Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[sfrench/cifs-2.6.git] / arch / sparc / kernel / kprobes.c
1 /* arch/sparc64/kernel/kprobes.c
2  *
3  * Copyright (C) 2004 David S. Miller <davem@davemloft.net>
4  */
5
6 #include <linux/kernel.h>
7 #include <linux/kprobes.h>
8 #include <linux/module.h>
9 #include <linux/kdebug.h>
10 #include <linux/slab.h>
11 #include <linux/context_tracking.h>
12 #include <asm/signal.h>
13 #include <asm/cacheflush.h>
14 #include <asm/uaccess.h>
15
16 /* We do not have hardware single-stepping on sparc64.
17  * So we implement software single-stepping with breakpoint
18  * traps.  The top-level scheme is similar to that used
19  * in the x86 kprobes implementation.
20  *
21  * In the kprobe->ainsn.insn[] array we store the original
22  * instruction at index zero and a break instruction at
23  * index one.
24  *
25  * When we hit a kprobe we:
26  * - Run the pre-handler
27  * - Remember "regs->tnpc" and interrupt level stored in
28  *   "regs->tstate" so we can restore them later
29  * - Disable PIL interrupts
30  * - Set regs->tpc to point to kprobe->ainsn.insn[0]
31  * - Set regs->tnpc to point to kprobe->ainsn.insn[1]
32  * - Mark that we are actively in a kprobe
33  *
34  * At this point we wait for the second breakpoint at
35  * kprobe->ainsn.insn[1] to hit.  When it does we:
36  * - Run the post-handler
37  * - Set regs->tpc to "remembered" regs->tnpc stored above,
38  *   restore the PIL interrupt level in "regs->tstate" as well
39  * - Make any adjustments necessary to regs->tnpc in order
40  *   to handle relative branches correctly.  See below.
41  * - Mark that we are no longer actively in a kprobe.
42  */
43
44 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
45 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
46
47 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
48
49 int __kprobes arch_prepare_kprobe(struct kprobe *p)
50 {
51         if ((unsigned long) p->addr & 0x3UL)
52                 return -EILSEQ;
53
54         p->ainsn.insn[0] = *p->addr;
55         flushi(&p->ainsn.insn[0]);
56
57         p->ainsn.insn[1] = BREAKPOINT_INSTRUCTION_2;
58         flushi(&p->ainsn.insn[1]);
59
60         p->opcode = *p->addr;
61         return 0;
62 }
63
64 void __kprobes arch_arm_kprobe(struct kprobe *p)
65 {
66         *p->addr = BREAKPOINT_INSTRUCTION;
67         flushi(p->addr);
68 }
69
70 void __kprobes arch_disarm_kprobe(struct kprobe *p)
71 {
72         *p->addr = p->opcode;
73         flushi(p->addr);
74 }
75
76 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
77 {
78         kcb->prev_kprobe.kp = kprobe_running();
79         kcb->prev_kprobe.status = kcb->kprobe_status;
80         kcb->prev_kprobe.orig_tnpc = kcb->kprobe_orig_tnpc;
81         kcb->prev_kprobe.orig_tstate_pil = kcb->kprobe_orig_tstate_pil;
82 }
83
84 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
85 {
86         __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
87         kcb->kprobe_status = kcb->prev_kprobe.status;
88         kcb->kprobe_orig_tnpc = kcb->prev_kprobe.orig_tnpc;
89         kcb->kprobe_orig_tstate_pil = kcb->prev_kprobe.orig_tstate_pil;
90 }
91
92 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
93                                 struct kprobe_ctlblk *kcb)
94 {
95         __get_cpu_var(current_kprobe) = p;
96         kcb->kprobe_orig_tnpc = regs->tnpc;
97         kcb->kprobe_orig_tstate_pil = (regs->tstate & TSTATE_PIL);
98 }
99
100 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
101                         struct kprobe_ctlblk *kcb)
102 {
103         regs->tstate |= TSTATE_PIL;
104
105         /*single step inline, if it a breakpoint instruction*/
106         if (p->opcode == BREAKPOINT_INSTRUCTION) {
107                 regs->tpc = (unsigned long) p->addr;
108                 regs->tnpc = kcb->kprobe_orig_tnpc;
109         } else {
110                 regs->tpc = (unsigned long) &p->ainsn.insn[0];
111                 regs->tnpc = (unsigned long) &p->ainsn.insn[1];
112         }
113 }
114
115 static int __kprobes kprobe_handler(struct pt_regs *regs)
116 {
117         struct kprobe *p;
118         void *addr = (void *) regs->tpc;
119         int ret = 0;
120         struct kprobe_ctlblk *kcb;
121
122         /*
123          * We don't want to be preempted for the entire
124          * duration of kprobe processing
125          */
126         preempt_disable();
127         kcb = get_kprobe_ctlblk();
128
129         if (kprobe_running()) {
130                 p = get_kprobe(addr);
131                 if (p) {
132                         if (kcb->kprobe_status == KPROBE_HIT_SS) {
133                                 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
134                                         kcb->kprobe_orig_tstate_pil);
135                                 goto no_kprobe;
136                         }
137                         /* We have reentered the kprobe_handler(), since
138                          * another probe was hit while within the handler.
139                          * We here save the original kprobes variables and
140                          * just single step on the instruction of the new probe
141                          * without calling any user handlers.
142                          */
143                         save_previous_kprobe(kcb);
144                         set_current_kprobe(p, regs, kcb);
145                         kprobes_inc_nmissed_count(p);
146                         kcb->kprobe_status = KPROBE_REENTER;
147                         prepare_singlestep(p, regs, kcb);
148                         return 1;
149                 } else {
150                         if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
151                         /* The breakpoint instruction was removed by
152                          * another cpu right after we hit, no further
153                          * handling of this interrupt is appropriate
154                          */
155                                 ret = 1;
156                                 goto no_kprobe;
157                         }
158                         p = __get_cpu_var(current_kprobe);
159                         if (p->break_handler && p->break_handler(p, regs))
160                                 goto ss_probe;
161                 }
162                 goto no_kprobe;
163         }
164
165         p = get_kprobe(addr);
166         if (!p) {
167                 if (*(u32 *)addr != BREAKPOINT_INSTRUCTION) {
168                         /*
169                          * The breakpoint instruction was removed right
170                          * after we hit it.  Another cpu has removed
171                          * either a probepoint or a debugger breakpoint
172                          * at this address.  In either case, no further
173                          * handling of this interrupt is appropriate.
174                          */
175                         ret = 1;
176                 }
177                 /* Not one of ours: let kernel handle it */
178                 goto no_kprobe;
179         }
180
181         set_current_kprobe(p, regs, kcb);
182         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
183         if (p->pre_handler && p->pre_handler(p, regs))
184                 return 1;
185
186 ss_probe:
187         prepare_singlestep(p, regs, kcb);
188         kcb->kprobe_status = KPROBE_HIT_SS;
189         return 1;
190
191 no_kprobe:
192         preempt_enable_no_resched();
193         return ret;
194 }
195
196 /* If INSN is a relative control transfer instruction,
197  * return the corrected branch destination value.
198  *
199  * regs->tpc and regs->tnpc still hold the values of the
200  * program counters at the time of trap due to the execution
201  * of the BREAKPOINT_INSTRUCTION_2 at p->ainsn.insn[1]
202  * 
203  */
204 static unsigned long __kprobes relbranch_fixup(u32 insn, struct kprobe *p,
205                                                struct pt_regs *regs)
206 {
207         unsigned long real_pc = (unsigned long) p->addr;
208
209         /* Branch not taken, no mods necessary.  */
210         if (regs->tnpc == regs->tpc + 0x4UL)
211                 return real_pc + 0x8UL;
212
213         /* The three cases are call, branch w/prediction,
214          * and traditional branch.
215          */
216         if ((insn & 0xc0000000) == 0x40000000 ||
217             (insn & 0xc1c00000) == 0x00400000 ||
218             (insn & 0xc1c00000) == 0x00800000) {
219                 unsigned long ainsn_addr;
220
221                 ainsn_addr = (unsigned long) &p->ainsn.insn[0];
222
223                 /* The instruction did all the work for us
224                  * already, just apply the offset to the correct
225                  * instruction location.
226                  */
227                 return (real_pc + (regs->tnpc - ainsn_addr));
228         }
229
230         /* It is jmpl or some other absolute PC modification instruction,
231          * leave NPC as-is.
232          */
233         return regs->tnpc;
234 }
235
236 /* If INSN is an instruction which writes it's PC location
237  * into a destination register, fix that up.
238  */
239 static void __kprobes retpc_fixup(struct pt_regs *regs, u32 insn,
240                                   unsigned long real_pc)
241 {
242         unsigned long *slot = NULL;
243
244         /* Simplest case is 'call', which always uses %o7 */
245         if ((insn & 0xc0000000) == 0x40000000) {
246                 slot = &regs->u_regs[UREG_I7];
247         }
248
249         /* 'jmpl' encodes the register inside of the opcode */
250         if ((insn & 0xc1f80000) == 0x81c00000) {
251                 unsigned long rd = ((insn >> 25) & 0x1f);
252
253                 if (rd <= 15) {
254                         slot = &regs->u_regs[rd];
255                 } else {
256                         /* Hard case, it goes onto the stack. */
257                         flushw_all();
258
259                         rd -= 16;
260                         slot = (unsigned long *)
261                                 (regs->u_regs[UREG_FP] + STACK_BIAS);
262                         slot += rd;
263                 }
264         }
265         if (slot != NULL)
266                 *slot = real_pc;
267 }
268
269 /*
270  * Called after single-stepping.  p->addr is the address of the
271  * instruction which has been replaced by the breakpoint
272  * instruction.  To avoid the SMP problems that can occur when we
273  * temporarily put back the original opcode to single-step, we
274  * single-stepped a copy of the instruction.  The address of this
275  * copy is &p->ainsn.insn[0].
276  *
277  * This function prepares to return from the post-single-step
278  * breakpoint trap.
279  */
280 static void __kprobes resume_execution(struct kprobe *p,
281                 struct pt_regs *regs, struct kprobe_ctlblk *kcb)
282 {
283         u32 insn = p->ainsn.insn[0];
284
285         regs->tnpc = relbranch_fixup(insn, p, regs);
286
287         /* This assignment must occur after relbranch_fixup() */
288         regs->tpc = kcb->kprobe_orig_tnpc;
289
290         retpc_fixup(regs, insn, (unsigned long) p->addr);
291
292         regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
293                         kcb->kprobe_orig_tstate_pil);
294 }
295
296 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
297 {
298         struct kprobe *cur = kprobe_running();
299         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
300
301         if (!cur)
302                 return 0;
303
304         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
305                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
306                 cur->post_handler(cur, regs, 0);
307         }
308
309         resume_execution(cur, regs, kcb);
310
311         /*Restore back the original saved kprobes variables and continue. */
312         if (kcb->kprobe_status == KPROBE_REENTER) {
313                 restore_previous_kprobe(kcb);
314                 goto out;
315         }
316         reset_current_kprobe();
317 out:
318         preempt_enable_no_resched();
319
320         return 1;
321 }
322
323 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
324 {
325         struct kprobe *cur = kprobe_running();
326         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
327         const struct exception_table_entry *entry;
328
329         switch(kcb->kprobe_status) {
330         case KPROBE_HIT_SS:
331         case KPROBE_REENTER:
332                 /*
333                  * We are here because the instruction being single
334                  * stepped caused a page fault. We reset the current
335                  * kprobe and the tpc points back to the probe address
336                  * and allow the page fault handler to continue as a
337                  * normal page fault.
338                  */
339                 regs->tpc = (unsigned long)cur->addr;
340                 regs->tnpc = kcb->kprobe_orig_tnpc;
341                 regs->tstate = ((regs->tstate & ~TSTATE_PIL) |
342                                 kcb->kprobe_orig_tstate_pil);
343                 if (kcb->kprobe_status == KPROBE_REENTER)
344                         restore_previous_kprobe(kcb);
345                 else
346                         reset_current_kprobe();
347                 preempt_enable_no_resched();
348                 break;
349         case KPROBE_HIT_ACTIVE:
350         case KPROBE_HIT_SSDONE:
351                 /*
352                  * We increment the nmissed count for accounting,
353                  * we can also use npre/npostfault count for accounting
354                  * these specific fault cases.
355                  */
356                 kprobes_inc_nmissed_count(cur);
357
358                 /*
359                  * We come here because instructions in the pre/post
360                  * handler caused the page_fault, this could happen
361                  * if handler tries to access user space by
362                  * copy_from_user(), get_user() etc. Let the
363                  * user-specified handler try to fix it first.
364                  */
365                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
366                         return 1;
367
368                 /*
369                  * In case the user-specified fault handler returned
370                  * zero, try to fix up.
371                  */
372
373                 entry = search_exception_tables(regs->tpc);
374                 if (entry) {
375                         regs->tpc = entry->fixup;
376                         regs->tnpc = regs->tpc + 4;
377                         return 1;
378                 }
379
380                 /*
381                  * fixup_exception() could not handle it,
382                  * Let do_page_fault() fix it.
383                  */
384                 break;
385         default:
386                 break;
387         }
388
389         return 0;
390 }
391
392 /*
393  * Wrapper routine to for handling exceptions.
394  */
395 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
396                                        unsigned long val, void *data)
397 {
398         struct die_args *args = (struct die_args *)data;
399         int ret = NOTIFY_DONE;
400
401         if (args->regs && user_mode(args->regs))
402                 return ret;
403
404         switch (val) {
405         case DIE_DEBUG:
406                 if (kprobe_handler(args->regs))
407                         ret = NOTIFY_STOP;
408                 break;
409         case DIE_DEBUG_2:
410                 if (post_kprobe_handler(args->regs))
411                         ret = NOTIFY_STOP;
412                 break;
413         default:
414                 break;
415         }
416         return ret;
417 }
418
419 asmlinkage void __kprobes kprobe_trap(unsigned long trap_level,
420                                       struct pt_regs *regs)
421 {
422         enum ctx_state prev_state = exception_enter();
423
424         BUG_ON(trap_level != 0x170 && trap_level != 0x171);
425
426         if (user_mode(regs)) {
427                 local_irq_enable();
428                 bad_trap(regs, trap_level);
429                 goto out;
430         }
431
432         /* trap_level == 0x170 --> ta 0x70
433          * trap_level == 0x171 --> ta 0x71
434          */
435         if (notify_die((trap_level == 0x170) ? DIE_DEBUG : DIE_DEBUG_2,
436                        (trap_level == 0x170) ? "debug" : "debug_2",
437                        regs, 0, trap_level, SIGTRAP) != NOTIFY_STOP)
438                 bad_trap(regs, trap_level);
439 out:
440         exception_exit(prev_state);
441 }
442
443 /* Jprobes support.  */
444 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
445 {
446         struct jprobe *jp = container_of(p, struct jprobe, kp);
447         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
448
449         memcpy(&(kcb->jprobe_saved_regs), regs, sizeof(*regs));
450
451         regs->tpc  = (unsigned long) jp->entry;
452         regs->tnpc = ((unsigned long) jp->entry) + 0x4UL;
453         regs->tstate |= TSTATE_PIL;
454
455         return 1;
456 }
457
458 void __kprobes jprobe_return(void)
459 {
460         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
461         register unsigned long orig_fp asm("g1");
462
463         orig_fp = kcb->jprobe_saved_regs.u_regs[UREG_FP];
464         __asm__ __volatile__("\n"
465 "1:     cmp             %%sp, %0\n\t"
466         "blu,a,pt       %%xcc, 1b\n\t"
467         " restore\n\t"
468         ".globl         jprobe_return_trap_instruction\n"
469 "jprobe_return_trap_instruction:\n\t"
470         "ta             0x70"
471         : /* no outputs */
472         : "r" (orig_fp));
473 }
474
475 extern void jprobe_return_trap_instruction(void);
476
477 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
478 {
479         u32 *addr = (u32 *) regs->tpc;
480         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
481
482         if (addr == (u32 *) jprobe_return_trap_instruction) {
483                 memcpy(regs, &(kcb->jprobe_saved_regs), sizeof(*regs));
484                 preempt_enable_no_resched();
485                 return 1;
486         }
487         return 0;
488 }
489
490 /* The value stored in the return address register is actually 2
491  * instructions before where the callee will return to.
492  * Sequences usually look something like this
493  *
494  *              call    some_function   <--- return register points here
495  *               nop                    <--- call delay slot
496  *              whatever                <--- where callee returns to
497  *
498  * To keep trampoline_probe_handler logic simpler, we normalize the
499  * value kept in ri->ret_addr so we don't need to keep adjusting it
500  * back and forth.
501  */
502 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
503                                       struct pt_regs *regs)
504 {
505         ri->ret_addr = (kprobe_opcode_t *)(regs->u_regs[UREG_RETPC] + 8);
506
507         /* Replace the return addr with trampoline addr */
508         regs->u_regs[UREG_RETPC] =
509                 ((unsigned long)kretprobe_trampoline) - 8;
510 }
511
512 /*
513  * Called when the probe at kretprobe trampoline is hit
514  */
515 static int __kprobes trampoline_probe_handler(struct kprobe *p,
516                                               struct pt_regs *regs)
517 {
518         struct kretprobe_instance *ri = NULL;
519         struct hlist_head *head, empty_rp;
520         struct hlist_node *tmp;
521         unsigned long flags, orig_ret_address = 0;
522         unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
523
524         INIT_HLIST_HEAD(&empty_rp);
525         kretprobe_hash_lock(current, &head, &flags);
526
527         /*
528          * It is possible to have multiple instances associated with a given
529          * task either because an multiple functions in the call path
530          * have a return probe installed on them, and/or more than one return
531          * return probe was registered for a target function.
532          *
533          * We can handle this because:
534          *     - instances are always inserted at the head of the list
535          *     - when multiple return probes are registered for the same
536          *       function, the first instance's ret_addr will point to the
537          *       real return address, and all the rest will point to
538          *       kretprobe_trampoline
539          */
540         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
541                 if (ri->task != current)
542                         /* another task is sharing our hash bucket */
543                         continue;
544
545                 if (ri->rp && ri->rp->handler)
546                         ri->rp->handler(ri, regs);
547
548                 orig_ret_address = (unsigned long)ri->ret_addr;
549                 recycle_rp_inst(ri, &empty_rp);
550
551                 if (orig_ret_address != trampoline_address)
552                         /*
553                          * This is the real return address. Any other
554                          * instances associated with this task are for
555                          * other calls deeper on the call stack
556                          */
557                         break;
558         }
559
560         kretprobe_assert(ri, orig_ret_address, trampoline_address);
561         regs->tpc = orig_ret_address;
562         regs->tnpc = orig_ret_address + 4;
563
564         reset_current_kprobe();
565         kretprobe_hash_unlock(current, &flags);
566         preempt_enable_no_resched();
567
568         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
569                 hlist_del(&ri->hlist);
570                 kfree(ri);
571         }
572         /*
573          * By returning a non-zero value, we are telling
574          * kprobe_handler() that we don't want the post_handler
575          * to run (and have re-enabled preemption)
576          */
577         return 1;
578 }
579
580 static void __used kretprobe_trampoline_holder(void)
581 {
582         asm volatile(".global kretprobe_trampoline\n"
583                      "kretprobe_trampoline:\n"
584                      "\tnop\n"
585                      "\tnop\n");
586 }
587 static struct kprobe trampoline_p = {
588         .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
589         .pre_handler = trampoline_probe_handler
590 };
591
592 int __init arch_init_kprobes(void)
593 {
594         return register_kprobe(&trampoline_p);
595 }
596
597 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
598 {
599         if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
600                 return 1;
601
602         return 0;
603 }