Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/bootmem.h>
21 #include <linux/irq.h>
22 #include <linux/io.h>
23 #include <linux/msi.h>
24 #include <linux/memblock.h>
25 #include <linux/iommu.h>
26 #include <linux/rculist.h>
27 #include <linux/sizes.h>
28
29 #include <asm/sections.h>
30 #include <asm/io.h>
31 #include <asm/prom.h>
32 #include <asm/pci-bridge.h>
33 #include <asm/machdep.h>
34 #include <asm/msi_bitmap.h>
35 #include <asm/ppc-pci.h>
36 #include <asm/opal.h>
37 #include <asm/iommu.h>
38 #include <asm/tce.h>
39 #include <asm/xics.h>
40 #include <asm/debugfs.h>
41 #include <asm/firmware.h>
42 #include <asm/pnv-pci.h>
43 #include <asm/mmzone.h>
44
45 #include <misc/cxl-base.h>
46
47 #include "powernv.h"
48 #include "pci.h"
49
50 #define PNV_IODA1_M64_NUM       16      /* Number of M64 BARs   */
51 #define PNV_IODA1_M64_SEGS      8       /* Segments per M64 BAR */
52 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
53
54 #define POWERNV_IOMMU_DEFAULT_LEVELS    1
55 #define POWERNV_IOMMU_MAX_LEVELS        5
56
57 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
58                                               "NPU_OCAPI" };
59 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
60
61 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
62                             const char *fmt, ...)
63 {
64         struct va_format vaf;
65         va_list args;
66         char pfix[32];
67
68         va_start(args, fmt);
69
70         vaf.fmt = fmt;
71         vaf.va = &args;
72
73         if (pe->flags & PNV_IODA_PE_DEV)
74                 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
75         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
76                 sprintf(pfix, "%04x:%02x     ",
77                         pci_domain_nr(pe->pbus), pe->pbus->number);
78 #ifdef CONFIG_PCI_IOV
79         else if (pe->flags & PNV_IODA_PE_VF)
80                 sprintf(pfix, "%04x:%02x:%2x.%d",
81                         pci_domain_nr(pe->parent_dev->bus),
82                         (pe->rid & 0xff00) >> 8,
83                         PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
84 #endif /* CONFIG_PCI_IOV*/
85
86         printk("%spci %s: [PE# %.2x] %pV",
87                level, pfix, pe->pe_number, &vaf);
88
89         va_end(args);
90 }
91
92 static bool pnv_iommu_bypass_disabled __read_mostly;
93 static bool pci_reset_phbs __read_mostly;
94
95 static int __init iommu_setup(char *str)
96 {
97         if (!str)
98                 return -EINVAL;
99
100         while (*str) {
101                 if (!strncmp(str, "nobypass", 8)) {
102                         pnv_iommu_bypass_disabled = true;
103                         pr_info("PowerNV: IOMMU bypass window disabled.\n");
104                         break;
105                 }
106                 str += strcspn(str, ",");
107                 if (*str == ',')
108                         str++;
109         }
110
111         return 0;
112 }
113 early_param("iommu", iommu_setup);
114
115 static int __init pci_reset_phbs_setup(char *str)
116 {
117         pci_reset_phbs = true;
118         return 0;
119 }
120
121 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
122
123 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
124 {
125         /*
126          * WARNING: We cannot rely on the resource flags. The Linux PCI
127          * allocation code sometimes decides to put a 64-bit prefetchable
128          * BAR in the 32-bit window, so we have to compare the addresses.
129          *
130          * For simplicity we only test resource start.
131          */
132         return (r->start >= phb->ioda.m64_base &&
133                 r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
134 }
135
136 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
137 {
138         unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
139
140         return (resource_flags & flags) == flags;
141 }
142
143 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
144 {
145         s64 rc;
146
147         phb->ioda.pe_array[pe_no].phb = phb;
148         phb->ioda.pe_array[pe_no].pe_number = pe_no;
149
150         /*
151          * Clear the PE frozen state as it might be put into frozen state
152          * in the last PCI remove path. It's not harmful to do so when the
153          * PE is already in unfrozen state.
154          */
155         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
156                                        OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
157         if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
158                 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
159                         __func__, rc, phb->hose->global_number, pe_no);
160
161         return &phb->ioda.pe_array[pe_no];
162 }
163
164 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
165 {
166         if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
167                 pr_warn("%s: Invalid PE %x on PHB#%x\n",
168                         __func__, pe_no, phb->hose->global_number);
169                 return;
170         }
171
172         if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
173                 pr_debug("%s: PE %x was reserved on PHB#%x\n",
174                          __func__, pe_no, phb->hose->global_number);
175
176         pnv_ioda_init_pe(phb, pe_no);
177 }
178
179 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
180 {
181         long pe;
182
183         for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
184                 if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
185                         return pnv_ioda_init_pe(phb, pe);
186         }
187
188         return NULL;
189 }
190
191 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
192 {
193         struct pnv_phb *phb = pe->phb;
194         unsigned int pe_num = pe->pe_number;
195
196         WARN_ON(pe->pdev);
197
198         memset(pe, 0, sizeof(struct pnv_ioda_pe));
199         clear_bit(pe_num, phb->ioda.pe_alloc);
200 }
201
202 /* The default M64 BAR is shared by all PEs */
203 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
204 {
205         const char *desc;
206         struct resource *r;
207         s64 rc;
208
209         /* Configure the default M64 BAR */
210         rc = opal_pci_set_phb_mem_window(phb->opal_id,
211                                          OPAL_M64_WINDOW_TYPE,
212                                          phb->ioda.m64_bar_idx,
213                                          phb->ioda.m64_base,
214                                          0, /* unused */
215                                          phb->ioda.m64_size);
216         if (rc != OPAL_SUCCESS) {
217                 desc = "configuring";
218                 goto fail;
219         }
220
221         /* Enable the default M64 BAR */
222         rc = opal_pci_phb_mmio_enable(phb->opal_id,
223                                       OPAL_M64_WINDOW_TYPE,
224                                       phb->ioda.m64_bar_idx,
225                                       OPAL_ENABLE_M64_SPLIT);
226         if (rc != OPAL_SUCCESS) {
227                 desc = "enabling";
228                 goto fail;
229         }
230
231         /*
232          * Exclude the segments for reserved and root bus PE, which
233          * are first or last two PEs.
234          */
235         r = &phb->hose->mem_resources[1];
236         if (phb->ioda.reserved_pe_idx == 0)
237                 r->start += (2 * phb->ioda.m64_segsize);
238         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
239                 r->end -= (2 * phb->ioda.m64_segsize);
240         else
241                 pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
242                         phb->ioda.reserved_pe_idx);
243
244         return 0;
245
246 fail:
247         pr_warn("  Failure %lld %s M64 BAR#%d\n",
248                 rc, desc, phb->ioda.m64_bar_idx);
249         opal_pci_phb_mmio_enable(phb->opal_id,
250                                  OPAL_M64_WINDOW_TYPE,
251                                  phb->ioda.m64_bar_idx,
252                                  OPAL_DISABLE_M64);
253         return -EIO;
254 }
255
256 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
257                                          unsigned long *pe_bitmap)
258 {
259         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
260         struct pnv_phb *phb = hose->private_data;
261         struct resource *r;
262         resource_size_t base, sgsz, start, end;
263         int segno, i;
264
265         base = phb->ioda.m64_base;
266         sgsz = phb->ioda.m64_segsize;
267         for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
268                 r = &pdev->resource[i];
269                 if (!r->parent || !pnv_pci_is_m64(phb, r))
270                         continue;
271
272                 start = _ALIGN_DOWN(r->start - base, sgsz);
273                 end = _ALIGN_UP(r->end - base, sgsz);
274                 for (segno = start / sgsz; segno < end / sgsz; segno++) {
275                         if (pe_bitmap)
276                                 set_bit(segno, pe_bitmap);
277                         else
278                                 pnv_ioda_reserve_pe(phb, segno);
279                 }
280         }
281 }
282
283 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
284 {
285         struct resource *r;
286         int index;
287
288         /*
289          * There are 16 M64 BARs, each of which has 8 segments. So
290          * there are as many M64 segments as the maximum number of
291          * PEs, which is 128.
292          */
293         for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
294                 unsigned long base, segsz = phb->ioda.m64_segsize;
295                 int64_t rc;
296
297                 base = phb->ioda.m64_base +
298                        index * PNV_IODA1_M64_SEGS * segsz;
299                 rc = opal_pci_set_phb_mem_window(phb->opal_id,
300                                 OPAL_M64_WINDOW_TYPE, index, base, 0,
301                                 PNV_IODA1_M64_SEGS * segsz);
302                 if (rc != OPAL_SUCCESS) {
303                         pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
304                                 rc, phb->hose->global_number, index);
305                         goto fail;
306                 }
307
308                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
309                                 OPAL_M64_WINDOW_TYPE, index,
310                                 OPAL_ENABLE_M64_SPLIT);
311                 if (rc != OPAL_SUCCESS) {
312                         pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
313                                 rc, phb->hose->global_number, index);
314                         goto fail;
315                 }
316         }
317
318         /*
319          * Exclude the segments for reserved and root bus PE, which
320          * are first or last two PEs.
321          */
322         r = &phb->hose->mem_resources[1];
323         if (phb->ioda.reserved_pe_idx == 0)
324                 r->start += (2 * phb->ioda.m64_segsize);
325         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
326                 r->end -= (2 * phb->ioda.m64_segsize);
327         else
328                 WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
329                      phb->ioda.reserved_pe_idx, phb->hose->global_number);
330
331         return 0;
332
333 fail:
334         for ( ; index >= 0; index--)
335                 opal_pci_phb_mmio_enable(phb->opal_id,
336                         OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
337
338         return -EIO;
339 }
340
341 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
342                                     unsigned long *pe_bitmap,
343                                     bool all)
344 {
345         struct pci_dev *pdev;
346
347         list_for_each_entry(pdev, &bus->devices, bus_list) {
348                 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
349
350                 if (all && pdev->subordinate)
351                         pnv_ioda_reserve_m64_pe(pdev->subordinate,
352                                                 pe_bitmap, all);
353         }
354 }
355
356 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
357 {
358         struct pci_controller *hose = pci_bus_to_host(bus);
359         struct pnv_phb *phb = hose->private_data;
360         struct pnv_ioda_pe *master_pe, *pe;
361         unsigned long size, *pe_alloc;
362         int i;
363
364         /* Root bus shouldn't use M64 */
365         if (pci_is_root_bus(bus))
366                 return NULL;
367
368         /* Allocate bitmap */
369         size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
370         pe_alloc = kzalloc(size, GFP_KERNEL);
371         if (!pe_alloc) {
372                 pr_warn("%s: Out of memory !\n",
373                         __func__);
374                 return NULL;
375         }
376
377         /* Figure out reserved PE numbers by the PE */
378         pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
379
380         /*
381          * the current bus might not own M64 window and that's all
382          * contributed by its child buses. For the case, we needn't
383          * pick M64 dependent PE#.
384          */
385         if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
386                 kfree(pe_alloc);
387                 return NULL;
388         }
389
390         /*
391          * Figure out the master PE and put all slave PEs to master
392          * PE's list to form compound PE.
393          */
394         master_pe = NULL;
395         i = -1;
396         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
397                 phb->ioda.total_pe_num) {
398                 pe = &phb->ioda.pe_array[i];
399
400                 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
401                 if (!master_pe) {
402                         pe->flags |= PNV_IODA_PE_MASTER;
403                         INIT_LIST_HEAD(&pe->slaves);
404                         master_pe = pe;
405                 } else {
406                         pe->flags |= PNV_IODA_PE_SLAVE;
407                         pe->master = master_pe;
408                         list_add_tail(&pe->list, &master_pe->slaves);
409                 }
410
411                 /*
412                  * P7IOC supports M64DT, which helps mapping M64 segment
413                  * to one particular PE#. However, PHB3 has fixed mapping
414                  * between M64 segment and PE#. In order to have same logic
415                  * for P7IOC and PHB3, we enforce fixed mapping between M64
416                  * segment and PE# on P7IOC.
417                  */
418                 if (phb->type == PNV_PHB_IODA1) {
419                         int64_t rc;
420
421                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
422                                         pe->pe_number, OPAL_M64_WINDOW_TYPE,
423                                         pe->pe_number / PNV_IODA1_M64_SEGS,
424                                         pe->pe_number % PNV_IODA1_M64_SEGS);
425                         if (rc != OPAL_SUCCESS)
426                                 pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
427                                         __func__, rc, phb->hose->global_number,
428                                         pe->pe_number);
429                 }
430         }
431
432         kfree(pe_alloc);
433         return master_pe;
434 }
435
436 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
437 {
438         struct pci_controller *hose = phb->hose;
439         struct device_node *dn = hose->dn;
440         struct resource *res;
441         u32 m64_range[2], i;
442         const __be32 *r;
443         u64 pci_addr;
444
445         if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
446                 pr_info("  Not support M64 window\n");
447                 return;
448         }
449
450         if (!firmware_has_feature(FW_FEATURE_OPAL)) {
451                 pr_info("  Firmware too old to support M64 window\n");
452                 return;
453         }
454
455         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
456         if (!r) {
457                 pr_info("  No <ibm,opal-m64-window> on %pOF\n",
458                         dn);
459                 return;
460         }
461
462         /*
463          * Find the available M64 BAR range and pickup the last one for
464          * covering the whole 64-bits space. We support only one range.
465          */
466         if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
467                                        m64_range, 2)) {
468                 /* In absence of the property, assume 0..15 */
469                 m64_range[0] = 0;
470                 m64_range[1] = 16;
471         }
472         /* We only support 64 bits in our allocator */
473         if (m64_range[1] > 63) {
474                 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
475                         __func__, m64_range[1], phb->hose->global_number);
476                 m64_range[1] = 63;
477         }
478         /* Empty range, no m64 */
479         if (m64_range[1] <= m64_range[0]) {
480                 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
481                         __func__, phb->hose->global_number);
482                 return;
483         }
484
485         /* Configure M64 informations */
486         res = &hose->mem_resources[1];
487         res->name = dn->full_name;
488         res->start = of_translate_address(dn, r + 2);
489         res->end = res->start + of_read_number(r + 4, 2) - 1;
490         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
491         pci_addr = of_read_number(r, 2);
492         hose->mem_offset[1] = res->start - pci_addr;
493
494         phb->ioda.m64_size = resource_size(res);
495         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
496         phb->ioda.m64_base = pci_addr;
497
498         /* This lines up nicely with the display from processing OF ranges */
499         pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
500                 res->start, res->end, pci_addr, m64_range[0],
501                 m64_range[0] + m64_range[1] - 1);
502
503         /* Mark all M64 used up by default */
504         phb->ioda.m64_bar_alloc = (unsigned long)-1;
505
506         /* Use last M64 BAR to cover M64 window */
507         m64_range[1]--;
508         phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
509
510         pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
511
512         /* Mark remaining ones free */
513         for (i = m64_range[0]; i < m64_range[1]; i++)
514                 clear_bit(i, &phb->ioda.m64_bar_alloc);
515
516         /*
517          * Setup init functions for M64 based on IODA version, IODA3 uses
518          * the IODA2 code.
519          */
520         if (phb->type == PNV_PHB_IODA1)
521                 phb->init_m64 = pnv_ioda1_init_m64;
522         else
523                 phb->init_m64 = pnv_ioda2_init_m64;
524         phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
525         phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
526 }
527
528 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
529 {
530         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
531         struct pnv_ioda_pe *slave;
532         s64 rc;
533
534         /* Fetch master PE */
535         if (pe->flags & PNV_IODA_PE_SLAVE) {
536                 pe = pe->master;
537                 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
538                         return;
539
540                 pe_no = pe->pe_number;
541         }
542
543         /* Freeze master PE */
544         rc = opal_pci_eeh_freeze_set(phb->opal_id,
545                                      pe_no,
546                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
547         if (rc != OPAL_SUCCESS) {
548                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
549                         __func__, rc, phb->hose->global_number, pe_no);
550                 return;
551         }
552
553         /* Freeze slave PEs */
554         if (!(pe->flags & PNV_IODA_PE_MASTER))
555                 return;
556
557         list_for_each_entry(slave, &pe->slaves, list) {
558                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
559                                              slave->pe_number,
560                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
561                 if (rc != OPAL_SUCCESS)
562                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
563                                 __func__, rc, phb->hose->global_number,
564                                 slave->pe_number);
565         }
566 }
567
568 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
569 {
570         struct pnv_ioda_pe *pe, *slave;
571         s64 rc;
572
573         /* Find master PE */
574         pe = &phb->ioda.pe_array[pe_no];
575         if (pe->flags & PNV_IODA_PE_SLAVE) {
576                 pe = pe->master;
577                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
578                 pe_no = pe->pe_number;
579         }
580
581         /* Clear frozen state for master PE */
582         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
583         if (rc != OPAL_SUCCESS) {
584                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
585                         __func__, rc, opt, phb->hose->global_number, pe_no);
586                 return -EIO;
587         }
588
589         if (!(pe->flags & PNV_IODA_PE_MASTER))
590                 return 0;
591
592         /* Clear frozen state for slave PEs */
593         list_for_each_entry(slave, &pe->slaves, list) {
594                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
595                                              slave->pe_number,
596                                              opt);
597                 if (rc != OPAL_SUCCESS) {
598                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
599                                 __func__, rc, opt, phb->hose->global_number,
600                                 slave->pe_number);
601                         return -EIO;
602                 }
603         }
604
605         return 0;
606 }
607
608 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
609 {
610         struct pnv_ioda_pe *slave, *pe;
611         u8 fstate, state;
612         __be16 pcierr;
613         s64 rc;
614
615         /* Sanity check on PE number */
616         if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
617                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
618
619         /*
620          * Fetch the master PE and the PE instance might be
621          * not initialized yet.
622          */
623         pe = &phb->ioda.pe_array[pe_no];
624         if (pe->flags & PNV_IODA_PE_SLAVE) {
625                 pe = pe->master;
626                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
627                 pe_no = pe->pe_number;
628         }
629
630         /* Check the master PE */
631         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
632                                         &state, &pcierr, NULL);
633         if (rc != OPAL_SUCCESS) {
634                 pr_warn("%s: Failure %lld getting "
635                         "PHB#%x-PE#%x state\n",
636                         __func__, rc,
637                         phb->hose->global_number, pe_no);
638                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
639         }
640
641         /* Check the slave PE */
642         if (!(pe->flags & PNV_IODA_PE_MASTER))
643                 return state;
644
645         list_for_each_entry(slave, &pe->slaves, list) {
646                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
647                                                 slave->pe_number,
648                                                 &fstate,
649                                                 &pcierr,
650                                                 NULL);
651                 if (rc != OPAL_SUCCESS) {
652                         pr_warn("%s: Failure %lld getting "
653                                 "PHB#%x-PE#%x state\n",
654                                 __func__, rc,
655                                 phb->hose->global_number, slave->pe_number);
656                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
657                 }
658
659                 /*
660                  * Override the result based on the ascending
661                  * priority.
662                  */
663                 if (fstate > state)
664                         state = fstate;
665         }
666
667         return state;
668 }
669
670 /* Currently those 2 are only used when MSIs are enabled, this will change
671  * but in the meantime, we need to protect them to avoid warnings
672  */
673 #ifdef CONFIG_PCI_MSI
674 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
675 {
676         struct pci_controller *hose = pci_bus_to_host(dev->bus);
677         struct pnv_phb *phb = hose->private_data;
678         struct pci_dn *pdn = pci_get_pdn(dev);
679
680         if (!pdn)
681                 return NULL;
682         if (pdn->pe_number == IODA_INVALID_PE)
683                 return NULL;
684         return &phb->ioda.pe_array[pdn->pe_number];
685 }
686 #endif /* CONFIG_PCI_MSI */
687
688 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
689                                   struct pnv_ioda_pe *parent,
690                                   struct pnv_ioda_pe *child,
691                                   bool is_add)
692 {
693         const char *desc = is_add ? "adding" : "removing";
694         uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
695                               OPAL_REMOVE_PE_FROM_DOMAIN;
696         struct pnv_ioda_pe *slave;
697         long rc;
698
699         /* Parent PE affects child PE */
700         rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
701                                 child->pe_number, op);
702         if (rc != OPAL_SUCCESS) {
703                 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
704                         rc, desc);
705                 return -ENXIO;
706         }
707
708         if (!(child->flags & PNV_IODA_PE_MASTER))
709                 return 0;
710
711         /* Compound case: parent PE affects slave PEs */
712         list_for_each_entry(slave, &child->slaves, list) {
713                 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
714                                         slave->pe_number, op);
715                 if (rc != OPAL_SUCCESS) {
716                         pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
717                                 rc, desc);
718                         return -ENXIO;
719                 }
720         }
721
722         return 0;
723 }
724
725 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
726                               struct pnv_ioda_pe *pe,
727                               bool is_add)
728 {
729         struct pnv_ioda_pe *slave;
730         struct pci_dev *pdev = NULL;
731         int ret;
732
733         /*
734          * Clear PE frozen state. If it's master PE, we need
735          * clear slave PE frozen state as well.
736          */
737         if (is_add) {
738                 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
739                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
740                 if (pe->flags & PNV_IODA_PE_MASTER) {
741                         list_for_each_entry(slave, &pe->slaves, list)
742                                 opal_pci_eeh_freeze_clear(phb->opal_id,
743                                                           slave->pe_number,
744                                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
745                 }
746         }
747
748         /*
749          * Associate PE in PELT. We need add the PE into the
750          * corresponding PELT-V as well. Otherwise, the error
751          * originated from the PE might contribute to other
752          * PEs.
753          */
754         ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
755         if (ret)
756                 return ret;
757
758         /* For compound PEs, any one affects all of them */
759         if (pe->flags & PNV_IODA_PE_MASTER) {
760                 list_for_each_entry(slave, &pe->slaves, list) {
761                         ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
762                         if (ret)
763                                 return ret;
764                 }
765         }
766
767         if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
768                 pdev = pe->pbus->self;
769         else if (pe->flags & PNV_IODA_PE_DEV)
770                 pdev = pe->pdev->bus->self;
771 #ifdef CONFIG_PCI_IOV
772         else if (pe->flags & PNV_IODA_PE_VF)
773                 pdev = pe->parent_dev;
774 #endif /* CONFIG_PCI_IOV */
775         while (pdev) {
776                 struct pci_dn *pdn = pci_get_pdn(pdev);
777                 struct pnv_ioda_pe *parent;
778
779                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
780                         parent = &phb->ioda.pe_array[pdn->pe_number];
781                         ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
782                         if (ret)
783                                 return ret;
784                 }
785
786                 pdev = pdev->bus->self;
787         }
788
789         return 0;
790 }
791
792 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
793 {
794         struct pci_dev *parent;
795         uint8_t bcomp, dcomp, fcomp;
796         int64_t rc;
797         long rid_end, rid;
798
799         /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
800         if (pe->pbus) {
801                 int count;
802
803                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
804                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
805                 parent = pe->pbus->self;
806                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
807                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
808                 else
809                         count = 1;
810
811                 switch(count) {
812                 case  1: bcomp = OpalPciBusAll;         break;
813                 case  2: bcomp = OpalPciBus7Bits;       break;
814                 case  4: bcomp = OpalPciBus6Bits;       break;
815                 case  8: bcomp = OpalPciBus5Bits;       break;
816                 case 16: bcomp = OpalPciBus4Bits;       break;
817                 case 32: bcomp = OpalPciBus3Bits;       break;
818                 default:
819                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
820                                 count);
821                         /* Do an exact match only */
822                         bcomp = OpalPciBusAll;
823                 }
824                 rid_end = pe->rid + (count << 8);
825         } else {
826 #ifdef CONFIG_PCI_IOV
827                 if (pe->flags & PNV_IODA_PE_VF)
828                         parent = pe->parent_dev;
829                 else
830 #endif
831                         parent = pe->pdev->bus->self;
832                 bcomp = OpalPciBusAll;
833                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
834                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
835                 rid_end = pe->rid + 1;
836         }
837
838         /* Clear the reverse map */
839         for (rid = pe->rid; rid < rid_end; rid++)
840                 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
841
842         /* Release from all parents PELT-V */
843         while (parent) {
844                 struct pci_dn *pdn = pci_get_pdn(parent);
845                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
846                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
847                                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
848                         /* XXX What to do in case of error ? */
849                 }
850                 parent = parent->bus->self;
851         }
852
853         opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
854                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
855
856         /* Disassociate PE in PELT */
857         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
858                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
859         if (rc)
860                 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
861         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
862                              bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
863         if (rc)
864                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
865
866         pe->pbus = NULL;
867         pe->pdev = NULL;
868 #ifdef CONFIG_PCI_IOV
869         pe->parent_dev = NULL;
870 #endif
871
872         return 0;
873 }
874
875 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
876 {
877         struct pci_dev *parent;
878         uint8_t bcomp, dcomp, fcomp;
879         long rc, rid_end, rid;
880
881         /* Bus validation ? */
882         if (pe->pbus) {
883                 int count;
884
885                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
886                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
887                 parent = pe->pbus->self;
888                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
889                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
890                 else
891                         count = 1;
892
893                 switch(count) {
894                 case  1: bcomp = OpalPciBusAll;         break;
895                 case  2: bcomp = OpalPciBus7Bits;       break;
896                 case  4: bcomp = OpalPciBus6Bits;       break;
897                 case  8: bcomp = OpalPciBus5Bits;       break;
898                 case 16: bcomp = OpalPciBus4Bits;       break;
899                 case 32: bcomp = OpalPciBus3Bits;       break;
900                 default:
901                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
902                                 count);
903                         /* Do an exact match only */
904                         bcomp = OpalPciBusAll;
905                 }
906                 rid_end = pe->rid + (count << 8);
907         } else {
908 #ifdef CONFIG_PCI_IOV
909                 if (pe->flags & PNV_IODA_PE_VF)
910                         parent = pe->parent_dev;
911                 else
912 #endif /* CONFIG_PCI_IOV */
913                         parent = pe->pdev->bus->self;
914                 bcomp = OpalPciBusAll;
915                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
916                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
917                 rid_end = pe->rid + 1;
918         }
919
920         /*
921          * Associate PE in PELT. We need add the PE into the
922          * corresponding PELT-V as well. Otherwise, the error
923          * originated from the PE might contribute to other
924          * PEs.
925          */
926         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
927                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
928         if (rc) {
929                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
930                 return -ENXIO;
931         }
932
933         /*
934          * Configure PELTV. NPUs don't have a PELTV table so skip
935          * configuration on them.
936          */
937         if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
938                 pnv_ioda_set_peltv(phb, pe, true);
939
940         /* Setup reverse map */
941         for (rid = pe->rid; rid < rid_end; rid++)
942                 phb->ioda.pe_rmap[rid] = pe->pe_number;
943
944         /* Setup one MVTs on IODA1 */
945         if (phb->type != PNV_PHB_IODA1) {
946                 pe->mve_number = 0;
947                 goto out;
948         }
949
950         pe->mve_number = pe->pe_number;
951         rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
952         if (rc != OPAL_SUCCESS) {
953                 pe_err(pe, "OPAL error %ld setting up MVE %x\n",
954                        rc, pe->mve_number);
955                 pe->mve_number = -1;
956         } else {
957                 rc = opal_pci_set_mve_enable(phb->opal_id,
958                                              pe->mve_number, OPAL_ENABLE_MVE);
959                 if (rc) {
960                         pe_err(pe, "OPAL error %ld enabling MVE %x\n",
961                                rc, pe->mve_number);
962                         pe->mve_number = -1;
963                 }
964         }
965
966 out:
967         return 0;
968 }
969
970 #ifdef CONFIG_PCI_IOV
971 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
972 {
973         struct pci_dn *pdn = pci_get_pdn(dev);
974         int i;
975         struct resource *res, res2;
976         resource_size_t size;
977         u16 num_vfs;
978
979         if (!dev->is_physfn)
980                 return -EINVAL;
981
982         /*
983          * "offset" is in VFs.  The M64 windows are sized so that when they
984          * are segmented, each segment is the same size as the IOV BAR.
985          * Each segment is in a separate PE, and the high order bits of the
986          * address are the PE number.  Therefore, each VF's BAR is in a
987          * separate PE, and changing the IOV BAR start address changes the
988          * range of PEs the VFs are in.
989          */
990         num_vfs = pdn->num_vfs;
991         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
992                 res = &dev->resource[i + PCI_IOV_RESOURCES];
993                 if (!res->flags || !res->parent)
994                         continue;
995
996                 /*
997                  * The actual IOV BAR range is determined by the start address
998                  * and the actual size for num_vfs VFs BAR.  This check is to
999                  * make sure that after shifting, the range will not overlap
1000                  * with another device.
1001                  */
1002                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1003                 res2.flags = res->flags;
1004                 res2.start = res->start + (size * offset);
1005                 res2.end = res2.start + (size * num_vfs) - 1;
1006
1007                 if (res2.end > res->end) {
1008                         dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
1009                                 i, &res2, res, num_vfs, offset);
1010                         return -EBUSY;
1011                 }
1012         }
1013
1014         /*
1015          * Since M64 BAR shares segments among all possible 256 PEs,
1016          * we have to shift the beginning of PF IOV BAR to make it start from
1017          * the segment which belongs to the PE number assigned to the first VF.
1018          * This creates a "hole" in the /proc/iomem which could be used for
1019          * allocating other resources so we reserve this area below and
1020          * release when IOV is released.
1021          */
1022         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1023                 res = &dev->resource[i + PCI_IOV_RESOURCES];
1024                 if (!res->flags || !res->parent)
1025                         continue;
1026
1027                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1028                 res2 = *res;
1029                 res->start += size * offset;
1030
1031                 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1032                          i, &res2, res, (offset > 0) ? "En" : "Dis",
1033                          num_vfs, offset);
1034
1035                 if (offset < 0) {
1036                         devm_release_resource(&dev->dev, &pdn->holes[i]);
1037                         memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
1038                 }
1039
1040                 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1041
1042                 if (offset > 0) {
1043                         pdn->holes[i].start = res2.start;
1044                         pdn->holes[i].end = res2.start + size * offset - 1;
1045                         pdn->holes[i].flags = IORESOURCE_BUS;
1046                         pdn->holes[i].name = "pnv_iov_reserved";
1047                         devm_request_resource(&dev->dev, res->parent,
1048                                         &pdn->holes[i]);
1049                 }
1050         }
1051         return 0;
1052 }
1053 #endif /* CONFIG_PCI_IOV */
1054
1055 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1056 {
1057         struct pci_controller *hose = pci_bus_to_host(dev->bus);
1058         struct pnv_phb *phb = hose->private_data;
1059         struct pci_dn *pdn = pci_get_pdn(dev);
1060         struct pnv_ioda_pe *pe;
1061
1062         if (!pdn) {
1063                 pr_err("%s: Device tree node not associated properly\n",
1064                            pci_name(dev));
1065                 return NULL;
1066         }
1067         if (pdn->pe_number != IODA_INVALID_PE)
1068                 return NULL;
1069
1070         pe = pnv_ioda_alloc_pe(phb);
1071         if (!pe) {
1072                 pr_warn("%s: Not enough PE# available, disabling device\n",
1073                         pci_name(dev));
1074                 return NULL;
1075         }
1076
1077         /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1078          * pointer in the PE data structure, both should be destroyed at the
1079          * same time. However, this needs to be looked at more closely again
1080          * once we actually start removing things (Hotplug, SR-IOV, ...)
1081          *
1082          * At some point we want to remove the PDN completely anyways
1083          */
1084         pci_dev_get(dev);
1085         pdn->pe_number = pe->pe_number;
1086         pe->flags = PNV_IODA_PE_DEV;
1087         pe->pdev = dev;
1088         pe->pbus = NULL;
1089         pe->mve_number = -1;
1090         pe->rid = dev->bus->number << 8 | pdn->devfn;
1091
1092         pe_info(pe, "Associated device to PE\n");
1093
1094         if (pnv_ioda_configure_pe(phb, pe)) {
1095                 /* XXX What do we do here ? */
1096                 pnv_ioda_free_pe(pe);
1097                 pdn->pe_number = IODA_INVALID_PE;
1098                 pe->pdev = NULL;
1099                 pci_dev_put(dev);
1100                 return NULL;
1101         }
1102
1103         /* Put PE to the list */
1104         list_add_tail(&pe->list, &phb->ioda.pe_list);
1105
1106         return pe;
1107 }
1108
1109 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1110 {
1111         struct pci_dev *dev;
1112
1113         list_for_each_entry(dev, &bus->devices, bus_list) {
1114                 struct pci_dn *pdn = pci_get_pdn(dev);
1115
1116                 if (pdn == NULL) {
1117                         pr_warn("%s: No device node associated with device !\n",
1118                                 pci_name(dev));
1119                         continue;
1120                 }
1121
1122                 /*
1123                  * In partial hotplug case, the PCI device might be still
1124                  * associated with the PE and needn't attach it to the PE
1125                  * again.
1126                  */
1127                 if (pdn->pe_number != IODA_INVALID_PE)
1128                         continue;
1129
1130                 pe->device_count++;
1131                 pdn->pe_number = pe->pe_number;
1132                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1133                         pnv_ioda_setup_same_PE(dev->subordinate, pe);
1134         }
1135 }
1136
1137 /*
1138  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1139  * single PCI bus. Another one that contains the primary PCI bus and its
1140  * subordinate PCI devices and buses. The second type of PE is normally
1141  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1142  */
1143 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1144 {
1145         struct pci_controller *hose = pci_bus_to_host(bus);
1146         struct pnv_phb *phb = hose->private_data;
1147         struct pnv_ioda_pe *pe = NULL;
1148         unsigned int pe_num;
1149
1150         /*
1151          * In partial hotplug case, the PE instance might be still alive.
1152          * We should reuse it instead of allocating a new one.
1153          */
1154         pe_num = phb->ioda.pe_rmap[bus->number << 8];
1155         if (pe_num != IODA_INVALID_PE) {
1156                 pe = &phb->ioda.pe_array[pe_num];
1157                 pnv_ioda_setup_same_PE(bus, pe);
1158                 return NULL;
1159         }
1160
1161         /* PE number for root bus should have been reserved */
1162         if (pci_is_root_bus(bus) &&
1163             phb->ioda.root_pe_idx != IODA_INVALID_PE)
1164                 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1165
1166         /* Check if PE is determined by M64 */
1167         if (!pe && phb->pick_m64_pe)
1168                 pe = phb->pick_m64_pe(bus, all);
1169
1170         /* The PE number isn't pinned by M64 */
1171         if (!pe)
1172                 pe = pnv_ioda_alloc_pe(phb);
1173
1174         if (!pe) {
1175                 pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1176                         __func__, pci_domain_nr(bus), bus->number);
1177                 return NULL;
1178         }
1179
1180         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1181         pe->pbus = bus;
1182         pe->pdev = NULL;
1183         pe->mve_number = -1;
1184         pe->rid = bus->busn_res.start << 8;
1185
1186         if (all)
1187                 pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1188                         bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1189         else
1190                 pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1191                         bus->busn_res.start, pe->pe_number);
1192
1193         if (pnv_ioda_configure_pe(phb, pe)) {
1194                 /* XXX What do we do here ? */
1195                 pnv_ioda_free_pe(pe);
1196                 pe->pbus = NULL;
1197                 return NULL;
1198         }
1199
1200         /* Associate it with all child devices */
1201         pnv_ioda_setup_same_PE(bus, pe);
1202
1203         /* Put PE to the list */
1204         list_add_tail(&pe->list, &phb->ioda.pe_list);
1205
1206         return pe;
1207 }
1208
1209 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1210 {
1211         int pe_num, found_pe = false, rc;
1212         long rid;
1213         struct pnv_ioda_pe *pe;
1214         struct pci_dev *gpu_pdev;
1215         struct pci_dn *npu_pdn;
1216         struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1217         struct pnv_phb *phb = hose->private_data;
1218
1219         /*
1220          * Due to a hardware errata PE#0 on the NPU is reserved for
1221          * error handling. This means we only have three PEs remaining
1222          * which need to be assigned to four links, implying some
1223          * links must share PEs.
1224          *
1225          * To achieve this we assign PEs such that NPUs linking the
1226          * same GPU get assigned the same PE.
1227          */
1228         gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1229         for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1230                 pe = &phb->ioda.pe_array[pe_num];
1231                 if (!pe->pdev)
1232                         continue;
1233
1234                 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1235                         /*
1236                          * This device has the same peer GPU so should
1237                          * be assigned the same PE as the existing
1238                          * peer NPU.
1239                          */
1240                         dev_info(&npu_pdev->dev,
1241                                 "Associating to existing PE %x\n", pe_num);
1242                         pci_dev_get(npu_pdev);
1243                         npu_pdn = pci_get_pdn(npu_pdev);
1244                         rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1245                         npu_pdn->pe_number = pe_num;
1246                         phb->ioda.pe_rmap[rid] = pe->pe_number;
1247
1248                         /* Map the PE to this link */
1249                         rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1250                                         OpalPciBusAll,
1251                                         OPAL_COMPARE_RID_DEVICE_NUMBER,
1252                                         OPAL_COMPARE_RID_FUNCTION_NUMBER,
1253                                         OPAL_MAP_PE);
1254                         WARN_ON(rc != OPAL_SUCCESS);
1255                         found_pe = true;
1256                         break;
1257                 }
1258         }
1259
1260         if (!found_pe)
1261                 /*
1262                  * Could not find an existing PE so allocate a new
1263                  * one.
1264                  */
1265                 return pnv_ioda_setup_dev_PE(npu_pdev);
1266         else
1267                 return pe;
1268 }
1269
1270 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1271 {
1272         struct pci_dev *pdev;
1273
1274         list_for_each_entry(pdev, &bus->devices, bus_list)
1275                 pnv_ioda_setup_npu_PE(pdev);
1276 }
1277
1278 static void pnv_pci_ioda_setup_PEs(void)
1279 {
1280         struct pci_controller *hose, *tmp;
1281         struct pnv_phb *phb;
1282         struct pci_bus *bus;
1283         struct pci_dev *pdev;
1284
1285         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1286                 phb = hose->private_data;
1287                 if (phb->type == PNV_PHB_NPU_NVLINK) {
1288                         /* PE#0 is needed for error reporting */
1289                         pnv_ioda_reserve_pe(phb, 0);
1290                         pnv_ioda_setup_npu_PEs(hose->bus);
1291                         if (phb->model == PNV_PHB_MODEL_NPU2)
1292                                 pnv_npu2_init(phb);
1293                 }
1294                 if (phb->type == PNV_PHB_NPU_OCAPI) {
1295                         bus = hose->bus;
1296                         list_for_each_entry(pdev, &bus->devices, bus_list)
1297                                 pnv_ioda_setup_dev_PE(pdev);
1298                 }
1299         }
1300 }
1301
1302 #ifdef CONFIG_PCI_IOV
1303 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1304 {
1305         struct pci_bus        *bus;
1306         struct pci_controller *hose;
1307         struct pnv_phb        *phb;
1308         struct pci_dn         *pdn;
1309         int                    i, j;
1310         int                    m64_bars;
1311
1312         bus = pdev->bus;
1313         hose = pci_bus_to_host(bus);
1314         phb = hose->private_data;
1315         pdn = pci_get_pdn(pdev);
1316
1317         if (pdn->m64_single_mode)
1318                 m64_bars = num_vfs;
1319         else
1320                 m64_bars = 1;
1321
1322         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1323                 for (j = 0; j < m64_bars; j++) {
1324                         if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1325                                 continue;
1326                         opal_pci_phb_mmio_enable(phb->opal_id,
1327                                 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1328                         clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1329                         pdn->m64_map[j][i] = IODA_INVALID_M64;
1330                 }
1331
1332         kfree(pdn->m64_map);
1333         return 0;
1334 }
1335
1336 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1337 {
1338         struct pci_bus        *bus;
1339         struct pci_controller *hose;
1340         struct pnv_phb        *phb;
1341         struct pci_dn         *pdn;
1342         unsigned int           win;
1343         struct resource       *res;
1344         int                    i, j;
1345         int64_t                rc;
1346         int                    total_vfs;
1347         resource_size_t        size, start;
1348         int                    pe_num;
1349         int                    m64_bars;
1350
1351         bus = pdev->bus;
1352         hose = pci_bus_to_host(bus);
1353         phb = hose->private_data;
1354         pdn = pci_get_pdn(pdev);
1355         total_vfs = pci_sriov_get_totalvfs(pdev);
1356
1357         if (pdn->m64_single_mode)
1358                 m64_bars = num_vfs;
1359         else
1360                 m64_bars = 1;
1361
1362         pdn->m64_map = kmalloc_array(m64_bars,
1363                                      sizeof(*pdn->m64_map),
1364                                      GFP_KERNEL);
1365         if (!pdn->m64_map)
1366                 return -ENOMEM;
1367         /* Initialize the m64_map to IODA_INVALID_M64 */
1368         for (i = 0; i < m64_bars ; i++)
1369                 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1370                         pdn->m64_map[i][j] = IODA_INVALID_M64;
1371
1372
1373         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1374                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1375                 if (!res->flags || !res->parent)
1376                         continue;
1377
1378                 for (j = 0; j < m64_bars; j++) {
1379                         do {
1380                                 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1381                                                 phb->ioda.m64_bar_idx + 1, 0);
1382
1383                                 if (win >= phb->ioda.m64_bar_idx + 1)
1384                                         goto m64_failed;
1385                         } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1386
1387                         pdn->m64_map[j][i] = win;
1388
1389                         if (pdn->m64_single_mode) {
1390                                 size = pci_iov_resource_size(pdev,
1391                                                         PCI_IOV_RESOURCES + i);
1392                                 start = res->start + size * j;
1393                         } else {
1394                                 size = resource_size(res);
1395                                 start = res->start;
1396                         }
1397
1398                         /* Map the M64 here */
1399                         if (pdn->m64_single_mode) {
1400                                 pe_num = pdn->pe_num_map[j];
1401                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1402                                                 pe_num, OPAL_M64_WINDOW_TYPE,
1403                                                 pdn->m64_map[j][i], 0);
1404                         }
1405
1406                         rc = opal_pci_set_phb_mem_window(phb->opal_id,
1407                                                  OPAL_M64_WINDOW_TYPE,
1408                                                  pdn->m64_map[j][i],
1409                                                  start,
1410                                                  0, /* unused */
1411                                                  size);
1412
1413
1414                         if (rc != OPAL_SUCCESS) {
1415                                 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1416                                         win, rc);
1417                                 goto m64_failed;
1418                         }
1419
1420                         if (pdn->m64_single_mode)
1421                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1422                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1423                         else
1424                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1425                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1426
1427                         if (rc != OPAL_SUCCESS) {
1428                                 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1429                                         win, rc);
1430                                 goto m64_failed;
1431                         }
1432                 }
1433         }
1434         return 0;
1435
1436 m64_failed:
1437         pnv_pci_vf_release_m64(pdev, num_vfs);
1438         return -EBUSY;
1439 }
1440
1441 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1442                 int num);
1443
1444 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1445 {
1446         struct iommu_table    *tbl;
1447         int64_t               rc;
1448
1449         tbl = pe->table_group.tables[0];
1450         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1451         if (rc)
1452                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1453
1454         pnv_pci_ioda2_set_bypass(pe, false);
1455         if (pe->table_group.group) {
1456                 iommu_group_put(pe->table_group.group);
1457                 BUG_ON(pe->table_group.group);
1458         }
1459         iommu_tce_table_put(tbl);
1460 }
1461
1462 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1463 {
1464         struct pci_bus        *bus;
1465         struct pci_controller *hose;
1466         struct pnv_phb        *phb;
1467         struct pnv_ioda_pe    *pe, *pe_n;
1468         struct pci_dn         *pdn;
1469
1470         bus = pdev->bus;
1471         hose = pci_bus_to_host(bus);
1472         phb = hose->private_data;
1473         pdn = pci_get_pdn(pdev);
1474
1475         if (!pdev->is_physfn)
1476                 return;
1477
1478         list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1479                 if (pe->parent_dev != pdev)
1480                         continue;
1481
1482                 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1483
1484                 /* Remove from list */
1485                 mutex_lock(&phb->ioda.pe_list_mutex);
1486                 list_del(&pe->list);
1487                 mutex_unlock(&phb->ioda.pe_list_mutex);
1488
1489                 pnv_ioda_deconfigure_pe(phb, pe);
1490
1491                 pnv_ioda_free_pe(pe);
1492         }
1493 }
1494
1495 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1496 {
1497         struct pci_bus        *bus;
1498         struct pci_controller *hose;
1499         struct pnv_phb        *phb;
1500         struct pnv_ioda_pe    *pe;
1501         struct pci_dn         *pdn;
1502         u16                    num_vfs, i;
1503
1504         bus = pdev->bus;
1505         hose = pci_bus_to_host(bus);
1506         phb = hose->private_data;
1507         pdn = pci_get_pdn(pdev);
1508         num_vfs = pdn->num_vfs;
1509
1510         /* Release VF PEs */
1511         pnv_ioda_release_vf_PE(pdev);
1512
1513         if (phb->type == PNV_PHB_IODA2) {
1514                 if (!pdn->m64_single_mode)
1515                         pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1516
1517                 /* Release M64 windows */
1518                 pnv_pci_vf_release_m64(pdev, num_vfs);
1519
1520                 /* Release PE numbers */
1521                 if (pdn->m64_single_mode) {
1522                         for (i = 0; i < num_vfs; i++) {
1523                                 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1524                                         continue;
1525
1526                                 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1527                                 pnv_ioda_free_pe(pe);
1528                         }
1529                 } else
1530                         bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1531                 /* Releasing pe_num_map */
1532                 kfree(pdn->pe_num_map);
1533         }
1534 }
1535
1536 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1537                                        struct pnv_ioda_pe *pe);
1538 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1539 {
1540         struct pci_bus        *bus;
1541         struct pci_controller *hose;
1542         struct pnv_phb        *phb;
1543         struct pnv_ioda_pe    *pe;
1544         int                    pe_num;
1545         u16                    vf_index;
1546         struct pci_dn         *pdn;
1547
1548         bus = pdev->bus;
1549         hose = pci_bus_to_host(bus);
1550         phb = hose->private_data;
1551         pdn = pci_get_pdn(pdev);
1552
1553         if (!pdev->is_physfn)
1554                 return;
1555
1556         /* Reserve PE for each VF */
1557         for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1558                 if (pdn->m64_single_mode)
1559                         pe_num = pdn->pe_num_map[vf_index];
1560                 else
1561                         pe_num = *pdn->pe_num_map + vf_index;
1562
1563                 pe = &phb->ioda.pe_array[pe_num];
1564                 pe->pe_number = pe_num;
1565                 pe->phb = phb;
1566                 pe->flags = PNV_IODA_PE_VF;
1567                 pe->pbus = NULL;
1568                 pe->parent_dev = pdev;
1569                 pe->mve_number = -1;
1570                 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1571                            pci_iov_virtfn_devfn(pdev, vf_index);
1572
1573                 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1574                         hose->global_number, pdev->bus->number,
1575                         PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1576                         PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1577
1578                 if (pnv_ioda_configure_pe(phb, pe)) {
1579                         /* XXX What do we do here ? */
1580                         pnv_ioda_free_pe(pe);
1581                         pe->pdev = NULL;
1582                         continue;
1583                 }
1584
1585                 /* Put PE to the list */
1586                 mutex_lock(&phb->ioda.pe_list_mutex);
1587                 list_add_tail(&pe->list, &phb->ioda.pe_list);
1588                 mutex_unlock(&phb->ioda.pe_list_mutex);
1589
1590                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1591         }
1592 }
1593
1594 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1595 {
1596         struct pci_bus        *bus;
1597         struct pci_controller *hose;
1598         struct pnv_phb        *phb;
1599         struct pnv_ioda_pe    *pe;
1600         struct pci_dn         *pdn;
1601         int                    ret;
1602         u16                    i;
1603
1604         bus = pdev->bus;
1605         hose = pci_bus_to_host(bus);
1606         phb = hose->private_data;
1607         pdn = pci_get_pdn(pdev);
1608
1609         if (phb->type == PNV_PHB_IODA2) {
1610                 if (!pdn->vfs_expanded) {
1611                         dev_info(&pdev->dev, "don't support this SRIOV device"
1612                                 " with non 64bit-prefetchable IOV BAR\n");
1613                         return -ENOSPC;
1614                 }
1615
1616                 /*
1617                  * When M64 BARs functions in Single PE mode, the number of VFs
1618                  * could be enabled must be less than the number of M64 BARs.
1619                  */
1620                 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1621                         dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1622                         return -EBUSY;
1623                 }
1624
1625                 /* Allocating pe_num_map */
1626                 if (pdn->m64_single_mode)
1627                         pdn->pe_num_map = kmalloc_array(num_vfs,
1628                                                         sizeof(*pdn->pe_num_map),
1629                                                         GFP_KERNEL);
1630                 else
1631                         pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1632
1633                 if (!pdn->pe_num_map)
1634                         return -ENOMEM;
1635
1636                 if (pdn->m64_single_mode)
1637                         for (i = 0; i < num_vfs; i++)
1638                                 pdn->pe_num_map[i] = IODA_INVALID_PE;
1639
1640                 /* Calculate available PE for required VFs */
1641                 if (pdn->m64_single_mode) {
1642                         for (i = 0; i < num_vfs; i++) {
1643                                 pe = pnv_ioda_alloc_pe(phb);
1644                                 if (!pe) {
1645                                         ret = -EBUSY;
1646                                         goto m64_failed;
1647                                 }
1648
1649                                 pdn->pe_num_map[i] = pe->pe_number;
1650                         }
1651                 } else {
1652                         mutex_lock(&phb->ioda.pe_alloc_mutex);
1653                         *pdn->pe_num_map = bitmap_find_next_zero_area(
1654                                 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1655                                 0, num_vfs, 0);
1656                         if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1657                                 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1658                                 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1659                                 kfree(pdn->pe_num_map);
1660                                 return -EBUSY;
1661                         }
1662                         bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1663                         mutex_unlock(&phb->ioda.pe_alloc_mutex);
1664                 }
1665                 pdn->num_vfs = num_vfs;
1666
1667                 /* Assign M64 window accordingly */
1668                 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1669                 if (ret) {
1670                         dev_info(&pdev->dev, "Not enough M64 window resources\n");
1671                         goto m64_failed;
1672                 }
1673
1674                 /*
1675                  * When using one M64 BAR to map one IOV BAR, we need to shift
1676                  * the IOV BAR according to the PE# allocated to the VFs.
1677                  * Otherwise, the PE# for the VF will conflict with others.
1678                  */
1679                 if (!pdn->m64_single_mode) {
1680                         ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1681                         if (ret)
1682                                 goto m64_failed;
1683                 }
1684         }
1685
1686         /* Setup VF PEs */
1687         pnv_ioda_setup_vf_PE(pdev, num_vfs);
1688
1689         return 0;
1690
1691 m64_failed:
1692         if (pdn->m64_single_mode) {
1693                 for (i = 0; i < num_vfs; i++) {
1694                         if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1695                                 continue;
1696
1697                         pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1698                         pnv_ioda_free_pe(pe);
1699                 }
1700         } else
1701                 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1702
1703         /* Releasing pe_num_map */
1704         kfree(pdn->pe_num_map);
1705
1706         return ret;
1707 }
1708
1709 int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
1710 {
1711         pnv_pci_sriov_disable(pdev);
1712
1713         /* Release PCI data */
1714         remove_dev_pci_data(pdev);
1715         return 0;
1716 }
1717
1718 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1719 {
1720         /* Allocate PCI data */
1721         add_dev_pci_data(pdev);
1722
1723         return pnv_pci_sriov_enable(pdev, num_vfs);
1724 }
1725 #endif /* CONFIG_PCI_IOV */
1726
1727 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1728 {
1729         struct pci_dn *pdn = pci_get_pdn(pdev);
1730         struct pnv_ioda_pe *pe;
1731
1732         /*
1733          * The function can be called while the PE#
1734          * hasn't been assigned. Do nothing for the
1735          * case.
1736          */
1737         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1738                 return;
1739
1740         pe = &phb->ioda.pe_array[pdn->pe_number];
1741         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1742         set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1743         set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1744         /*
1745          * Note: iommu_add_device() will fail here as
1746          * for physical PE: the device is already added by now;
1747          * for virtual PE: sysfs entries are not ready yet and
1748          * tce_iommu_bus_notifier will add the device to a group later.
1749          */
1750 }
1751
1752 static bool pnv_pci_ioda_pe_single_vendor(struct pnv_ioda_pe *pe)
1753 {
1754         unsigned short vendor = 0;
1755         struct pci_dev *pdev;
1756
1757         if (pe->device_count == 1)
1758                 return true;
1759
1760         /* pe->pdev should be set if it's a single device, pe->pbus if not */
1761         if (!pe->pbus)
1762                 return true;
1763
1764         list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
1765                 if (!vendor) {
1766                         vendor = pdev->vendor;
1767                         continue;
1768                 }
1769
1770                 if (pdev->vendor != vendor)
1771                         return false;
1772         }
1773
1774         return true;
1775 }
1776
1777 /*
1778  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1779  *
1780  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1781  * Devices can only access more than that if bit 59 of the PCI address is set
1782  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1783  * Many PCI devices are not capable of addressing that many bits, and as a
1784  * result are limited to the 4GB of virtual memory made available to 32-bit
1785  * devices in TVE#0.
1786  *
1787  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1788  * devices by configuring the virtual memory past the first 4GB inaccessible
1789  * by 64-bit DMAs.  This should only be used by devices that want more than
1790  * 4GB, and only on PEs that have no 32-bit devices.
1791  *
1792  * Currently this will only work on PHB3 (POWER8).
1793  */
1794 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1795 {
1796         u64 window_size, table_size, tce_count, addr;
1797         struct page *table_pages;
1798         u64 tce_order = 28; /* 256MB TCEs */
1799         __be64 *tces;
1800         s64 rc;
1801
1802         /*
1803          * Window size needs to be a power of two, but needs to account for
1804          * shifting memory by the 4GB offset required to skip 32bit space.
1805          */
1806         window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1807         tce_count = window_size >> tce_order;
1808         table_size = tce_count << 3;
1809
1810         if (table_size < PAGE_SIZE)
1811                 table_size = PAGE_SIZE;
1812
1813         table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1814                                        get_order(table_size));
1815         if (!table_pages)
1816                 goto err;
1817
1818         tces = page_address(table_pages);
1819         if (!tces)
1820                 goto err;
1821
1822         memset(tces, 0, table_size);
1823
1824         for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1825                 tces[(addr + (1ULL << 32)) >> tce_order] =
1826                         cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1827         }
1828
1829         rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1830                                         pe->pe_number,
1831                                         /* reconfigure window 0 */
1832                                         (pe->pe_number << 1) + 0,
1833                                         1,
1834                                         __pa(tces),
1835                                         table_size,
1836                                         1 << tce_order);
1837         if (rc == OPAL_SUCCESS) {
1838                 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1839                 return 0;
1840         }
1841 err:
1842         pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1843         return -EIO;
1844 }
1845
1846 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1847 {
1848         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1849         struct pnv_phb *phb = hose->private_data;
1850         struct pci_dn *pdn = pci_get_pdn(pdev);
1851         struct pnv_ioda_pe *pe;
1852         uint64_t top;
1853         bool bypass = false;
1854         s64 rc;
1855
1856         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1857                 return -ENODEV;
1858
1859         pe = &phb->ioda.pe_array[pdn->pe_number];
1860         if (pe->tce_bypass_enabled) {
1861                 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1862                 bypass = (dma_mask >= top);
1863         }
1864
1865         if (bypass) {
1866                 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1867                 set_dma_ops(&pdev->dev, &dma_nommu_ops);
1868         } else {
1869                 /*
1870                  * If the device can't set the TCE bypass bit but still wants
1871                  * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1872                  * bypass the 32-bit region and be usable for 64-bit DMAs.
1873                  * The device needs to be able to address all of this space.
1874                  */
1875                 if (dma_mask >> 32 &&
1876                     dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1877                     pnv_pci_ioda_pe_single_vendor(pe) &&
1878                     phb->model == PNV_PHB_MODEL_PHB3) {
1879                         /* Configure the bypass mode */
1880                         rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1881                         if (rc)
1882                                 return rc;
1883                         /* 4GB offset bypasses 32-bit space */
1884                         set_dma_offset(&pdev->dev, (1ULL << 32));
1885                         set_dma_ops(&pdev->dev, &dma_nommu_ops);
1886                 } else if (dma_mask >> 32 && dma_mask != DMA_BIT_MASK(64)) {
1887                         /*
1888                          * Fail the request if a DMA mask between 32 and 64 bits
1889                          * was requested but couldn't be fulfilled. Ideally we
1890                          * would do this for 64-bits but historically we have
1891                          * always fallen back to 32-bits.
1892                          */
1893                         return -ENOMEM;
1894                 } else {
1895                         dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1896                         set_dma_ops(&pdev->dev, &dma_iommu_ops);
1897                 }
1898         }
1899         *pdev->dev.dma_mask = dma_mask;
1900
1901         /* Update peer npu devices */
1902         pnv_npu_try_dma_set_bypass(pdev, bypass);
1903
1904         return 0;
1905 }
1906
1907 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1908 {
1909         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1910         struct pnv_phb *phb = hose->private_data;
1911         struct pci_dn *pdn = pci_get_pdn(pdev);
1912         struct pnv_ioda_pe *pe;
1913         u64 end, mask;
1914
1915         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1916                 return 0;
1917
1918         pe = &phb->ioda.pe_array[pdn->pe_number];
1919         if (!pe->tce_bypass_enabled)
1920                 return __dma_get_required_mask(&pdev->dev);
1921
1922
1923         end = pe->tce_bypass_base + memblock_end_of_DRAM();
1924         mask = 1ULL << (fls64(end) - 1);
1925         mask += mask - 1;
1926
1927         return mask;
1928 }
1929
1930 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1931                                    struct pci_bus *bus,
1932                                    bool add_to_group)
1933 {
1934         struct pci_dev *dev;
1935
1936         list_for_each_entry(dev, &bus->devices, bus_list) {
1937                 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1938                 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1939                 if (add_to_group)
1940                         iommu_add_device(&dev->dev);
1941
1942                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1943                         pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1944                                         add_to_group);
1945         }
1946 }
1947
1948 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1949                                                      bool real_mode)
1950 {
1951         return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1952                 (phb->regs + 0x210);
1953 }
1954
1955 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1956                 unsigned long index, unsigned long npages, bool rm)
1957 {
1958         struct iommu_table_group_link *tgl = list_first_entry_or_null(
1959                         &tbl->it_group_list, struct iommu_table_group_link,
1960                         next);
1961         struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1962                         struct pnv_ioda_pe, table_group);
1963         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1964         unsigned long start, end, inc;
1965
1966         start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1967         end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1968                         npages - 1);
1969
1970         /* p7ioc-style invalidation, 2 TCEs per write */
1971         start |= (1ull << 63);
1972         end |= (1ull << 63);
1973         inc = 16;
1974         end |= inc - 1; /* round up end to be different than start */
1975
1976         mb(); /* Ensure above stores are visible */
1977         while (start <= end) {
1978                 if (rm)
1979                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1980                 else
1981                         __raw_writeq(cpu_to_be64(start), invalidate);
1982                 start += inc;
1983         }
1984
1985         /*
1986          * The iommu layer will do another mb() for us on build()
1987          * and we don't care on free()
1988          */
1989 }
1990
1991 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1992                 long npages, unsigned long uaddr,
1993                 enum dma_data_direction direction,
1994                 unsigned long attrs)
1995 {
1996         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1997                         attrs);
1998
1999         if (!ret)
2000                 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
2001
2002         return ret;
2003 }
2004
2005 #ifdef CONFIG_IOMMU_API
2006 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
2007                 unsigned long *hpa, enum dma_data_direction *direction)
2008 {
2009         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2010
2011         if (!ret)
2012                 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
2013
2014         return ret;
2015 }
2016
2017 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
2018                 unsigned long *hpa, enum dma_data_direction *direction)
2019 {
2020         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2021
2022         if (!ret)
2023                 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
2024
2025         return ret;
2026 }
2027 #endif
2028
2029 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
2030                 long npages)
2031 {
2032         pnv_tce_free(tbl, index, npages);
2033
2034         pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
2035 }
2036
2037 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
2038         .set = pnv_ioda1_tce_build,
2039 #ifdef CONFIG_IOMMU_API
2040         .exchange = pnv_ioda1_tce_xchg,
2041         .exchange_rm = pnv_ioda1_tce_xchg_rm,
2042 #endif
2043         .clear = pnv_ioda1_tce_free,
2044         .get = pnv_tce_get,
2045 };
2046
2047 #define PHB3_TCE_KILL_INVAL_ALL         PPC_BIT(0)
2048 #define PHB3_TCE_KILL_INVAL_PE          PPC_BIT(1)
2049 #define PHB3_TCE_KILL_INVAL_ONE         PPC_BIT(2)
2050
2051 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2052 {
2053         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
2054         const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
2055
2056         mb(); /* Ensure previous TCE table stores are visible */
2057         if (rm)
2058                 __raw_rm_writeq(cpu_to_be64(val), invalidate);
2059         else
2060                 __raw_writeq(cpu_to_be64(val), invalidate);
2061 }
2062
2063 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2064 {
2065         /* 01xb - invalidate TCEs that match the specified PE# */
2066         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2067         unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2068
2069         mb(); /* Ensure above stores are visible */
2070         __raw_writeq(cpu_to_be64(val), invalidate);
2071 }
2072
2073 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2074                                         unsigned shift, unsigned long index,
2075                                         unsigned long npages)
2076 {
2077         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2078         unsigned long start, end, inc;
2079
2080         /* We'll invalidate DMA address in PE scope */
2081         start = PHB3_TCE_KILL_INVAL_ONE;
2082         start |= (pe->pe_number & 0xFF);
2083         end = start;
2084
2085         /* Figure out the start, end and step */
2086         start |= (index << shift);
2087         end |= ((index + npages - 1) << shift);
2088         inc = (0x1ull << shift);
2089         mb();
2090
2091         while (start <= end) {
2092                 if (rm)
2093                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
2094                 else
2095                         __raw_writeq(cpu_to_be64(start), invalidate);
2096                 start += inc;
2097         }
2098 }
2099
2100 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2101 {
2102         struct pnv_phb *phb = pe->phb;
2103
2104         if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2105                 pnv_pci_phb3_tce_invalidate_pe(pe);
2106         else
2107                 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2108                                   pe->pe_number, 0, 0, 0);
2109 }
2110
2111 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2112                 unsigned long index, unsigned long npages, bool rm)
2113 {
2114         struct iommu_table_group_link *tgl;
2115
2116         list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2117                 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2118                                 struct pnv_ioda_pe, table_group);
2119                 struct pnv_phb *phb = pe->phb;
2120                 unsigned int shift = tbl->it_page_shift;
2121
2122                 /*
2123                  * NVLink1 can use the TCE kill register directly as
2124                  * it's the same as PHB3. NVLink2 is different and
2125                  * should go via the OPAL call.
2126                  */
2127                 if (phb->model == PNV_PHB_MODEL_NPU) {
2128                         /*
2129                          * The NVLink hardware does not support TCE kill
2130                          * per TCE entry so we have to invalidate
2131                          * the entire cache for it.
2132                          */
2133                         pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2134                         continue;
2135                 }
2136                 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2137                         pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2138                                                     index, npages);
2139                 else
2140                         opal_pci_tce_kill(phb->opal_id,
2141                                           OPAL_PCI_TCE_KILL_PAGES,
2142                                           pe->pe_number, 1u << shift,
2143                                           index << shift, npages);
2144         }
2145 }
2146
2147 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2148 {
2149         if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2150                 pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2151         else
2152                 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2153 }
2154
2155 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2156                 long npages, unsigned long uaddr,
2157                 enum dma_data_direction direction,
2158                 unsigned long attrs)
2159 {
2160         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2161                         attrs);
2162
2163         if (!ret)
2164                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2165
2166         return ret;
2167 }
2168
2169 #ifdef CONFIG_IOMMU_API
2170 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2171                 unsigned long *hpa, enum dma_data_direction *direction)
2172 {
2173         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2174
2175         if (!ret)
2176                 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2177
2178         return ret;
2179 }
2180
2181 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2182                 unsigned long *hpa, enum dma_data_direction *direction)
2183 {
2184         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2185
2186         if (!ret)
2187                 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2188
2189         return ret;
2190 }
2191 #endif
2192
2193 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2194                 long npages)
2195 {
2196         pnv_tce_free(tbl, index, npages);
2197
2198         pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2199 }
2200
2201 static void pnv_ioda2_table_free(struct iommu_table *tbl)
2202 {
2203         pnv_pci_ioda2_table_free_pages(tbl);
2204 }
2205
2206 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2207         .set = pnv_ioda2_tce_build,
2208 #ifdef CONFIG_IOMMU_API
2209         .exchange = pnv_ioda2_tce_xchg,
2210         .exchange_rm = pnv_ioda2_tce_xchg_rm,
2211 #endif
2212         .clear = pnv_ioda2_tce_free,
2213         .get = pnv_tce_get,
2214         .free = pnv_ioda2_table_free,
2215 };
2216
2217 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2218 {
2219         unsigned int *weight = (unsigned int *)data;
2220
2221         /* This is quite simplistic. The "base" weight of a device
2222          * is 10. 0 means no DMA is to be accounted for it.
2223          */
2224         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2225                 return 0;
2226
2227         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2228             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2229             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2230                 *weight += 3;
2231         else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2232                 *weight += 15;
2233         else
2234                 *weight += 10;
2235
2236         return 0;
2237 }
2238
2239 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2240 {
2241         unsigned int weight = 0;
2242
2243         /* SRIOV VF has same DMA32 weight as its PF */
2244 #ifdef CONFIG_PCI_IOV
2245         if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2246                 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2247                 return weight;
2248         }
2249 #endif
2250
2251         if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2252                 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2253         } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2254                 struct pci_dev *pdev;
2255
2256                 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2257                         pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2258         } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2259                 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2260         }
2261
2262         return weight;
2263 }
2264
2265 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2266                                        struct pnv_ioda_pe *pe)
2267 {
2268
2269         struct page *tce_mem = NULL;
2270         struct iommu_table *tbl;
2271         unsigned int weight, total_weight = 0;
2272         unsigned int tce32_segsz, base, segs, avail, i;
2273         int64_t rc;
2274         void *addr;
2275
2276         /* XXX FIXME: Handle 64-bit only DMA devices */
2277         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2278         /* XXX FIXME: Allocate multi-level tables on PHB3 */
2279         weight = pnv_pci_ioda_pe_dma_weight(pe);
2280         if (!weight)
2281                 return;
2282
2283         pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2284                      &total_weight);
2285         segs = (weight * phb->ioda.dma32_count) / total_weight;
2286         if (!segs)
2287                 segs = 1;
2288
2289         /*
2290          * Allocate contiguous DMA32 segments. We begin with the expected
2291          * number of segments. With one more attempt, the number of DMA32
2292          * segments to be allocated is decreased by one until one segment
2293          * is allocated successfully.
2294          */
2295         do {
2296                 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2297                         for (avail = 0, i = base; i < base + segs; i++) {
2298                                 if (phb->ioda.dma32_segmap[i] ==
2299                                     IODA_INVALID_PE)
2300                                         avail++;
2301                         }
2302
2303                         if (avail == segs)
2304                                 goto found;
2305                 }
2306         } while (--segs);
2307
2308         if (!segs) {
2309                 pe_warn(pe, "No available DMA32 segments\n");
2310                 return;
2311         }
2312
2313 found:
2314         tbl = pnv_pci_table_alloc(phb->hose->node);
2315         if (WARN_ON(!tbl))
2316                 return;
2317
2318         iommu_register_group(&pe->table_group, phb->hose->global_number,
2319                         pe->pe_number);
2320         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2321
2322         /* Grab a 32-bit TCE table */
2323         pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2324                 weight, total_weight, base, segs);
2325         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2326                 base * PNV_IODA1_DMA32_SEGSIZE,
2327                 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2328
2329         /* XXX Currently, we allocate one big contiguous table for the
2330          * TCEs. We only really need one chunk per 256M of TCE space
2331          * (ie per segment) but that's an optimization for later, it
2332          * requires some added smarts with our get/put_tce implementation
2333          *
2334          * Each TCE page is 4KB in size and each TCE entry occupies 8
2335          * bytes
2336          */
2337         tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2338         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2339                                    get_order(tce32_segsz * segs));
2340         if (!tce_mem) {
2341                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2342                 goto fail;
2343         }
2344         addr = page_address(tce_mem);
2345         memset(addr, 0, tce32_segsz * segs);
2346
2347         /* Configure HW */
2348         for (i = 0; i < segs; i++) {
2349                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2350                                               pe->pe_number,
2351                                               base + i, 1,
2352                                               __pa(addr) + tce32_segsz * i,
2353                                               tce32_segsz, IOMMU_PAGE_SIZE_4K);
2354                 if (rc) {
2355                         pe_err(pe, " Failed to configure 32-bit TCE table,"
2356                                " err %ld\n", rc);
2357                         goto fail;
2358                 }
2359         }
2360
2361         /* Setup DMA32 segment mapping */
2362         for (i = base; i < base + segs; i++)
2363                 phb->ioda.dma32_segmap[i] = pe->pe_number;
2364
2365         /* Setup linux iommu table */
2366         pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2367                                   base * PNV_IODA1_DMA32_SEGSIZE,
2368                                   IOMMU_PAGE_SHIFT_4K);
2369
2370         tbl->it_ops = &pnv_ioda1_iommu_ops;
2371         pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2372         pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2373         iommu_init_table(tbl, phb->hose->node);
2374
2375         if (pe->flags & PNV_IODA_PE_DEV) {
2376                 /*
2377                  * Setting table base here only for carrying iommu_group
2378                  * further down to let iommu_add_device() do the job.
2379                  * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2380                  */
2381                 set_iommu_table_base(&pe->pdev->dev, tbl);
2382                 iommu_add_device(&pe->pdev->dev);
2383         } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2384                 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2385
2386         return;
2387  fail:
2388         /* XXX Failure: Try to fallback to 64-bit only ? */
2389         if (tce_mem)
2390                 __free_pages(tce_mem, get_order(tce32_segsz * segs));
2391         if (tbl) {
2392                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2393                 iommu_tce_table_put(tbl);
2394         }
2395 }
2396
2397 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2398                 int num, struct iommu_table *tbl)
2399 {
2400         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2401                         table_group);
2402         struct pnv_phb *phb = pe->phb;
2403         int64_t rc;
2404         const unsigned long size = tbl->it_indirect_levels ?
2405                         tbl->it_level_size : tbl->it_size;
2406         const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2407         const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2408
2409         pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2410                         start_addr, start_addr + win_size - 1,
2411                         IOMMU_PAGE_SIZE(tbl));
2412
2413         /*
2414          * Map TCE table through TVT. The TVE index is the PE number
2415          * shifted by 1 bit for 32-bits DMA space.
2416          */
2417         rc = opal_pci_map_pe_dma_window(phb->opal_id,
2418                         pe->pe_number,
2419                         (pe->pe_number << 1) + num,
2420                         tbl->it_indirect_levels + 1,
2421                         __pa(tbl->it_base),
2422                         size << 3,
2423                         IOMMU_PAGE_SIZE(tbl));
2424         if (rc) {
2425                 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2426                 return rc;
2427         }
2428
2429         pnv_pci_link_table_and_group(phb->hose->node, num,
2430                         tbl, &pe->table_group);
2431         pnv_pci_ioda2_tce_invalidate_pe(pe);
2432
2433         return 0;
2434 }
2435
2436 void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2437 {
2438         uint16_t window_id = (pe->pe_number << 1 ) + 1;
2439         int64_t rc;
2440
2441         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2442         if (enable) {
2443                 phys_addr_t top = memblock_end_of_DRAM();
2444
2445                 top = roundup_pow_of_two(top);
2446                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2447                                                      pe->pe_number,
2448                                                      window_id,
2449                                                      pe->tce_bypass_base,
2450                                                      top);
2451         } else {
2452                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2453                                                      pe->pe_number,
2454                                                      window_id,
2455                                                      pe->tce_bypass_base,
2456                                                      0);
2457         }
2458         if (rc)
2459                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2460         else
2461                 pe->tce_bypass_enabled = enable;
2462 }
2463
2464 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2465                 __u32 page_shift, __u64 window_size, __u32 levels,
2466                 struct iommu_table *tbl);
2467
2468 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2469                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2470                 struct iommu_table **ptbl)
2471 {
2472         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2473                         table_group);
2474         int nid = pe->phb->hose->node;
2475         __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2476         long ret;
2477         struct iommu_table *tbl;
2478
2479         tbl = pnv_pci_table_alloc(nid);
2480         if (!tbl)
2481                 return -ENOMEM;
2482
2483         tbl->it_ops = &pnv_ioda2_iommu_ops;
2484
2485         ret = pnv_pci_ioda2_table_alloc_pages(nid,
2486                         bus_offset, page_shift, window_size,
2487                         levels, tbl);
2488         if (ret) {
2489                 iommu_tce_table_put(tbl);
2490                 return ret;
2491         }
2492
2493         *ptbl = tbl;
2494
2495         return 0;
2496 }
2497
2498 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2499 {
2500         struct iommu_table *tbl = NULL;
2501         long rc;
2502
2503         /*
2504          * crashkernel= specifies the kdump kernel's maximum memory at
2505          * some offset and there is no guaranteed the result is a power
2506          * of 2, which will cause errors later.
2507          */
2508         const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2509
2510         /*
2511          * In memory constrained environments, e.g. kdump kernel, the
2512          * DMA window can be larger than available memory, which will
2513          * cause errors later.
2514          */
2515         const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2516
2517         rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2518                         IOMMU_PAGE_SHIFT_4K,
2519                         window_size,
2520                         POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2521         if (rc) {
2522                 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2523                                 rc);
2524                 return rc;
2525         }
2526
2527         iommu_init_table(tbl, pe->phb->hose->node);
2528
2529         rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2530         if (rc) {
2531                 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2532                                 rc);
2533                 iommu_tce_table_put(tbl);
2534                 return rc;
2535         }
2536
2537         if (!pnv_iommu_bypass_disabled)
2538                 pnv_pci_ioda2_set_bypass(pe, true);
2539
2540         /*
2541          * Setting table base here only for carrying iommu_group
2542          * further down to let iommu_add_device() do the job.
2543          * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2544          */
2545         if (pe->flags & PNV_IODA_PE_DEV)
2546                 set_iommu_table_base(&pe->pdev->dev, tbl);
2547
2548         return 0;
2549 }
2550
2551 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2552 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2553                 int num)
2554 {
2555         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2556                         table_group);
2557         struct pnv_phb *phb = pe->phb;
2558         long ret;
2559
2560         pe_info(pe, "Removing DMA window #%d\n", num);
2561
2562         ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2563                         (pe->pe_number << 1) + num,
2564                         0/* levels */, 0/* table address */,
2565                         0/* table size */, 0/* page size */);
2566         if (ret)
2567                 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2568         else
2569                 pnv_pci_ioda2_tce_invalidate_pe(pe);
2570
2571         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2572
2573         return ret;
2574 }
2575 #endif
2576
2577 #ifdef CONFIG_IOMMU_API
2578 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2579                 __u64 window_size, __u32 levels)
2580 {
2581         unsigned long bytes = 0;
2582         const unsigned window_shift = ilog2(window_size);
2583         unsigned entries_shift = window_shift - page_shift;
2584         unsigned table_shift = entries_shift + 3;
2585         unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2586         unsigned long direct_table_size;
2587
2588         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2589                         !is_power_of_2(window_size))
2590                 return 0;
2591
2592         /* Calculate a direct table size from window_size and levels */
2593         entries_shift = (entries_shift + levels - 1) / levels;
2594         table_shift = entries_shift + 3;
2595         table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2596         direct_table_size =  1UL << table_shift;
2597
2598         for ( ; levels; --levels) {
2599                 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2600
2601                 tce_table_size /= direct_table_size;
2602                 tce_table_size <<= 3;
2603                 tce_table_size = max_t(unsigned long,
2604                                 tce_table_size, direct_table_size);
2605         }
2606
2607         return bytes;
2608 }
2609
2610 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2611 {
2612         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2613                                                 table_group);
2614         /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2615         struct iommu_table *tbl = pe->table_group.tables[0];
2616
2617         pnv_pci_ioda2_set_bypass(pe, false);
2618         pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2619         if (pe->pbus)
2620                 pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2621         iommu_tce_table_put(tbl);
2622 }
2623
2624 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2625 {
2626         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2627                                                 table_group);
2628
2629         pnv_pci_ioda2_setup_default_config(pe);
2630         if (pe->pbus)
2631                 pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2632 }
2633
2634 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2635         .get_table_size = pnv_pci_ioda2_get_table_size,
2636         .create_table = pnv_pci_ioda2_create_table,
2637         .set_window = pnv_pci_ioda2_set_window,
2638         .unset_window = pnv_pci_ioda2_unset_window,
2639         .take_ownership = pnv_ioda2_take_ownership,
2640         .release_ownership = pnv_ioda2_release_ownership,
2641 };
2642
2643 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2644 {
2645         struct pci_controller *hose;
2646         struct pnv_phb *phb;
2647         struct pnv_ioda_pe **ptmppe = opaque;
2648         struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2649         struct pci_dn *pdn = pci_get_pdn(pdev);
2650
2651         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2652                 return 0;
2653
2654         hose = pci_bus_to_host(pdev->bus);
2655         phb = hose->private_data;
2656         if (phb->type != PNV_PHB_NPU_NVLINK)
2657                 return 0;
2658
2659         *ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2660
2661         return 1;
2662 }
2663
2664 /*
2665  * This returns PE of associated NPU.
2666  * This assumes that NPU is in the same IOMMU group with GPU and there is
2667  * no other PEs.
2668  */
2669 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2670                 struct iommu_table_group *table_group)
2671 {
2672         struct pnv_ioda_pe *npe = NULL;
2673         int ret = iommu_group_for_each_dev(table_group->group, &npe,
2674                         gpe_table_group_to_npe_cb);
2675
2676         BUG_ON(!ret || !npe);
2677
2678         return npe;
2679 }
2680
2681 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2682                 int num, struct iommu_table *tbl)
2683 {
2684         long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2685
2686         if (ret)
2687                 return ret;
2688
2689         ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2690         if (ret)
2691                 pnv_pci_ioda2_unset_window(table_group, num);
2692
2693         return ret;
2694 }
2695
2696 static long pnv_pci_ioda2_npu_unset_window(
2697                 struct iommu_table_group *table_group,
2698                 int num)
2699 {
2700         long ret = pnv_pci_ioda2_unset_window(table_group, num);
2701
2702         if (ret)
2703                 return ret;
2704
2705         return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2706 }
2707
2708 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2709 {
2710         /*
2711          * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2712          * the iommu_table if 32bit DMA is enabled.
2713          */
2714         pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2715         pnv_ioda2_take_ownership(table_group);
2716 }
2717
2718 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2719         .get_table_size = pnv_pci_ioda2_get_table_size,
2720         .create_table = pnv_pci_ioda2_create_table,
2721         .set_window = pnv_pci_ioda2_npu_set_window,
2722         .unset_window = pnv_pci_ioda2_npu_unset_window,
2723         .take_ownership = pnv_ioda2_npu_take_ownership,
2724         .release_ownership = pnv_ioda2_release_ownership,
2725 };
2726
2727 static void pnv_pci_ioda_setup_iommu_api(void)
2728 {
2729         struct pci_controller *hose, *tmp;
2730         struct pnv_phb *phb;
2731         struct pnv_ioda_pe *pe, *gpe;
2732
2733         /*
2734          * Now we have all PHBs discovered, time to add NPU devices to
2735          * the corresponding IOMMU groups.
2736          */
2737         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2738                 phb = hose->private_data;
2739
2740                 if (phb->type != PNV_PHB_NPU_NVLINK)
2741                         continue;
2742
2743                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2744                         gpe = pnv_pci_npu_setup_iommu(pe);
2745                         if (gpe)
2746                                 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2747                 }
2748         }
2749 }
2750 #else /* !CONFIG_IOMMU_API */
2751 static void pnv_pci_ioda_setup_iommu_api(void) { };
2752 #endif
2753
2754 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2755                 unsigned levels, unsigned long limit,
2756                 unsigned long *current_offset, unsigned long *total_allocated)
2757 {
2758         struct page *tce_mem = NULL;
2759         __be64 *addr, *tmp;
2760         unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2761         unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2762         unsigned entries = 1UL << (shift - 3);
2763         long i;
2764
2765         tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2766         if (!tce_mem) {
2767                 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2768                 return NULL;
2769         }
2770         addr = page_address(tce_mem);
2771         memset(addr, 0, allocated);
2772         *total_allocated += allocated;
2773
2774         --levels;
2775         if (!levels) {
2776                 *current_offset += allocated;
2777                 return addr;
2778         }
2779
2780         for (i = 0; i < entries; ++i) {
2781                 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2782                                 levels, limit, current_offset, total_allocated);
2783                 if (!tmp)
2784                         break;
2785
2786                 addr[i] = cpu_to_be64(__pa(tmp) |
2787                                 TCE_PCI_READ | TCE_PCI_WRITE);
2788
2789                 if (*current_offset >= limit)
2790                         break;
2791         }
2792
2793         return addr;
2794 }
2795
2796 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2797                 unsigned long size, unsigned level);
2798
2799 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2800                 __u32 page_shift, __u64 window_size, __u32 levels,
2801                 struct iommu_table *tbl)
2802 {
2803         void *addr;
2804         unsigned long offset = 0, level_shift, total_allocated = 0;
2805         const unsigned window_shift = ilog2(window_size);
2806         unsigned entries_shift = window_shift - page_shift;
2807         unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2808         const unsigned long tce_table_size = 1UL << table_shift;
2809
2810         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2811                 return -EINVAL;
2812
2813         if (!is_power_of_2(window_size))
2814                 return -EINVAL;
2815
2816         /* Adjust direct table size from window_size and levels */
2817         entries_shift = (entries_shift + levels - 1) / levels;
2818         level_shift = entries_shift + 3;
2819         level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2820
2821         if ((level_shift - 3) * levels + page_shift >= 60)
2822                 return -EINVAL;
2823
2824         /* Allocate TCE table */
2825         addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2826                         levels, tce_table_size, &offset, &total_allocated);
2827
2828         /* addr==NULL means that the first level allocation failed */
2829         if (!addr)
2830                 return -ENOMEM;
2831
2832         /*
2833          * First level was allocated but some lower level failed as
2834          * we did not allocate as much as we wanted,
2835          * release partially allocated table.
2836          */
2837         if (offset < tce_table_size) {
2838                 pnv_pci_ioda2_table_do_free_pages(addr,
2839                                 1ULL << (level_shift - 3), levels - 1);
2840                 return -ENOMEM;
2841         }
2842
2843         /* Setup linux iommu table */
2844         pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2845                         page_shift);
2846         tbl->it_level_size = 1ULL << (level_shift - 3);
2847         tbl->it_indirect_levels = levels - 1;
2848         tbl->it_allocated_size = total_allocated;
2849
2850         pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2851                         window_size, tce_table_size, bus_offset);
2852
2853         return 0;
2854 }
2855
2856 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2857                 unsigned long size, unsigned level)
2858 {
2859         const unsigned long addr_ul = (unsigned long) addr &
2860                         ~(TCE_PCI_READ | TCE_PCI_WRITE);
2861
2862         if (level) {
2863                 long i;
2864                 u64 *tmp = (u64 *) addr_ul;
2865
2866                 for (i = 0; i < size; ++i) {
2867                         unsigned long hpa = be64_to_cpu(tmp[i]);
2868
2869                         if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2870                                 continue;
2871
2872                         pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2873                                         level - 1);
2874                 }
2875         }
2876
2877         free_pages(addr_ul, get_order(size << 3));
2878 }
2879
2880 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2881 {
2882         const unsigned long size = tbl->it_indirect_levels ?
2883                         tbl->it_level_size : tbl->it_size;
2884
2885         if (!tbl->it_size)
2886                 return;
2887
2888         pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2889                         tbl->it_indirect_levels);
2890 }
2891
2892 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2893                                        struct pnv_ioda_pe *pe)
2894 {
2895         int64_t rc;
2896
2897         if (!pnv_pci_ioda_pe_dma_weight(pe))
2898                 return;
2899
2900         /* TVE #1 is selected by PCI address bit 59 */
2901         pe->tce_bypass_base = 1ull << 59;
2902
2903         iommu_register_group(&pe->table_group, phb->hose->global_number,
2904                         pe->pe_number);
2905
2906         /* The PE will reserve all possible 32-bits space */
2907         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2908                 phb->ioda.m32_pci_base);
2909
2910         /* Setup linux iommu table */
2911         pe->table_group.tce32_start = 0;
2912         pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2913         pe->table_group.max_dynamic_windows_supported =
2914                         IOMMU_TABLE_GROUP_MAX_TABLES;
2915         pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2916         pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2917 #ifdef CONFIG_IOMMU_API
2918         pe->table_group.ops = &pnv_pci_ioda2_ops;
2919 #endif
2920
2921         rc = pnv_pci_ioda2_setup_default_config(pe);
2922         if (rc)
2923                 return;
2924
2925         if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2926                 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2927 }
2928
2929 #ifdef CONFIG_PCI_MSI
2930 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2931 {
2932         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2933                                            ioda.irq_chip);
2934
2935         return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2936 }
2937
2938 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2939 {
2940         int64_t rc;
2941         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2942         struct irq_chip *chip = irq_data_get_irq_chip(d);
2943
2944         rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2945         WARN_ON_ONCE(rc);
2946
2947         icp_native_eoi(d);
2948 }
2949
2950
2951 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2952 {
2953         struct irq_data *idata;
2954         struct irq_chip *ichip;
2955
2956         /* The MSI EOI OPAL call is only needed on PHB3 */
2957         if (phb->model != PNV_PHB_MODEL_PHB3)
2958                 return;
2959
2960         if (!phb->ioda.irq_chip_init) {
2961                 /*
2962                  * First time we setup an MSI IRQ, we need to setup the
2963                  * corresponding IRQ chip to route correctly.
2964                  */
2965                 idata = irq_get_irq_data(virq);
2966                 ichip = irq_data_get_irq_chip(idata);
2967                 phb->ioda.irq_chip_init = 1;
2968                 phb->ioda.irq_chip = *ichip;
2969                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2970         }
2971         irq_set_chip(virq, &phb->ioda.irq_chip);
2972 }
2973
2974 /*
2975  * Returns true iff chip is something that we could call
2976  * pnv_opal_pci_msi_eoi for.
2977  */
2978 bool is_pnv_opal_msi(struct irq_chip *chip)
2979 {
2980         return chip->irq_eoi == pnv_ioda2_msi_eoi;
2981 }
2982 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2983
2984 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2985                                   unsigned int hwirq, unsigned int virq,
2986                                   unsigned int is_64, struct msi_msg *msg)
2987 {
2988         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2989         unsigned int xive_num = hwirq - phb->msi_base;
2990         __be32 data;
2991         int rc;
2992
2993         /* No PE assigned ? bail out ... no MSI for you ! */
2994         if (pe == NULL)
2995                 return -ENXIO;
2996
2997         /* Check if we have an MVE */
2998         if (pe->mve_number < 0)
2999                 return -ENXIO;
3000
3001         /* Force 32-bit MSI on some broken devices */
3002         if (dev->no_64bit_msi)
3003                 is_64 = 0;
3004
3005         /* Assign XIVE to PE */
3006         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
3007         if (rc) {
3008                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
3009                         pci_name(dev), rc, xive_num);
3010                 return -EIO;
3011         }
3012
3013         if (is_64) {
3014                 __be64 addr64;
3015
3016                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
3017                                      &addr64, &data);
3018                 if (rc) {
3019                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
3020                                 pci_name(dev), rc);
3021                         return -EIO;
3022                 }
3023                 msg->address_hi = be64_to_cpu(addr64) >> 32;
3024                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
3025         } else {
3026                 __be32 addr32;
3027
3028                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
3029                                      &addr32, &data);
3030                 if (rc) {
3031                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
3032                                 pci_name(dev), rc);
3033                         return -EIO;
3034                 }
3035                 msg->address_hi = 0;
3036                 msg->address_lo = be32_to_cpu(addr32);
3037         }
3038         msg->data = be32_to_cpu(data);
3039
3040         pnv_set_msi_irq_chip(phb, virq);
3041
3042         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
3043                  " address=%x_%08x data=%x PE# %x\n",
3044                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
3045                  msg->address_hi, msg->address_lo, data, pe->pe_number);
3046
3047         return 0;
3048 }
3049
3050 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
3051 {
3052         unsigned int count;
3053         const __be32 *prop = of_get_property(phb->hose->dn,
3054                                              "ibm,opal-msi-ranges", NULL);
3055         if (!prop) {
3056                 /* BML Fallback */
3057                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
3058         }
3059         if (!prop)
3060                 return;
3061
3062         phb->msi_base = be32_to_cpup(prop);
3063         count = be32_to_cpup(prop + 1);
3064         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
3065                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
3066                        phb->hose->global_number);
3067                 return;
3068         }
3069
3070         phb->msi_setup = pnv_pci_ioda_msi_setup;
3071         phb->msi32_support = 1;
3072         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
3073                 count, phb->msi_base);
3074 }
3075 #else
3076 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
3077 #endif /* CONFIG_PCI_MSI */
3078
3079 #ifdef CONFIG_PCI_IOV
3080 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
3081 {
3082         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3083         struct pnv_phb *phb = hose->private_data;
3084         const resource_size_t gate = phb->ioda.m64_segsize >> 2;
3085         struct resource *res;
3086         int i;
3087         resource_size_t size, total_vf_bar_sz;
3088         struct pci_dn *pdn;
3089         int mul, total_vfs;
3090
3091         if (!pdev->is_physfn || pdev->is_added)
3092                 return;
3093
3094         pdn = pci_get_pdn(pdev);
3095         pdn->vfs_expanded = 0;
3096         pdn->m64_single_mode = false;
3097
3098         total_vfs = pci_sriov_get_totalvfs(pdev);
3099         mul = phb->ioda.total_pe_num;
3100         total_vf_bar_sz = 0;
3101
3102         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3103                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3104                 if (!res->flags || res->parent)
3105                         continue;
3106                 if (!pnv_pci_is_m64_flags(res->flags)) {
3107                         dev_warn(&pdev->dev, "Don't support SR-IOV with"
3108                                         " non M64 VF BAR%d: %pR. \n",
3109                                  i, res);
3110                         goto truncate_iov;
3111                 }
3112
3113                 total_vf_bar_sz += pci_iov_resource_size(pdev,
3114                                 i + PCI_IOV_RESOURCES);
3115
3116                 /*
3117                  * If bigger than quarter of M64 segment size, just round up
3118                  * power of two.
3119                  *
3120                  * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
3121                  * with other devices, IOV BAR size is expanded to be
3122                  * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
3123                  * segment size , the expanded size would equal to half of the
3124                  * whole M64 space size, which will exhaust the M64 Space and
3125                  * limit the system flexibility.  This is a design decision to
3126                  * set the boundary to quarter of the M64 segment size.
3127                  */
3128                 if (total_vf_bar_sz > gate) {
3129                         mul = roundup_pow_of_two(total_vfs);
3130                         dev_info(&pdev->dev,
3131                                 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
3132                                 total_vf_bar_sz, gate, mul);
3133                         pdn->m64_single_mode = true;
3134                         break;
3135                 }
3136         }
3137
3138         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3139                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3140                 if (!res->flags || res->parent)
3141                         continue;
3142
3143                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
3144                 /*
3145                  * On PHB3, the minimum size alignment of M64 BAR in single
3146                  * mode is 32MB.
3147                  */
3148                 if (pdn->m64_single_mode && (size < SZ_32M))
3149                         goto truncate_iov;
3150                 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
3151                 res->end = res->start + size * mul - 1;
3152                 dev_dbg(&pdev->dev, "                       %pR\n", res);
3153                 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
3154                          i, res, mul);
3155         }
3156         pdn->vfs_expanded = mul;
3157
3158         return;
3159
3160 truncate_iov:
3161         /* To save MMIO space, IOV BAR is truncated. */
3162         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3163                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3164                 res->flags = 0;
3165                 res->end = res->start - 1;
3166         }
3167 }
3168 #endif /* CONFIG_PCI_IOV */
3169
3170 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3171                                   struct resource *res)
3172 {
3173         struct pnv_phb *phb = pe->phb;
3174         struct pci_bus_region region;
3175         int index;
3176         int64_t rc;
3177
3178         if (!res || !res->flags || res->start > res->end)
3179                 return;
3180
3181         if (res->flags & IORESOURCE_IO) {
3182                 region.start = res->start - phb->ioda.io_pci_base;
3183                 region.end   = res->end - phb->ioda.io_pci_base;
3184                 index = region.start / phb->ioda.io_segsize;
3185
3186                 while (index < phb->ioda.total_pe_num &&
3187                        region.start <= region.end) {
3188                         phb->ioda.io_segmap[index] = pe->pe_number;
3189                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3190                                 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3191                         if (rc != OPAL_SUCCESS) {
3192                                 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3193                                        __func__, rc, index, pe->pe_number);
3194                                 break;
3195                         }
3196
3197                         region.start += phb->ioda.io_segsize;
3198                         index++;
3199                 }
3200         } else if ((res->flags & IORESOURCE_MEM) &&
3201                    !pnv_pci_is_m64(phb, res)) {
3202                 region.start = res->start -
3203                                phb->hose->mem_offset[0] -
3204                                phb->ioda.m32_pci_base;
3205                 region.end   = res->end -
3206                                phb->hose->mem_offset[0] -
3207                                phb->ioda.m32_pci_base;
3208                 index = region.start / phb->ioda.m32_segsize;
3209
3210                 while (index < phb->ioda.total_pe_num &&
3211                        region.start <= region.end) {
3212                         phb->ioda.m32_segmap[index] = pe->pe_number;
3213                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3214                                 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3215                         if (rc != OPAL_SUCCESS) {
3216                                 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3217                                        __func__, rc, index, pe->pe_number);
3218                                 break;
3219                         }
3220
3221                         region.start += phb->ioda.m32_segsize;
3222                         index++;
3223                 }
3224         }
3225 }
3226
3227 /*
3228  * This function is supposed to be called on basis of PE from top
3229  * to bottom style. So the the I/O or MMIO segment assigned to
3230  * parent PE could be overridden by its child PEs if necessary.
3231  */
3232 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3233 {
3234         struct pci_dev *pdev;
3235         int i;
3236
3237         /*
3238          * NOTE: We only care PCI bus based PE for now. For PCI
3239          * device based PE, for example SRIOV sensitive VF should
3240          * be figured out later.
3241          */
3242         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3243
3244         list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3245                 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3246                         pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3247
3248                 /*
3249                  * If the PE contains all subordinate PCI buses, the
3250                  * windows of the child bridges should be mapped to
3251                  * the PE as well.
3252                  */
3253                 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3254                         continue;
3255                 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3256                         pnv_ioda_setup_pe_res(pe,
3257                                 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3258         }
3259 }
3260
3261 #ifdef CONFIG_DEBUG_FS
3262 static int pnv_pci_diag_data_set(void *data, u64 val)
3263 {
3264         struct pci_controller *hose;
3265         struct pnv_phb *phb;
3266         s64 ret;
3267
3268         if (val != 1ULL)
3269                 return -EINVAL;
3270
3271         hose = (struct pci_controller *)data;
3272         if (!hose || !hose->private_data)
3273                 return -ENODEV;
3274
3275         phb = hose->private_data;
3276
3277         /* Retrieve the diag data from firmware */
3278         ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3279                                           phb->diag_data_size);
3280         if (ret != OPAL_SUCCESS)
3281                 return -EIO;
3282
3283         /* Print the diag data to the kernel log */
3284         pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3285         return 0;
3286 }
3287
3288 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3289                         pnv_pci_diag_data_set, "%llu\n");
3290
3291 #endif /* CONFIG_DEBUG_FS */
3292
3293 static void pnv_pci_ioda_create_dbgfs(void)
3294 {
3295 #ifdef CONFIG_DEBUG_FS
3296         struct pci_controller *hose, *tmp;
3297         struct pnv_phb *phb;
3298         char name[16];
3299
3300         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3301                 phb = hose->private_data;
3302
3303                 /* Notify initialization of PHB done */
3304                 phb->initialized = 1;
3305
3306                 sprintf(name, "PCI%04x", hose->global_number);
3307                 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3308                 if (!phb->dbgfs) {
3309                         pr_warn("%s: Error on creating debugfs on PHB#%x\n",
3310                                 __func__, hose->global_number);
3311                         continue;
3312                 }
3313
3314                 debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3315                                     &pnv_pci_diag_data_fops);
3316         }
3317 #endif /* CONFIG_DEBUG_FS */
3318 }
3319
3320 static void pnv_pci_ioda_fixup(void)
3321 {
3322         pnv_pci_ioda_setup_PEs();
3323         pnv_pci_ioda_setup_iommu_api();
3324         pnv_pci_ioda_create_dbgfs();
3325
3326 #ifdef CONFIG_EEH
3327         pnv_eeh_post_init();
3328 #endif
3329 }
3330
3331 /*
3332  * Returns the alignment for I/O or memory windows for P2P
3333  * bridges. That actually depends on how PEs are segmented.
3334  * For now, we return I/O or M32 segment size for PE sensitive
3335  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3336  * 1MiB for memory) will be returned.
3337  *
3338  * The current PCI bus might be put into one PE, which was
3339  * create against the parent PCI bridge. For that case, we
3340  * needn't enlarge the alignment so that we can save some
3341  * resources.
3342  */
3343 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3344                                                 unsigned long type)
3345 {
3346         struct pci_dev *bridge;
3347         struct pci_controller *hose = pci_bus_to_host(bus);
3348         struct pnv_phb *phb = hose->private_data;
3349         int num_pci_bridges = 0;
3350
3351         bridge = bus->self;
3352         while (bridge) {
3353                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3354                         num_pci_bridges++;
3355                         if (num_pci_bridges >= 2)
3356                                 return 1;
3357                 }
3358
3359                 bridge = bridge->bus->self;
3360         }
3361
3362         /*
3363          * We fall back to M32 if M64 isn't supported. We enforce the M64
3364          * alignment for any 64-bit resource, PCIe doesn't care and
3365          * bridges only do 64-bit prefetchable anyway.
3366          */
3367         if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3368                 return phb->ioda.m64_segsize;
3369         if (type & IORESOURCE_MEM)
3370                 return phb->ioda.m32_segsize;
3371
3372         return phb->ioda.io_segsize;
3373 }
3374
3375 /*
3376  * We are updating root port or the upstream port of the
3377  * bridge behind the root port with PHB's windows in order
3378  * to accommodate the changes on required resources during
3379  * PCI (slot) hotplug, which is connected to either root
3380  * port or the downstream ports of PCIe switch behind the
3381  * root port.
3382  */
3383 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3384                                            unsigned long type)
3385 {
3386         struct pci_controller *hose = pci_bus_to_host(bus);
3387         struct pnv_phb *phb = hose->private_data;
3388         struct pci_dev *bridge = bus->self;
3389         struct resource *r, *w;
3390         bool msi_region = false;
3391         int i;
3392
3393         /* Check if we need apply fixup to the bridge's windows */
3394         if (!pci_is_root_bus(bridge->bus) &&
3395             !pci_is_root_bus(bridge->bus->self->bus))
3396                 return;
3397
3398         /* Fixup the resources */
3399         for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3400                 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3401                 if (!r->flags || !r->parent)
3402                         continue;
3403
3404                 w = NULL;
3405                 if (r->flags & type & IORESOURCE_IO)
3406                         w = &hose->io_resource;
3407                 else if (pnv_pci_is_m64(phb, r) &&
3408                          (type & IORESOURCE_PREFETCH) &&
3409                          phb->ioda.m64_segsize)
3410                         w = &hose->mem_resources[1];
3411                 else if (r->flags & type & IORESOURCE_MEM) {
3412                         w = &hose->mem_resources[0];
3413                         msi_region = true;
3414                 }
3415
3416                 r->start = w->start;
3417                 r->end = w->end;
3418
3419                 /* The 64KB 32-bits MSI region shouldn't be included in
3420                  * the 32-bits bridge window. Otherwise, we can see strange
3421                  * issues. One of them is EEH error observed on Garrison.
3422                  *
3423                  * Exclude top 1MB region which is the minimal alignment of
3424                  * 32-bits bridge window.
3425                  */
3426                 if (msi_region) {
3427                         r->end += 0x10000;
3428                         r->end -= 0x100000;
3429                 }
3430         }
3431 }
3432
3433 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3434 {
3435         struct pci_controller *hose = pci_bus_to_host(bus);
3436         struct pnv_phb *phb = hose->private_data;
3437         struct pci_dev *bridge = bus->self;
3438         struct pnv_ioda_pe *pe;
3439         bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3440
3441         /* Extend bridge's windows if necessary */
3442         pnv_pci_fixup_bridge_resources(bus, type);
3443
3444         /* The PE for root bus should be realized before any one else */
3445         if (!phb->ioda.root_pe_populated) {
3446                 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3447                 if (pe) {
3448                         phb->ioda.root_pe_idx = pe->pe_number;
3449                         phb->ioda.root_pe_populated = true;
3450                 }
3451         }
3452
3453         /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3454         if (list_empty(&bus->devices))
3455                 return;
3456
3457         /* Reserve PEs according to used M64 resources */
3458         if (phb->reserve_m64_pe)
3459                 phb->reserve_m64_pe(bus, NULL, all);
3460
3461         /*
3462          * Assign PE. We might run here because of partial hotplug.
3463          * For the case, we just pick up the existing PE and should
3464          * not allocate resources again.
3465          */
3466         pe = pnv_ioda_setup_bus_PE(bus, all);
3467         if (!pe)
3468                 return;
3469
3470         pnv_ioda_setup_pe_seg(pe);
3471         switch (phb->type) {
3472         case PNV_PHB_IODA1:
3473                 pnv_pci_ioda1_setup_dma_pe(phb, pe);
3474                 break;
3475         case PNV_PHB_IODA2:
3476                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
3477                 break;
3478         default:
3479                 pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3480                         __func__, phb->hose->global_number, phb->type);
3481         }
3482 }
3483
3484 static resource_size_t pnv_pci_default_alignment(void)
3485 {
3486         return PAGE_SIZE;
3487 }
3488
3489 #ifdef CONFIG_PCI_IOV
3490 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3491                                                       int resno)
3492 {
3493         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3494         struct pnv_phb *phb = hose->private_data;
3495         struct pci_dn *pdn = pci_get_pdn(pdev);
3496         resource_size_t align;
3497
3498         /*
3499          * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3500          * SR-IOV. While from hardware perspective, the range mapped by M64
3501          * BAR should be size aligned.
3502          *
3503          * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3504          * powernv-specific hardware restriction is gone. But if just use the
3505          * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3506          * in one segment of M64 #15, which introduces the PE conflict between
3507          * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3508          * m64_segsize.
3509          *
3510          * This function returns the total IOV BAR size if M64 BAR is in
3511          * Shared PE mode or just VF BAR size if not.
3512          * If the M64 BAR is in Single PE mode, return the VF BAR size or
3513          * M64 segment size if IOV BAR size is less.
3514          */
3515         align = pci_iov_resource_size(pdev, resno);
3516         if (!pdn->vfs_expanded)
3517                 return align;
3518         if (pdn->m64_single_mode)
3519                 return max(align, (resource_size_t)phb->ioda.m64_segsize);
3520
3521         return pdn->vfs_expanded * align;
3522 }
3523 #endif /* CONFIG_PCI_IOV */
3524
3525 /* Prevent enabling devices for which we couldn't properly
3526  * assign a PE
3527  */
3528 bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3529 {
3530         struct pci_controller *hose = pci_bus_to_host(dev->bus);
3531         struct pnv_phb *phb = hose->private_data;
3532         struct pci_dn *pdn;
3533
3534         /* The function is probably called while the PEs have
3535          * not be created yet. For example, resource reassignment
3536          * during PCI probe period. We just skip the check if
3537          * PEs isn't ready.
3538          */
3539         if (!phb->initialized)
3540                 return true;
3541
3542         pdn = pci_get_pdn(dev);
3543         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3544                 return false;
3545
3546         return true;
3547 }
3548
3549 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3550                                        int num)
3551 {
3552         struct pnv_ioda_pe *pe = container_of(table_group,
3553                                               struct pnv_ioda_pe, table_group);
3554         struct pnv_phb *phb = pe->phb;
3555         unsigned int idx;
3556         long rc;
3557
3558         pe_info(pe, "Removing DMA window #%d\n", num);
3559         for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3560                 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3561                         continue;
3562
3563                 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3564                                                 idx, 0, 0ul, 0ul, 0ul);
3565                 if (rc != OPAL_SUCCESS) {
3566                         pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3567                                 rc, idx);
3568                         return rc;
3569                 }
3570
3571                 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3572         }
3573
3574         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3575         return OPAL_SUCCESS;
3576 }
3577
3578 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3579 {
3580         unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3581         struct iommu_table *tbl = pe->table_group.tables[0];
3582         int64_t rc;
3583
3584         if (!weight)
3585                 return;
3586
3587         rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3588         if (rc != OPAL_SUCCESS)
3589                 return;
3590
3591         pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3592         if (pe->table_group.group) {
3593                 iommu_group_put(pe->table_group.group);
3594                 WARN_ON(pe->table_group.group);
3595         }
3596
3597         free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3598         iommu_tce_table_put(tbl);
3599 }
3600
3601 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3602 {
3603         struct iommu_table *tbl = pe->table_group.tables[0];
3604         unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3605 #ifdef CONFIG_IOMMU_API
3606         int64_t rc;
3607 #endif
3608
3609         if (!weight)
3610                 return;
3611
3612 #ifdef CONFIG_IOMMU_API
3613         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3614         if (rc)
3615                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3616 #endif
3617
3618         pnv_pci_ioda2_set_bypass(pe, false);
3619         if (pe->table_group.group) {
3620                 iommu_group_put(pe->table_group.group);
3621                 WARN_ON(pe->table_group.group);
3622         }
3623
3624         pnv_pci_ioda2_table_free_pages(tbl);
3625         iommu_tce_table_put(tbl);
3626 }
3627
3628 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3629                                  unsigned short win,
3630                                  unsigned int *map)
3631 {
3632         struct pnv_phb *phb = pe->phb;
3633         int idx;
3634         int64_t rc;
3635
3636         for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3637                 if (map[idx] != pe->pe_number)
3638                         continue;
3639
3640                 if (win == OPAL_M64_WINDOW_TYPE)
3641                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3642                                         phb->ioda.reserved_pe_idx, win,
3643                                         idx / PNV_IODA1_M64_SEGS,
3644                                         idx % PNV_IODA1_M64_SEGS);
3645                 else
3646                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3647                                         phb->ioda.reserved_pe_idx, win, 0, idx);
3648
3649                 if (rc != OPAL_SUCCESS)
3650                         pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3651                                 rc, win, idx);
3652
3653                 map[idx] = IODA_INVALID_PE;
3654         }
3655 }
3656
3657 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3658 {
3659         struct pnv_phb *phb = pe->phb;
3660
3661         if (phb->type == PNV_PHB_IODA1) {
3662                 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3663                                      phb->ioda.io_segmap);
3664                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3665                                      phb->ioda.m32_segmap);
3666                 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3667                                      phb->ioda.m64_segmap);
3668         } else if (phb->type == PNV_PHB_IODA2) {
3669                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3670                                      phb->ioda.m32_segmap);
3671         }
3672 }
3673
3674 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3675 {
3676         struct pnv_phb *phb = pe->phb;
3677         struct pnv_ioda_pe *slave, *tmp;
3678
3679         list_del(&pe->list);
3680         switch (phb->type) {
3681         case PNV_PHB_IODA1:
3682                 pnv_pci_ioda1_release_pe_dma(pe);
3683                 break;
3684         case PNV_PHB_IODA2:
3685                 pnv_pci_ioda2_release_pe_dma(pe);
3686                 break;
3687         default:
3688                 WARN_ON(1);
3689         }
3690
3691         pnv_ioda_release_pe_seg(pe);
3692         pnv_ioda_deconfigure_pe(pe->phb, pe);
3693
3694         /* Release slave PEs in the compound PE */
3695         if (pe->flags & PNV_IODA_PE_MASTER) {
3696                 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3697                         list_del(&slave->list);
3698                         pnv_ioda_free_pe(slave);
3699                 }
3700         }
3701
3702         /*
3703          * The PE for root bus can be removed because of hotplug in EEH
3704          * recovery for fenced PHB error. We need to mark the PE dead so
3705          * that it can be populated again in PCI hot add path. The PE
3706          * shouldn't be destroyed as it's the global reserved resource.
3707          */
3708         if (phb->ioda.root_pe_populated &&
3709             phb->ioda.root_pe_idx == pe->pe_number)
3710                 phb->ioda.root_pe_populated = false;
3711         else
3712                 pnv_ioda_free_pe(pe);
3713 }
3714
3715 static void pnv_pci_release_device(struct pci_dev *pdev)
3716 {
3717         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3718         struct pnv_phb *phb = hose->private_data;
3719         struct pci_dn *pdn = pci_get_pdn(pdev);
3720         struct pnv_ioda_pe *pe;
3721
3722         if (pdev->is_virtfn)
3723                 return;
3724
3725         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3726                 return;
3727
3728         /*
3729          * PCI hotplug can happen as part of EEH error recovery. The @pdn
3730          * isn't removed and added afterwards in this scenario. We should
3731          * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3732          * device count is decreased on removing devices while failing to
3733          * be increased on adding devices. It leads to unbalanced PE's device
3734          * count and eventually make normal PCI hotplug path broken.
3735          */
3736         pe = &phb->ioda.pe_array[pdn->pe_number];
3737         pdn->pe_number = IODA_INVALID_PE;
3738
3739         WARN_ON(--pe->device_count < 0);
3740         if (pe->device_count == 0)
3741                 pnv_ioda_release_pe(pe);
3742 }
3743
3744 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3745 {
3746         struct pnv_phb *phb = hose->private_data;
3747
3748         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3749                        OPAL_ASSERT_RESET);
3750 }
3751
3752 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3753         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3754         .dma_bus_setup          = pnv_pci_dma_bus_setup,
3755 #ifdef CONFIG_PCI_MSI
3756         .setup_msi_irqs         = pnv_setup_msi_irqs,
3757         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3758 #endif
3759         .enable_device_hook     = pnv_pci_enable_device_hook,
3760         .release_device         = pnv_pci_release_device,
3761         .window_alignment       = pnv_pci_window_alignment,
3762         .setup_bridge           = pnv_pci_setup_bridge,
3763         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3764         .dma_set_mask           = pnv_pci_ioda_dma_set_mask,
3765         .dma_get_required_mask  = pnv_pci_ioda_dma_get_required_mask,
3766         .shutdown               = pnv_pci_ioda_shutdown,
3767 };
3768
3769 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3770 {
3771         dev_err_once(&npdev->dev,
3772                         "%s operation unsupported for NVLink devices\n",
3773                         __func__);
3774         return -EPERM;
3775 }
3776
3777 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3778         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3779 #ifdef CONFIG_PCI_MSI
3780         .setup_msi_irqs         = pnv_setup_msi_irqs,
3781         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3782 #endif
3783         .enable_device_hook     = pnv_pci_enable_device_hook,
3784         .window_alignment       = pnv_pci_window_alignment,
3785         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3786         .dma_set_mask           = pnv_npu_dma_set_mask,
3787         .shutdown               = pnv_pci_ioda_shutdown,
3788 };
3789
3790 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
3791         .enable_device_hook     = pnv_pci_enable_device_hook,
3792         .window_alignment       = pnv_pci_window_alignment,
3793         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3794         .shutdown               = pnv_pci_ioda_shutdown,
3795 };
3796
3797 #ifdef CONFIG_CXL_BASE
3798 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3799         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3800         .dma_bus_setup          = pnv_pci_dma_bus_setup,
3801 #ifdef CONFIG_PCI_MSI
3802         .setup_msi_irqs         = pnv_cxl_cx4_setup_msi_irqs,
3803         .teardown_msi_irqs      = pnv_cxl_cx4_teardown_msi_irqs,
3804 #endif
3805         .enable_device_hook     = pnv_cxl_enable_device_hook,
3806         .disable_device         = pnv_cxl_disable_device,
3807         .release_device         = pnv_pci_release_device,
3808         .window_alignment       = pnv_pci_window_alignment,
3809         .setup_bridge           = pnv_pci_setup_bridge,
3810         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3811         .dma_set_mask           = pnv_pci_ioda_dma_set_mask,
3812         .dma_get_required_mask  = pnv_pci_ioda_dma_get_required_mask,
3813         .shutdown               = pnv_pci_ioda_shutdown,
3814 };
3815 #endif
3816
3817 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3818                                          u64 hub_id, int ioda_type)
3819 {
3820         struct pci_controller *hose;
3821         struct pnv_phb *phb;
3822         unsigned long size, m64map_off, m32map_off, pemap_off;
3823         unsigned long iomap_off = 0, dma32map_off = 0;
3824         struct resource r;
3825         const __be64 *prop64;
3826         const __be32 *prop32;
3827         int len;
3828         unsigned int segno;
3829         u64 phb_id;
3830         void *aux;
3831         long rc;
3832
3833         if (!of_device_is_available(np))
3834                 return;
3835
3836         pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np);
3837
3838         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3839         if (!prop64) {
3840                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3841                 return;
3842         }
3843         phb_id = be64_to_cpup(prop64);
3844         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3845
3846         phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3847
3848         /* Allocate PCI controller */
3849         phb->hose = hose = pcibios_alloc_controller(np);
3850         if (!phb->hose) {
3851                 pr_err("  Can't allocate PCI controller for %pOF\n",
3852                        np);
3853                 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3854                 return;
3855         }
3856
3857         spin_lock_init(&phb->lock);
3858         prop32 = of_get_property(np, "bus-range", &len);
3859         if (prop32 && len == 8) {
3860                 hose->first_busno = be32_to_cpu(prop32[0]);
3861                 hose->last_busno = be32_to_cpu(prop32[1]);
3862         } else {
3863                 pr_warn("  Broken <bus-range> on %pOF\n", np);
3864                 hose->first_busno = 0;
3865                 hose->last_busno = 0xff;
3866         }
3867         hose->private_data = phb;
3868         phb->hub_id = hub_id;
3869         phb->opal_id = phb_id;
3870         phb->type = ioda_type;
3871         mutex_init(&phb->ioda.pe_alloc_mutex);
3872
3873         /* Detect specific models for error handling */
3874         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3875                 phb->model = PNV_PHB_MODEL_P7IOC;
3876         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3877                 phb->model = PNV_PHB_MODEL_PHB3;
3878         else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3879                 phb->model = PNV_PHB_MODEL_NPU;
3880         else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3881                 phb->model = PNV_PHB_MODEL_NPU2;
3882         else
3883                 phb->model = PNV_PHB_MODEL_UNKNOWN;
3884
3885         /* Initialize diagnostic data buffer */
3886         prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3887         if (prop32)
3888                 phb->diag_data_size = be32_to_cpup(prop32);
3889         else
3890                 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3891
3892         phb->diag_data = memblock_virt_alloc(phb->diag_data_size, 0);
3893
3894         /* Parse 32-bit and IO ranges (if any) */
3895         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3896
3897         /* Get registers */
3898         if (!of_address_to_resource(np, 0, &r)) {
3899                 phb->regs_phys = r.start;
3900                 phb->regs = ioremap(r.start, resource_size(&r));
3901                 if (phb->regs == NULL)
3902                         pr_err("  Failed to map registers !\n");
3903         }
3904
3905         /* Initialize more IODA stuff */
3906         phb->ioda.total_pe_num = 1;
3907         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3908         if (prop32)
3909                 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3910         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3911         if (prop32)
3912                 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3913
3914         /* Invalidate RID to PE# mapping */
3915         for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3916                 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3917
3918         /* Parse 64-bit MMIO range */
3919         pnv_ioda_parse_m64_window(phb);
3920
3921         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3922         /* FW Has already off top 64k of M32 space (MSI space) */
3923         phb->ioda.m32_size += 0x10000;
3924
3925         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3926         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3927         phb->ioda.io_size = hose->pci_io_size;
3928         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3929         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3930
3931         /* Calculate how many 32-bit TCE segments we have */
3932         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3933                                 PNV_IODA1_DMA32_SEGSIZE;
3934
3935         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3936         size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3937                         sizeof(unsigned long));
3938         m64map_off = size;
3939         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3940         m32map_off = size;
3941         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3942         if (phb->type == PNV_PHB_IODA1) {
3943                 iomap_off = size;
3944                 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3945                 dma32map_off = size;
3946                 size += phb->ioda.dma32_count *
3947                         sizeof(phb->ioda.dma32_segmap[0]);
3948         }
3949         pemap_off = size;
3950         size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3951         aux = memblock_virt_alloc(size, 0);
3952         phb->ioda.pe_alloc = aux;
3953         phb->ioda.m64_segmap = aux + m64map_off;
3954         phb->ioda.m32_segmap = aux + m32map_off;
3955         for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3956                 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3957                 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3958         }
3959         if (phb->type == PNV_PHB_IODA1) {
3960                 phb->ioda.io_segmap = aux + iomap_off;
3961                 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3962                         phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3963
3964                 phb->ioda.dma32_segmap = aux + dma32map_off;
3965                 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3966                         phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3967         }
3968         phb->ioda.pe_array = aux + pemap_off;
3969
3970         /*
3971          * Choose PE number for root bus, which shouldn't have
3972          * M64 resources consumed by its child devices. To pick
3973          * the PE number adjacent to the reserved one if possible.
3974          */
3975         pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3976         if (phb->ioda.reserved_pe_idx == 0) {
3977                 phb->ioda.root_pe_idx = 1;
3978                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3979         } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3980                 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3981                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3982         } else {
3983                 phb->ioda.root_pe_idx = IODA_INVALID_PE;
3984         }
3985
3986         INIT_LIST_HEAD(&phb->ioda.pe_list);
3987         mutex_init(&phb->ioda.pe_list_mutex);
3988
3989         /* Calculate how many 32-bit TCE segments we have */
3990         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3991                                 PNV_IODA1_DMA32_SEGSIZE;
3992
3993 #if 0 /* We should really do that ... */
3994         rc = opal_pci_set_phb_mem_window(opal->phb_id,
3995                                          window_type,
3996                                          window_num,
3997                                          starting_real_address,
3998                                          starting_pci_address,
3999                                          segment_size);
4000 #endif
4001
4002         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
4003                 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
4004                 phb->ioda.m32_size, phb->ioda.m32_segsize);
4005         if (phb->ioda.m64_size)
4006                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
4007                         phb->ioda.m64_size, phb->ioda.m64_segsize);
4008         if (phb->ioda.io_size)
4009                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
4010                         phb->ioda.io_size, phb->ioda.io_segsize);
4011
4012
4013         phb->hose->ops = &pnv_pci_ops;
4014         phb->get_pe_state = pnv_ioda_get_pe_state;
4015         phb->freeze_pe = pnv_ioda_freeze_pe;
4016         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
4017
4018         /* Setup MSI support */
4019         pnv_pci_init_ioda_msis(phb);
4020
4021         /*
4022          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
4023          * to let the PCI core do resource assignment. It's supposed
4024          * that the PCI core will do correct I/O and MMIO alignment
4025          * for the P2P bridge bars so that each PCI bus (excluding
4026          * the child P2P bridges) can form individual PE.
4027          */
4028         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
4029
4030         switch (phb->type) {
4031         case PNV_PHB_NPU_NVLINK:
4032                 hose->controller_ops = pnv_npu_ioda_controller_ops;
4033                 break;
4034         case PNV_PHB_NPU_OCAPI:
4035                 hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
4036                 break;
4037         default:
4038                 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
4039                 hose->controller_ops = pnv_pci_ioda_controller_ops;
4040         }
4041
4042         ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
4043
4044 #ifdef CONFIG_PCI_IOV
4045         ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
4046         ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
4047         ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
4048         ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
4049 #endif
4050
4051         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
4052
4053         /* Reset IODA tables to a clean state */
4054         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
4055         if (rc)
4056                 pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
4057
4058         /*
4059          * If we're running in kdump kernel, the previous kernel never
4060          * shutdown PCI devices correctly. We already got IODA table
4061          * cleaned out. So we have to issue PHB reset to stop all PCI
4062          * transactions from previous kernel. The ppc_pci_reset_phbs
4063          * kernel parameter will force this reset too.
4064          */
4065         if (is_kdump_kernel() || pci_reset_phbs) {
4066                 pr_info("  Issue PHB reset ...\n");
4067                 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
4068                 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
4069         }
4070
4071         /* Remove M64 resource if we can't configure it successfully */
4072         if (!phb->init_m64 || phb->init_m64(phb))
4073                 hose->mem_resources[1].flags = 0;
4074 }
4075
4076 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
4077 {
4078         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
4079 }
4080
4081 void __init pnv_pci_init_npu_phb(struct device_node *np)
4082 {
4083         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
4084 }
4085
4086 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
4087 {
4088         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
4089 }
4090
4091 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
4092 {
4093         struct pci_controller *hose = pci_bus_to_host(dev->bus);
4094         struct pnv_phb *phb = hose->private_data;
4095
4096         if (!machine_is(powernv))
4097                 return;
4098
4099         if (phb->type == PNV_PHB_NPU_OCAPI)
4100                 dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
4101 }
4102 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
4103
4104 void __init pnv_pci_init_ioda_hub(struct device_node *np)
4105 {
4106         struct device_node *phbn;
4107         const __be64 *prop64;
4108         u64 hub_id;
4109
4110         pr_info("Probing IODA IO-Hub %pOF\n", np);
4111
4112         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
4113         if (!prop64) {
4114                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
4115                 return;
4116         }
4117         hub_id = be64_to_cpup(prop64);
4118         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
4119
4120         /* Count child PHBs */
4121         for_each_child_of_node(np, phbn) {
4122                 /* Look for IODA1 PHBs */
4123                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
4124                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
4125         }
4126 }