Merge tag 'hwmon-for-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck...
[sfrench/cifs-2.6.git] / arch / sh / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Kernel probes (kprobes) for SuperH
4  *
5  * Copyright (C) 2007 Chris Smith <chris.smith@st.com>
6  * Copyright (C) 2006 Lineo Solutions, Inc.
7  */
8 #include <linux/kprobes.h>
9 #include <linux/extable.h>
10 #include <linux/ptrace.h>
11 #include <linux/preempt.h>
12 #include <linux/kdebug.h>
13 #include <linux/slab.h>
14 #include <asm/cacheflush.h>
15 #include <linux/uaccess.h>
16
17 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
18 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
19
20 static DEFINE_PER_CPU(struct kprobe, saved_current_opcode);
21 static DEFINE_PER_CPU(struct kprobe, saved_next_opcode);
22 static DEFINE_PER_CPU(struct kprobe, saved_next_opcode2);
23
24 #define OPCODE_JMP(x)   (((x) & 0xF0FF) == 0x402b)
25 #define OPCODE_JSR(x)   (((x) & 0xF0FF) == 0x400b)
26 #define OPCODE_BRA(x)   (((x) & 0xF000) == 0xa000)
27 #define OPCODE_BRAF(x)  (((x) & 0xF0FF) == 0x0023)
28 #define OPCODE_BSR(x)   (((x) & 0xF000) == 0xb000)
29 #define OPCODE_BSRF(x)  (((x) & 0xF0FF) == 0x0003)
30
31 #define OPCODE_BF_S(x)  (((x) & 0xFF00) == 0x8f00)
32 #define OPCODE_BT_S(x)  (((x) & 0xFF00) == 0x8d00)
33
34 #define OPCODE_BF(x)    (((x) & 0xFF00) == 0x8b00)
35 #define OPCODE_BT(x)    (((x) & 0xFF00) == 0x8900)
36
37 #define OPCODE_RTS(x)   (((x) & 0x000F) == 0x000b)
38 #define OPCODE_RTE(x)   (((x) & 0xFFFF) == 0x002b)
39
40 int __kprobes arch_prepare_kprobe(struct kprobe *p)
41 {
42         kprobe_opcode_t opcode = *(kprobe_opcode_t *) (p->addr);
43
44         if (OPCODE_RTE(opcode))
45                 return -EFAULT; /* Bad breakpoint */
46
47         p->opcode = opcode;
48
49         return 0;
50 }
51
52 void __kprobes arch_copy_kprobe(struct kprobe *p)
53 {
54         memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
55         p->opcode = *p->addr;
56 }
57
58 void __kprobes arch_arm_kprobe(struct kprobe *p)
59 {
60         *p->addr = BREAKPOINT_INSTRUCTION;
61         flush_icache_range((unsigned long)p->addr,
62                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
63 }
64
65 void __kprobes arch_disarm_kprobe(struct kprobe *p)
66 {
67         *p->addr = p->opcode;
68         flush_icache_range((unsigned long)p->addr,
69                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
70 }
71
72 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
73 {
74         if (*p->addr == BREAKPOINT_INSTRUCTION)
75                 return 1;
76
77         return 0;
78 }
79
80 /**
81  * If an illegal slot instruction exception occurs for an address
82  * containing a kprobe, remove the probe.
83  *
84  * Returns 0 if the exception was handled successfully, 1 otherwise.
85  */
86 int __kprobes kprobe_handle_illslot(unsigned long pc)
87 {
88         struct kprobe *p = get_kprobe((kprobe_opcode_t *) pc + 1);
89
90         if (p != NULL) {
91                 printk("Warning: removing kprobe from delay slot: 0x%.8x\n",
92                        (unsigned int)pc + 2);
93                 unregister_kprobe(p);
94                 return 0;
95         }
96
97         return 1;
98 }
99
100 void __kprobes arch_remove_kprobe(struct kprobe *p)
101 {
102         struct kprobe *saved = this_cpu_ptr(&saved_next_opcode);
103
104         if (saved->addr) {
105                 arch_disarm_kprobe(p);
106                 arch_disarm_kprobe(saved);
107
108                 saved->addr = NULL;
109                 saved->opcode = 0;
110
111                 saved = this_cpu_ptr(&saved_next_opcode2);
112                 if (saved->addr) {
113                         arch_disarm_kprobe(saved);
114
115                         saved->addr = NULL;
116                         saved->opcode = 0;
117                 }
118         }
119 }
120
121 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
122 {
123         kcb->prev_kprobe.kp = kprobe_running();
124         kcb->prev_kprobe.status = kcb->kprobe_status;
125 }
126
127 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
128 {
129         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
130         kcb->kprobe_status = kcb->prev_kprobe.status;
131 }
132
133 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
134                                          struct kprobe_ctlblk *kcb)
135 {
136         __this_cpu_write(current_kprobe, p);
137 }
138
139 /*
140  * Singlestep is implemented by disabling the current kprobe and setting one
141  * on the next instruction, following branches. Two probes are set if the
142  * branch is conditional.
143  */
144 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
145 {
146         __this_cpu_write(saved_current_opcode.addr, (kprobe_opcode_t *)regs->pc);
147
148         if (p != NULL) {
149                 struct kprobe *op1, *op2;
150
151                 arch_disarm_kprobe(p);
152
153                 op1 = this_cpu_ptr(&saved_next_opcode);
154                 op2 = this_cpu_ptr(&saved_next_opcode2);
155
156                 if (OPCODE_JSR(p->opcode) || OPCODE_JMP(p->opcode)) {
157                         unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
158                         op1->addr = (kprobe_opcode_t *) regs->regs[reg_nr];
159                 } else if (OPCODE_BRA(p->opcode) || OPCODE_BSR(p->opcode)) {
160                         unsigned long disp = (p->opcode & 0x0FFF);
161                         op1->addr =
162                             (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
163
164                 } else if (OPCODE_BRAF(p->opcode) || OPCODE_BSRF(p->opcode)) {
165                         unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
166                         op1->addr =
167                             (kprobe_opcode_t *) (regs->pc + 4 +
168                                                  regs->regs[reg_nr]);
169
170                 } else if (OPCODE_RTS(p->opcode)) {
171                         op1->addr = (kprobe_opcode_t *) regs->pr;
172
173                 } else if (OPCODE_BF(p->opcode) || OPCODE_BT(p->opcode)) {
174                         unsigned long disp = (p->opcode & 0x00FF);
175                         /* case 1 */
176                         op1->addr = p->addr + 1;
177                         /* case 2 */
178                         op2->addr =
179                             (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
180                         op2->opcode = *(op2->addr);
181                         arch_arm_kprobe(op2);
182
183                 } else if (OPCODE_BF_S(p->opcode) || OPCODE_BT_S(p->opcode)) {
184                         unsigned long disp = (p->opcode & 0x00FF);
185                         /* case 1 */
186                         op1->addr = p->addr + 2;
187                         /* case 2 */
188                         op2->addr =
189                             (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
190                         op2->opcode = *(op2->addr);
191                         arch_arm_kprobe(op2);
192
193                 } else {
194                         op1->addr = p->addr + 1;
195                 }
196
197                 op1->opcode = *(op1->addr);
198                 arch_arm_kprobe(op1);
199         }
200 }
201
202 /* Called with kretprobe_lock held */
203 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
204                                       struct pt_regs *regs)
205 {
206         ri->ret_addr = (kprobe_opcode_t *) regs->pr;
207
208         /* Replace the return addr with trampoline addr */
209         regs->pr = (unsigned long)kretprobe_trampoline;
210 }
211
212 static int __kprobes kprobe_handler(struct pt_regs *regs)
213 {
214         struct kprobe *p;
215         int ret = 0;
216         kprobe_opcode_t *addr = NULL;
217         struct kprobe_ctlblk *kcb;
218
219         /*
220          * We don't want to be preempted for the entire
221          * duration of kprobe processing
222          */
223         preempt_disable();
224         kcb = get_kprobe_ctlblk();
225
226         addr = (kprobe_opcode_t *) (regs->pc);
227
228         /* Check we're not actually recursing */
229         if (kprobe_running()) {
230                 p = get_kprobe(addr);
231                 if (p) {
232                         if (kcb->kprobe_status == KPROBE_HIT_SS &&
233                             *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
234                                 goto no_kprobe;
235                         }
236                         /* We have reentered the kprobe_handler(), since
237                          * another probe was hit while within the handler.
238                          * We here save the original kprobes variables and
239                          * just single step on the instruction of the new probe
240                          * without calling any user handlers.
241                          */
242                         save_previous_kprobe(kcb);
243                         set_current_kprobe(p, regs, kcb);
244                         kprobes_inc_nmissed_count(p);
245                         prepare_singlestep(p, regs);
246                         kcb->kprobe_status = KPROBE_REENTER;
247                         return 1;
248                 }
249                 goto no_kprobe;
250         }
251
252         p = get_kprobe(addr);
253         if (!p) {
254                 /* Not one of ours: let kernel handle it */
255                 if (*(kprobe_opcode_t *)addr != BREAKPOINT_INSTRUCTION) {
256                         /*
257                          * The breakpoint instruction was removed right
258                          * after we hit it. Another cpu has removed
259                          * either a probepoint or a debugger breakpoint
260                          * at this address. In either case, no further
261                          * handling of this interrupt is appropriate.
262                          */
263                         ret = 1;
264                 }
265
266                 goto no_kprobe;
267         }
268
269         set_current_kprobe(p, regs, kcb);
270         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
271
272         if (p->pre_handler && p->pre_handler(p, regs)) {
273                 /* handler has already set things up, so skip ss setup */
274                 reset_current_kprobe();
275                 preempt_enable_no_resched();
276                 return 1;
277         }
278
279         prepare_singlestep(p, regs);
280         kcb->kprobe_status = KPROBE_HIT_SS;
281         return 1;
282
283 no_kprobe:
284         preempt_enable_no_resched();
285         return ret;
286 }
287
288 /*
289  * For function-return probes, init_kprobes() establishes a probepoint
290  * here. When a retprobed function returns, this probe is hit and
291  * trampoline_probe_handler() runs, calling the kretprobe's handler.
292  */
293 static void __used kretprobe_trampoline_holder(void)
294 {
295         asm volatile (".globl kretprobe_trampoline\n"
296                       "kretprobe_trampoline:\n\t"
297                       "nop\n");
298 }
299
300 /*
301  * Called when we hit the probe point at kretprobe_trampoline
302  */
303 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
304 {
305         struct kretprobe_instance *ri = NULL;
306         struct hlist_head *head, empty_rp;
307         struct hlist_node *tmp;
308         unsigned long flags, orig_ret_address = 0;
309         unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
310
311         INIT_HLIST_HEAD(&empty_rp);
312         kretprobe_hash_lock(current, &head, &flags);
313
314         /*
315          * It is possible to have multiple instances associated with a given
316          * task either because an multiple functions in the call path
317          * have a return probe installed on them, and/or more then one return
318          * return probe was registered for a target function.
319          *
320          * We can handle this because:
321          *     - instances are always inserted at the head of the list
322          *     - when multiple return probes are registered for the same
323          *       function, the first instance's ret_addr will point to the
324          *       real return address, and all the rest will point to
325          *       kretprobe_trampoline
326          */
327         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
328                 if (ri->task != current)
329                         /* another task is sharing our hash bucket */
330                         continue;
331
332                 if (ri->rp && ri->rp->handler) {
333                         __this_cpu_write(current_kprobe, &ri->rp->kp);
334                         ri->rp->handler(ri, regs);
335                         __this_cpu_write(current_kprobe, NULL);
336                 }
337
338                 orig_ret_address = (unsigned long)ri->ret_addr;
339                 recycle_rp_inst(ri, &empty_rp);
340
341                 if (orig_ret_address != trampoline_address)
342                         /*
343                          * This is the real return address. Any other
344                          * instances associated with this task are for
345                          * other calls deeper on the call stack
346                          */
347                         break;
348         }
349
350         kretprobe_assert(ri, orig_ret_address, trampoline_address);
351
352         regs->pc = orig_ret_address;
353         kretprobe_hash_unlock(current, &flags);
354
355         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
356                 hlist_del(&ri->hlist);
357                 kfree(ri);
358         }
359
360         return orig_ret_address;
361 }
362
363 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
364 {
365         struct kprobe *cur = kprobe_running();
366         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
367         kprobe_opcode_t *addr = NULL;
368         struct kprobe *p = NULL;
369
370         if (!cur)
371                 return 0;
372
373         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
374                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
375                 cur->post_handler(cur, regs, 0);
376         }
377
378         p = this_cpu_ptr(&saved_next_opcode);
379         if (p->addr) {
380                 arch_disarm_kprobe(p);
381                 p->addr = NULL;
382                 p->opcode = 0;
383
384                 addr = __this_cpu_read(saved_current_opcode.addr);
385                 __this_cpu_write(saved_current_opcode.addr, NULL);
386
387                 p = get_kprobe(addr);
388                 arch_arm_kprobe(p);
389
390                 p = this_cpu_ptr(&saved_next_opcode2);
391                 if (p->addr) {
392                         arch_disarm_kprobe(p);
393                         p->addr = NULL;
394                         p->opcode = 0;
395                 }
396         }
397
398         /* Restore back the original saved kprobes variables and continue. */
399         if (kcb->kprobe_status == KPROBE_REENTER) {
400                 restore_previous_kprobe(kcb);
401                 goto out;
402         }
403
404         reset_current_kprobe();
405
406 out:
407         preempt_enable_no_resched();
408
409         return 1;
410 }
411
412 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
413 {
414         struct kprobe *cur = kprobe_running();
415         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
416         const struct exception_table_entry *entry;
417
418         switch (kcb->kprobe_status) {
419         case KPROBE_HIT_SS:
420         case KPROBE_REENTER:
421                 /*
422                  * We are here because the instruction being single
423                  * stepped caused a page fault. We reset the current
424                  * kprobe, point the pc back to the probe address
425                  * and allow the page fault handler to continue as a
426                  * normal page fault.
427                  */
428                 regs->pc = (unsigned long)cur->addr;
429                 if (kcb->kprobe_status == KPROBE_REENTER)
430                         restore_previous_kprobe(kcb);
431                 else
432                         reset_current_kprobe();
433                 preempt_enable_no_resched();
434                 break;
435         case KPROBE_HIT_ACTIVE:
436         case KPROBE_HIT_SSDONE:
437                 /*
438                  * We increment the nmissed count for accounting,
439                  * we can also use npre/npostfault count for accounting
440                  * these specific fault cases.
441                  */
442                 kprobes_inc_nmissed_count(cur);
443
444                 /*
445                  * We come here because instructions in the pre/post
446                  * handler caused the page_fault, this could happen
447                  * if handler tries to access user space by
448                  * copy_from_user(), get_user() etc. Let the
449                  * user-specified handler try to fix it first.
450                  */
451                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
452                         return 1;
453
454                 /*
455                  * In case the user-specified fault handler returned
456                  * zero, try to fix up.
457                  */
458                 if ((entry = search_exception_tables(regs->pc)) != NULL) {
459                         regs->pc = entry->fixup;
460                         return 1;
461                 }
462
463                 /*
464                  * fixup_exception() could not handle it,
465                  * Let do_page_fault() fix it.
466                  */
467                 break;
468         default:
469                 break;
470         }
471
472         return 0;
473 }
474
475 /*
476  * Wrapper routine to for handling exceptions.
477  */
478 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
479                                        unsigned long val, void *data)
480 {
481         struct kprobe *p = NULL;
482         struct die_args *args = (struct die_args *)data;
483         int ret = NOTIFY_DONE;
484         kprobe_opcode_t *addr = NULL;
485         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
486
487         addr = (kprobe_opcode_t *) (args->regs->pc);
488         if (val == DIE_TRAP) {
489                 if (!kprobe_running()) {
490                         if (kprobe_handler(args->regs)) {
491                                 ret = NOTIFY_STOP;
492                         } else {
493                                 /* Not a kprobe trap */
494                                 ret = NOTIFY_DONE;
495                         }
496                 } else {
497                         p = get_kprobe(addr);
498                         if ((kcb->kprobe_status == KPROBE_HIT_SS) ||
499                             (kcb->kprobe_status == KPROBE_REENTER)) {
500                                 if (post_kprobe_handler(args->regs))
501                                         ret = NOTIFY_STOP;
502                         } else {
503                                 if (kprobe_handler(args->regs))
504                                         ret = NOTIFY_STOP;
505                         }
506                 }
507         }
508
509         return ret;
510 }
511
512 static struct kprobe trampoline_p = {
513         .addr = (kprobe_opcode_t *)&kretprobe_trampoline,
514         .pre_handler = trampoline_probe_handler
515 };
516
517 int __init arch_init_kprobes(void)
518 {
519         return register_kprobe(&trampoline_p);
520 }