Merge git://git.kernel.org/pub/scm/linux/kernel/git/linville/wireless-2.6
[sfrench/cifs-2.6.git] / arch / sh / kernel / setup.c
1 /*
2  * arch/sh/kernel/setup.c
3  *
4  * This file handles the architecture-dependent parts of initialization
5  *
6  *  Copyright (C) 1999  Niibe Yutaka
7  *  Copyright (C) 2002 - 2007 Paul Mundt
8  */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <linux/crash_dump.h>
29 #include <linux/mmzone.h>
30 #include <linux/clk.h>
31 #include <linux/delay.h>
32 #include <asm/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/page.h>
35 #include <asm/elf.h>
36 #include <asm/sections.h>
37 #include <asm/irq.h>
38 #include <asm/setup.h>
39 #include <asm/clock.h>
40 #include <asm/mmu_context.h>
41
42 /*
43  * Initialize loops_per_jiffy as 10000000 (1000MIPS).
44  * This value will be used at the very early stage of serial setup.
45  * The bigger value means no problem.
46  */
47 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
48         [0] = {
49                 .type                   = CPU_SH_NONE,
50                 .loops_per_jiffy        = 10000000,
51         },
52 };
53 EXPORT_SYMBOL(cpu_data);
54
55 /*
56  * The machine vector. First entry in .machvec.init, or clobbered by
57  * sh_mv= on the command line, prior to .machvec.init teardown.
58  */
59 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
60 EXPORT_SYMBOL(sh_mv);
61
62 #ifdef CONFIG_VT
63 struct screen_info screen_info;
64 #endif
65
66 extern int root_mountflags;
67
68 #define RAMDISK_IMAGE_START_MASK        0x07FF
69 #define RAMDISK_PROMPT_FLAG             0x8000
70 #define RAMDISK_LOAD_FLAG               0x4000
71
72 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
73
74 static struct resource code_resource = {
75         .name = "Kernel code",
76         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
77 };
78
79 static struct resource data_resource = {
80         .name = "Kernel data",
81         .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
82 };
83
84 static struct resource bss_resource = {
85         .name   = "Kernel bss",
86         .flags  = IORESOURCE_BUSY | IORESOURCE_MEM,
87 };
88
89 unsigned long memory_start;
90 EXPORT_SYMBOL(memory_start);
91 unsigned long memory_end = 0;
92 EXPORT_SYMBOL(memory_end);
93
94 static struct resource mem_resources[MAX_NUMNODES];
95
96 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
97
98 static int __init early_parse_mem(char *p)
99 {
100         unsigned long size;
101
102         memory_start = (unsigned long)__va(__MEMORY_START);
103         size = memparse(p, &p);
104
105         if (size > __MEMORY_SIZE) {
106                 printk(KERN_ERR
107                         "Using mem= to increase the size of kernel memory "
108                         "is not allowed.\n"
109                         "  Recompile the kernel with the correct value for "
110                         "CONFIG_MEMORY_SIZE.\n");
111                 return 0;
112         }
113
114         memory_end = memory_start + size;
115
116         return 0;
117 }
118 early_param("mem", early_parse_mem);
119
120 /*
121  * Register fully available low RAM pages with the bootmem allocator.
122  */
123 static void __init register_bootmem_low_pages(void)
124 {
125         unsigned long curr_pfn, last_pfn, pages;
126
127         /*
128          * We are rounding up the start address of usable memory:
129          */
130         curr_pfn = PFN_UP(__MEMORY_START);
131
132         /*
133          * ... and at the end of the usable range downwards:
134          */
135         last_pfn = PFN_DOWN(__pa(memory_end));
136
137         if (last_pfn > max_low_pfn)
138                 last_pfn = max_low_pfn;
139
140         pages = last_pfn - curr_pfn;
141         free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
142 }
143
144 #ifdef CONFIG_KEXEC
145 static void __init reserve_crashkernel(void)
146 {
147         unsigned long long free_mem;
148         unsigned long long crash_size, crash_base;
149         void *vp;
150         int ret;
151
152         free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
153
154         ret = parse_crashkernel(boot_command_line, free_mem,
155                         &crash_size, &crash_base);
156         if (ret == 0 && crash_size) {
157                 if (crash_base <= 0) {
158                         vp = alloc_bootmem_nopanic(crash_size); 
159                         if (!vp) {
160                                 printk(KERN_INFO "crashkernel allocation "
161                                        "failed\n");
162                                 return;
163                         }
164                         crash_base = __pa(vp);
165                 } else if (reserve_bootmem(crash_base, crash_size,
166                                         BOOTMEM_EXCLUSIVE) < 0) {
167                         printk(KERN_INFO "crashkernel reservation failed - "
168                                         "memory is in use\n");
169                         return;
170                 }
171
172                 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
173                                 "for crashkernel (System RAM: %ldMB)\n",
174                                 (unsigned long)(crash_size >> 20),
175                                 (unsigned long)(crash_base >> 20),
176                                 (unsigned long)(free_mem >> 20));
177                 crashk_res.start = crash_base;
178                 crashk_res.end   = crash_base + crash_size - 1;
179                 insert_resource(&iomem_resource, &crashk_res);
180         }
181 }
182 #else
183 static inline void __init reserve_crashkernel(void)
184 {}
185 #endif
186
187 #ifndef CONFIG_GENERIC_CALIBRATE_DELAY
188 void __cpuinit calibrate_delay(void)
189 {
190         struct clk *clk = clk_get(NULL, "cpu_clk");
191
192         if (IS_ERR(clk))
193                 panic("Need a sane CPU clock definition!");
194
195         loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
196
197         printk(KERN_INFO "Calibrating delay loop (skipped)... "
198                          "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
199                          loops_per_jiffy/(500000/HZ),
200                          (loops_per_jiffy/(5000/HZ)) % 100,
201                          loops_per_jiffy);
202 }
203 #endif
204
205 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
206                                                 unsigned long end_pfn)
207 {
208         struct resource *res = &mem_resources[nid];
209
210         WARN_ON(res->name); /* max one active range per node for now */
211
212         res->name = "System RAM";
213         res->start = start_pfn << PAGE_SHIFT;
214         res->end = (end_pfn << PAGE_SHIFT) - 1;
215         res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
216         if (request_resource(&iomem_resource, res)) {
217                 pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
218                        start_pfn, end_pfn);
219                 return;
220         }
221
222         /*
223          *  We don't know which RAM region contains kernel data,
224          *  so we try it repeatedly and let the resource manager
225          *  test it.
226          */
227         request_resource(res, &code_resource);
228         request_resource(res, &data_resource);
229         request_resource(res, &bss_resource);
230
231         add_active_range(nid, start_pfn, end_pfn);
232 }
233
234 void __init setup_bootmem_allocator(unsigned long free_pfn)
235 {
236         unsigned long bootmap_size;
237
238         /*
239          * Find a proper area for the bootmem bitmap. After this
240          * bootstrap step all allocations (until the page allocator
241          * is intact) must be done via bootmem_alloc().
242          */
243         bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
244                                          min_low_pfn, max_low_pfn);
245
246         __add_active_range(0, min_low_pfn, max_low_pfn);
247         register_bootmem_low_pages();
248
249         node_set_online(0);
250
251         /*
252          * Reserve the kernel text and
253          * Reserve the bootmem bitmap. We do this in two steps (first step
254          * was init_bootmem()), because this catches the (definitely buggy)
255          * case of us accidentally initializing the bootmem allocator with
256          * an invalid RAM area.
257          */
258         reserve_bootmem(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
259                         (PFN_PHYS(free_pfn) + bootmap_size + PAGE_SIZE - 1) -
260                         (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET),
261                         BOOTMEM_DEFAULT);
262
263         /*
264          * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET.
265          */
266         if (CONFIG_ZERO_PAGE_OFFSET != 0)
267                 reserve_bootmem(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET,
268                                 BOOTMEM_DEFAULT);
269
270         sparse_memory_present_with_active_regions(0);
271
272 #ifdef CONFIG_BLK_DEV_INITRD
273         ROOT_DEV = Root_RAM0;
274
275         if (LOADER_TYPE && INITRD_START) {
276                 unsigned long initrd_start_phys = INITRD_START + __MEMORY_START;
277
278                 if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) {
279                         reserve_bootmem(initrd_start_phys, INITRD_SIZE,
280                                         BOOTMEM_DEFAULT);
281                         initrd_start = (unsigned long)__va(initrd_start_phys);
282                         initrd_end = initrd_start + INITRD_SIZE;
283                 } else {
284                         printk("initrd extends beyond end of memory "
285                                "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
286                                initrd_start_phys + INITRD_SIZE,
287                                (unsigned long)PFN_PHYS(max_low_pfn));
288                         initrd_start = 0;
289                 }
290         }
291 #endif
292
293         reserve_crashkernel();
294 }
295
296 #ifndef CONFIG_NEED_MULTIPLE_NODES
297 static void __init setup_memory(void)
298 {
299         unsigned long start_pfn;
300
301         /*
302          * Partially used pages are not usable - thus
303          * we are rounding upwards:
304          */
305         start_pfn = PFN_UP(__pa(_end));
306         setup_bootmem_allocator(start_pfn);
307 }
308 #else
309 extern void __init setup_memory(void);
310 #endif
311
312 /*
313  * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
314  * is_kdump_kernel() to determine if we are booting after a panic. Hence
315  * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
316  */
317 #ifdef CONFIG_CRASH_DUMP
318 /* elfcorehdr= specifies the location of elf core header
319  * stored by the crashed kernel.
320  */
321 static int __init parse_elfcorehdr(char *arg)
322 {
323         if (!arg)
324                 return -EINVAL;
325         elfcorehdr_addr = memparse(arg, &arg);
326         return 0;
327 }
328 early_param("elfcorehdr", parse_elfcorehdr);
329 #endif
330
331 void __init setup_arch(char **cmdline_p)
332 {
333         enable_mmu();
334
335         ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
336
337         printk(KERN_NOTICE "Boot params:\n"
338                            "... MOUNT_ROOT_RDONLY - %08lx\n"
339                            "... RAMDISK_FLAGS     - %08lx\n"
340                            "... ORIG_ROOT_DEV     - %08lx\n"
341                            "... LOADER_TYPE       - %08lx\n"
342                            "... INITRD_START      - %08lx\n"
343                            "... INITRD_SIZE       - %08lx\n",
344                            MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
345                            ORIG_ROOT_DEV, LOADER_TYPE,
346                            INITRD_START, INITRD_SIZE);
347
348 #ifdef CONFIG_BLK_DEV_RAM
349         rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
350         rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
351         rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
352 #endif
353
354         if (!MOUNT_ROOT_RDONLY)
355                 root_mountflags &= ~MS_RDONLY;
356         init_mm.start_code = (unsigned long) _text;
357         init_mm.end_code = (unsigned long) _etext;
358         init_mm.end_data = (unsigned long) _edata;
359         init_mm.brk = (unsigned long) _end;
360
361         code_resource.start = virt_to_phys(_text);
362         code_resource.end = virt_to_phys(_etext)-1;
363         data_resource.start = virt_to_phys(_etext);
364         data_resource.end = virt_to_phys(_edata)-1;
365         bss_resource.start = virt_to_phys(__bss_start);
366         bss_resource.end = virt_to_phys(_ebss)-1;
367
368         memory_start = (unsigned long)__va(__MEMORY_START);
369         if (!memory_end)
370                 memory_end = memory_start + __MEMORY_SIZE;
371
372 #ifdef CONFIG_CMDLINE_BOOL
373         strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
374 #else
375         strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
376 #endif
377
378         /* Save unparsed command line copy for /proc/cmdline */
379         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
380         *cmdline_p = command_line;
381
382         parse_early_param();
383
384         sh_mv_setup();
385
386         /*
387          * Find the highest page frame number we have available
388          */
389         max_pfn = PFN_DOWN(__pa(memory_end));
390
391         /*
392          * Determine low and high memory ranges:
393          */
394         max_low_pfn = max_pfn;
395         min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
396
397         nodes_clear(node_online_map);
398
399         /* Setup bootmem with available RAM */
400         setup_memory();
401         sparse_init();
402
403 #ifdef CONFIG_DUMMY_CONSOLE
404         conswitchp = &dummy_con;
405 #endif
406
407         /* Perform the machine specific initialisation */
408         if (likely(sh_mv.mv_setup))
409                 sh_mv.mv_setup(cmdline_p);
410
411         paging_init();
412
413 #ifdef CONFIG_SMP
414         plat_smp_setup();
415 #endif
416 }
417
418 static const char *cpu_name[] = {
419         [CPU_SH7201]    = "SH7201",
420         [CPU_SH7203]    = "SH7203",     [CPU_SH7263]    = "SH7263",
421         [CPU_SH7206]    = "SH7206",     [CPU_SH7619]    = "SH7619",
422         [CPU_SH7705]    = "SH7705",     [CPU_SH7706]    = "SH7706",
423         [CPU_SH7707]    = "SH7707",     [CPU_SH7708]    = "SH7708",
424         [CPU_SH7709]    = "SH7709",     [CPU_SH7710]    = "SH7710",
425         [CPU_SH7712]    = "SH7712",     [CPU_SH7720]    = "SH7720",
426         [CPU_SH7721]    = "SH7721",     [CPU_SH7729]    = "SH7729",
427         [CPU_SH7750]    = "SH7750",     [CPU_SH7750S]   = "SH7750S",
428         [CPU_SH7750R]   = "SH7750R",    [CPU_SH7751]    = "SH7751",
429         [CPU_SH7751R]   = "SH7751R",    [CPU_SH7760]    = "SH7760",
430         [CPU_SH4_202]   = "SH4-202",    [CPU_SH4_501]   = "SH4-501",
431         [CPU_SH7763]    = "SH7763",     [CPU_SH7770]    = "SH7770",
432         [CPU_SH7780]    = "SH7780",     [CPU_SH7781]    = "SH7781",
433         [CPU_SH7343]    = "SH7343",     [CPU_SH7785]    = "SH7785",
434         [CPU_SH7786]    = "SH7786",
435         [CPU_SH7722]    = "SH7722",     [CPU_SHX3]      = "SH-X3",
436         [CPU_SH5_101]   = "SH5-101",    [CPU_SH5_103]   = "SH5-103",
437         [CPU_MXG]       = "MX-G",       [CPU_SH7723]    = "SH7723",
438         [CPU_SH7366]    = "SH7366",     [CPU_SH_NONE]   = "Unknown"
439 };
440
441 const char *get_cpu_subtype(struct sh_cpuinfo *c)
442 {
443         return cpu_name[c->type];
444 }
445 EXPORT_SYMBOL(get_cpu_subtype);
446
447 #ifdef CONFIG_PROC_FS
448 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
449 static const char *cpu_flags[] = {
450         "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
451         "ptea", "llsc", "l2", "op32", "pteaex", NULL
452 };
453
454 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
455 {
456         unsigned long i;
457
458         seq_printf(m, "cpu flags\t:");
459
460         if (!c->flags) {
461                 seq_printf(m, " %s\n", cpu_flags[0]);
462                 return;
463         }
464
465         for (i = 0; cpu_flags[i]; i++)
466                 if ((c->flags & (1 << i)))
467                         seq_printf(m, " %s", cpu_flags[i+1]);
468
469         seq_printf(m, "\n");
470 }
471
472 static void show_cacheinfo(struct seq_file *m, const char *type,
473                            struct cache_info info)
474 {
475         unsigned int cache_size;
476
477         cache_size = info.ways * info.sets * info.linesz;
478
479         seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
480                    type, cache_size >> 10, info.ways);
481 }
482
483 /*
484  *      Get CPU information for use by the procfs.
485  */
486 static int show_cpuinfo(struct seq_file *m, void *v)
487 {
488         struct sh_cpuinfo *c = v;
489         unsigned int cpu = c - cpu_data;
490
491         if (!cpu_online(cpu))
492                 return 0;
493
494         if (cpu == 0)
495                 seq_printf(m, "machine\t\t: %s\n", get_system_type());
496
497         seq_printf(m, "processor\t: %d\n", cpu);
498         seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
499         seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
500         if (c->cut_major == -1)
501                 seq_printf(m, "cut\t\t: unknown\n");
502         else if (c->cut_minor == -1)
503                 seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
504         else
505                 seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
506
507         show_cpuflags(m, c);
508
509         seq_printf(m, "cache type\t: ");
510
511         /*
512          * Check for what type of cache we have, we support both the
513          * unified cache on the SH-2 and SH-3, as well as the harvard
514          * style cache on the SH-4.
515          */
516         if (c->icache.flags & SH_CACHE_COMBINED) {
517                 seq_printf(m, "unified\n");
518                 show_cacheinfo(m, "cache", c->icache);
519         } else {
520                 seq_printf(m, "split (harvard)\n");
521                 show_cacheinfo(m, "icache", c->icache);
522                 show_cacheinfo(m, "dcache", c->dcache);
523         }
524
525         /* Optional secondary cache */
526         if (c->flags & CPU_HAS_L2_CACHE)
527                 show_cacheinfo(m, "scache", c->scache);
528
529         seq_printf(m, "bogomips\t: %lu.%02lu\n",
530                      c->loops_per_jiffy/(500000/HZ),
531                      (c->loops_per_jiffy/(5000/HZ)) % 100);
532
533         return 0;
534 }
535
536 static void *c_start(struct seq_file *m, loff_t *pos)
537 {
538         return *pos < NR_CPUS ? cpu_data + *pos : NULL;
539 }
540 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
541 {
542         ++*pos;
543         return c_start(m, pos);
544 }
545 static void c_stop(struct seq_file *m, void *v)
546 {
547 }
548 const struct seq_operations cpuinfo_op = {
549         .start  = c_start,
550         .next   = c_next,
551         .stop   = c_stop,
552         .show   = show_cpuinfo,
553 };
554 #endif /* CONFIG_PROC_FS */
555
556 struct dentry *sh_debugfs_root;
557
558 static int __init sh_debugfs_init(void)
559 {
560         sh_debugfs_root = debugfs_create_dir("sh", NULL);
561         if (!sh_debugfs_root)
562                 return -ENOMEM;
563         if (IS_ERR(sh_debugfs_root))
564                 return PTR_ERR(sh_debugfs_root);
565
566         return 0;
567 }
568 arch_initcall(sh_debugfs_init);