Merge tag 'irq-urgent-2024-03-23' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / sh / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * arch/sh/kernel/smp.c
4  *
5  * SMP support for the SuperH processors.
6  *
7  * Copyright (C) 2002 - 2010 Paul Mundt
8  * Copyright (C) 2006 - 2007 Akio Idehara
9  */
10 #include <linux/err.h>
11 #include <linux/cache.h>
12 #include <linux/cpumask.h>
13 #include <linux/delay.h>
14 #include <linux/init.h>
15 #include <linux/spinlock.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/cpu.h>
19 #include <linux/interrupt.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/hotplug.h>
22 #include <linux/atomic.h>
23 #include <linux/clockchips.h>
24 #include <asm/processor.h>
25 #include <asm/mmu_context.h>
26 #include <asm/smp.h>
27 #include <asm/cacheflush.h>
28 #include <asm/sections.h>
29 #include <asm/setup.h>
30
31 int __cpu_number_map[NR_CPUS];          /* Map physical to logical */
32 int __cpu_logical_map[NR_CPUS];         /* Map logical to physical */
33
34 struct plat_smp_ops *mp_ops = NULL;
35
36 /* State of each CPU */
37 DEFINE_PER_CPU(int, cpu_state) = { 0 };
38
39 void register_smp_ops(struct plat_smp_ops *ops)
40 {
41         if (mp_ops)
42                 printk(KERN_WARNING "Overriding previously set SMP ops\n");
43
44         mp_ops = ops;
45 }
46
47 static inline void smp_store_cpu_info(unsigned int cpu)
48 {
49         struct sh_cpuinfo *c = cpu_data + cpu;
50
51         memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
52
53         c->loops_per_jiffy = loops_per_jiffy;
54 }
55
56 void __init smp_prepare_cpus(unsigned int max_cpus)
57 {
58         unsigned int cpu = smp_processor_id();
59
60         init_new_context(current, &init_mm);
61         current_thread_info()->cpu = cpu;
62         mp_ops->prepare_cpus(max_cpus);
63
64 #ifndef CONFIG_HOTPLUG_CPU
65         init_cpu_present(cpu_possible_mask);
66 #endif
67 }
68
69 void __init smp_prepare_boot_cpu(void)
70 {
71         unsigned int cpu = smp_processor_id();
72
73         __cpu_number_map[0] = cpu;
74         __cpu_logical_map[0] = cpu;
75
76         set_cpu_online(cpu, true);
77         set_cpu_possible(cpu, true);
78
79         per_cpu(cpu_state, cpu) = CPU_ONLINE;
80 }
81
82 #ifdef CONFIG_HOTPLUG_CPU
83 void native_cpu_die(unsigned int cpu)
84 {
85         unsigned int i;
86
87         for (i = 0; i < 10; i++) {
88                 smp_rmb();
89                 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
90                         if (system_state == SYSTEM_RUNNING)
91                                 pr_info("CPU %u is now offline\n", cpu);
92
93                         return;
94                 }
95
96                 msleep(100);
97         }
98
99         pr_err("CPU %u didn't die...\n", cpu);
100 }
101
102 int native_cpu_disable(unsigned int cpu)
103 {
104         return cpu == 0 ? -EPERM : 0;
105 }
106
107 void play_dead_common(void)
108 {
109         idle_task_exit();
110         irq_ctx_exit(raw_smp_processor_id());
111         mb();
112
113         __this_cpu_write(cpu_state, CPU_DEAD);
114         local_irq_disable();
115 }
116
117 void native_play_dead(void)
118 {
119         play_dead_common();
120 }
121
122 int __cpu_disable(void)
123 {
124         unsigned int cpu = smp_processor_id();
125         int ret;
126
127         ret = mp_ops->cpu_disable(cpu);
128         if (ret)
129                 return ret;
130
131         /*
132          * Take this CPU offline.  Once we clear this, we can't return,
133          * and we must not schedule until we're ready to give up the cpu.
134          */
135         set_cpu_online(cpu, false);
136
137         /*
138          * OK - migrate IRQs away from this CPU
139          */
140         migrate_irqs();
141
142         /*
143          * Flush user cache and TLB mappings, and then remove this CPU
144          * from the vm mask set of all processes.
145          */
146         flush_cache_all();
147 #ifdef CONFIG_MMU
148         local_flush_tlb_all();
149 #endif
150
151         clear_tasks_mm_cpumask(cpu);
152
153         return 0;
154 }
155 #else /* ... !CONFIG_HOTPLUG_CPU */
156 int native_cpu_disable(unsigned int cpu)
157 {
158         return -ENOSYS;
159 }
160
161 void native_cpu_die(unsigned int cpu)
162 {
163         /* We said "no" in __cpu_disable */
164         BUG();
165 }
166
167 void native_play_dead(void)
168 {
169         BUG();
170 }
171 #endif
172
173 asmlinkage void start_secondary(void)
174 {
175         unsigned int cpu = smp_processor_id();
176         struct mm_struct *mm = &init_mm;
177
178         enable_mmu();
179         mmgrab(mm);
180         mmget(mm);
181         current->active_mm = mm;
182 #ifdef CONFIG_MMU
183         enter_lazy_tlb(mm, current);
184         local_flush_tlb_all();
185 #endif
186
187         per_cpu_trap_init();
188
189         notify_cpu_starting(cpu);
190
191         local_irq_enable();
192
193         calibrate_delay();
194
195         smp_store_cpu_info(cpu);
196
197         set_cpu_online(cpu, true);
198         per_cpu(cpu_state, cpu) = CPU_ONLINE;
199
200         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
201 }
202
203 extern struct {
204         unsigned long sp;
205         unsigned long bss_start;
206         unsigned long bss_end;
207         void *start_kernel_fn;
208         void *cpu_init_fn;
209         void *thread_info;
210 } stack_start;
211
212 int __cpu_up(unsigned int cpu, struct task_struct *tsk)
213 {
214         unsigned long timeout;
215
216         per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
217
218         /* Fill in data in head.S for secondary cpus */
219         stack_start.sp = tsk->thread.sp;
220         stack_start.thread_info = tsk->stack;
221         stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
222         stack_start.start_kernel_fn = start_secondary;
223
224         flush_icache_range((unsigned long)&stack_start,
225                            (unsigned long)&stack_start + sizeof(stack_start));
226         wmb();
227
228         mp_ops->start_cpu(cpu, (unsigned long)_stext);
229
230         timeout = jiffies + HZ;
231         while (time_before(jiffies, timeout)) {
232                 if (cpu_online(cpu))
233                         break;
234
235                 udelay(10);
236                 barrier();
237         }
238
239         if (cpu_online(cpu))
240                 return 0;
241
242         return -ENOENT;
243 }
244
245 void __init smp_cpus_done(unsigned int max_cpus)
246 {
247         unsigned long bogosum = 0;
248         int cpu;
249
250         for_each_online_cpu(cpu)
251                 bogosum += cpu_data[cpu].loops_per_jiffy;
252
253         printk(KERN_INFO "SMP: Total of %d processors activated "
254                "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
255                bogosum / (500000/HZ),
256                (bogosum / (5000/HZ)) % 100);
257 }
258
259 void arch_smp_send_reschedule(int cpu)
260 {
261         mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE);
262 }
263
264 void smp_send_stop(void)
265 {
266         smp_call_function(stop_this_cpu, 0, 0);
267 }
268
269 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
270 {
271         int cpu;
272
273         for_each_cpu(cpu, mask)
274                 mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION);
275 }
276
277 void arch_send_call_function_single_ipi(int cpu)
278 {
279         mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
280 }
281
282 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
283 void tick_broadcast(const struct cpumask *mask)
284 {
285         int cpu;
286
287         for_each_cpu(cpu, mask)
288                 mp_ops->send_ipi(cpu, SMP_MSG_TIMER);
289 }
290
291 static void ipi_timer(void)
292 {
293         irq_enter();
294         tick_receive_broadcast();
295         irq_exit();
296 }
297 #endif
298
299 void smp_message_recv(unsigned int msg)
300 {
301         switch (msg) {
302         case SMP_MSG_FUNCTION:
303                 generic_smp_call_function_interrupt();
304                 break;
305         case SMP_MSG_RESCHEDULE:
306                 scheduler_ipi();
307                 break;
308         case SMP_MSG_FUNCTION_SINGLE:
309                 generic_smp_call_function_single_interrupt();
310                 break;
311 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
312         case SMP_MSG_TIMER:
313                 ipi_timer();
314                 break;
315 #endif
316         default:
317                 printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
318                        smp_processor_id(), __func__, msg);
319                 break;
320         }
321 }
322
323 /* Not really SMP stuff ... */
324 int setup_profiling_timer(unsigned int multiplier)
325 {
326         return 0;
327 }
328
329 #ifdef CONFIG_MMU
330
331 static void flush_tlb_all_ipi(void *info)
332 {
333         local_flush_tlb_all();
334 }
335
336 void flush_tlb_all(void)
337 {
338         on_each_cpu(flush_tlb_all_ipi, 0, 1);
339 }
340
341 static void flush_tlb_mm_ipi(void *mm)
342 {
343         local_flush_tlb_mm((struct mm_struct *)mm);
344 }
345
346 /*
347  * The following tlb flush calls are invoked when old translations are
348  * being torn down, or pte attributes are changing. For single threaded
349  * address spaces, a new context is obtained on the current cpu, and tlb
350  * context on other cpus are invalidated to force a new context allocation
351  * at switch_mm time, should the mm ever be used on other cpus. For
352  * multithreaded address spaces, intercpu interrupts have to be sent.
353  * Another case where intercpu interrupts are required is when the target
354  * mm might be active on another cpu (eg debuggers doing the flushes on
355  * behalf of debugees, kswapd stealing pages from another process etc).
356  * Kanoj 07/00.
357  */
358 void flush_tlb_mm(struct mm_struct *mm)
359 {
360         preempt_disable();
361
362         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
363                 smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
364         } else {
365                 int i;
366                 for_each_online_cpu(i)
367                         if (smp_processor_id() != i)
368                                 cpu_context(i, mm) = 0;
369         }
370         local_flush_tlb_mm(mm);
371
372         preempt_enable();
373 }
374
375 struct flush_tlb_data {
376         struct vm_area_struct *vma;
377         unsigned long addr1;
378         unsigned long addr2;
379 };
380
381 static void flush_tlb_range_ipi(void *info)
382 {
383         struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
384
385         local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
386 }
387
388 void flush_tlb_range(struct vm_area_struct *vma,
389                      unsigned long start, unsigned long end)
390 {
391         struct mm_struct *mm = vma->vm_mm;
392
393         preempt_disable();
394         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
395                 struct flush_tlb_data fd;
396
397                 fd.vma = vma;
398                 fd.addr1 = start;
399                 fd.addr2 = end;
400                 smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
401         } else {
402                 int i;
403                 for_each_online_cpu(i)
404                         if (smp_processor_id() != i)
405                                 cpu_context(i, mm) = 0;
406         }
407         local_flush_tlb_range(vma, start, end);
408         preempt_enable();
409 }
410
411 static void flush_tlb_kernel_range_ipi(void *info)
412 {
413         struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
414
415         local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
416 }
417
418 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
419 {
420         struct flush_tlb_data fd;
421
422         fd.addr1 = start;
423         fd.addr2 = end;
424         on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
425 }
426
427 static void flush_tlb_page_ipi(void *info)
428 {
429         struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
430
431         local_flush_tlb_page(fd->vma, fd->addr1);
432 }
433
434 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
435 {
436         preempt_disable();
437         if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
438             (current->mm != vma->vm_mm)) {
439                 struct flush_tlb_data fd;
440
441                 fd.vma = vma;
442                 fd.addr1 = page;
443                 smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
444         } else {
445                 int i;
446                 for_each_online_cpu(i)
447                         if (smp_processor_id() != i)
448                                 cpu_context(i, vma->vm_mm) = 0;
449         }
450         local_flush_tlb_page(vma, page);
451         preempt_enable();
452 }
453
454 static void flush_tlb_one_ipi(void *info)
455 {
456         struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
457         local_flush_tlb_one(fd->addr1, fd->addr2);
458 }
459
460 void flush_tlb_one(unsigned long asid, unsigned long vaddr)
461 {
462         struct flush_tlb_data fd;
463
464         fd.addr1 = asid;
465         fd.addr2 = vaddr;
466
467         smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
468         local_flush_tlb_one(asid, vaddr);
469 }
470
471 #endif