crypto: picoxcell - Fix error handling in spacc_probe()
[sfrench/cifs-2.6.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2  * Support PCI/PCIe on PowerNV platforms
3  *
4  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/bootmem.h>
21 #include <linux/irq.h>
22 #include <linux/io.h>
23 #include <linux/msi.h>
24 #include <linux/memblock.h>
25 #include <linux/iommu.h>
26 #include <linux/rculist.h>
27 #include <linux/sizes.h>
28
29 #include <asm/sections.h>
30 #include <asm/io.h>
31 #include <asm/prom.h>
32 #include <asm/pci-bridge.h>
33 #include <asm/machdep.h>
34 #include <asm/msi_bitmap.h>
35 #include <asm/ppc-pci.h>
36 #include <asm/opal.h>
37 #include <asm/iommu.h>
38 #include <asm/tce.h>
39 #include <asm/xics.h>
40 #include <asm/debugfs.h>
41 #include <asm/firmware.h>
42 #include <asm/pnv-pci.h>
43 #include <asm/mmzone.h>
44
45 #include <misc/cxl-base.h>
46
47 #include "powernv.h"
48 #include "pci.h"
49
50 #define PNV_IODA1_M64_NUM       16      /* Number of M64 BARs   */
51 #define PNV_IODA1_M64_SEGS      8       /* Segments per M64 BAR */
52 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
53
54 #define POWERNV_IOMMU_DEFAULT_LEVELS    1
55 #define POWERNV_IOMMU_MAX_LEVELS        5
56
57 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
58 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
59
60 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
61                             const char *fmt, ...)
62 {
63         struct va_format vaf;
64         va_list args;
65         char pfix[32];
66
67         va_start(args, fmt);
68
69         vaf.fmt = fmt;
70         vaf.va = &args;
71
72         if (pe->flags & PNV_IODA_PE_DEV)
73                 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
74         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
75                 sprintf(pfix, "%04x:%02x     ",
76                         pci_domain_nr(pe->pbus), pe->pbus->number);
77 #ifdef CONFIG_PCI_IOV
78         else if (pe->flags & PNV_IODA_PE_VF)
79                 sprintf(pfix, "%04x:%02x:%2x.%d",
80                         pci_domain_nr(pe->parent_dev->bus),
81                         (pe->rid & 0xff00) >> 8,
82                         PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
83 #endif /* CONFIG_PCI_IOV*/
84
85         printk("%spci %s: [PE# %.2x] %pV",
86                level, pfix, pe->pe_number, &vaf);
87
88         va_end(args);
89 }
90
91 static bool pnv_iommu_bypass_disabled __read_mostly;
92
93 static int __init iommu_setup(char *str)
94 {
95         if (!str)
96                 return -EINVAL;
97
98         while (*str) {
99                 if (!strncmp(str, "nobypass", 8)) {
100                         pnv_iommu_bypass_disabled = true;
101                         pr_info("PowerNV: IOMMU bypass window disabled.\n");
102                         break;
103                 }
104                 str += strcspn(str, ",");
105                 if (*str == ',')
106                         str++;
107         }
108
109         return 0;
110 }
111 early_param("iommu", iommu_setup);
112
113 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
114 {
115         /*
116          * WARNING: We cannot rely on the resource flags. The Linux PCI
117          * allocation code sometimes decides to put a 64-bit prefetchable
118          * BAR in the 32-bit window, so we have to compare the addresses.
119          *
120          * For simplicity we only test resource start.
121          */
122         return (r->start >= phb->ioda.m64_base &&
123                 r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
124 }
125
126 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
127 {
128         unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
129
130         return (resource_flags & flags) == flags;
131 }
132
133 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
134 {
135         s64 rc;
136
137         phb->ioda.pe_array[pe_no].phb = phb;
138         phb->ioda.pe_array[pe_no].pe_number = pe_no;
139
140         /*
141          * Clear the PE frozen state as it might be put into frozen state
142          * in the last PCI remove path. It's not harmful to do so when the
143          * PE is already in unfrozen state.
144          */
145         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
146                                        OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
147         if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
148                 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
149                         __func__, rc, phb->hose->global_number, pe_no);
150
151         return &phb->ioda.pe_array[pe_no];
152 }
153
154 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
155 {
156         if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
157                 pr_warn("%s: Invalid PE %x on PHB#%x\n",
158                         __func__, pe_no, phb->hose->global_number);
159                 return;
160         }
161
162         if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
163                 pr_debug("%s: PE %x was reserved on PHB#%x\n",
164                          __func__, pe_no, phb->hose->global_number);
165
166         pnv_ioda_init_pe(phb, pe_no);
167 }
168
169 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
170 {
171         long pe;
172
173         for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
174                 if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
175                         return pnv_ioda_init_pe(phb, pe);
176         }
177
178         return NULL;
179 }
180
181 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
182 {
183         struct pnv_phb *phb = pe->phb;
184         unsigned int pe_num = pe->pe_number;
185
186         WARN_ON(pe->pdev);
187
188         memset(pe, 0, sizeof(struct pnv_ioda_pe));
189         clear_bit(pe_num, phb->ioda.pe_alloc);
190 }
191
192 /* The default M64 BAR is shared by all PEs */
193 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
194 {
195         const char *desc;
196         struct resource *r;
197         s64 rc;
198
199         /* Configure the default M64 BAR */
200         rc = opal_pci_set_phb_mem_window(phb->opal_id,
201                                          OPAL_M64_WINDOW_TYPE,
202                                          phb->ioda.m64_bar_idx,
203                                          phb->ioda.m64_base,
204                                          0, /* unused */
205                                          phb->ioda.m64_size);
206         if (rc != OPAL_SUCCESS) {
207                 desc = "configuring";
208                 goto fail;
209         }
210
211         /* Enable the default M64 BAR */
212         rc = opal_pci_phb_mmio_enable(phb->opal_id,
213                                       OPAL_M64_WINDOW_TYPE,
214                                       phb->ioda.m64_bar_idx,
215                                       OPAL_ENABLE_M64_SPLIT);
216         if (rc != OPAL_SUCCESS) {
217                 desc = "enabling";
218                 goto fail;
219         }
220
221         /*
222          * Exclude the segments for reserved and root bus PE, which
223          * are first or last two PEs.
224          */
225         r = &phb->hose->mem_resources[1];
226         if (phb->ioda.reserved_pe_idx == 0)
227                 r->start += (2 * phb->ioda.m64_segsize);
228         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
229                 r->end -= (2 * phb->ioda.m64_segsize);
230         else
231                 pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
232                         phb->ioda.reserved_pe_idx);
233
234         return 0;
235
236 fail:
237         pr_warn("  Failure %lld %s M64 BAR#%d\n",
238                 rc, desc, phb->ioda.m64_bar_idx);
239         opal_pci_phb_mmio_enable(phb->opal_id,
240                                  OPAL_M64_WINDOW_TYPE,
241                                  phb->ioda.m64_bar_idx,
242                                  OPAL_DISABLE_M64);
243         return -EIO;
244 }
245
246 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
247                                          unsigned long *pe_bitmap)
248 {
249         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
250         struct pnv_phb *phb = hose->private_data;
251         struct resource *r;
252         resource_size_t base, sgsz, start, end;
253         int segno, i;
254
255         base = phb->ioda.m64_base;
256         sgsz = phb->ioda.m64_segsize;
257         for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
258                 r = &pdev->resource[i];
259                 if (!r->parent || !pnv_pci_is_m64(phb, r))
260                         continue;
261
262                 start = _ALIGN_DOWN(r->start - base, sgsz);
263                 end = _ALIGN_UP(r->end - base, sgsz);
264                 for (segno = start / sgsz; segno < end / sgsz; segno++) {
265                         if (pe_bitmap)
266                                 set_bit(segno, pe_bitmap);
267                         else
268                                 pnv_ioda_reserve_pe(phb, segno);
269                 }
270         }
271 }
272
273 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
274 {
275         struct resource *r;
276         int index;
277
278         /*
279          * There are 16 M64 BARs, each of which has 8 segments. So
280          * there are as many M64 segments as the maximum number of
281          * PEs, which is 128.
282          */
283         for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
284                 unsigned long base, segsz = phb->ioda.m64_segsize;
285                 int64_t rc;
286
287                 base = phb->ioda.m64_base +
288                        index * PNV_IODA1_M64_SEGS * segsz;
289                 rc = opal_pci_set_phb_mem_window(phb->opal_id,
290                                 OPAL_M64_WINDOW_TYPE, index, base, 0,
291                                 PNV_IODA1_M64_SEGS * segsz);
292                 if (rc != OPAL_SUCCESS) {
293                         pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
294                                 rc, phb->hose->global_number, index);
295                         goto fail;
296                 }
297
298                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
299                                 OPAL_M64_WINDOW_TYPE, index,
300                                 OPAL_ENABLE_M64_SPLIT);
301                 if (rc != OPAL_SUCCESS) {
302                         pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
303                                 rc, phb->hose->global_number, index);
304                         goto fail;
305                 }
306         }
307
308         /*
309          * Exclude the segments for reserved and root bus PE, which
310          * are first or last two PEs.
311          */
312         r = &phb->hose->mem_resources[1];
313         if (phb->ioda.reserved_pe_idx == 0)
314                 r->start += (2 * phb->ioda.m64_segsize);
315         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
316                 r->end -= (2 * phb->ioda.m64_segsize);
317         else
318                 WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
319                      phb->ioda.reserved_pe_idx, phb->hose->global_number);
320
321         return 0;
322
323 fail:
324         for ( ; index >= 0; index--)
325                 opal_pci_phb_mmio_enable(phb->opal_id,
326                         OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
327
328         return -EIO;
329 }
330
331 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
332                                     unsigned long *pe_bitmap,
333                                     bool all)
334 {
335         struct pci_dev *pdev;
336
337         list_for_each_entry(pdev, &bus->devices, bus_list) {
338                 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
339
340                 if (all && pdev->subordinate)
341                         pnv_ioda_reserve_m64_pe(pdev->subordinate,
342                                                 pe_bitmap, all);
343         }
344 }
345
346 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
347 {
348         struct pci_controller *hose = pci_bus_to_host(bus);
349         struct pnv_phb *phb = hose->private_data;
350         struct pnv_ioda_pe *master_pe, *pe;
351         unsigned long size, *pe_alloc;
352         int i;
353
354         /* Root bus shouldn't use M64 */
355         if (pci_is_root_bus(bus))
356                 return NULL;
357
358         /* Allocate bitmap */
359         size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
360         pe_alloc = kzalloc(size, GFP_KERNEL);
361         if (!pe_alloc) {
362                 pr_warn("%s: Out of memory !\n",
363                         __func__);
364                 return NULL;
365         }
366
367         /* Figure out reserved PE numbers by the PE */
368         pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
369
370         /*
371          * the current bus might not own M64 window and that's all
372          * contributed by its child buses. For the case, we needn't
373          * pick M64 dependent PE#.
374          */
375         if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
376                 kfree(pe_alloc);
377                 return NULL;
378         }
379
380         /*
381          * Figure out the master PE and put all slave PEs to master
382          * PE's list to form compound PE.
383          */
384         master_pe = NULL;
385         i = -1;
386         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
387                 phb->ioda.total_pe_num) {
388                 pe = &phb->ioda.pe_array[i];
389
390                 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
391                 if (!master_pe) {
392                         pe->flags |= PNV_IODA_PE_MASTER;
393                         INIT_LIST_HEAD(&pe->slaves);
394                         master_pe = pe;
395                 } else {
396                         pe->flags |= PNV_IODA_PE_SLAVE;
397                         pe->master = master_pe;
398                         list_add_tail(&pe->list, &master_pe->slaves);
399                 }
400
401                 /*
402                  * P7IOC supports M64DT, which helps mapping M64 segment
403                  * to one particular PE#. However, PHB3 has fixed mapping
404                  * between M64 segment and PE#. In order to have same logic
405                  * for P7IOC and PHB3, we enforce fixed mapping between M64
406                  * segment and PE# on P7IOC.
407                  */
408                 if (phb->type == PNV_PHB_IODA1) {
409                         int64_t rc;
410
411                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
412                                         pe->pe_number, OPAL_M64_WINDOW_TYPE,
413                                         pe->pe_number / PNV_IODA1_M64_SEGS,
414                                         pe->pe_number % PNV_IODA1_M64_SEGS);
415                         if (rc != OPAL_SUCCESS)
416                                 pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
417                                         __func__, rc, phb->hose->global_number,
418                                         pe->pe_number);
419                 }
420         }
421
422         kfree(pe_alloc);
423         return master_pe;
424 }
425
426 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
427 {
428         struct pci_controller *hose = phb->hose;
429         struct device_node *dn = hose->dn;
430         struct resource *res;
431         u32 m64_range[2], i;
432         const __be32 *r;
433         u64 pci_addr;
434
435         if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
436                 pr_info("  Not support M64 window\n");
437                 return;
438         }
439
440         if (!firmware_has_feature(FW_FEATURE_OPAL)) {
441                 pr_info("  Firmware too old to support M64 window\n");
442                 return;
443         }
444
445         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
446         if (!r) {
447                 pr_info("  No <ibm,opal-m64-window> on %pOF\n",
448                         dn);
449                 return;
450         }
451
452         /*
453          * Find the available M64 BAR range and pickup the last one for
454          * covering the whole 64-bits space. We support only one range.
455          */
456         if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
457                                        m64_range, 2)) {
458                 /* In absence of the property, assume 0..15 */
459                 m64_range[0] = 0;
460                 m64_range[1] = 16;
461         }
462         /* We only support 64 bits in our allocator */
463         if (m64_range[1] > 63) {
464                 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
465                         __func__, m64_range[1], phb->hose->global_number);
466                 m64_range[1] = 63;
467         }
468         /* Empty range, no m64 */
469         if (m64_range[1] <= m64_range[0]) {
470                 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
471                         __func__, phb->hose->global_number);
472                 return;
473         }
474
475         /* Configure M64 informations */
476         res = &hose->mem_resources[1];
477         res->name = dn->full_name;
478         res->start = of_translate_address(dn, r + 2);
479         res->end = res->start + of_read_number(r + 4, 2) - 1;
480         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
481         pci_addr = of_read_number(r, 2);
482         hose->mem_offset[1] = res->start - pci_addr;
483
484         phb->ioda.m64_size = resource_size(res);
485         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
486         phb->ioda.m64_base = pci_addr;
487
488         /* This lines up nicely with the display from processing OF ranges */
489         pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
490                 res->start, res->end, pci_addr, m64_range[0],
491                 m64_range[0] + m64_range[1] - 1);
492
493         /* Mark all M64 used up by default */
494         phb->ioda.m64_bar_alloc = (unsigned long)-1;
495
496         /* Use last M64 BAR to cover M64 window */
497         m64_range[1]--;
498         phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
499
500         pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
501
502         /* Mark remaining ones free */
503         for (i = m64_range[0]; i < m64_range[1]; i++)
504                 clear_bit(i, &phb->ioda.m64_bar_alloc);
505
506         /*
507          * Setup init functions for M64 based on IODA version, IODA3 uses
508          * the IODA2 code.
509          */
510         if (phb->type == PNV_PHB_IODA1)
511                 phb->init_m64 = pnv_ioda1_init_m64;
512         else
513                 phb->init_m64 = pnv_ioda2_init_m64;
514         phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
515         phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
516 }
517
518 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
519 {
520         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
521         struct pnv_ioda_pe *slave;
522         s64 rc;
523
524         /* Fetch master PE */
525         if (pe->flags & PNV_IODA_PE_SLAVE) {
526                 pe = pe->master;
527                 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
528                         return;
529
530                 pe_no = pe->pe_number;
531         }
532
533         /* Freeze master PE */
534         rc = opal_pci_eeh_freeze_set(phb->opal_id,
535                                      pe_no,
536                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
537         if (rc != OPAL_SUCCESS) {
538                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
539                         __func__, rc, phb->hose->global_number, pe_no);
540                 return;
541         }
542
543         /* Freeze slave PEs */
544         if (!(pe->flags & PNV_IODA_PE_MASTER))
545                 return;
546
547         list_for_each_entry(slave, &pe->slaves, list) {
548                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
549                                              slave->pe_number,
550                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
551                 if (rc != OPAL_SUCCESS)
552                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
553                                 __func__, rc, phb->hose->global_number,
554                                 slave->pe_number);
555         }
556 }
557
558 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
559 {
560         struct pnv_ioda_pe *pe, *slave;
561         s64 rc;
562
563         /* Find master PE */
564         pe = &phb->ioda.pe_array[pe_no];
565         if (pe->flags & PNV_IODA_PE_SLAVE) {
566                 pe = pe->master;
567                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
568                 pe_no = pe->pe_number;
569         }
570
571         /* Clear frozen state for master PE */
572         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
573         if (rc != OPAL_SUCCESS) {
574                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
575                         __func__, rc, opt, phb->hose->global_number, pe_no);
576                 return -EIO;
577         }
578
579         if (!(pe->flags & PNV_IODA_PE_MASTER))
580                 return 0;
581
582         /* Clear frozen state for slave PEs */
583         list_for_each_entry(slave, &pe->slaves, list) {
584                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
585                                              slave->pe_number,
586                                              opt);
587                 if (rc != OPAL_SUCCESS) {
588                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
589                                 __func__, rc, opt, phb->hose->global_number,
590                                 slave->pe_number);
591                         return -EIO;
592                 }
593         }
594
595         return 0;
596 }
597
598 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
599 {
600         struct pnv_ioda_pe *slave, *pe;
601         u8 fstate, state;
602         __be16 pcierr;
603         s64 rc;
604
605         /* Sanity check on PE number */
606         if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
607                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
608
609         /*
610          * Fetch the master PE and the PE instance might be
611          * not initialized yet.
612          */
613         pe = &phb->ioda.pe_array[pe_no];
614         if (pe->flags & PNV_IODA_PE_SLAVE) {
615                 pe = pe->master;
616                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
617                 pe_no = pe->pe_number;
618         }
619
620         /* Check the master PE */
621         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
622                                         &state, &pcierr, NULL);
623         if (rc != OPAL_SUCCESS) {
624                 pr_warn("%s: Failure %lld getting "
625                         "PHB#%x-PE#%x state\n",
626                         __func__, rc,
627                         phb->hose->global_number, pe_no);
628                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
629         }
630
631         /* Check the slave PE */
632         if (!(pe->flags & PNV_IODA_PE_MASTER))
633                 return state;
634
635         list_for_each_entry(slave, &pe->slaves, list) {
636                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
637                                                 slave->pe_number,
638                                                 &fstate,
639                                                 &pcierr,
640                                                 NULL);
641                 if (rc != OPAL_SUCCESS) {
642                         pr_warn("%s: Failure %lld getting "
643                                 "PHB#%x-PE#%x state\n",
644                                 __func__, rc,
645                                 phb->hose->global_number, slave->pe_number);
646                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
647                 }
648
649                 /*
650                  * Override the result based on the ascending
651                  * priority.
652                  */
653                 if (fstate > state)
654                         state = fstate;
655         }
656
657         return state;
658 }
659
660 /* Currently those 2 are only used when MSIs are enabled, this will change
661  * but in the meantime, we need to protect them to avoid warnings
662  */
663 #ifdef CONFIG_PCI_MSI
664 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
665 {
666         struct pci_controller *hose = pci_bus_to_host(dev->bus);
667         struct pnv_phb *phb = hose->private_data;
668         struct pci_dn *pdn = pci_get_pdn(dev);
669
670         if (!pdn)
671                 return NULL;
672         if (pdn->pe_number == IODA_INVALID_PE)
673                 return NULL;
674         return &phb->ioda.pe_array[pdn->pe_number];
675 }
676 #endif /* CONFIG_PCI_MSI */
677
678 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
679                                   struct pnv_ioda_pe *parent,
680                                   struct pnv_ioda_pe *child,
681                                   bool is_add)
682 {
683         const char *desc = is_add ? "adding" : "removing";
684         uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
685                               OPAL_REMOVE_PE_FROM_DOMAIN;
686         struct pnv_ioda_pe *slave;
687         long rc;
688
689         /* Parent PE affects child PE */
690         rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
691                                 child->pe_number, op);
692         if (rc != OPAL_SUCCESS) {
693                 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
694                         rc, desc);
695                 return -ENXIO;
696         }
697
698         if (!(child->flags & PNV_IODA_PE_MASTER))
699                 return 0;
700
701         /* Compound case: parent PE affects slave PEs */
702         list_for_each_entry(slave, &child->slaves, list) {
703                 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
704                                         slave->pe_number, op);
705                 if (rc != OPAL_SUCCESS) {
706                         pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
707                                 rc, desc);
708                         return -ENXIO;
709                 }
710         }
711
712         return 0;
713 }
714
715 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
716                               struct pnv_ioda_pe *pe,
717                               bool is_add)
718 {
719         struct pnv_ioda_pe *slave;
720         struct pci_dev *pdev = NULL;
721         int ret;
722
723         /*
724          * Clear PE frozen state. If it's master PE, we need
725          * clear slave PE frozen state as well.
726          */
727         if (is_add) {
728                 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
729                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
730                 if (pe->flags & PNV_IODA_PE_MASTER) {
731                         list_for_each_entry(slave, &pe->slaves, list)
732                                 opal_pci_eeh_freeze_clear(phb->opal_id,
733                                                           slave->pe_number,
734                                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
735                 }
736         }
737
738         /*
739          * Associate PE in PELT. We need add the PE into the
740          * corresponding PELT-V as well. Otherwise, the error
741          * originated from the PE might contribute to other
742          * PEs.
743          */
744         ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
745         if (ret)
746                 return ret;
747
748         /* For compound PEs, any one affects all of them */
749         if (pe->flags & PNV_IODA_PE_MASTER) {
750                 list_for_each_entry(slave, &pe->slaves, list) {
751                         ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
752                         if (ret)
753                                 return ret;
754                 }
755         }
756
757         if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
758                 pdev = pe->pbus->self;
759         else if (pe->flags & PNV_IODA_PE_DEV)
760                 pdev = pe->pdev->bus->self;
761 #ifdef CONFIG_PCI_IOV
762         else if (pe->flags & PNV_IODA_PE_VF)
763                 pdev = pe->parent_dev;
764 #endif /* CONFIG_PCI_IOV */
765         while (pdev) {
766                 struct pci_dn *pdn = pci_get_pdn(pdev);
767                 struct pnv_ioda_pe *parent;
768
769                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
770                         parent = &phb->ioda.pe_array[pdn->pe_number];
771                         ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
772                         if (ret)
773                                 return ret;
774                 }
775
776                 pdev = pdev->bus->self;
777         }
778
779         return 0;
780 }
781
782 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
783 {
784         struct pci_dev *parent;
785         uint8_t bcomp, dcomp, fcomp;
786         int64_t rc;
787         long rid_end, rid;
788
789         /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
790         if (pe->pbus) {
791                 int count;
792
793                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
794                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
795                 parent = pe->pbus->self;
796                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
797                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
798                 else
799                         count = 1;
800
801                 switch(count) {
802                 case  1: bcomp = OpalPciBusAll;         break;
803                 case  2: bcomp = OpalPciBus7Bits;       break;
804                 case  4: bcomp = OpalPciBus6Bits;       break;
805                 case  8: bcomp = OpalPciBus5Bits;       break;
806                 case 16: bcomp = OpalPciBus4Bits;       break;
807                 case 32: bcomp = OpalPciBus3Bits;       break;
808                 default:
809                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
810                                 count);
811                         /* Do an exact match only */
812                         bcomp = OpalPciBusAll;
813                 }
814                 rid_end = pe->rid + (count << 8);
815         } else {
816 #ifdef CONFIG_PCI_IOV
817                 if (pe->flags & PNV_IODA_PE_VF)
818                         parent = pe->parent_dev;
819                 else
820 #endif
821                         parent = pe->pdev->bus->self;
822                 bcomp = OpalPciBusAll;
823                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
824                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
825                 rid_end = pe->rid + 1;
826         }
827
828         /* Clear the reverse map */
829         for (rid = pe->rid; rid < rid_end; rid++)
830                 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
831
832         /* Release from all parents PELT-V */
833         while (parent) {
834                 struct pci_dn *pdn = pci_get_pdn(parent);
835                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
836                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
837                                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
838                         /* XXX What to do in case of error ? */
839                 }
840                 parent = parent->bus->self;
841         }
842
843         opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
844                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
845
846         /* Disassociate PE in PELT */
847         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
848                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
849         if (rc)
850                 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
851         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
852                              bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
853         if (rc)
854                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
855
856         pe->pbus = NULL;
857         pe->pdev = NULL;
858 #ifdef CONFIG_PCI_IOV
859         pe->parent_dev = NULL;
860 #endif
861
862         return 0;
863 }
864
865 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
866 {
867         struct pci_dev *parent;
868         uint8_t bcomp, dcomp, fcomp;
869         long rc, rid_end, rid;
870
871         /* Bus validation ? */
872         if (pe->pbus) {
873                 int count;
874
875                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
876                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
877                 parent = pe->pbus->self;
878                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
879                         count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
880                 else
881                         count = 1;
882
883                 switch(count) {
884                 case  1: bcomp = OpalPciBusAll;         break;
885                 case  2: bcomp = OpalPciBus7Bits;       break;
886                 case  4: bcomp = OpalPciBus6Bits;       break;
887                 case  8: bcomp = OpalPciBus5Bits;       break;
888                 case 16: bcomp = OpalPciBus4Bits;       break;
889                 case 32: bcomp = OpalPciBus3Bits;       break;
890                 default:
891                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
892                                 count);
893                         /* Do an exact match only */
894                         bcomp = OpalPciBusAll;
895                 }
896                 rid_end = pe->rid + (count << 8);
897         } else {
898 #ifdef CONFIG_PCI_IOV
899                 if (pe->flags & PNV_IODA_PE_VF)
900                         parent = pe->parent_dev;
901                 else
902 #endif /* CONFIG_PCI_IOV */
903                         parent = pe->pdev->bus->self;
904                 bcomp = OpalPciBusAll;
905                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
906                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
907                 rid_end = pe->rid + 1;
908         }
909
910         /*
911          * Associate PE in PELT. We need add the PE into the
912          * corresponding PELT-V as well. Otherwise, the error
913          * originated from the PE might contribute to other
914          * PEs.
915          */
916         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
917                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
918         if (rc) {
919                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
920                 return -ENXIO;
921         }
922
923         /*
924          * Configure PELTV. NPUs don't have a PELTV table so skip
925          * configuration on them.
926          */
927         if (phb->type != PNV_PHB_NPU)
928                 pnv_ioda_set_peltv(phb, pe, true);
929
930         /* Setup reverse map */
931         for (rid = pe->rid; rid < rid_end; rid++)
932                 phb->ioda.pe_rmap[rid] = pe->pe_number;
933
934         /* Setup one MVTs on IODA1 */
935         if (phb->type != PNV_PHB_IODA1) {
936                 pe->mve_number = 0;
937                 goto out;
938         }
939
940         pe->mve_number = pe->pe_number;
941         rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
942         if (rc != OPAL_SUCCESS) {
943                 pe_err(pe, "OPAL error %ld setting up MVE %x\n",
944                        rc, pe->mve_number);
945                 pe->mve_number = -1;
946         } else {
947                 rc = opal_pci_set_mve_enable(phb->opal_id,
948                                              pe->mve_number, OPAL_ENABLE_MVE);
949                 if (rc) {
950                         pe_err(pe, "OPAL error %ld enabling MVE %x\n",
951                                rc, pe->mve_number);
952                         pe->mve_number = -1;
953                 }
954         }
955
956 out:
957         return 0;
958 }
959
960 #ifdef CONFIG_PCI_IOV
961 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
962 {
963         struct pci_dn *pdn = pci_get_pdn(dev);
964         int i;
965         struct resource *res, res2;
966         resource_size_t size;
967         u16 num_vfs;
968
969         if (!dev->is_physfn)
970                 return -EINVAL;
971
972         /*
973          * "offset" is in VFs.  The M64 windows are sized so that when they
974          * are segmented, each segment is the same size as the IOV BAR.
975          * Each segment is in a separate PE, and the high order bits of the
976          * address are the PE number.  Therefore, each VF's BAR is in a
977          * separate PE, and changing the IOV BAR start address changes the
978          * range of PEs the VFs are in.
979          */
980         num_vfs = pdn->num_vfs;
981         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
982                 res = &dev->resource[i + PCI_IOV_RESOURCES];
983                 if (!res->flags || !res->parent)
984                         continue;
985
986                 /*
987                  * The actual IOV BAR range is determined by the start address
988                  * and the actual size for num_vfs VFs BAR.  This check is to
989                  * make sure that after shifting, the range will not overlap
990                  * with another device.
991                  */
992                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
993                 res2.flags = res->flags;
994                 res2.start = res->start + (size * offset);
995                 res2.end = res2.start + (size * num_vfs) - 1;
996
997                 if (res2.end > res->end) {
998                         dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
999                                 i, &res2, res, num_vfs, offset);
1000                         return -EBUSY;
1001                 }
1002         }
1003
1004         /*
1005          * Since M64 BAR shares segments among all possible 256 PEs,
1006          * we have to shift the beginning of PF IOV BAR to make it start from
1007          * the segment which belongs to the PE number assigned to the first VF.
1008          * This creates a "hole" in the /proc/iomem which could be used for
1009          * allocating other resources so we reserve this area below and
1010          * release when IOV is released.
1011          */
1012         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1013                 res = &dev->resource[i + PCI_IOV_RESOURCES];
1014                 if (!res->flags || !res->parent)
1015                         continue;
1016
1017                 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1018                 res2 = *res;
1019                 res->start += size * offset;
1020
1021                 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1022                          i, &res2, res, (offset > 0) ? "En" : "Dis",
1023                          num_vfs, offset);
1024
1025                 if (offset < 0) {
1026                         devm_release_resource(&dev->dev, &pdn->holes[i]);
1027                         memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
1028                 }
1029
1030                 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1031
1032                 if (offset > 0) {
1033                         pdn->holes[i].start = res2.start;
1034                         pdn->holes[i].end = res2.start + size * offset - 1;
1035                         pdn->holes[i].flags = IORESOURCE_BUS;
1036                         pdn->holes[i].name = "pnv_iov_reserved";
1037                         devm_request_resource(&dev->dev, res->parent,
1038                                         &pdn->holes[i]);
1039                 }
1040         }
1041         return 0;
1042 }
1043 #endif /* CONFIG_PCI_IOV */
1044
1045 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1046 {
1047         struct pci_controller *hose = pci_bus_to_host(dev->bus);
1048         struct pnv_phb *phb = hose->private_data;
1049         struct pci_dn *pdn = pci_get_pdn(dev);
1050         struct pnv_ioda_pe *pe;
1051
1052         if (!pdn) {
1053                 pr_err("%s: Device tree node not associated properly\n",
1054                            pci_name(dev));
1055                 return NULL;
1056         }
1057         if (pdn->pe_number != IODA_INVALID_PE)
1058                 return NULL;
1059
1060         pe = pnv_ioda_alloc_pe(phb);
1061         if (!pe) {
1062                 pr_warning("%s: Not enough PE# available, disabling device\n",
1063                            pci_name(dev));
1064                 return NULL;
1065         }
1066
1067         /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1068          * pointer in the PE data structure, both should be destroyed at the
1069          * same time. However, this needs to be looked at more closely again
1070          * once we actually start removing things (Hotplug, SR-IOV, ...)
1071          *
1072          * At some point we want to remove the PDN completely anyways
1073          */
1074         pci_dev_get(dev);
1075         pdn->pcidev = dev;
1076         pdn->pe_number = pe->pe_number;
1077         pe->flags = PNV_IODA_PE_DEV;
1078         pe->pdev = dev;
1079         pe->pbus = NULL;
1080         pe->mve_number = -1;
1081         pe->rid = dev->bus->number << 8 | pdn->devfn;
1082
1083         pe_info(pe, "Associated device to PE\n");
1084
1085         if (pnv_ioda_configure_pe(phb, pe)) {
1086                 /* XXX What do we do here ? */
1087                 pnv_ioda_free_pe(pe);
1088                 pdn->pe_number = IODA_INVALID_PE;
1089                 pe->pdev = NULL;
1090                 pci_dev_put(dev);
1091                 return NULL;
1092         }
1093
1094         /* Put PE to the list */
1095         list_add_tail(&pe->list, &phb->ioda.pe_list);
1096
1097         return pe;
1098 }
1099
1100 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1101 {
1102         struct pci_dev *dev;
1103
1104         list_for_each_entry(dev, &bus->devices, bus_list) {
1105                 struct pci_dn *pdn = pci_get_pdn(dev);
1106
1107                 if (pdn == NULL) {
1108                         pr_warn("%s: No device node associated with device !\n",
1109                                 pci_name(dev));
1110                         continue;
1111                 }
1112
1113                 /*
1114                  * In partial hotplug case, the PCI device might be still
1115                  * associated with the PE and needn't attach it to the PE
1116                  * again.
1117                  */
1118                 if (pdn->pe_number != IODA_INVALID_PE)
1119                         continue;
1120
1121                 pe->device_count++;
1122                 pdn->pcidev = dev;
1123                 pdn->pe_number = pe->pe_number;
1124                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1125                         pnv_ioda_setup_same_PE(dev->subordinate, pe);
1126         }
1127 }
1128
1129 /*
1130  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1131  * single PCI bus. Another one that contains the primary PCI bus and its
1132  * subordinate PCI devices and buses. The second type of PE is normally
1133  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1134  */
1135 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1136 {
1137         struct pci_controller *hose = pci_bus_to_host(bus);
1138         struct pnv_phb *phb = hose->private_data;
1139         struct pnv_ioda_pe *pe = NULL;
1140         unsigned int pe_num;
1141
1142         /*
1143          * In partial hotplug case, the PE instance might be still alive.
1144          * We should reuse it instead of allocating a new one.
1145          */
1146         pe_num = phb->ioda.pe_rmap[bus->number << 8];
1147         if (pe_num != IODA_INVALID_PE) {
1148                 pe = &phb->ioda.pe_array[pe_num];
1149                 pnv_ioda_setup_same_PE(bus, pe);
1150                 return NULL;
1151         }
1152
1153         /* PE number for root bus should have been reserved */
1154         if (pci_is_root_bus(bus) &&
1155             phb->ioda.root_pe_idx != IODA_INVALID_PE)
1156                 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1157
1158         /* Check if PE is determined by M64 */
1159         if (!pe && phb->pick_m64_pe)
1160                 pe = phb->pick_m64_pe(bus, all);
1161
1162         /* The PE number isn't pinned by M64 */
1163         if (!pe)
1164                 pe = pnv_ioda_alloc_pe(phb);
1165
1166         if (!pe) {
1167                 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1168                         __func__, pci_domain_nr(bus), bus->number);
1169                 return NULL;
1170         }
1171
1172         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1173         pe->pbus = bus;
1174         pe->pdev = NULL;
1175         pe->mve_number = -1;
1176         pe->rid = bus->busn_res.start << 8;
1177
1178         if (all)
1179                 pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1180                         bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1181         else
1182                 pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1183                         bus->busn_res.start, pe->pe_number);
1184
1185         if (pnv_ioda_configure_pe(phb, pe)) {
1186                 /* XXX What do we do here ? */
1187                 pnv_ioda_free_pe(pe);
1188                 pe->pbus = NULL;
1189                 return NULL;
1190         }
1191
1192         /* Associate it with all child devices */
1193         pnv_ioda_setup_same_PE(bus, pe);
1194
1195         /* Put PE to the list */
1196         list_add_tail(&pe->list, &phb->ioda.pe_list);
1197
1198         return pe;
1199 }
1200
1201 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1202 {
1203         int pe_num, found_pe = false, rc;
1204         long rid;
1205         struct pnv_ioda_pe *pe;
1206         struct pci_dev *gpu_pdev;
1207         struct pci_dn *npu_pdn;
1208         struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1209         struct pnv_phb *phb = hose->private_data;
1210
1211         /*
1212          * Due to a hardware errata PE#0 on the NPU is reserved for
1213          * error handling. This means we only have three PEs remaining
1214          * which need to be assigned to four links, implying some
1215          * links must share PEs.
1216          *
1217          * To achieve this we assign PEs such that NPUs linking the
1218          * same GPU get assigned the same PE.
1219          */
1220         gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1221         for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1222                 pe = &phb->ioda.pe_array[pe_num];
1223                 if (!pe->pdev)
1224                         continue;
1225
1226                 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1227                         /*
1228                          * This device has the same peer GPU so should
1229                          * be assigned the same PE as the existing
1230                          * peer NPU.
1231                          */
1232                         dev_info(&npu_pdev->dev,
1233                                 "Associating to existing PE %x\n", pe_num);
1234                         pci_dev_get(npu_pdev);
1235                         npu_pdn = pci_get_pdn(npu_pdev);
1236                         rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1237                         npu_pdn->pcidev = npu_pdev;
1238                         npu_pdn->pe_number = pe_num;
1239                         phb->ioda.pe_rmap[rid] = pe->pe_number;
1240
1241                         /* Map the PE to this link */
1242                         rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1243                                         OpalPciBusAll,
1244                                         OPAL_COMPARE_RID_DEVICE_NUMBER,
1245                                         OPAL_COMPARE_RID_FUNCTION_NUMBER,
1246                                         OPAL_MAP_PE);
1247                         WARN_ON(rc != OPAL_SUCCESS);
1248                         found_pe = true;
1249                         break;
1250                 }
1251         }
1252
1253         if (!found_pe)
1254                 /*
1255                  * Could not find an existing PE so allocate a new
1256                  * one.
1257                  */
1258                 return pnv_ioda_setup_dev_PE(npu_pdev);
1259         else
1260                 return pe;
1261 }
1262
1263 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1264 {
1265         struct pci_dev *pdev;
1266
1267         list_for_each_entry(pdev, &bus->devices, bus_list)
1268                 pnv_ioda_setup_npu_PE(pdev);
1269 }
1270
1271 static void pnv_pci_ioda_setup_PEs(void)
1272 {
1273         struct pci_controller *hose, *tmp;
1274         struct pnv_phb *phb;
1275
1276         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1277                 phb = hose->private_data;
1278                 if (phb->type == PNV_PHB_NPU) {
1279                         /* PE#0 is needed for error reporting */
1280                         pnv_ioda_reserve_pe(phb, 0);
1281                         pnv_ioda_setup_npu_PEs(hose->bus);
1282                         if (phb->model == PNV_PHB_MODEL_NPU2)
1283                                 pnv_npu2_init(phb);
1284                 }
1285         }
1286 }
1287
1288 #ifdef CONFIG_PCI_IOV
1289 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1290 {
1291         struct pci_bus        *bus;
1292         struct pci_controller *hose;
1293         struct pnv_phb        *phb;
1294         struct pci_dn         *pdn;
1295         int                    i, j;
1296         int                    m64_bars;
1297
1298         bus = pdev->bus;
1299         hose = pci_bus_to_host(bus);
1300         phb = hose->private_data;
1301         pdn = pci_get_pdn(pdev);
1302
1303         if (pdn->m64_single_mode)
1304                 m64_bars = num_vfs;
1305         else
1306                 m64_bars = 1;
1307
1308         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1309                 for (j = 0; j < m64_bars; j++) {
1310                         if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1311                                 continue;
1312                         opal_pci_phb_mmio_enable(phb->opal_id,
1313                                 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1314                         clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1315                         pdn->m64_map[j][i] = IODA_INVALID_M64;
1316                 }
1317
1318         kfree(pdn->m64_map);
1319         return 0;
1320 }
1321
1322 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1323 {
1324         struct pci_bus        *bus;
1325         struct pci_controller *hose;
1326         struct pnv_phb        *phb;
1327         struct pci_dn         *pdn;
1328         unsigned int           win;
1329         struct resource       *res;
1330         int                    i, j;
1331         int64_t                rc;
1332         int                    total_vfs;
1333         resource_size_t        size, start;
1334         int                    pe_num;
1335         int                    m64_bars;
1336
1337         bus = pdev->bus;
1338         hose = pci_bus_to_host(bus);
1339         phb = hose->private_data;
1340         pdn = pci_get_pdn(pdev);
1341         total_vfs = pci_sriov_get_totalvfs(pdev);
1342
1343         if (pdn->m64_single_mode)
1344                 m64_bars = num_vfs;
1345         else
1346                 m64_bars = 1;
1347
1348         pdn->m64_map = kmalloc_array(m64_bars,
1349                                      sizeof(*pdn->m64_map),
1350                                      GFP_KERNEL);
1351         if (!pdn->m64_map)
1352                 return -ENOMEM;
1353         /* Initialize the m64_map to IODA_INVALID_M64 */
1354         for (i = 0; i < m64_bars ; i++)
1355                 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1356                         pdn->m64_map[i][j] = IODA_INVALID_M64;
1357
1358
1359         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1360                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1361                 if (!res->flags || !res->parent)
1362                         continue;
1363
1364                 for (j = 0; j < m64_bars; j++) {
1365                         do {
1366                                 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1367                                                 phb->ioda.m64_bar_idx + 1, 0);
1368
1369                                 if (win >= phb->ioda.m64_bar_idx + 1)
1370                                         goto m64_failed;
1371                         } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1372
1373                         pdn->m64_map[j][i] = win;
1374
1375                         if (pdn->m64_single_mode) {
1376                                 size = pci_iov_resource_size(pdev,
1377                                                         PCI_IOV_RESOURCES + i);
1378                                 start = res->start + size * j;
1379                         } else {
1380                                 size = resource_size(res);
1381                                 start = res->start;
1382                         }
1383
1384                         /* Map the M64 here */
1385                         if (pdn->m64_single_mode) {
1386                                 pe_num = pdn->pe_num_map[j];
1387                                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1388                                                 pe_num, OPAL_M64_WINDOW_TYPE,
1389                                                 pdn->m64_map[j][i], 0);
1390                         }
1391
1392                         rc = opal_pci_set_phb_mem_window(phb->opal_id,
1393                                                  OPAL_M64_WINDOW_TYPE,
1394                                                  pdn->m64_map[j][i],
1395                                                  start,
1396                                                  0, /* unused */
1397                                                  size);
1398
1399
1400                         if (rc != OPAL_SUCCESS) {
1401                                 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1402                                         win, rc);
1403                                 goto m64_failed;
1404                         }
1405
1406                         if (pdn->m64_single_mode)
1407                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1408                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1409                         else
1410                                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1411                                      OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1412
1413                         if (rc != OPAL_SUCCESS) {
1414                                 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1415                                         win, rc);
1416                                 goto m64_failed;
1417                         }
1418                 }
1419         }
1420         return 0;
1421
1422 m64_failed:
1423         pnv_pci_vf_release_m64(pdev, num_vfs);
1424         return -EBUSY;
1425 }
1426
1427 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1428                 int num);
1429
1430 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1431 {
1432         struct iommu_table    *tbl;
1433         int64_t               rc;
1434
1435         tbl = pe->table_group.tables[0];
1436         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1437         if (rc)
1438                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1439
1440         pnv_pci_ioda2_set_bypass(pe, false);
1441         if (pe->table_group.group) {
1442                 iommu_group_put(pe->table_group.group);
1443                 BUG_ON(pe->table_group.group);
1444         }
1445         iommu_tce_table_put(tbl);
1446 }
1447
1448 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1449 {
1450         struct pci_bus        *bus;
1451         struct pci_controller *hose;
1452         struct pnv_phb        *phb;
1453         struct pnv_ioda_pe    *pe, *pe_n;
1454         struct pci_dn         *pdn;
1455
1456         bus = pdev->bus;
1457         hose = pci_bus_to_host(bus);
1458         phb = hose->private_data;
1459         pdn = pci_get_pdn(pdev);
1460
1461         if (!pdev->is_physfn)
1462                 return;
1463
1464         list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1465                 if (pe->parent_dev != pdev)
1466                         continue;
1467
1468                 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1469
1470                 /* Remove from list */
1471                 mutex_lock(&phb->ioda.pe_list_mutex);
1472                 list_del(&pe->list);
1473                 mutex_unlock(&phb->ioda.pe_list_mutex);
1474
1475                 pnv_ioda_deconfigure_pe(phb, pe);
1476
1477                 pnv_ioda_free_pe(pe);
1478         }
1479 }
1480
1481 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1482 {
1483         struct pci_bus        *bus;
1484         struct pci_controller *hose;
1485         struct pnv_phb        *phb;
1486         struct pnv_ioda_pe    *pe;
1487         struct pci_dn         *pdn;
1488         u16                    num_vfs, i;
1489
1490         bus = pdev->bus;
1491         hose = pci_bus_to_host(bus);
1492         phb = hose->private_data;
1493         pdn = pci_get_pdn(pdev);
1494         num_vfs = pdn->num_vfs;
1495
1496         /* Release VF PEs */
1497         pnv_ioda_release_vf_PE(pdev);
1498
1499         if (phb->type == PNV_PHB_IODA2) {
1500                 if (!pdn->m64_single_mode)
1501                         pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1502
1503                 /* Release M64 windows */
1504                 pnv_pci_vf_release_m64(pdev, num_vfs);
1505
1506                 /* Release PE numbers */
1507                 if (pdn->m64_single_mode) {
1508                         for (i = 0; i < num_vfs; i++) {
1509                                 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1510                                         continue;
1511
1512                                 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1513                                 pnv_ioda_free_pe(pe);
1514                         }
1515                 } else
1516                         bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1517                 /* Releasing pe_num_map */
1518                 kfree(pdn->pe_num_map);
1519         }
1520 }
1521
1522 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1523                                        struct pnv_ioda_pe *pe);
1524 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1525 {
1526         struct pci_bus        *bus;
1527         struct pci_controller *hose;
1528         struct pnv_phb        *phb;
1529         struct pnv_ioda_pe    *pe;
1530         int                    pe_num;
1531         u16                    vf_index;
1532         struct pci_dn         *pdn;
1533
1534         bus = pdev->bus;
1535         hose = pci_bus_to_host(bus);
1536         phb = hose->private_data;
1537         pdn = pci_get_pdn(pdev);
1538
1539         if (!pdev->is_physfn)
1540                 return;
1541
1542         /* Reserve PE for each VF */
1543         for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1544                 if (pdn->m64_single_mode)
1545                         pe_num = pdn->pe_num_map[vf_index];
1546                 else
1547                         pe_num = *pdn->pe_num_map + vf_index;
1548
1549                 pe = &phb->ioda.pe_array[pe_num];
1550                 pe->pe_number = pe_num;
1551                 pe->phb = phb;
1552                 pe->flags = PNV_IODA_PE_VF;
1553                 pe->pbus = NULL;
1554                 pe->parent_dev = pdev;
1555                 pe->mve_number = -1;
1556                 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1557                            pci_iov_virtfn_devfn(pdev, vf_index);
1558
1559                 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1560                         hose->global_number, pdev->bus->number,
1561                         PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1562                         PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1563
1564                 if (pnv_ioda_configure_pe(phb, pe)) {
1565                         /* XXX What do we do here ? */
1566                         pnv_ioda_free_pe(pe);
1567                         pe->pdev = NULL;
1568                         continue;
1569                 }
1570
1571                 /* Put PE to the list */
1572                 mutex_lock(&phb->ioda.pe_list_mutex);
1573                 list_add_tail(&pe->list, &phb->ioda.pe_list);
1574                 mutex_unlock(&phb->ioda.pe_list_mutex);
1575
1576                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1577         }
1578 }
1579
1580 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1581 {
1582         struct pci_bus        *bus;
1583         struct pci_controller *hose;
1584         struct pnv_phb        *phb;
1585         struct pnv_ioda_pe    *pe;
1586         struct pci_dn         *pdn;
1587         int                    ret;
1588         u16                    i;
1589
1590         bus = pdev->bus;
1591         hose = pci_bus_to_host(bus);
1592         phb = hose->private_data;
1593         pdn = pci_get_pdn(pdev);
1594
1595         if (phb->type == PNV_PHB_IODA2) {
1596                 if (!pdn->vfs_expanded) {
1597                         dev_info(&pdev->dev, "don't support this SRIOV device"
1598                                 " with non 64bit-prefetchable IOV BAR\n");
1599                         return -ENOSPC;
1600                 }
1601
1602                 /*
1603                  * When M64 BARs functions in Single PE mode, the number of VFs
1604                  * could be enabled must be less than the number of M64 BARs.
1605                  */
1606                 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1607                         dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1608                         return -EBUSY;
1609                 }
1610
1611                 /* Allocating pe_num_map */
1612                 if (pdn->m64_single_mode)
1613                         pdn->pe_num_map = kmalloc_array(num_vfs,
1614                                                         sizeof(*pdn->pe_num_map),
1615                                                         GFP_KERNEL);
1616                 else
1617                         pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1618
1619                 if (!pdn->pe_num_map)
1620                         return -ENOMEM;
1621
1622                 if (pdn->m64_single_mode)
1623                         for (i = 0; i < num_vfs; i++)
1624                                 pdn->pe_num_map[i] = IODA_INVALID_PE;
1625
1626                 /* Calculate available PE for required VFs */
1627                 if (pdn->m64_single_mode) {
1628                         for (i = 0; i < num_vfs; i++) {
1629                                 pe = pnv_ioda_alloc_pe(phb);
1630                                 if (!pe) {
1631                                         ret = -EBUSY;
1632                                         goto m64_failed;
1633                                 }
1634
1635                                 pdn->pe_num_map[i] = pe->pe_number;
1636                         }
1637                 } else {
1638                         mutex_lock(&phb->ioda.pe_alloc_mutex);
1639                         *pdn->pe_num_map = bitmap_find_next_zero_area(
1640                                 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1641                                 0, num_vfs, 0);
1642                         if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1643                                 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1644                                 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1645                                 kfree(pdn->pe_num_map);
1646                                 return -EBUSY;
1647                         }
1648                         bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1649                         mutex_unlock(&phb->ioda.pe_alloc_mutex);
1650                 }
1651                 pdn->num_vfs = num_vfs;
1652
1653                 /* Assign M64 window accordingly */
1654                 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1655                 if (ret) {
1656                         dev_info(&pdev->dev, "Not enough M64 window resources\n");
1657                         goto m64_failed;
1658                 }
1659
1660                 /*
1661                  * When using one M64 BAR to map one IOV BAR, we need to shift
1662                  * the IOV BAR according to the PE# allocated to the VFs.
1663                  * Otherwise, the PE# for the VF will conflict with others.
1664                  */
1665                 if (!pdn->m64_single_mode) {
1666                         ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1667                         if (ret)
1668                                 goto m64_failed;
1669                 }
1670         }
1671
1672         /* Setup VF PEs */
1673         pnv_ioda_setup_vf_PE(pdev, num_vfs);
1674
1675         return 0;
1676
1677 m64_failed:
1678         if (pdn->m64_single_mode) {
1679                 for (i = 0; i < num_vfs; i++) {
1680                         if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1681                                 continue;
1682
1683                         pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1684                         pnv_ioda_free_pe(pe);
1685                 }
1686         } else
1687                 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1688
1689         /* Releasing pe_num_map */
1690         kfree(pdn->pe_num_map);
1691
1692         return ret;
1693 }
1694
1695 int pcibios_sriov_disable(struct pci_dev *pdev)
1696 {
1697         pnv_pci_sriov_disable(pdev);
1698
1699         /* Release PCI data */
1700         remove_dev_pci_data(pdev);
1701         return 0;
1702 }
1703
1704 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1705 {
1706         /* Allocate PCI data */
1707         add_dev_pci_data(pdev);
1708
1709         return pnv_pci_sriov_enable(pdev, num_vfs);
1710 }
1711 #endif /* CONFIG_PCI_IOV */
1712
1713 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1714 {
1715         struct pci_dn *pdn = pci_get_pdn(pdev);
1716         struct pnv_ioda_pe *pe;
1717
1718         /*
1719          * The function can be called while the PE#
1720          * hasn't been assigned. Do nothing for the
1721          * case.
1722          */
1723         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1724                 return;
1725
1726         pe = &phb->ioda.pe_array[pdn->pe_number];
1727         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1728         set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1729         set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1730         /*
1731          * Note: iommu_add_device() will fail here as
1732          * for physical PE: the device is already added by now;
1733          * for virtual PE: sysfs entries are not ready yet and
1734          * tce_iommu_bus_notifier will add the device to a group later.
1735          */
1736 }
1737
1738 static bool pnv_pci_ioda_pe_single_vendor(struct pnv_ioda_pe *pe)
1739 {
1740         unsigned short vendor = 0;
1741         struct pci_dev *pdev;
1742
1743         if (pe->device_count == 1)
1744                 return true;
1745
1746         /* pe->pdev should be set if it's a single device, pe->pbus if not */
1747         if (!pe->pbus)
1748                 return true;
1749
1750         list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
1751                 if (!vendor) {
1752                         vendor = pdev->vendor;
1753                         continue;
1754                 }
1755
1756                 if (pdev->vendor != vendor)
1757                         return false;
1758         }
1759
1760         return true;
1761 }
1762
1763 /*
1764  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1765  *
1766  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1767  * Devices can only access more than that if bit 59 of the PCI address is set
1768  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1769  * Many PCI devices are not capable of addressing that many bits, and as a
1770  * result are limited to the 4GB of virtual memory made available to 32-bit
1771  * devices in TVE#0.
1772  *
1773  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1774  * devices by configuring the virtual memory past the first 4GB inaccessible
1775  * by 64-bit DMAs.  This should only be used by devices that want more than
1776  * 4GB, and only on PEs that have no 32-bit devices.
1777  *
1778  * Currently this will only work on PHB3 (POWER8).
1779  */
1780 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1781 {
1782         u64 window_size, table_size, tce_count, addr;
1783         struct page *table_pages;
1784         u64 tce_order = 28; /* 256MB TCEs */
1785         __be64 *tces;
1786         s64 rc;
1787
1788         /*
1789          * Window size needs to be a power of two, but needs to account for
1790          * shifting memory by the 4GB offset required to skip 32bit space.
1791          */
1792         window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1793         tce_count = window_size >> tce_order;
1794         table_size = tce_count << 3;
1795
1796         if (table_size < PAGE_SIZE)
1797                 table_size = PAGE_SIZE;
1798
1799         table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1800                                        get_order(table_size));
1801         if (!table_pages)
1802                 goto err;
1803
1804         tces = page_address(table_pages);
1805         if (!tces)
1806                 goto err;
1807
1808         memset(tces, 0, table_size);
1809
1810         for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1811                 tces[(addr + (1ULL << 32)) >> tce_order] =
1812                         cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1813         }
1814
1815         rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1816                                         pe->pe_number,
1817                                         /* reconfigure window 0 */
1818                                         (pe->pe_number << 1) + 0,
1819                                         1,
1820                                         __pa(tces),
1821                                         table_size,
1822                                         1 << tce_order);
1823         if (rc == OPAL_SUCCESS) {
1824                 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1825                 return 0;
1826         }
1827 err:
1828         pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1829         return -EIO;
1830 }
1831
1832 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1833 {
1834         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1835         struct pnv_phb *phb = hose->private_data;
1836         struct pci_dn *pdn = pci_get_pdn(pdev);
1837         struct pnv_ioda_pe *pe;
1838         uint64_t top;
1839         bool bypass = false;
1840         s64 rc;
1841
1842         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1843                 return -ENODEV;;
1844
1845         pe = &phb->ioda.pe_array[pdn->pe_number];
1846         if (pe->tce_bypass_enabled) {
1847                 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1848                 bypass = (dma_mask >= top);
1849         }
1850
1851         if (bypass) {
1852                 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1853                 set_dma_ops(&pdev->dev, &dma_direct_ops);
1854         } else {
1855                 /*
1856                  * If the device can't set the TCE bypass bit but still wants
1857                  * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1858                  * bypass the 32-bit region and be usable for 64-bit DMAs.
1859                  * The device needs to be able to address all of this space.
1860                  */
1861                 if (dma_mask >> 32 &&
1862                     dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1863                     pnv_pci_ioda_pe_single_vendor(pe) &&
1864                     phb->model == PNV_PHB_MODEL_PHB3) {
1865                         /* Configure the bypass mode */
1866                         rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1867                         if (rc)
1868                                 return rc;
1869                         /* 4GB offset bypasses 32-bit space */
1870                         set_dma_offset(&pdev->dev, (1ULL << 32));
1871                         set_dma_ops(&pdev->dev, &dma_direct_ops);
1872                 } else if (dma_mask >> 32 && dma_mask != DMA_BIT_MASK(64)) {
1873                         /*
1874                          * Fail the request if a DMA mask between 32 and 64 bits
1875                          * was requested but couldn't be fulfilled. Ideally we
1876                          * would do this for 64-bits but historically we have
1877                          * always fallen back to 32-bits.
1878                          */
1879                         return -ENOMEM;
1880                 } else {
1881                         dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1882                         set_dma_ops(&pdev->dev, &dma_iommu_ops);
1883                 }
1884         }
1885         *pdev->dev.dma_mask = dma_mask;
1886
1887         /* Update peer npu devices */
1888         pnv_npu_try_dma_set_bypass(pdev, bypass);
1889
1890         return 0;
1891 }
1892
1893 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1894 {
1895         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1896         struct pnv_phb *phb = hose->private_data;
1897         struct pci_dn *pdn = pci_get_pdn(pdev);
1898         struct pnv_ioda_pe *pe;
1899         u64 end, mask;
1900
1901         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1902                 return 0;
1903
1904         pe = &phb->ioda.pe_array[pdn->pe_number];
1905         if (!pe->tce_bypass_enabled)
1906                 return __dma_get_required_mask(&pdev->dev);
1907
1908
1909         end = pe->tce_bypass_base + memblock_end_of_DRAM();
1910         mask = 1ULL << (fls64(end) - 1);
1911         mask += mask - 1;
1912
1913         return mask;
1914 }
1915
1916 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1917                                    struct pci_bus *bus,
1918                                    bool add_to_group)
1919 {
1920         struct pci_dev *dev;
1921
1922         list_for_each_entry(dev, &bus->devices, bus_list) {
1923                 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1924                 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1925                 if (add_to_group)
1926                         iommu_add_device(&dev->dev);
1927
1928                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1929                         pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1930                                         add_to_group);
1931         }
1932 }
1933
1934 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1935                                                      bool real_mode)
1936 {
1937         return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1938                 (phb->regs + 0x210);
1939 }
1940
1941 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1942                 unsigned long index, unsigned long npages, bool rm)
1943 {
1944         struct iommu_table_group_link *tgl = list_first_entry_or_null(
1945                         &tbl->it_group_list, struct iommu_table_group_link,
1946                         next);
1947         struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1948                         struct pnv_ioda_pe, table_group);
1949         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1950         unsigned long start, end, inc;
1951
1952         start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1953         end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1954                         npages - 1);
1955
1956         /* p7ioc-style invalidation, 2 TCEs per write */
1957         start |= (1ull << 63);
1958         end |= (1ull << 63);
1959         inc = 16;
1960         end |= inc - 1; /* round up end to be different than start */
1961
1962         mb(); /* Ensure above stores are visible */
1963         while (start <= end) {
1964                 if (rm)
1965                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
1966                 else
1967                         __raw_writeq(cpu_to_be64(start), invalidate);
1968                 start += inc;
1969         }
1970
1971         /*
1972          * The iommu layer will do another mb() for us on build()
1973          * and we don't care on free()
1974          */
1975 }
1976
1977 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1978                 long npages, unsigned long uaddr,
1979                 enum dma_data_direction direction,
1980                 unsigned long attrs)
1981 {
1982         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1983                         attrs);
1984
1985         if (!ret)
1986                 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1987
1988         return ret;
1989 }
1990
1991 #ifdef CONFIG_IOMMU_API
1992 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1993                 unsigned long *hpa, enum dma_data_direction *direction)
1994 {
1995         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1996
1997         if (!ret)
1998                 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1999
2000         return ret;
2001 }
2002
2003 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
2004                 unsigned long *hpa, enum dma_data_direction *direction)
2005 {
2006         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2007
2008         if (!ret)
2009                 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
2010
2011         return ret;
2012 }
2013 #endif
2014
2015 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
2016                 long npages)
2017 {
2018         pnv_tce_free(tbl, index, npages);
2019
2020         pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
2021 }
2022
2023 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
2024         .set = pnv_ioda1_tce_build,
2025 #ifdef CONFIG_IOMMU_API
2026         .exchange = pnv_ioda1_tce_xchg,
2027         .exchange_rm = pnv_ioda1_tce_xchg_rm,
2028 #endif
2029         .clear = pnv_ioda1_tce_free,
2030         .get = pnv_tce_get,
2031 };
2032
2033 #define PHB3_TCE_KILL_INVAL_ALL         PPC_BIT(0)
2034 #define PHB3_TCE_KILL_INVAL_PE          PPC_BIT(1)
2035 #define PHB3_TCE_KILL_INVAL_ONE         PPC_BIT(2)
2036
2037 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2038 {
2039         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
2040         const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
2041
2042         mb(); /* Ensure previous TCE table stores are visible */
2043         if (rm)
2044                 __raw_rm_writeq(cpu_to_be64(val), invalidate);
2045         else
2046                 __raw_writeq(cpu_to_be64(val), invalidate);
2047 }
2048
2049 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2050 {
2051         /* 01xb - invalidate TCEs that match the specified PE# */
2052         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2053         unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2054
2055         mb(); /* Ensure above stores are visible */
2056         __raw_writeq(cpu_to_be64(val), invalidate);
2057 }
2058
2059 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2060                                         unsigned shift, unsigned long index,
2061                                         unsigned long npages)
2062 {
2063         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2064         unsigned long start, end, inc;
2065
2066         /* We'll invalidate DMA address in PE scope */
2067         start = PHB3_TCE_KILL_INVAL_ONE;
2068         start |= (pe->pe_number & 0xFF);
2069         end = start;
2070
2071         /* Figure out the start, end and step */
2072         start |= (index << shift);
2073         end |= ((index + npages - 1) << shift);
2074         inc = (0x1ull << shift);
2075         mb();
2076
2077         while (start <= end) {
2078                 if (rm)
2079                         __raw_rm_writeq(cpu_to_be64(start), invalidate);
2080                 else
2081                         __raw_writeq(cpu_to_be64(start), invalidate);
2082                 start += inc;
2083         }
2084 }
2085
2086 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2087 {
2088         struct pnv_phb *phb = pe->phb;
2089
2090         if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2091                 pnv_pci_phb3_tce_invalidate_pe(pe);
2092         else
2093                 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2094                                   pe->pe_number, 0, 0, 0);
2095 }
2096
2097 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2098                 unsigned long index, unsigned long npages, bool rm)
2099 {
2100         struct iommu_table_group_link *tgl;
2101
2102         list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2103                 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2104                                 struct pnv_ioda_pe, table_group);
2105                 struct pnv_phb *phb = pe->phb;
2106                 unsigned int shift = tbl->it_page_shift;
2107
2108                 /*
2109                  * NVLink1 can use the TCE kill register directly as
2110                  * it's the same as PHB3. NVLink2 is different and
2111                  * should go via the OPAL call.
2112                  */
2113                 if (phb->model == PNV_PHB_MODEL_NPU) {
2114                         /*
2115                          * The NVLink hardware does not support TCE kill
2116                          * per TCE entry so we have to invalidate
2117                          * the entire cache for it.
2118                          */
2119                         pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2120                         continue;
2121                 }
2122                 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2123                         pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2124                                                     index, npages);
2125                 else
2126                         opal_pci_tce_kill(phb->opal_id,
2127                                           OPAL_PCI_TCE_KILL_PAGES,
2128                                           pe->pe_number, 1u << shift,
2129                                           index << shift, npages);
2130         }
2131 }
2132
2133 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2134 {
2135         if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2136                 pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2137         else
2138                 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2139 }
2140
2141 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2142                 long npages, unsigned long uaddr,
2143                 enum dma_data_direction direction,
2144                 unsigned long attrs)
2145 {
2146         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2147                         attrs);
2148
2149         if (!ret)
2150                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2151
2152         return ret;
2153 }
2154
2155 #ifdef CONFIG_IOMMU_API
2156 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2157                 unsigned long *hpa, enum dma_data_direction *direction)
2158 {
2159         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2160
2161         if (!ret)
2162                 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2163
2164         return ret;
2165 }
2166
2167 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2168                 unsigned long *hpa, enum dma_data_direction *direction)
2169 {
2170         long ret = pnv_tce_xchg(tbl, index, hpa, direction);
2171
2172         if (!ret)
2173                 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2174
2175         return ret;
2176 }
2177 #endif
2178
2179 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2180                 long npages)
2181 {
2182         pnv_tce_free(tbl, index, npages);
2183
2184         pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2185 }
2186
2187 static void pnv_ioda2_table_free(struct iommu_table *tbl)
2188 {
2189         pnv_pci_ioda2_table_free_pages(tbl);
2190 }
2191
2192 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2193         .set = pnv_ioda2_tce_build,
2194 #ifdef CONFIG_IOMMU_API
2195         .exchange = pnv_ioda2_tce_xchg,
2196         .exchange_rm = pnv_ioda2_tce_xchg_rm,
2197 #endif
2198         .clear = pnv_ioda2_tce_free,
2199         .get = pnv_tce_get,
2200         .free = pnv_ioda2_table_free,
2201 };
2202
2203 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2204 {
2205         unsigned int *weight = (unsigned int *)data;
2206
2207         /* This is quite simplistic. The "base" weight of a device
2208          * is 10. 0 means no DMA is to be accounted for it.
2209          */
2210         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2211                 return 0;
2212
2213         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2214             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2215             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2216                 *weight += 3;
2217         else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2218                 *weight += 15;
2219         else
2220                 *weight += 10;
2221
2222         return 0;
2223 }
2224
2225 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2226 {
2227         unsigned int weight = 0;
2228
2229         /* SRIOV VF has same DMA32 weight as its PF */
2230 #ifdef CONFIG_PCI_IOV
2231         if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2232                 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2233                 return weight;
2234         }
2235 #endif
2236
2237         if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2238                 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2239         } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2240                 struct pci_dev *pdev;
2241
2242                 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2243                         pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2244         } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2245                 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2246         }
2247
2248         return weight;
2249 }
2250
2251 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2252                                        struct pnv_ioda_pe *pe)
2253 {
2254
2255         struct page *tce_mem = NULL;
2256         struct iommu_table *tbl;
2257         unsigned int weight, total_weight = 0;
2258         unsigned int tce32_segsz, base, segs, avail, i;
2259         int64_t rc;
2260         void *addr;
2261
2262         /* XXX FIXME: Handle 64-bit only DMA devices */
2263         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2264         /* XXX FIXME: Allocate multi-level tables on PHB3 */
2265         weight = pnv_pci_ioda_pe_dma_weight(pe);
2266         if (!weight)
2267                 return;
2268
2269         pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2270                      &total_weight);
2271         segs = (weight * phb->ioda.dma32_count) / total_weight;
2272         if (!segs)
2273                 segs = 1;
2274
2275         /*
2276          * Allocate contiguous DMA32 segments. We begin with the expected
2277          * number of segments. With one more attempt, the number of DMA32
2278          * segments to be allocated is decreased by one until one segment
2279          * is allocated successfully.
2280          */
2281         do {
2282                 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2283                         for (avail = 0, i = base; i < base + segs; i++) {
2284                                 if (phb->ioda.dma32_segmap[i] ==
2285                                     IODA_INVALID_PE)
2286                                         avail++;
2287                         }
2288
2289                         if (avail == segs)
2290                                 goto found;
2291                 }
2292         } while (--segs);
2293
2294         if (!segs) {
2295                 pe_warn(pe, "No available DMA32 segments\n");
2296                 return;
2297         }
2298
2299 found:
2300         tbl = pnv_pci_table_alloc(phb->hose->node);
2301         if (WARN_ON(!tbl))
2302                 return;
2303
2304         iommu_register_group(&pe->table_group, phb->hose->global_number,
2305                         pe->pe_number);
2306         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2307
2308         /* Grab a 32-bit TCE table */
2309         pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2310                 weight, total_weight, base, segs);
2311         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2312                 base * PNV_IODA1_DMA32_SEGSIZE,
2313                 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2314
2315         /* XXX Currently, we allocate one big contiguous table for the
2316          * TCEs. We only really need one chunk per 256M of TCE space
2317          * (ie per segment) but that's an optimization for later, it
2318          * requires some added smarts with our get/put_tce implementation
2319          *
2320          * Each TCE page is 4KB in size and each TCE entry occupies 8
2321          * bytes
2322          */
2323         tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2324         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2325                                    get_order(tce32_segsz * segs));
2326         if (!tce_mem) {
2327                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2328                 goto fail;
2329         }
2330         addr = page_address(tce_mem);
2331         memset(addr, 0, tce32_segsz * segs);
2332
2333         /* Configure HW */
2334         for (i = 0; i < segs; i++) {
2335                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2336                                               pe->pe_number,
2337                                               base + i, 1,
2338                                               __pa(addr) + tce32_segsz * i,
2339                                               tce32_segsz, IOMMU_PAGE_SIZE_4K);
2340                 if (rc) {
2341                         pe_err(pe, " Failed to configure 32-bit TCE table,"
2342                                " err %ld\n", rc);
2343                         goto fail;
2344                 }
2345         }
2346
2347         /* Setup DMA32 segment mapping */
2348         for (i = base; i < base + segs; i++)
2349                 phb->ioda.dma32_segmap[i] = pe->pe_number;
2350
2351         /* Setup linux iommu table */
2352         pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2353                                   base * PNV_IODA1_DMA32_SEGSIZE,
2354                                   IOMMU_PAGE_SHIFT_4K);
2355
2356         tbl->it_ops = &pnv_ioda1_iommu_ops;
2357         pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2358         pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2359         iommu_init_table(tbl, phb->hose->node);
2360
2361         if (pe->flags & PNV_IODA_PE_DEV) {
2362                 /*
2363                  * Setting table base here only for carrying iommu_group
2364                  * further down to let iommu_add_device() do the job.
2365                  * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2366                  */
2367                 set_iommu_table_base(&pe->pdev->dev, tbl);
2368                 iommu_add_device(&pe->pdev->dev);
2369         } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2370                 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2371
2372         return;
2373  fail:
2374         /* XXX Failure: Try to fallback to 64-bit only ? */
2375         if (tce_mem)
2376                 __free_pages(tce_mem, get_order(tce32_segsz * segs));
2377         if (tbl) {
2378                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2379                 iommu_tce_table_put(tbl);
2380         }
2381 }
2382
2383 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2384                 int num, struct iommu_table *tbl)
2385 {
2386         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2387                         table_group);
2388         struct pnv_phb *phb = pe->phb;
2389         int64_t rc;
2390         const unsigned long size = tbl->it_indirect_levels ?
2391                         tbl->it_level_size : tbl->it_size;
2392         const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2393         const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2394
2395         pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2396                         start_addr, start_addr + win_size - 1,
2397                         IOMMU_PAGE_SIZE(tbl));
2398
2399         /*
2400          * Map TCE table through TVT. The TVE index is the PE number
2401          * shifted by 1 bit for 32-bits DMA space.
2402          */
2403         rc = opal_pci_map_pe_dma_window(phb->opal_id,
2404                         pe->pe_number,
2405                         (pe->pe_number << 1) + num,
2406                         tbl->it_indirect_levels + 1,
2407                         __pa(tbl->it_base),
2408                         size << 3,
2409                         IOMMU_PAGE_SIZE(tbl));
2410         if (rc) {
2411                 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2412                 return rc;
2413         }
2414
2415         pnv_pci_link_table_and_group(phb->hose->node, num,
2416                         tbl, &pe->table_group);
2417         pnv_pci_ioda2_tce_invalidate_pe(pe);
2418
2419         return 0;
2420 }
2421
2422 void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2423 {
2424         uint16_t window_id = (pe->pe_number << 1 ) + 1;
2425         int64_t rc;
2426
2427         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2428         if (enable) {
2429                 phys_addr_t top = memblock_end_of_DRAM();
2430
2431                 top = roundup_pow_of_two(top);
2432                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2433                                                      pe->pe_number,
2434                                                      window_id,
2435                                                      pe->tce_bypass_base,
2436                                                      top);
2437         } else {
2438                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2439                                                      pe->pe_number,
2440                                                      window_id,
2441                                                      pe->tce_bypass_base,
2442                                                      0);
2443         }
2444         if (rc)
2445                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2446         else
2447                 pe->tce_bypass_enabled = enable;
2448 }
2449
2450 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2451                 __u32 page_shift, __u64 window_size, __u32 levels,
2452                 struct iommu_table *tbl);
2453
2454 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2455                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2456                 struct iommu_table **ptbl)
2457 {
2458         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2459                         table_group);
2460         int nid = pe->phb->hose->node;
2461         __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2462         long ret;
2463         struct iommu_table *tbl;
2464
2465         tbl = pnv_pci_table_alloc(nid);
2466         if (!tbl)
2467                 return -ENOMEM;
2468
2469         tbl->it_ops = &pnv_ioda2_iommu_ops;
2470
2471         ret = pnv_pci_ioda2_table_alloc_pages(nid,
2472                         bus_offset, page_shift, window_size,
2473                         levels, tbl);
2474         if (ret) {
2475                 iommu_tce_table_put(tbl);
2476                 return ret;
2477         }
2478
2479         *ptbl = tbl;
2480
2481         return 0;
2482 }
2483
2484 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2485 {
2486         struct iommu_table *tbl = NULL;
2487         long rc;
2488
2489         /*
2490          * crashkernel= specifies the kdump kernel's maximum memory at
2491          * some offset and there is no guaranteed the result is a power
2492          * of 2, which will cause errors later.
2493          */
2494         const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2495
2496         /*
2497          * In memory constrained environments, e.g. kdump kernel, the
2498          * DMA window can be larger than available memory, which will
2499          * cause errors later.
2500          */
2501         const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2502
2503         rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2504                         IOMMU_PAGE_SHIFT_4K,
2505                         window_size,
2506                         POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2507         if (rc) {
2508                 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2509                                 rc);
2510                 return rc;
2511         }
2512
2513         iommu_init_table(tbl, pe->phb->hose->node);
2514
2515         rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2516         if (rc) {
2517                 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2518                                 rc);
2519                 iommu_tce_table_put(tbl);
2520                 return rc;
2521         }
2522
2523         if (!pnv_iommu_bypass_disabled)
2524                 pnv_pci_ioda2_set_bypass(pe, true);
2525
2526         /*
2527          * Setting table base here only for carrying iommu_group
2528          * further down to let iommu_add_device() do the job.
2529          * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2530          */
2531         if (pe->flags & PNV_IODA_PE_DEV)
2532                 set_iommu_table_base(&pe->pdev->dev, tbl);
2533
2534         return 0;
2535 }
2536
2537 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2538 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2539                 int num)
2540 {
2541         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2542                         table_group);
2543         struct pnv_phb *phb = pe->phb;
2544         long ret;
2545
2546         pe_info(pe, "Removing DMA window #%d\n", num);
2547
2548         ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2549                         (pe->pe_number << 1) + num,
2550                         0/* levels */, 0/* table address */,
2551                         0/* table size */, 0/* page size */);
2552         if (ret)
2553                 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2554         else
2555                 pnv_pci_ioda2_tce_invalidate_pe(pe);
2556
2557         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2558
2559         return ret;
2560 }
2561 #endif
2562
2563 #ifdef CONFIG_IOMMU_API
2564 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2565                 __u64 window_size, __u32 levels)
2566 {
2567         unsigned long bytes = 0;
2568         const unsigned window_shift = ilog2(window_size);
2569         unsigned entries_shift = window_shift - page_shift;
2570         unsigned table_shift = entries_shift + 3;
2571         unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2572         unsigned long direct_table_size;
2573
2574         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2575                         (window_size > memory_hotplug_max()) ||
2576                         !is_power_of_2(window_size))
2577                 return 0;
2578
2579         /* Calculate a direct table size from window_size and levels */
2580         entries_shift = (entries_shift + levels - 1) / levels;
2581         table_shift = entries_shift + 3;
2582         table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2583         direct_table_size =  1UL << table_shift;
2584
2585         for ( ; levels; --levels) {
2586                 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2587
2588                 tce_table_size /= direct_table_size;
2589                 tce_table_size <<= 3;
2590                 tce_table_size = max_t(unsigned long,
2591                                 tce_table_size, direct_table_size);
2592         }
2593
2594         return bytes;
2595 }
2596
2597 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2598 {
2599         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2600                                                 table_group);
2601         /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2602         struct iommu_table *tbl = pe->table_group.tables[0];
2603
2604         pnv_pci_ioda2_set_bypass(pe, false);
2605         pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2606         if (pe->pbus)
2607                 pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2608         iommu_tce_table_put(tbl);
2609 }
2610
2611 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2612 {
2613         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2614                                                 table_group);
2615
2616         pnv_pci_ioda2_setup_default_config(pe);
2617         if (pe->pbus)
2618                 pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2619 }
2620
2621 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2622         .get_table_size = pnv_pci_ioda2_get_table_size,
2623         .create_table = pnv_pci_ioda2_create_table,
2624         .set_window = pnv_pci_ioda2_set_window,
2625         .unset_window = pnv_pci_ioda2_unset_window,
2626         .take_ownership = pnv_ioda2_take_ownership,
2627         .release_ownership = pnv_ioda2_release_ownership,
2628 };
2629
2630 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2631 {
2632         struct pci_controller *hose;
2633         struct pnv_phb *phb;
2634         struct pnv_ioda_pe **ptmppe = opaque;
2635         struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2636         struct pci_dn *pdn = pci_get_pdn(pdev);
2637
2638         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2639                 return 0;
2640
2641         hose = pci_bus_to_host(pdev->bus);
2642         phb = hose->private_data;
2643         if (phb->type != PNV_PHB_NPU)
2644                 return 0;
2645
2646         *ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2647
2648         return 1;
2649 }
2650
2651 /*
2652  * This returns PE of associated NPU.
2653  * This assumes that NPU is in the same IOMMU group with GPU and there is
2654  * no other PEs.
2655  */
2656 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2657                 struct iommu_table_group *table_group)
2658 {
2659         struct pnv_ioda_pe *npe = NULL;
2660         int ret = iommu_group_for_each_dev(table_group->group, &npe,
2661                         gpe_table_group_to_npe_cb);
2662
2663         BUG_ON(!ret || !npe);
2664
2665         return npe;
2666 }
2667
2668 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2669                 int num, struct iommu_table *tbl)
2670 {
2671         long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2672
2673         if (ret)
2674                 return ret;
2675
2676         ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2677         if (ret)
2678                 pnv_pci_ioda2_unset_window(table_group, num);
2679
2680         return ret;
2681 }
2682
2683 static long pnv_pci_ioda2_npu_unset_window(
2684                 struct iommu_table_group *table_group,
2685                 int num)
2686 {
2687         long ret = pnv_pci_ioda2_unset_window(table_group, num);
2688
2689         if (ret)
2690                 return ret;
2691
2692         return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2693 }
2694
2695 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2696 {
2697         /*
2698          * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2699          * the iommu_table if 32bit DMA is enabled.
2700          */
2701         pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2702         pnv_ioda2_take_ownership(table_group);
2703 }
2704
2705 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2706         .get_table_size = pnv_pci_ioda2_get_table_size,
2707         .create_table = pnv_pci_ioda2_create_table,
2708         .set_window = pnv_pci_ioda2_npu_set_window,
2709         .unset_window = pnv_pci_ioda2_npu_unset_window,
2710         .take_ownership = pnv_ioda2_npu_take_ownership,
2711         .release_ownership = pnv_ioda2_release_ownership,
2712 };
2713
2714 static void pnv_pci_ioda_setup_iommu_api(void)
2715 {
2716         struct pci_controller *hose, *tmp;
2717         struct pnv_phb *phb;
2718         struct pnv_ioda_pe *pe, *gpe;
2719
2720         /*
2721          * Now we have all PHBs discovered, time to add NPU devices to
2722          * the corresponding IOMMU groups.
2723          */
2724         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2725                 phb = hose->private_data;
2726
2727                 if (phb->type != PNV_PHB_NPU)
2728                         continue;
2729
2730                 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2731                         gpe = pnv_pci_npu_setup_iommu(pe);
2732                         if (gpe)
2733                                 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2734                 }
2735         }
2736 }
2737 #else /* !CONFIG_IOMMU_API */
2738 static void pnv_pci_ioda_setup_iommu_api(void) { };
2739 #endif
2740
2741 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2742                 unsigned levels, unsigned long limit,
2743                 unsigned long *current_offset, unsigned long *total_allocated)
2744 {
2745         struct page *tce_mem = NULL;
2746         __be64 *addr, *tmp;
2747         unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2748         unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2749         unsigned entries = 1UL << (shift - 3);
2750         long i;
2751
2752         tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2753         if (!tce_mem) {
2754                 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2755                 return NULL;
2756         }
2757         addr = page_address(tce_mem);
2758         memset(addr, 0, allocated);
2759         *total_allocated += allocated;
2760
2761         --levels;
2762         if (!levels) {
2763                 *current_offset += allocated;
2764                 return addr;
2765         }
2766
2767         for (i = 0; i < entries; ++i) {
2768                 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2769                                 levels, limit, current_offset, total_allocated);
2770                 if (!tmp)
2771                         break;
2772
2773                 addr[i] = cpu_to_be64(__pa(tmp) |
2774                                 TCE_PCI_READ | TCE_PCI_WRITE);
2775
2776                 if (*current_offset >= limit)
2777                         break;
2778         }
2779
2780         return addr;
2781 }
2782
2783 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2784                 unsigned long size, unsigned level);
2785
2786 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2787                 __u32 page_shift, __u64 window_size, __u32 levels,
2788                 struct iommu_table *tbl)
2789 {
2790         void *addr;
2791         unsigned long offset = 0, level_shift, total_allocated = 0;
2792         const unsigned window_shift = ilog2(window_size);
2793         unsigned entries_shift = window_shift - page_shift;
2794         unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2795         const unsigned long tce_table_size = 1UL << table_shift;
2796
2797         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2798                 return -EINVAL;
2799
2800         if (!is_power_of_2(window_size))
2801                 return -EINVAL;
2802
2803         /* Adjust direct table size from window_size and levels */
2804         entries_shift = (entries_shift + levels - 1) / levels;
2805         level_shift = entries_shift + 3;
2806         level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2807
2808         if ((level_shift - 3) * levels + page_shift >= 60)
2809                 return -EINVAL;
2810
2811         /* Allocate TCE table */
2812         addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2813                         levels, tce_table_size, &offset, &total_allocated);
2814
2815         /* addr==NULL means that the first level allocation failed */
2816         if (!addr)
2817                 return -ENOMEM;
2818
2819         /*
2820          * First level was allocated but some lower level failed as
2821          * we did not allocate as much as we wanted,
2822          * release partially allocated table.
2823          */
2824         if (offset < tce_table_size) {
2825                 pnv_pci_ioda2_table_do_free_pages(addr,
2826                                 1ULL << (level_shift - 3), levels - 1);
2827                 return -ENOMEM;
2828         }
2829
2830         /* Setup linux iommu table */
2831         pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2832                         page_shift);
2833         tbl->it_level_size = 1ULL << (level_shift - 3);
2834         tbl->it_indirect_levels = levels - 1;
2835         tbl->it_allocated_size = total_allocated;
2836
2837         pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2838                         window_size, tce_table_size, bus_offset);
2839
2840         return 0;
2841 }
2842
2843 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2844                 unsigned long size, unsigned level)
2845 {
2846         const unsigned long addr_ul = (unsigned long) addr &
2847                         ~(TCE_PCI_READ | TCE_PCI_WRITE);
2848
2849         if (level) {
2850                 long i;
2851                 u64 *tmp = (u64 *) addr_ul;
2852
2853                 for (i = 0; i < size; ++i) {
2854                         unsigned long hpa = be64_to_cpu(tmp[i]);
2855
2856                         if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2857                                 continue;
2858
2859                         pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2860                                         level - 1);
2861                 }
2862         }
2863
2864         free_pages(addr_ul, get_order(size << 3));
2865 }
2866
2867 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2868 {
2869         const unsigned long size = tbl->it_indirect_levels ?
2870                         tbl->it_level_size : tbl->it_size;
2871
2872         if (!tbl->it_size)
2873                 return;
2874
2875         pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2876                         tbl->it_indirect_levels);
2877 }
2878
2879 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2880                                        struct pnv_ioda_pe *pe)
2881 {
2882         int64_t rc;
2883
2884         if (!pnv_pci_ioda_pe_dma_weight(pe))
2885                 return;
2886
2887         /* TVE #1 is selected by PCI address bit 59 */
2888         pe->tce_bypass_base = 1ull << 59;
2889
2890         iommu_register_group(&pe->table_group, phb->hose->global_number,
2891                         pe->pe_number);
2892
2893         /* The PE will reserve all possible 32-bits space */
2894         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2895                 phb->ioda.m32_pci_base);
2896
2897         /* Setup linux iommu table */
2898         pe->table_group.tce32_start = 0;
2899         pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2900         pe->table_group.max_dynamic_windows_supported =
2901                         IOMMU_TABLE_GROUP_MAX_TABLES;
2902         pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2903         pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2904 #ifdef CONFIG_IOMMU_API
2905         pe->table_group.ops = &pnv_pci_ioda2_ops;
2906 #endif
2907
2908         rc = pnv_pci_ioda2_setup_default_config(pe);
2909         if (rc)
2910                 return;
2911
2912         if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2913                 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2914 }
2915
2916 #ifdef CONFIG_PCI_MSI
2917 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2918 {
2919         struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2920                                            ioda.irq_chip);
2921
2922         return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2923 }
2924
2925 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2926 {
2927         int64_t rc;
2928         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2929         struct irq_chip *chip = irq_data_get_irq_chip(d);
2930
2931         rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2932         WARN_ON_ONCE(rc);
2933
2934         icp_native_eoi(d);
2935 }
2936
2937
2938 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2939 {
2940         struct irq_data *idata;
2941         struct irq_chip *ichip;
2942
2943         /* The MSI EOI OPAL call is only needed on PHB3 */
2944         if (phb->model != PNV_PHB_MODEL_PHB3)
2945                 return;
2946
2947         if (!phb->ioda.irq_chip_init) {
2948                 /*
2949                  * First time we setup an MSI IRQ, we need to setup the
2950                  * corresponding IRQ chip to route correctly.
2951                  */
2952                 idata = irq_get_irq_data(virq);
2953                 ichip = irq_data_get_irq_chip(idata);
2954                 phb->ioda.irq_chip_init = 1;
2955                 phb->ioda.irq_chip = *ichip;
2956                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2957         }
2958         irq_set_chip(virq, &phb->ioda.irq_chip);
2959 }
2960
2961 /*
2962  * Returns true iff chip is something that we could call
2963  * pnv_opal_pci_msi_eoi for.
2964  */
2965 bool is_pnv_opal_msi(struct irq_chip *chip)
2966 {
2967         return chip->irq_eoi == pnv_ioda2_msi_eoi;
2968 }
2969 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2970
2971 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2972                                   unsigned int hwirq, unsigned int virq,
2973                                   unsigned int is_64, struct msi_msg *msg)
2974 {
2975         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2976         unsigned int xive_num = hwirq - phb->msi_base;
2977         __be32 data;
2978         int rc;
2979
2980         /* No PE assigned ? bail out ... no MSI for you ! */
2981         if (pe == NULL)
2982                 return -ENXIO;
2983
2984         /* Check if we have an MVE */
2985         if (pe->mve_number < 0)
2986                 return -ENXIO;
2987
2988         /* Force 32-bit MSI on some broken devices */
2989         if (dev->no_64bit_msi)
2990                 is_64 = 0;
2991
2992         /* Assign XIVE to PE */
2993         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2994         if (rc) {
2995                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2996                         pci_name(dev), rc, xive_num);
2997                 return -EIO;
2998         }
2999
3000         if (is_64) {
3001                 __be64 addr64;
3002
3003                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
3004                                      &addr64, &data);
3005                 if (rc) {
3006                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
3007                                 pci_name(dev), rc);
3008                         return -EIO;
3009                 }
3010                 msg->address_hi = be64_to_cpu(addr64) >> 32;
3011                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
3012         } else {
3013                 __be32 addr32;
3014
3015                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
3016                                      &addr32, &data);
3017                 if (rc) {
3018                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
3019                                 pci_name(dev), rc);
3020                         return -EIO;
3021                 }
3022                 msg->address_hi = 0;
3023                 msg->address_lo = be32_to_cpu(addr32);
3024         }
3025         msg->data = be32_to_cpu(data);
3026
3027         pnv_set_msi_irq_chip(phb, virq);
3028
3029         pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
3030                  " address=%x_%08x data=%x PE# %x\n",
3031                  pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
3032                  msg->address_hi, msg->address_lo, data, pe->pe_number);
3033
3034         return 0;
3035 }
3036
3037 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
3038 {
3039         unsigned int count;
3040         const __be32 *prop = of_get_property(phb->hose->dn,
3041                                              "ibm,opal-msi-ranges", NULL);
3042         if (!prop) {
3043                 /* BML Fallback */
3044                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
3045         }
3046         if (!prop)
3047                 return;
3048
3049         phb->msi_base = be32_to_cpup(prop);
3050         count = be32_to_cpup(prop + 1);
3051         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
3052                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
3053                        phb->hose->global_number);
3054                 return;
3055         }
3056
3057         phb->msi_setup = pnv_pci_ioda_msi_setup;
3058         phb->msi32_support = 1;
3059         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
3060                 count, phb->msi_base);
3061 }
3062 #else
3063 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
3064 #endif /* CONFIG_PCI_MSI */
3065
3066 #ifdef CONFIG_PCI_IOV
3067 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
3068 {
3069         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3070         struct pnv_phb *phb = hose->private_data;
3071         const resource_size_t gate = phb->ioda.m64_segsize >> 2;
3072         struct resource *res;
3073         int i;
3074         resource_size_t size, total_vf_bar_sz;
3075         struct pci_dn *pdn;
3076         int mul, total_vfs;
3077
3078         if (!pdev->is_physfn || pdev->is_added)
3079                 return;
3080
3081         pdn = pci_get_pdn(pdev);
3082         pdn->vfs_expanded = 0;
3083         pdn->m64_single_mode = false;
3084
3085         total_vfs = pci_sriov_get_totalvfs(pdev);
3086         mul = phb->ioda.total_pe_num;
3087         total_vf_bar_sz = 0;
3088
3089         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3090                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3091                 if (!res->flags || res->parent)
3092                         continue;
3093                 if (!pnv_pci_is_m64_flags(res->flags)) {
3094                         dev_warn(&pdev->dev, "Don't support SR-IOV with"
3095                                         " non M64 VF BAR%d: %pR. \n",
3096                                  i, res);
3097                         goto truncate_iov;
3098                 }
3099
3100                 total_vf_bar_sz += pci_iov_resource_size(pdev,
3101                                 i + PCI_IOV_RESOURCES);
3102
3103                 /*
3104                  * If bigger than quarter of M64 segment size, just round up
3105                  * power of two.
3106                  *
3107                  * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
3108                  * with other devices, IOV BAR size is expanded to be
3109                  * (total_pe * VF_BAR_size).  When VF_BAR_size is half of M64
3110                  * segment size , the expanded size would equal to half of the
3111                  * whole M64 space size, which will exhaust the M64 Space and
3112                  * limit the system flexibility.  This is a design decision to
3113                  * set the boundary to quarter of the M64 segment size.
3114                  */
3115                 if (total_vf_bar_sz > gate) {
3116                         mul = roundup_pow_of_two(total_vfs);
3117                         dev_info(&pdev->dev,
3118                                 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
3119                                 total_vf_bar_sz, gate, mul);
3120                         pdn->m64_single_mode = true;
3121                         break;
3122                 }
3123         }
3124
3125         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3126                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3127                 if (!res->flags || res->parent)
3128                         continue;
3129
3130                 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
3131                 /*
3132                  * On PHB3, the minimum size alignment of M64 BAR in single
3133                  * mode is 32MB.
3134                  */
3135                 if (pdn->m64_single_mode && (size < SZ_32M))
3136                         goto truncate_iov;
3137                 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
3138                 res->end = res->start + size * mul - 1;
3139                 dev_dbg(&pdev->dev, "                       %pR\n", res);
3140                 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
3141                          i, res, mul);
3142         }
3143         pdn->vfs_expanded = mul;
3144
3145         return;
3146
3147 truncate_iov:
3148         /* To save MMIO space, IOV BAR is truncated. */
3149         for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3150                 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3151                 res->flags = 0;
3152                 res->end = res->start - 1;
3153         }
3154 }
3155 #endif /* CONFIG_PCI_IOV */
3156
3157 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3158                                   struct resource *res)
3159 {
3160         struct pnv_phb *phb = pe->phb;
3161         struct pci_bus_region region;
3162         int index;
3163         int64_t rc;
3164
3165         if (!res || !res->flags || res->start > res->end)
3166                 return;
3167
3168         if (res->flags & IORESOURCE_IO) {
3169                 region.start = res->start - phb->ioda.io_pci_base;
3170                 region.end   = res->end - phb->ioda.io_pci_base;
3171                 index = region.start / phb->ioda.io_segsize;
3172
3173                 while (index < phb->ioda.total_pe_num &&
3174                        region.start <= region.end) {
3175                         phb->ioda.io_segmap[index] = pe->pe_number;
3176                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3177                                 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3178                         if (rc != OPAL_SUCCESS) {
3179                                 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3180                                        __func__, rc, index, pe->pe_number);
3181                                 break;
3182                         }
3183
3184                         region.start += phb->ioda.io_segsize;
3185                         index++;
3186                 }
3187         } else if ((res->flags & IORESOURCE_MEM) &&
3188                    !pnv_pci_is_m64(phb, res)) {
3189                 region.start = res->start -
3190                                phb->hose->mem_offset[0] -
3191                                phb->ioda.m32_pci_base;
3192                 region.end   = res->end -
3193                                phb->hose->mem_offset[0] -
3194                                phb->ioda.m32_pci_base;
3195                 index = region.start / phb->ioda.m32_segsize;
3196
3197                 while (index < phb->ioda.total_pe_num &&
3198                        region.start <= region.end) {
3199                         phb->ioda.m32_segmap[index] = pe->pe_number;
3200                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3201                                 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3202                         if (rc != OPAL_SUCCESS) {
3203                                 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3204                                        __func__, rc, index, pe->pe_number);
3205                                 break;
3206                         }
3207
3208                         region.start += phb->ioda.m32_segsize;
3209                         index++;
3210                 }
3211         }
3212 }
3213
3214 /*
3215  * This function is supposed to be called on basis of PE from top
3216  * to bottom style. So the the I/O or MMIO segment assigned to
3217  * parent PE could be overridden by its child PEs if necessary.
3218  */
3219 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3220 {
3221         struct pci_dev *pdev;
3222         int i;
3223
3224         /*
3225          * NOTE: We only care PCI bus based PE for now. For PCI
3226          * device based PE, for example SRIOV sensitive VF should
3227          * be figured out later.
3228          */
3229         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3230
3231         list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3232                 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3233                         pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3234
3235                 /*
3236                  * If the PE contains all subordinate PCI buses, the
3237                  * windows of the child bridges should be mapped to
3238                  * the PE as well.
3239                  */
3240                 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3241                         continue;
3242                 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3243                         pnv_ioda_setup_pe_res(pe,
3244                                 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3245         }
3246 }
3247
3248 #ifdef CONFIG_DEBUG_FS
3249 static int pnv_pci_diag_data_set(void *data, u64 val)
3250 {
3251         struct pci_controller *hose;
3252         struct pnv_phb *phb;
3253         s64 ret;
3254
3255         if (val != 1ULL)
3256                 return -EINVAL;
3257
3258         hose = (struct pci_controller *)data;
3259         if (!hose || !hose->private_data)
3260                 return -ENODEV;
3261
3262         phb = hose->private_data;
3263
3264         /* Retrieve the diag data from firmware */
3265         ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3266                                           phb->diag_data_size);
3267         if (ret != OPAL_SUCCESS)
3268                 return -EIO;
3269
3270         /* Print the diag data to the kernel log */
3271         pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3272         return 0;
3273 }
3274
3275 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3276                         pnv_pci_diag_data_set, "%llu\n");
3277
3278 #endif /* CONFIG_DEBUG_FS */
3279
3280 static void pnv_pci_ioda_create_dbgfs(void)
3281 {
3282 #ifdef CONFIG_DEBUG_FS
3283         struct pci_controller *hose, *tmp;
3284         struct pnv_phb *phb;
3285         char name[16];
3286
3287         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3288                 phb = hose->private_data;
3289
3290                 /* Notify initialization of PHB done */
3291                 phb->initialized = 1;
3292
3293                 sprintf(name, "PCI%04x", hose->global_number);
3294                 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3295                 if (!phb->dbgfs) {
3296                         pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3297                                 __func__, hose->global_number);
3298                         continue;
3299                 }
3300
3301                 debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3302                                     &pnv_pci_diag_data_fops);
3303         }
3304 #endif /* CONFIG_DEBUG_FS */
3305 }
3306
3307 static void pnv_pci_ioda_fixup(void)
3308 {
3309         pnv_pci_ioda_setup_PEs();
3310         pnv_pci_ioda_setup_iommu_api();
3311         pnv_pci_ioda_create_dbgfs();
3312
3313 #ifdef CONFIG_EEH
3314         pnv_eeh_post_init();
3315 #endif
3316 }
3317
3318 /*
3319  * Returns the alignment for I/O or memory windows for P2P
3320  * bridges. That actually depends on how PEs are segmented.
3321  * For now, we return I/O or M32 segment size for PE sensitive
3322  * P2P bridges. Otherwise, the default values (4KiB for I/O,
3323  * 1MiB for memory) will be returned.
3324  *
3325  * The current PCI bus might be put into one PE, which was
3326  * create against the parent PCI bridge. For that case, we
3327  * needn't enlarge the alignment so that we can save some
3328  * resources.
3329  */
3330 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3331                                                 unsigned long type)
3332 {
3333         struct pci_dev *bridge;
3334         struct pci_controller *hose = pci_bus_to_host(bus);
3335         struct pnv_phb *phb = hose->private_data;
3336         int num_pci_bridges = 0;
3337
3338         bridge = bus->self;
3339         while (bridge) {
3340                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3341                         num_pci_bridges++;
3342                         if (num_pci_bridges >= 2)
3343                                 return 1;
3344                 }
3345
3346                 bridge = bridge->bus->self;
3347         }
3348
3349         /*
3350          * We fall back to M32 if M64 isn't supported. We enforce the M64
3351          * alignment for any 64-bit resource, PCIe doesn't care and
3352          * bridges only do 64-bit prefetchable anyway.
3353          */
3354         if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3355                 return phb->ioda.m64_segsize;
3356         if (type & IORESOURCE_MEM)
3357                 return phb->ioda.m32_segsize;
3358
3359         return phb->ioda.io_segsize;
3360 }
3361
3362 /*
3363  * We are updating root port or the upstream port of the
3364  * bridge behind the root port with PHB's windows in order
3365  * to accommodate the changes on required resources during
3366  * PCI (slot) hotplug, which is connected to either root
3367  * port or the downstream ports of PCIe switch behind the
3368  * root port.
3369  */
3370 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3371                                            unsigned long type)
3372 {
3373         struct pci_controller *hose = pci_bus_to_host(bus);
3374         struct pnv_phb *phb = hose->private_data;
3375         struct pci_dev *bridge = bus->self;
3376         struct resource *r, *w;
3377         bool msi_region = false;
3378         int i;
3379
3380         /* Check if we need apply fixup to the bridge's windows */
3381         if (!pci_is_root_bus(bridge->bus) &&
3382             !pci_is_root_bus(bridge->bus->self->bus))
3383                 return;
3384
3385         /* Fixup the resources */
3386         for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3387                 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3388                 if (!r->flags || !r->parent)
3389                         continue;
3390
3391                 w = NULL;
3392                 if (r->flags & type & IORESOURCE_IO)
3393                         w = &hose->io_resource;
3394                 else if (pnv_pci_is_m64(phb, r) &&
3395                          (type & IORESOURCE_PREFETCH) &&
3396                          phb->ioda.m64_segsize)
3397                         w = &hose->mem_resources[1];
3398                 else if (r->flags & type & IORESOURCE_MEM) {
3399                         w = &hose->mem_resources[0];
3400                         msi_region = true;
3401                 }
3402
3403                 r->start = w->start;
3404                 r->end = w->end;
3405
3406                 /* The 64KB 32-bits MSI region shouldn't be included in
3407                  * the 32-bits bridge window. Otherwise, we can see strange
3408                  * issues. One of them is EEH error observed on Garrison.
3409                  *
3410                  * Exclude top 1MB region which is the minimal alignment of
3411                  * 32-bits bridge window.
3412                  */
3413                 if (msi_region) {
3414                         r->end += 0x10000;
3415                         r->end -= 0x100000;
3416                 }
3417         }
3418 }
3419
3420 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3421 {
3422         struct pci_controller *hose = pci_bus_to_host(bus);
3423         struct pnv_phb *phb = hose->private_data;
3424         struct pci_dev *bridge = bus->self;
3425         struct pnv_ioda_pe *pe;
3426         bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3427
3428         /* Extend bridge's windows if necessary */
3429         pnv_pci_fixup_bridge_resources(bus, type);
3430
3431         /* The PE for root bus should be realized before any one else */
3432         if (!phb->ioda.root_pe_populated) {
3433                 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3434                 if (pe) {
3435                         phb->ioda.root_pe_idx = pe->pe_number;
3436                         phb->ioda.root_pe_populated = true;
3437                 }
3438         }
3439
3440         /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3441         if (list_empty(&bus->devices))
3442                 return;
3443
3444         /* Reserve PEs according to used M64 resources */
3445         if (phb->reserve_m64_pe)
3446                 phb->reserve_m64_pe(bus, NULL, all);
3447
3448         /*
3449          * Assign PE. We might run here because of partial hotplug.
3450          * For the case, we just pick up the existing PE and should
3451          * not allocate resources again.
3452          */
3453         pe = pnv_ioda_setup_bus_PE(bus, all);
3454         if (!pe)
3455                 return;
3456
3457         pnv_ioda_setup_pe_seg(pe);
3458         switch (phb->type) {
3459         case PNV_PHB_IODA1:
3460                 pnv_pci_ioda1_setup_dma_pe(phb, pe);
3461                 break;
3462         case PNV_PHB_IODA2:
3463                 pnv_pci_ioda2_setup_dma_pe(phb, pe);
3464                 break;
3465         default:
3466                 pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3467                         __func__, phb->hose->global_number, phb->type);
3468         }
3469 }
3470
3471 static resource_size_t pnv_pci_default_alignment(void)
3472 {
3473         return PAGE_SIZE;
3474 }
3475
3476 #ifdef CONFIG_PCI_IOV
3477 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3478                                                       int resno)
3479 {
3480         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3481         struct pnv_phb *phb = hose->private_data;
3482         struct pci_dn *pdn = pci_get_pdn(pdev);
3483         resource_size_t align;
3484
3485         /*
3486          * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3487          * SR-IOV. While from hardware perspective, the range mapped by M64
3488          * BAR should be size aligned.
3489          *
3490          * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3491          * powernv-specific hardware restriction is gone. But if just use the
3492          * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3493          * in one segment of M64 #15, which introduces the PE conflict between
3494          * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3495          * m64_segsize.
3496          *
3497          * This function returns the total IOV BAR size if M64 BAR is in
3498          * Shared PE mode or just VF BAR size if not.
3499          * If the M64 BAR is in Single PE mode, return the VF BAR size or
3500          * M64 segment size if IOV BAR size is less.
3501          */
3502         align = pci_iov_resource_size(pdev, resno);
3503         if (!pdn->vfs_expanded)
3504                 return align;
3505         if (pdn->m64_single_mode)
3506                 return max(align, (resource_size_t)phb->ioda.m64_segsize);
3507
3508         return pdn->vfs_expanded * align;
3509 }
3510 #endif /* CONFIG_PCI_IOV */
3511
3512 /* Prevent enabling devices for which we couldn't properly
3513  * assign a PE
3514  */
3515 bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3516 {
3517         struct pci_controller *hose = pci_bus_to_host(dev->bus);
3518         struct pnv_phb *phb = hose->private_data;
3519         struct pci_dn *pdn;
3520
3521         /* The function is probably called while the PEs have
3522          * not be created yet. For example, resource reassignment
3523          * during PCI probe period. We just skip the check if
3524          * PEs isn't ready.
3525          */
3526         if (!phb->initialized)
3527                 return true;
3528
3529         pdn = pci_get_pdn(dev);
3530         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3531                 return false;
3532
3533         return true;
3534 }
3535
3536 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3537                                        int num)
3538 {
3539         struct pnv_ioda_pe *pe = container_of(table_group,
3540                                               struct pnv_ioda_pe, table_group);
3541         struct pnv_phb *phb = pe->phb;
3542         unsigned int idx;
3543         long rc;
3544
3545         pe_info(pe, "Removing DMA window #%d\n", num);
3546         for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3547                 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3548                         continue;
3549
3550                 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3551                                                 idx, 0, 0ul, 0ul, 0ul);
3552                 if (rc != OPAL_SUCCESS) {
3553                         pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3554                                 rc, idx);
3555                         return rc;
3556                 }
3557
3558                 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3559         }
3560
3561         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3562         return OPAL_SUCCESS;
3563 }
3564
3565 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3566 {
3567         unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3568         struct iommu_table *tbl = pe->table_group.tables[0];
3569         int64_t rc;
3570
3571         if (!weight)
3572                 return;
3573
3574         rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3575         if (rc != OPAL_SUCCESS)
3576                 return;
3577
3578         pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3579         if (pe->table_group.group) {
3580                 iommu_group_put(pe->table_group.group);
3581                 WARN_ON(pe->table_group.group);
3582         }
3583
3584         free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3585         iommu_tce_table_put(tbl);
3586 }
3587
3588 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3589 {
3590         struct iommu_table *tbl = pe->table_group.tables[0];
3591         unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3592 #ifdef CONFIG_IOMMU_API
3593         int64_t rc;
3594 #endif
3595
3596         if (!weight)
3597                 return;
3598
3599 #ifdef CONFIG_IOMMU_API
3600         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3601         if (rc)
3602                 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3603 #endif
3604
3605         pnv_pci_ioda2_set_bypass(pe, false);
3606         if (pe->table_group.group) {
3607                 iommu_group_put(pe->table_group.group);
3608                 WARN_ON(pe->table_group.group);
3609         }
3610
3611         pnv_pci_ioda2_table_free_pages(tbl);
3612         iommu_tce_table_put(tbl);
3613 }
3614
3615 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3616                                  unsigned short win,
3617                                  unsigned int *map)
3618 {
3619         struct pnv_phb *phb = pe->phb;
3620         int idx;
3621         int64_t rc;
3622
3623         for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3624                 if (map[idx] != pe->pe_number)
3625                         continue;
3626
3627                 if (win == OPAL_M64_WINDOW_TYPE)
3628                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3629                                         phb->ioda.reserved_pe_idx, win,
3630                                         idx / PNV_IODA1_M64_SEGS,
3631                                         idx % PNV_IODA1_M64_SEGS);
3632                 else
3633                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3634                                         phb->ioda.reserved_pe_idx, win, 0, idx);
3635
3636                 if (rc != OPAL_SUCCESS)
3637                         pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3638                                 rc, win, idx);
3639
3640                 map[idx] = IODA_INVALID_PE;
3641         }
3642 }
3643
3644 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3645 {
3646         struct pnv_phb *phb = pe->phb;
3647
3648         if (phb->type == PNV_PHB_IODA1) {
3649                 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3650                                      phb->ioda.io_segmap);
3651                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3652                                      phb->ioda.m32_segmap);
3653                 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3654                                      phb->ioda.m64_segmap);
3655         } else if (phb->type == PNV_PHB_IODA2) {
3656                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3657                                      phb->ioda.m32_segmap);
3658         }
3659 }
3660
3661 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3662 {
3663         struct pnv_phb *phb = pe->phb;
3664         struct pnv_ioda_pe *slave, *tmp;
3665
3666         list_del(&pe->list);
3667         switch (phb->type) {
3668         case PNV_PHB_IODA1:
3669                 pnv_pci_ioda1_release_pe_dma(pe);
3670                 break;
3671         case PNV_PHB_IODA2:
3672                 pnv_pci_ioda2_release_pe_dma(pe);
3673                 break;
3674         default:
3675                 WARN_ON(1);
3676         }
3677
3678         pnv_ioda_release_pe_seg(pe);
3679         pnv_ioda_deconfigure_pe(pe->phb, pe);
3680
3681         /* Release slave PEs in the compound PE */
3682         if (pe->flags & PNV_IODA_PE_MASTER) {
3683                 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3684                         list_del(&slave->list);
3685                         pnv_ioda_free_pe(slave);
3686                 }
3687         }
3688
3689         /*
3690          * The PE for root bus can be removed because of hotplug in EEH
3691          * recovery for fenced PHB error. We need to mark the PE dead so
3692          * that it can be populated again in PCI hot add path. The PE
3693          * shouldn't be destroyed as it's the global reserved resource.
3694          */
3695         if (phb->ioda.root_pe_populated &&
3696             phb->ioda.root_pe_idx == pe->pe_number)
3697                 phb->ioda.root_pe_populated = false;
3698         else
3699                 pnv_ioda_free_pe(pe);
3700 }
3701
3702 static void pnv_pci_release_device(struct pci_dev *pdev)
3703 {
3704         struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3705         struct pnv_phb *phb = hose->private_data;
3706         struct pci_dn *pdn = pci_get_pdn(pdev);
3707         struct pnv_ioda_pe *pe;
3708
3709         if (pdev->is_virtfn)
3710                 return;
3711
3712         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3713                 return;
3714
3715         /*
3716          * PCI hotplug can happen as part of EEH error recovery. The @pdn
3717          * isn't removed and added afterwards in this scenario. We should
3718          * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3719          * device count is decreased on removing devices while failing to
3720          * be increased on adding devices. It leads to unbalanced PE's device
3721          * count and eventually make normal PCI hotplug path broken.
3722          */
3723         pe = &phb->ioda.pe_array[pdn->pe_number];
3724         pdn->pe_number = IODA_INVALID_PE;
3725
3726         WARN_ON(--pe->device_count < 0);
3727         if (pe->device_count == 0)
3728                 pnv_ioda_release_pe(pe);
3729 }
3730
3731 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3732 {
3733         struct pnv_phb *phb = hose->private_data;
3734
3735         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3736                        OPAL_ASSERT_RESET);
3737 }
3738
3739 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3740         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3741         .dma_bus_setup          = pnv_pci_dma_bus_setup,
3742 #ifdef CONFIG_PCI_MSI
3743         .setup_msi_irqs         = pnv_setup_msi_irqs,
3744         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3745 #endif
3746         .enable_device_hook     = pnv_pci_enable_device_hook,
3747         .release_device         = pnv_pci_release_device,
3748         .window_alignment       = pnv_pci_window_alignment,
3749         .setup_bridge           = pnv_pci_setup_bridge,
3750         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3751         .dma_set_mask           = pnv_pci_ioda_dma_set_mask,
3752         .dma_get_required_mask  = pnv_pci_ioda_dma_get_required_mask,
3753         .shutdown               = pnv_pci_ioda_shutdown,
3754 };
3755
3756 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3757 {
3758         dev_err_once(&npdev->dev,
3759                         "%s operation unsupported for NVLink devices\n",
3760                         __func__);
3761         return -EPERM;
3762 }
3763
3764 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3765         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3766 #ifdef CONFIG_PCI_MSI
3767         .setup_msi_irqs         = pnv_setup_msi_irqs,
3768         .teardown_msi_irqs      = pnv_teardown_msi_irqs,
3769 #endif
3770         .enable_device_hook     = pnv_pci_enable_device_hook,
3771         .window_alignment       = pnv_pci_window_alignment,
3772         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3773         .dma_set_mask           = pnv_npu_dma_set_mask,
3774         .shutdown               = pnv_pci_ioda_shutdown,
3775 };
3776
3777 #ifdef CONFIG_CXL_BASE
3778 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3779         .dma_dev_setup          = pnv_pci_dma_dev_setup,
3780         .dma_bus_setup          = pnv_pci_dma_bus_setup,
3781 #ifdef CONFIG_PCI_MSI
3782         .setup_msi_irqs         = pnv_cxl_cx4_setup_msi_irqs,
3783         .teardown_msi_irqs      = pnv_cxl_cx4_teardown_msi_irqs,
3784 #endif
3785         .enable_device_hook     = pnv_cxl_enable_device_hook,
3786         .disable_device         = pnv_cxl_disable_device,
3787         .release_device         = pnv_pci_release_device,
3788         .window_alignment       = pnv_pci_window_alignment,
3789         .setup_bridge           = pnv_pci_setup_bridge,
3790         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
3791         .dma_set_mask           = pnv_pci_ioda_dma_set_mask,
3792         .dma_get_required_mask  = pnv_pci_ioda_dma_get_required_mask,
3793         .shutdown               = pnv_pci_ioda_shutdown,
3794 };
3795 #endif
3796
3797 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3798                                          u64 hub_id, int ioda_type)
3799 {
3800         struct pci_controller *hose;
3801         struct pnv_phb *phb;
3802         unsigned long size, m64map_off, m32map_off, pemap_off;
3803         unsigned long iomap_off = 0, dma32map_off = 0;
3804         struct resource r;
3805         const __be64 *prop64;
3806         const __be32 *prop32;
3807         int len;
3808         unsigned int segno;
3809         u64 phb_id;
3810         void *aux;
3811         long rc;
3812
3813         if (!of_device_is_available(np))
3814                 return;
3815
3816         pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np);
3817
3818         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3819         if (!prop64) {
3820                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
3821                 return;
3822         }
3823         phb_id = be64_to_cpup(prop64);
3824         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
3825
3826         phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3827
3828         /* Allocate PCI controller */
3829         phb->hose = hose = pcibios_alloc_controller(np);
3830         if (!phb->hose) {
3831                 pr_err("  Can't allocate PCI controller for %pOF\n",
3832                        np);
3833                 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3834                 return;
3835         }
3836
3837         spin_lock_init(&phb->lock);
3838         prop32 = of_get_property(np, "bus-range", &len);
3839         if (prop32 && len == 8) {
3840                 hose->first_busno = be32_to_cpu(prop32[0]);
3841                 hose->last_busno = be32_to_cpu(prop32[1]);
3842         } else {
3843                 pr_warn("  Broken <bus-range> on %pOF\n", np);
3844                 hose->first_busno = 0;
3845                 hose->last_busno = 0xff;
3846         }
3847         hose->private_data = phb;
3848         phb->hub_id = hub_id;
3849         phb->opal_id = phb_id;
3850         phb->type = ioda_type;
3851         mutex_init(&phb->ioda.pe_alloc_mutex);
3852
3853         /* Detect specific models for error handling */
3854         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3855                 phb->model = PNV_PHB_MODEL_P7IOC;
3856         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3857                 phb->model = PNV_PHB_MODEL_PHB3;
3858         else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3859                 phb->model = PNV_PHB_MODEL_NPU;
3860         else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3861                 phb->model = PNV_PHB_MODEL_NPU2;
3862         else
3863                 phb->model = PNV_PHB_MODEL_UNKNOWN;
3864
3865         /* Initialize diagnostic data buffer */
3866         prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3867         if (prop32)
3868                 phb->diag_data_size = be32_to_cpup(prop32);
3869         else
3870                 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3871
3872         phb->diag_data = memblock_virt_alloc(phb->diag_data_size, 0);
3873
3874         /* Parse 32-bit and IO ranges (if any) */
3875         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3876
3877         /* Get registers */
3878         if (!of_address_to_resource(np, 0, &r)) {
3879                 phb->regs_phys = r.start;
3880                 phb->regs = ioremap(r.start, resource_size(&r));
3881                 if (phb->regs == NULL)
3882                         pr_err("  Failed to map registers !\n");
3883         }
3884
3885         /* Initialize more IODA stuff */
3886         phb->ioda.total_pe_num = 1;
3887         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3888         if (prop32)
3889                 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3890         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3891         if (prop32)
3892                 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3893
3894         /* Invalidate RID to PE# mapping */
3895         for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3896                 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3897
3898         /* Parse 64-bit MMIO range */
3899         pnv_ioda_parse_m64_window(phb);
3900
3901         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3902         /* FW Has already off top 64k of M32 space (MSI space) */
3903         phb->ioda.m32_size += 0x10000;
3904
3905         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3906         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3907         phb->ioda.io_size = hose->pci_io_size;
3908         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3909         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3910
3911         /* Calculate how many 32-bit TCE segments we have */
3912         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3913                                 PNV_IODA1_DMA32_SEGSIZE;
3914
3915         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3916         size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3917                         sizeof(unsigned long));
3918         m64map_off = size;
3919         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3920         m32map_off = size;
3921         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3922         if (phb->type == PNV_PHB_IODA1) {
3923                 iomap_off = size;
3924                 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3925                 dma32map_off = size;
3926                 size += phb->ioda.dma32_count *
3927                         sizeof(phb->ioda.dma32_segmap[0]);
3928         }
3929         pemap_off = size;
3930         size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3931         aux = memblock_virt_alloc(size, 0);
3932         phb->ioda.pe_alloc = aux;
3933         phb->ioda.m64_segmap = aux + m64map_off;
3934         phb->ioda.m32_segmap = aux + m32map_off;
3935         for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3936                 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3937                 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3938         }
3939         if (phb->type == PNV_PHB_IODA1) {
3940                 phb->ioda.io_segmap = aux + iomap_off;
3941                 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3942                         phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3943
3944                 phb->ioda.dma32_segmap = aux + dma32map_off;
3945                 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3946                         phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3947         }
3948         phb->ioda.pe_array = aux + pemap_off;
3949
3950         /*
3951          * Choose PE number for root bus, which shouldn't have
3952          * M64 resources consumed by its child devices. To pick
3953          * the PE number adjacent to the reserved one if possible.
3954          */
3955         pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3956         if (phb->ioda.reserved_pe_idx == 0) {
3957                 phb->ioda.root_pe_idx = 1;
3958                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3959         } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3960                 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3961                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3962         } else {
3963                 phb->ioda.root_pe_idx = IODA_INVALID_PE;
3964         }
3965
3966         INIT_LIST_HEAD(&phb->ioda.pe_list);
3967         mutex_init(&phb->ioda.pe_list_mutex);
3968
3969         /* Calculate how many 32-bit TCE segments we have */
3970         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3971                                 PNV_IODA1_DMA32_SEGSIZE;
3972
3973 #if 0 /* We should really do that ... */
3974         rc = opal_pci_set_phb_mem_window(opal->phb_id,
3975                                          window_type,
3976                                          window_num,
3977                                          starting_real_address,
3978                                          starting_pci_address,
3979                                          segment_size);
3980 #endif
3981
3982         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3983                 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3984                 phb->ioda.m32_size, phb->ioda.m32_segsize);
3985         if (phb->ioda.m64_size)
3986                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3987                         phb->ioda.m64_size, phb->ioda.m64_segsize);
3988         if (phb->ioda.io_size)
3989                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
3990                         phb->ioda.io_size, phb->ioda.io_segsize);
3991
3992
3993         phb->hose->ops = &pnv_pci_ops;
3994         phb->get_pe_state = pnv_ioda_get_pe_state;
3995         phb->freeze_pe = pnv_ioda_freeze_pe;
3996         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3997
3998         /* Setup MSI support */
3999         pnv_pci_init_ioda_msis(phb);
4000
4001         /*
4002          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
4003          * to let the PCI core do resource assignment. It's supposed
4004          * that the PCI core will do correct I/O and MMIO alignment
4005          * for the P2P bridge bars so that each PCI bus (excluding
4006          * the child P2P bridges) can form individual PE.
4007          */
4008         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
4009
4010         if (phb->type == PNV_PHB_NPU) {
4011                 hose->controller_ops = pnv_npu_ioda_controller_ops;
4012         } else {
4013                 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
4014                 hose->controller_ops = pnv_pci_ioda_controller_ops;
4015         }
4016
4017         ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
4018
4019 #ifdef CONFIG_PCI_IOV
4020         ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
4021         ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
4022 #endif
4023
4024         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
4025
4026         /* Reset IODA tables to a clean state */
4027         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
4028         if (rc)
4029                 pr_warning("  OPAL Error %ld performing IODA table reset !\n", rc);
4030
4031         /*
4032          * If we're running in kdump kernel, the previous kernel never
4033          * shutdown PCI devices correctly. We already got IODA table
4034          * cleaned out. So we have to issue PHB reset to stop all PCI
4035          * transactions from previous kernel.
4036          */
4037         if (is_kdump_kernel()) {
4038                 pr_info("  Issue PHB reset ...\n");
4039                 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
4040                 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
4041         }
4042
4043         /* Remove M64 resource if we can't configure it successfully */
4044         if (!phb->init_m64 || phb->init_m64(phb))
4045                 hose->mem_resources[1].flags = 0;
4046 }
4047
4048 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
4049 {
4050         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
4051 }
4052
4053 void __init pnv_pci_init_npu_phb(struct device_node *np)
4054 {
4055         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
4056 }
4057
4058 void __init pnv_pci_init_ioda_hub(struct device_node *np)
4059 {
4060         struct device_node *phbn;
4061         const __be64 *prop64;
4062         u64 hub_id;
4063
4064         pr_info("Probing IODA IO-Hub %pOF\n", np);
4065
4066         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
4067         if (!prop64) {
4068                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
4069                 return;
4070         }
4071         hub_id = be64_to_cpup(prop64);
4072         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
4073
4074         /* Count child PHBs */
4075         for_each_child_of_node(np, phbn) {
4076                 /* Look for IODA1 PHBs */
4077                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
4078                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
4079         }
4080 }