).proc_id)
1218                                 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1219                 }
1220         }
1221 }
1222
1223 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
1224 {
1225         int ret = smp_boot_one_cpu(cpu, tidle);
1226
1227         if (!ret) {
1228                 cpumask_set_cpu(cpu, &smp_commenced_mask);
1229                 while (!cpu_online(cpu))
1230                         mb();
1231                 if (!cpu_online(cpu)) {
1232                         ret = -ENODEV;
1233                 } else {
1234                         /* On SUN4V, writes to %tick and %stick are
1235                          * not allowed.
1236                          */
1237                         if (tlb_type != hypervisor)
1238                                 smp_synchronize_one_tick(cpu);
1239                 }
1240         }
1241         return ret;
1242 }
1243
1244 #ifdef CONFIG_HOTPLUG_CPU
1245 void cpu_play_dead(void)
1246 {
1247         int cpu = smp_processor_id();
1248         unsigned long pstate;
1249
1250         idle_task_exit();
1251
1252         if (tlb_type == hypervisor) {
1253                 struct trap_per_cpu *tb = &trap_block[cpu];
1254
1255                 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1256                                 tb->cpu_mondo_pa, 0);
1257                 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1258                                 tb->dev_mondo_pa, 0);
1259                 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1260                                 tb->resum_mondo_pa, 0);
1261                 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1262                                 tb->nonresum_mondo_pa, 0);
1263         }
1264
1265         cpumask_clear_cpu(cpu, &smp_commenced_mask);
1266         membar_safe("#Sync");
1267
1268         local_irq_disable();
1269
1270         __asm__ __volatile__(
1271                 "rdpr   %%pstate, %0\n\t"
1272                 "wrpr   %0, %1, %%pstate"
1273                 : "=r" (pstate)
1274                 : "i" (PSTATE_IE));
1275
1276         while (1)
1277                 barrier();
1278 }
1279
1280 int __cpu_disable(void)
1281 {
1282         int cpu = smp_processor_id();
1283         cpuinfo_sparc *c;
1284         int i;
1285
1286         for_each_cpu(i, &cpu_core_map[cpu])
1287                 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1288         cpumask_clear(&cpu_core_map[cpu]);
1289
1290         for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1291                 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1292         cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1293
1294         c = &cpu_data(cpu);
1295
1296         c->core_id = 0;
1297         c->proc_id = -1;
1298
1299         smp_wmb();
1300
1301         /* Make sure no interrupts point to this cpu.  */
1302         fixup_irqs();
1303
1304         local_irq_enable();
1305         mdelay(1);
1306         local_irq_disable();
1307
1308         set_cpu_online(cpu, false);
1309
1310         cpu_map_rebuild();
1311
1312         return 0;
1313 }
1314
1315 void __cpu_die(unsigned int cpu)
1316 {
1317         int i;
1318
1319         for (i = 0; i < 100; i++) {
1320                 smp_rmb();
1321                 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1322                         break;
1323                 msleep(100);
1324         }
1325         if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1326                 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1327         } else {
1328 #if defined(CONFIG_SUN_LDOMS)
1329                 unsigned long hv_err;
1330                 int limit = 100;
1331
1332                 do {
1333                         hv_err = sun4v_cpu_stop(cpu);
1334                         if (hv_err == HV_EOK) {
1335                                 set_cpu_present(cpu, false);
1336                                 break;
1337                         }
1338                 } while (--limit > 0);
1339                 if (limit <= 0) {
1340                         printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1341                                hv_err);
1342                 }
1343 #endif
1344         }
1345 }
1346 #endif
1347
1348 void __init smp_cpus_done(unsigned int max_cpus)
1349 {
1350         pcr_arch_init();
1351 }
1352
1353 void smp_send_reschedule(int cpu)
1354 {
1355         xcall_deliver((u64) &xcall_receive_signal, 0, 0,
1356                       cpumask_of(cpu));
1357 }
1358
1359 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1360 {
1361         clear_softint(1 << irq);
1362         scheduler_ipi();
1363 }
1364
1365 /* This is a nop because we capture all other cpus
1366  * anyways when making the PROM active.
1367  */
1368 void smp_send_stop(void)
1369 {
1370 }
1371
1372 /**
1373  * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1374  * @cpu: cpu to allocate for
1375  * @size: size allocation in bytes
1376  * @align: alignment
1377  *
1378  * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1379  * does the right thing for NUMA regardless of the current
1380  * configuration.
1381  *
1382  * RETURNS:
1383  * Pointer to the allocated area on success, NULL on failure.
1384  */
1385 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1386                                         size_t align)
1387 {
1388         const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1389 #ifdef CONFIG_NEED_MULTIPLE_NODES
1390         int node = cpu_to_node(cpu);
1391         void *ptr;
1392
1393         if (!node_online(node) || !NODE_DATA(node)) {
1394                 ptr = __alloc_bootmem(size, align, goal);
1395                 pr_info("cpu %d has no node %d or node-local memory\n",
1396                         cpu, node);
1397                 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1398                          cpu, size, __pa(ptr));
1399         } else {
1400                 ptr = __alloc_bootmem_node(NODE_DATA(node),
1401                                            size, align, goal);
1402                 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1403                          "%016lx\n", cpu, size, node, __pa(ptr));
1404         }
1405         return ptr;
1406 #else
1407         return __alloc_bootmem(size, align, goal);
1408 #endif
1409 }
1410
1411 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1412 {
1413         free_bootmem(__pa(ptr), size);
1414 }
1415
1416 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1417 {
1418         if (cpu_to_node(from) == cpu_to_node(to))
1419                 return LOCAL_DISTANCE;
1420         else
1421                 return REMOTE_DISTANCE;
1422 }
1423
1424 static void __init pcpu_populate_pte(unsigned long addr)
1425 {
1426         pgd_t *pgd = pgd_offset_k(addr);
1427         pud_t *pud;
1428         pmd_t *pmd;
1429
1430         pud = pud_offset(pgd, addr);
1431         if (pud_none(*pud)) {
1432                 pmd_t *new;
1433
1434                 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1435                 pud_populate(&init_mm, pud, new);
1436         }
1437
1438         pmd = pmd_offset(pud, addr);
1439         if (!pmd_present(*pmd)) {
1440                 pte_t *new;
1441
1442                 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1443                 pmd_populate_kernel(&init_mm, pmd, new);
1444         }
1445 }
1446
1447 void __init setup_per_cpu_areas(void)
1448 {
1449         unsigned long delta;
1450         unsigned int cpu;
1451         int rc = -EINVAL;
1452
1453         if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1454                 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1455                                             PERCPU_DYNAMIC_RESERVE, 4 << 20,
1456                                             pcpu_cpu_distance,
1457                                             pcpu_alloc_bootmem,
1458                                             pcpu_free_bootmem);
1459                 if (rc)
1460                         pr_warning("PERCPU: %s allocator failed (%d), "
1461                                    "falling back to page size\n",
1462                                    pcpu_fc_names[pcpu_chosen_fc], rc);
1463         }
1464         if (rc < 0)
1465                 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1466                                            pcpu_alloc_bootmem,
1467                                            pcpu_free_bootmem,
1468                                            pcpu_populate_pte);
1469         if (rc < 0)
1470                 panic("cannot initialize percpu area (err=%d)", rc);
1471
1472         delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1473         for_each_possible_cpu(cpu)
1474                 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1475
1476         /* Setup %g5 for the boot cpu.  */
1477         __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1478
1479         of_fill_in_cpu_data();
1480         if (tlb_type == hypervisor)
1481                 mdesc_fill_in_cpu_data(cpu_all_mask);
1482 }