powerpc: move from strlcpy with unused retval to strscpy
[sfrench/cifs-2.6.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Support PCI/PCIe on PowerNV platforms
4  *
5  * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
6  */
7
8 #undef DEBUG
9
10 #include <linux/kernel.h>
11 #include <linux/pci.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/string.h>
15 #include <linux/init.h>
16 #include <linux/memblock.h>
17 #include <linux/irq.h>
18 #include <linux/io.h>
19 #include <linux/msi.h>
20 #include <linux/iommu.h>
21 #include <linux/rculist.h>
22 #include <linux/sizes.h>
23 #include <linux/debugfs.h>
24 #include <linux/of_address.h>
25 #include <linux/of_irq.h>
26
27 #include <asm/sections.h>
28 #include <asm/io.h>
29 #include <asm/pci-bridge.h>
30 #include <asm/machdep.h>
31 #include <asm/msi_bitmap.h>
32 #include <asm/ppc-pci.h>
33 #include <asm/opal.h>
34 #include <asm/iommu.h>
35 #include <asm/tce.h>
36 #include <asm/xics.h>
37 #include <asm/firmware.h>
38 #include <asm/pnv-pci.h>
39 #include <asm/mmzone.h>
40 #include <asm/xive.h>
41
42 #include <misc/cxl-base.h>
43
44 #include "powernv.h"
45 #include "pci.h"
46 #include "../../../../drivers/pci/pci.h"
47
48 #define PNV_IODA1_M64_NUM       16      /* Number of M64 BARs   */
49 #define PNV_IODA1_M64_SEGS      8       /* Segments per M64 BAR */
50 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
51
52 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_OCAPI" };
53
54 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
55 static void pnv_pci_configure_bus(struct pci_bus *bus);
56
57 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
58                             const char *fmt, ...)
59 {
60         struct va_format vaf;
61         va_list args;
62         char pfix[32];
63
64         va_start(args, fmt);
65
66         vaf.fmt = fmt;
67         vaf.va = &args;
68
69         if (pe->flags & PNV_IODA_PE_DEV)
70                 strscpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
71         else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
72                 sprintf(pfix, "%04x:%02x     ",
73                         pci_domain_nr(pe->pbus), pe->pbus->number);
74 #ifdef CONFIG_PCI_IOV
75         else if (pe->flags & PNV_IODA_PE_VF)
76                 sprintf(pfix, "%04x:%02x:%2x.%d",
77                         pci_domain_nr(pe->parent_dev->bus),
78                         (pe->rid & 0xff00) >> 8,
79                         PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
80 #endif /* CONFIG_PCI_IOV*/
81
82         printk("%spci %s: [PE# %.2x] %pV",
83                level, pfix, pe->pe_number, &vaf);
84
85         va_end(args);
86 }
87
88 static bool pnv_iommu_bypass_disabled __read_mostly;
89 static bool pci_reset_phbs __read_mostly;
90
91 static int __init iommu_setup(char *str)
92 {
93         if (!str)
94                 return -EINVAL;
95
96         while (*str) {
97                 if (!strncmp(str, "nobypass", 8)) {
98                         pnv_iommu_bypass_disabled = true;
99                         pr_info("PowerNV: IOMMU bypass window disabled.\n");
100                         break;
101                 }
102                 str += strcspn(str, ",");
103                 if (*str == ',')
104                         str++;
105         }
106
107         return 0;
108 }
109 early_param("iommu", iommu_setup);
110
111 static int __init pci_reset_phbs_setup(char *str)
112 {
113         pci_reset_phbs = true;
114         return 0;
115 }
116
117 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
118
119 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
120 {
121         s64 rc;
122
123         phb->ioda.pe_array[pe_no].phb = phb;
124         phb->ioda.pe_array[pe_no].pe_number = pe_no;
125         phb->ioda.pe_array[pe_no].dma_setup_done = false;
126
127         /*
128          * Clear the PE frozen state as it might be put into frozen state
129          * in the last PCI remove path. It's not harmful to do so when the
130          * PE is already in unfrozen state.
131          */
132         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
133                                        OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
134         if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
135                 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
136                         __func__, rc, phb->hose->global_number, pe_no);
137
138         return &phb->ioda.pe_array[pe_no];
139 }
140
141 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
142 {
143         if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
144                 pr_warn("%s: Invalid PE %x on PHB#%x\n",
145                         __func__, pe_no, phb->hose->global_number);
146                 return;
147         }
148
149         mutex_lock(&phb->ioda.pe_alloc_mutex);
150         if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
151                 pr_debug("%s: PE %x was reserved on PHB#%x\n",
152                          __func__, pe_no, phb->hose->global_number);
153         mutex_unlock(&phb->ioda.pe_alloc_mutex);
154
155         pnv_ioda_init_pe(phb, pe_no);
156 }
157
158 struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count)
159 {
160         struct pnv_ioda_pe *ret = NULL;
161         int run = 0, pe, i;
162
163         mutex_lock(&phb->ioda.pe_alloc_mutex);
164
165         /* scan backwards for a run of @count cleared bits */
166         for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
167                 if (test_bit(pe, phb->ioda.pe_alloc)) {
168                         run = 0;
169                         continue;
170                 }
171
172                 run++;
173                 if (run == count)
174                         break;
175         }
176         if (run != count)
177                 goto out;
178
179         for (i = pe; i < pe + count; i++) {
180                 set_bit(i, phb->ioda.pe_alloc);
181                 pnv_ioda_init_pe(phb, i);
182         }
183         ret = &phb->ioda.pe_array[pe];
184
185 out:
186         mutex_unlock(&phb->ioda.pe_alloc_mutex);
187         return ret;
188 }
189
190 void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
191 {
192         struct pnv_phb *phb = pe->phb;
193         unsigned int pe_num = pe->pe_number;
194
195         WARN_ON(pe->pdev);
196         memset(pe, 0, sizeof(struct pnv_ioda_pe));
197
198         mutex_lock(&phb->ioda.pe_alloc_mutex);
199         clear_bit(pe_num, phb->ioda.pe_alloc);
200         mutex_unlock(&phb->ioda.pe_alloc_mutex);
201 }
202
203 /* The default M64 BAR is shared by all PEs */
204 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
205 {
206         const char *desc;
207         struct resource *r;
208         s64 rc;
209
210         /* Configure the default M64 BAR */
211         rc = opal_pci_set_phb_mem_window(phb->opal_id,
212                                          OPAL_M64_WINDOW_TYPE,
213                                          phb->ioda.m64_bar_idx,
214                                          phb->ioda.m64_base,
215                                          0, /* unused */
216                                          phb->ioda.m64_size);
217         if (rc != OPAL_SUCCESS) {
218                 desc = "configuring";
219                 goto fail;
220         }
221
222         /* Enable the default M64 BAR */
223         rc = opal_pci_phb_mmio_enable(phb->opal_id,
224                                       OPAL_M64_WINDOW_TYPE,
225                                       phb->ioda.m64_bar_idx,
226                                       OPAL_ENABLE_M64_SPLIT);
227         if (rc != OPAL_SUCCESS) {
228                 desc = "enabling";
229                 goto fail;
230         }
231
232         /*
233          * Exclude the segments for reserved and root bus PE, which
234          * are first or last two PEs.
235          */
236         r = &phb->hose->mem_resources[1];
237         if (phb->ioda.reserved_pe_idx == 0)
238                 r->start += (2 * phb->ioda.m64_segsize);
239         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
240                 r->end -= (2 * phb->ioda.m64_segsize);
241         else
242                 pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
243                         phb->ioda.reserved_pe_idx);
244
245         return 0;
246
247 fail:
248         pr_warn("  Failure %lld %s M64 BAR#%d\n",
249                 rc, desc, phb->ioda.m64_bar_idx);
250         opal_pci_phb_mmio_enable(phb->opal_id,
251                                  OPAL_M64_WINDOW_TYPE,
252                                  phb->ioda.m64_bar_idx,
253                                  OPAL_DISABLE_M64);
254         return -EIO;
255 }
256
257 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
258                                          unsigned long *pe_bitmap)
259 {
260         struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
261         struct resource *r;
262         resource_size_t base, sgsz, start, end;
263         int segno, i;
264
265         base = phb->ioda.m64_base;
266         sgsz = phb->ioda.m64_segsize;
267         for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
268                 r = &pdev->resource[i];
269                 if (!r->parent || !pnv_pci_is_m64(phb, r))
270                         continue;
271
272                 start = ALIGN_DOWN(r->start - base, sgsz);
273                 end = ALIGN(r->end - base, sgsz);
274                 for (segno = start / sgsz; segno < end / sgsz; segno++) {
275                         if (pe_bitmap)
276                                 set_bit(segno, pe_bitmap);
277                         else
278                                 pnv_ioda_reserve_pe(phb, segno);
279                 }
280         }
281 }
282
283 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
284 {
285         struct resource *r;
286         int index;
287
288         /*
289          * There are 16 M64 BARs, each of which has 8 segments. So
290          * there are as many M64 segments as the maximum number of
291          * PEs, which is 128.
292          */
293         for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
294                 unsigned long base, segsz = phb->ioda.m64_segsize;
295                 int64_t rc;
296
297                 base = phb->ioda.m64_base +
298                        index * PNV_IODA1_M64_SEGS * segsz;
299                 rc = opal_pci_set_phb_mem_window(phb->opal_id,
300                                 OPAL_M64_WINDOW_TYPE, index, base, 0,
301                                 PNV_IODA1_M64_SEGS * segsz);
302                 if (rc != OPAL_SUCCESS) {
303                         pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
304                                 rc, phb->hose->global_number, index);
305                         goto fail;
306                 }
307
308                 rc = opal_pci_phb_mmio_enable(phb->opal_id,
309                                 OPAL_M64_WINDOW_TYPE, index,
310                                 OPAL_ENABLE_M64_SPLIT);
311                 if (rc != OPAL_SUCCESS) {
312                         pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
313                                 rc, phb->hose->global_number, index);
314                         goto fail;
315                 }
316         }
317
318         for (index = 0; index < phb->ioda.total_pe_num; index++) {
319                 int64_t rc;
320
321                 /*
322                  * P7IOC supports M64DT, which helps mapping M64 segment
323                  * to one particular PE#. However, PHB3 has fixed mapping
324                  * between M64 segment and PE#. In order to have same logic
325                  * for P7IOC and PHB3, we enforce fixed mapping between M64
326                  * segment and PE# on P7IOC.
327                  */
328                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
329                                 index, OPAL_M64_WINDOW_TYPE,
330                                 index / PNV_IODA1_M64_SEGS,
331                                 index % PNV_IODA1_M64_SEGS);
332                 if (rc != OPAL_SUCCESS) {
333                         pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
334                                 __func__, rc, phb->hose->global_number,
335                                 index);
336                         goto fail;
337                 }
338         }
339
340         /*
341          * Exclude the segments for reserved and root bus PE, which
342          * are first or last two PEs.
343          */
344         r = &phb->hose->mem_resources[1];
345         if (phb->ioda.reserved_pe_idx == 0)
346                 r->start += (2 * phb->ioda.m64_segsize);
347         else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
348                 r->end -= (2 * phb->ioda.m64_segsize);
349         else
350                 WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
351                      phb->ioda.reserved_pe_idx, phb->hose->global_number);
352
353         return 0;
354
355 fail:
356         for ( ; index >= 0; index--)
357                 opal_pci_phb_mmio_enable(phb->opal_id,
358                         OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
359
360         return -EIO;
361 }
362
363 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
364                                     unsigned long *pe_bitmap,
365                                     bool all)
366 {
367         struct pci_dev *pdev;
368
369         list_for_each_entry(pdev, &bus->devices, bus_list) {
370                 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
371
372                 if (all && pdev->subordinate)
373                         pnv_ioda_reserve_m64_pe(pdev->subordinate,
374                                                 pe_bitmap, all);
375         }
376 }
377
378 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
379 {
380         struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
381         struct pnv_ioda_pe *master_pe, *pe;
382         unsigned long size, *pe_alloc;
383         int i;
384
385         /* Root bus shouldn't use M64 */
386         if (pci_is_root_bus(bus))
387                 return NULL;
388
389         /* Allocate bitmap */
390         size = ALIGN(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
391         pe_alloc = kzalloc(size, GFP_KERNEL);
392         if (!pe_alloc) {
393                 pr_warn("%s: Out of memory !\n",
394                         __func__);
395                 return NULL;
396         }
397
398         /* Figure out reserved PE numbers by the PE */
399         pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
400
401         /*
402          * the current bus might not own M64 window and that's all
403          * contributed by its child buses. For the case, we needn't
404          * pick M64 dependent PE#.
405          */
406         if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
407                 kfree(pe_alloc);
408                 return NULL;
409         }
410
411         /*
412          * Figure out the master PE and put all slave PEs to master
413          * PE's list to form compound PE.
414          */
415         master_pe = NULL;
416         i = -1;
417         while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
418                 phb->ioda.total_pe_num) {
419                 pe = &phb->ioda.pe_array[i];
420
421                 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
422                 if (!master_pe) {
423                         pe->flags |= PNV_IODA_PE_MASTER;
424                         INIT_LIST_HEAD(&pe->slaves);
425                         master_pe = pe;
426                 } else {
427                         pe->flags |= PNV_IODA_PE_SLAVE;
428                         pe->master = master_pe;
429                         list_add_tail(&pe->list, &master_pe->slaves);
430                 }
431         }
432
433         kfree(pe_alloc);
434         return master_pe;
435 }
436
437 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
438 {
439         struct pci_controller *hose = phb->hose;
440         struct device_node *dn = hose->dn;
441         struct resource *res;
442         u32 m64_range[2], i;
443         const __be32 *r;
444         u64 pci_addr;
445
446         if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
447                 pr_info("  Not support M64 window\n");
448                 return;
449         }
450
451         if (!firmware_has_feature(FW_FEATURE_OPAL)) {
452                 pr_info("  Firmware too old to support M64 window\n");
453                 return;
454         }
455
456         r = of_get_property(dn, "ibm,opal-m64-window", NULL);
457         if (!r) {
458                 pr_info("  No <ibm,opal-m64-window> on %pOF\n",
459                         dn);
460                 return;
461         }
462
463         /*
464          * Find the available M64 BAR range and pickup the last one for
465          * covering the whole 64-bits space. We support only one range.
466          */
467         if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
468                                        m64_range, 2)) {
469                 /* In absence of the property, assume 0..15 */
470                 m64_range[0] = 0;
471                 m64_range[1] = 16;
472         }
473         /* We only support 64 bits in our allocator */
474         if (m64_range[1] > 63) {
475                 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
476                         __func__, m64_range[1], phb->hose->global_number);
477                 m64_range[1] = 63;
478         }
479         /* Empty range, no m64 */
480         if (m64_range[1] <= m64_range[0]) {
481                 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
482                         __func__, phb->hose->global_number);
483                 return;
484         }
485
486         /* Configure M64 informations */
487         res = &hose->mem_resources[1];
488         res->name = dn->full_name;
489         res->start = of_translate_address(dn, r + 2);
490         res->end = res->start + of_read_number(r + 4, 2) - 1;
491         res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
492         pci_addr = of_read_number(r, 2);
493         hose->mem_offset[1] = res->start - pci_addr;
494
495         phb->ioda.m64_size = resource_size(res);
496         phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
497         phb->ioda.m64_base = pci_addr;
498
499         /* This lines up nicely with the display from processing OF ranges */
500         pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
501                 res->start, res->end, pci_addr, m64_range[0],
502                 m64_range[0] + m64_range[1] - 1);
503
504         /* Mark all M64 used up by default */
505         phb->ioda.m64_bar_alloc = (unsigned long)-1;
506
507         /* Use last M64 BAR to cover M64 window */
508         m64_range[1]--;
509         phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
510
511         pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
512
513         /* Mark remaining ones free */
514         for (i = m64_range[0]; i < m64_range[1]; i++)
515                 clear_bit(i, &phb->ioda.m64_bar_alloc);
516
517         /*
518          * Setup init functions for M64 based on IODA version, IODA3 uses
519          * the IODA2 code.
520          */
521         if (phb->type == PNV_PHB_IODA1)
522                 phb->init_m64 = pnv_ioda1_init_m64;
523         else
524                 phb->init_m64 = pnv_ioda2_init_m64;
525 }
526
527 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
528 {
529         struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
530         struct pnv_ioda_pe *slave;
531         s64 rc;
532
533         /* Fetch master PE */
534         if (pe->flags & PNV_IODA_PE_SLAVE) {
535                 pe = pe->master;
536                 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
537                         return;
538
539                 pe_no = pe->pe_number;
540         }
541
542         /* Freeze master PE */
543         rc = opal_pci_eeh_freeze_set(phb->opal_id,
544                                      pe_no,
545                                      OPAL_EEH_ACTION_SET_FREEZE_ALL);
546         if (rc != OPAL_SUCCESS) {
547                 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
548                         __func__, rc, phb->hose->global_number, pe_no);
549                 return;
550         }
551
552         /* Freeze slave PEs */
553         if (!(pe->flags & PNV_IODA_PE_MASTER))
554                 return;
555
556         list_for_each_entry(slave, &pe->slaves, list) {
557                 rc = opal_pci_eeh_freeze_set(phb->opal_id,
558                                              slave->pe_number,
559                                              OPAL_EEH_ACTION_SET_FREEZE_ALL);
560                 if (rc != OPAL_SUCCESS)
561                         pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
562                                 __func__, rc, phb->hose->global_number,
563                                 slave->pe_number);
564         }
565 }
566
567 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
568 {
569         struct pnv_ioda_pe *pe, *slave;
570         s64 rc;
571
572         /* Find master PE */
573         pe = &phb->ioda.pe_array[pe_no];
574         if (pe->flags & PNV_IODA_PE_SLAVE) {
575                 pe = pe->master;
576                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
577                 pe_no = pe->pe_number;
578         }
579
580         /* Clear frozen state for master PE */
581         rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
582         if (rc != OPAL_SUCCESS) {
583                 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
584                         __func__, rc, opt, phb->hose->global_number, pe_no);
585                 return -EIO;
586         }
587
588         if (!(pe->flags & PNV_IODA_PE_MASTER))
589                 return 0;
590
591         /* Clear frozen state for slave PEs */
592         list_for_each_entry(slave, &pe->slaves, list) {
593                 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
594                                              slave->pe_number,
595                                              opt);
596                 if (rc != OPAL_SUCCESS) {
597                         pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
598                                 __func__, rc, opt, phb->hose->global_number,
599                                 slave->pe_number);
600                         return -EIO;
601                 }
602         }
603
604         return 0;
605 }
606
607 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
608 {
609         struct pnv_ioda_pe *slave, *pe;
610         u8 fstate = 0, state;
611         __be16 pcierr = 0;
612         s64 rc;
613
614         /* Sanity check on PE number */
615         if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
616                 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
617
618         /*
619          * Fetch the master PE and the PE instance might be
620          * not initialized yet.
621          */
622         pe = &phb->ioda.pe_array[pe_no];
623         if (pe->flags & PNV_IODA_PE_SLAVE) {
624                 pe = pe->master;
625                 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
626                 pe_no = pe->pe_number;
627         }
628
629         /* Check the master PE */
630         rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
631                                         &state, &pcierr, NULL);
632         if (rc != OPAL_SUCCESS) {
633                 pr_warn("%s: Failure %lld getting "
634                         "PHB#%x-PE#%x state\n",
635                         __func__, rc,
636                         phb->hose->global_number, pe_no);
637                 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
638         }
639
640         /* Check the slave PE */
641         if (!(pe->flags & PNV_IODA_PE_MASTER))
642                 return state;
643
644         list_for_each_entry(slave, &pe->slaves, list) {
645                 rc = opal_pci_eeh_freeze_status(phb->opal_id,
646                                                 slave->pe_number,
647                                                 &fstate,
648                                                 &pcierr,
649                                                 NULL);
650                 if (rc != OPAL_SUCCESS) {
651                         pr_warn("%s: Failure %lld getting "
652                                 "PHB#%x-PE#%x state\n",
653                                 __func__, rc,
654                                 phb->hose->global_number, slave->pe_number);
655                         return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
656                 }
657
658                 /*
659                  * Override the result based on the ascending
660                  * priority.
661                  */
662                 if (fstate > state)
663                         state = fstate;
664         }
665
666         return state;
667 }
668
669 struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn)
670 {
671         int pe_number = phb->ioda.pe_rmap[bdfn];
672
673         if (pe_number == IODA_INVALID_PE)
674                 return NULL;
675
676         return &phb->ioda.pe_array[pe_number];
677 }
678
679 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
680 {
681         struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
682         struct pci_dn *pdn = pci_get_pdn(dev);
683
684         if (!pdn)
685                 return NULL;
686         if (pdn->pe_number == IODA_INVALID_PE)
687                 return NULL;
688         return &phb->ioda.pe_array[pdn->pe_number];
689 }
690
691 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
692                                   struct pnv_ioda_pe *parent,
693                                   struct pnv_ioda_pe *child,
694                                   bool is_add)
695 {
696         const char *desc = is_add ? "adding" : "removing";
697         uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
698                               OPAL_REMOVE_PE_FROM_DOMAIN;
699         struct pnv_ioda_pe *slave;
700         long rc;
701
702         /* Parent PE affects child PE */
703         rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
704                                 child->pe_number, op);
705         if (rc != OPAL_SUCCESS) {
706                 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
707                         rc, desc);
708                 return -ENXIO;
709         }
710
711         if (!(child->flags & PNV_IODA_PE_MASTER))
712                 return 0;
713
714         /* Compound case: parent PE affects slave PEs */
715         list_for_each_entry(slave, &child->slaves, list) {
716                 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
717                                         slave->pe_number, op);
718                 if (rc != OPAL_SUCCESS) {
719                         pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
720                                 rc, desc);
721                         return -ENXIO;
722                 }
723         }
724
725         return 0;
726 }
727
728 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
729                               struct pnv_ioda_pe *pe,
730                               bool is_add)
731 {
732         struct pnv_ioda_pe *slave;
733         struct pci_dev *pdev = NULL;
734         int ret;
735
736         /*
737          * Clear PE frozen state. If it's master PE, we need
738          * clear slave PE frozen state as well.
739          */
740         if (is_add) {
741                 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
742                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
743                 if (pe->flags & PNV_IODA_PE_MASTER) {
744                         list_for_each_entry(slave, &pe->slaves, list)
745                                 opal_pci_eeh_freeze_clear(phb->opal_id,
746                                                           slave->pe_number,
747                                                           OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
748                 }
749         }
750
751         /*
752          * Associate PE in PELT. We need add the PE into the
753          * corresponding PELT-V as well. Otherwise, the error
754          * originated from the PE might contribute to other
755          * PEs.
756          */
757         ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
758         if (ret)
759                 return ret;
760
761         /* For compound PEs, any one affects all of them */
762         if (pe->flags & PNV_IODA_PE_MASTER) {
763                 list_for_each_entry(slave, &pe->slaves, list) {
764                         ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
765                         if (ret)
766                                 return ret;
767                 }
768         }
769
770         if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
771                 pdev = pe->pbus->self;
772         else if (pe->flags & PNV_IODA_PE_DEV)
773                 pdev = pe->pdev->bus->self;
774 #ifdef CONFIG_PCI_IOV
775         else if (pe->flags & PNV_IODA_PE_VF)
776                 pdev = pe->parent_dev;
777 #endif /* CONFIG_PCI_IOV */
778         while (pdev) {
779                 struct pci_dn *pdn = pci_get_pdn(pdev);
780                 struct pnv_ioda_pe *parent;
781
782                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
783                         parent = &phb->ioda.pe_array[pdn->pe_number];
784                         ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
785                         if (ret)
786                                 return ret;
787                 }
788
789                 pdev = pdev->bus->self;
790         }
791
792         return 0;
793 }
794
795 static void pnv_ioda_unset_peltv(struct pnv_phb *phb,
796                                  struct pnv_ioda_pe *pe,
797                                  struct pci_dev *parent)
798 {
799         int64_t rc;
800
801         while (parent) {
802                 struct pci_dn *pdn = pci_get_pdn(parent);
803
804                 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
805                         rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
806                                                 pe->pe_number,
807                                                 OPAL_REMOVE_PE_FROM_DOMAIN);
808                         /* XXX What to do in case of error ? */
809                 }
810                 parent = parent->bus->self;
811         }
812
813         opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
814                                   OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
815
816         /* Disassociate PE in PELT */
817         rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
818                                 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
819         if (rc)
820                 pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
821 }
822
823 int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
824 {
825         struct pci_dev *parent;
826         uint8_t bcomp, dcomp, fcomp;
827         int64_t rc;
828         long rid_end, rid;
829
830         /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
831         if (pe->pbus) {
832                 int count;
833
834                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
835                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
836                 parent = pe->pbus->self;
837                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
838                         count = resource_size(&pe->pbus->busn_res);
839                 else
840                         count = 1;
841
842                 switch(count) {
843                 case  1: bcomp = OpalPciBusAll;         break;
844                 case  2: bcomp = OpalPciBus7Bits;       break;
845                 case  4: bcomp = OpalPciBus6Bits;       break;
846                 case  8: bcomp = OpalPciBus5Bits;       break;
847                 case 16: bcomp = OpalPciBus4Bits;       break;
848                 case 32: bcomp = OpalPciBus3Bits;       break;
849                 default:
850                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
851                                 count);
852                         /* Do an exact match only */
853                         bcomp = OpalPciBusAll;
854                 }
855                 rid_end = pe->rid + (count << 8);
856         } else {
857 #ifdef CONFIG_PCI_IOV
858                 if (pe->flags & PNV_IODA_PE_VF)
859                         parent = pe->parent_dev;
860                 else
861 #endif
862                         parent = pe->pdev->bus->self;
863                 bcomp = OpalPciBusAll;
864                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
865                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
866                 rid_end = pe->rid + 1;
867         }
868
869         /* Clear the reverse map */
870         for (rid = pe->rid; rid < rid_end; rid++)
871                 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
872
873         /*
874          * Release from all parents PELT-V. NPUs don't have a PELTV
875          * table
876          */
877         if (phb->type != PNV_PHB_NPU_OCAPI)
878                 pnv_ioda_unset_peltv(phb, pe, parent);
879
880         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
881                              bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
882         if (rc)
883                 pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
884
885         pe->pbus = NULL;
886         pe->pdev = NULL;
887 #ifdef CONFIG_PCI_IOV
888         pe->parent_dev = NULL;
889 #endif
890
891         return 0;
892 }
893
894 int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
895 {
896         uint8_t bcomp, dcomp, fcomp;
897         long rc, rid_end, rid;
898
899         /* Bus validation ? */
900         if (pe->pbus) {
901                 int count;
902
903                 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
904                 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
905                 if (pe->flags & PNV_IODA_PE_BUS_ALL)
906                         count = resource_size(&pe->pbus->busn_res);
907                 else
908                         count = 1;
909
910                 switch(count) {
911                 case  1: bcomp = OpalPciBusAll;         break;
912                 case  2: bcomp = OpalPciBus7Bits;       break;
913                 case  4: bcomp = OpalPciBus6Bits;       break;
914                 case  8: bcomp = OpalPciBus5Bits;       break;
915                 case 16: bcomp = OpalPciBus4Bits;       break;
916                 case 32: bcomp = OpalPciBus3Bits;       break;
917                 default:
918                         dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
919                                 count);
920                         /* Do an exact match only */
921                         bcomp = OpalPciBusAll;
922                 }
923                 rid_end = pe->rid + (count << 8);
924         } else {
925                 bcomp = OpalPciBusAll;
926                 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
927                 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
928                 rid_end = pe->rid + 1;
929         }
930
931         /*
932          * Associate PE in PELT. We need add the PE into the
933          * corresponding PELT-V as well. Otherwise, the error
934          * originated from the PE might contribute to other
935          * PEs.
936          */
937         rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
938                              bcomp, dcomp, fcomp, OPAL_MAP_PE);
939         if (rc) {
940                 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
941                 return -ENXIO;
942         }
943
944         /*
945          * Configure PELTV. NPUs don't have a PELTV table so skip
946          * configuration on them.
947          */
948         if (phb->type != PNV_PHB_NPU_OCAPI)
949                 pnv_ioda_set_peltv(phb, pe, true);
950
951         /* Setup reverse map */
952         for (rid = pe->rid; rid < rid_end; rid++)
953                 phb->ioda.pe_rmap[rid] = pe->pe_number;
954
955         /* Setup one MVTs on IODA1 */
956         if (phb->type != PNV_PHB_IODA1) {
957                 pe->mve_number = 0;
958                 goto out;
959         }
960
961         pe->mve_number = pe->pe_number;
962         rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
963         if (rc != OPAL_SUCCESS) {
964                 pe_err(pe, "OPAL error %ld setting up MVE %x\n",
965                        rc, pe->mve_number);
966                 pe->mve_number = -1;
967         } else {
968                 rc = opal_pci_set_mve_enable(phb->opal_id,
969                                              pe->mve_number, OPAL_ENABLE_MVE);
970                 if (rc) {
971                         pe_err(pe, "OPAL error %ld enabling MVE %x\n",
972                                rc, pe->mve_number);
973                         pe->mve_number = -1;
974                 }
975         }
976
977 out:
978         return 0;
979 }
980
981 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
982 {
983         struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
984         struct pci_dn *pdn = pci_get_pdn(dev);
985         struct pnv_ioda_pe *pe;
986
987         if (!pdn) {
988                 pr_err("%s: Device tree node not associated properly\n",
989                            pci_name(dev));
990                 return NULL;
991         }
992         if (pdn->pe_number != IODA_INVALID_PE)
993                 return NULL;
994
995         pe = pnv_ioda_alloc_pe(phb, 1);
996         if (!pe) {
997                 pr_warn("%s: Not enough PE# available, disabling device\n",
998                         pci_name(dev));
999                 return NULL;
1000         }
1001
1002         /* NOTE: We don't get a reference for the pointer in the PE
1003          * data structure, both the device and PE structures should be
1004          * destroyed at the same time.
1005          *
1006          * At some point we want to remove the PDN completely anyways
1007          */
1008         pdn->pe_number = pe->pe_number;
1009         pe->flags = PNV_IODA_PE_DEV;
1010         pe->pdev = dev;
1011         pe->pbus = NULL;
1012         pe->mve_number = -1;
1013         pe->rid = dev->bus->number << 8 | pdn->devfn;
1014         pe->device_count++;
1015
1016         pe_info(pe, "Associated device to PE\n");
1017
1018         if (pnv_ioda_configure_pe(phb, pe)) {
1019                 /* XXX What do we do here ? */
1020                 pnv_ioda_free_pe(pe);
1021                 pdn->pe_number = IODA_INVALID_PE;
1022                 pe->pdev = NULL;
1023                 return NULL;
1024         }
1025
1026         /* Put PE to the list */
1027         mutex_lock(&phb->ioda.pe_list_mutex);
1028         list_add_tail(&pe->list, &phb->ioda.pe_list);
1029         mutex_unlock(&phb->ioda.pe_list_mutex);
1030         return pe;
1031 }
1032
1033 /*
1034  * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1035  * single PCI bus. Another one that contains the primary PCI bus and its
1036  * subordinate PCI devices and buses. The second type of PE is normally
1037  * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1038  */
1039 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1040 {
1041         struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
1042         struct pnv_ioda_pe *pe = NULL;
1043         unsigned int pe_num;
1044
1045         /*
1046          * In partial hotplug case, the PE instance might be still alive.
1047          * We should reuse it instead of allocating a new one.
1048          */
1049         pe_num = phb->ioda.pe_rmap[bus->number << 8];
1050         if (WARN_ON(pe_num != IODA_INVALID_PE)) {
1051                 pe = &phb->ioda.pe_array[pe_num];
1052                 return NULL;
1053         }
1054
1055         /* PE number for root bus should have been reserved */
1056         if (pci_is_root_bus(bus))
1057                 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1058
1059         /* Check if PE is determined by M64 */
1060         if (!pe)
1061                 pe = pnv_ioda_pick_m64_pe(bus, all);
1062
1063         /* The PE number isn't pinned by M64 */
1064         if (!pe)
1065                 pe = pnv_ioda_alloc_pe(phb, 1);
1066
1067         if (!pe) {
1068                 pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1069                         __func__, pci_domain_nr(bus), bus->number);
1070                 return NULL;
1071         }
1072
1073         pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1074         pe->pbus = bus;
1075         pe->pdev = NULL;
1076         pe->mve_number = -1;
1077         pe->rid = bus->busn_res.start << 8;
1078
1079         if (all)
1080                 pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
1081                         &bus->busn_res.start, &bus->busn_res.end,
1082                         pe->pe_number);
1083         else
1084                 pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
1085                         &bus->busn_res.start, pe->pe_number);
1086
1087         if (pnv_ioda_configure_pe(phb, pe)) {
1088                 /* XXX What do we do here ? */
1089                 pnv_ioda_free_pe(pe);
1090                 pe->pbus = NULL;
1091                 return NULL;
1092         }
1093
1094         /* Put PE to the list */
1095         list_add_tail(&pe->list, &phb->ioda.pe_list);
1096
1097         return pe;
1098 }
1099
1100 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
1101                                        struct pnv_ioda_pe *pe);
1102
1103 static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev)
1104 {
1105         struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1106         struct pci_dn *pdn = pci_get_pdn(pdev);
1107         struct pnv_ioda_pe *pe;
1108
1109         /* Check if the BDFN for this device is associated with a PE yet */
1110         pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1111         if (!pe) {
1112                 /* VF PEs should be pre-configured in pnv_pci_sriov_enable() */
1113                 if (WARN_ON(pdev->is_virtfn))
1114                         return;
1115
1116                 pnv_pci_configure_bus(pdev->bus);
1117                 pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1118                 pci_info(pdev, "Configured PE#%x\n", pe ? pe->pe_number : 0xfffff);
1119
1120
1121                 /*
1122                  * If we can't setup the IODA PE something has gone horribly
1123                  * wrong and we can't enable DMA for the device.
1124                  */
1125                 if (WARN_ON(!pe))
1126                         return;
1127         } else {
1128                 pci_info(pdev, "Added to existing PE#%x\n", pe->pe_number);
1129         }
1130
1131         /*
1132          * We assume that bridges *probably* don't need to do any DMA so we can
1133          * skip allocating a TCE table, etc unless we get a non-bridge device.
1134          */
1135         if (!pe->dma_setup_done && !pci_is_bridge(pdev)) {
1136                 switch (phb->type) {
1137                 case PNV_PHB_IODA1:
1138                         pnv_pci_ioda1_setup_dma_pe(phb, pe);
1139                         break;
1140                 case PNV_PHB_IODA2:
1141                         pnv_pci_ioda2_setup_dma_pe(phb, pe);
1142                         break;
1143                 default:
1144                         pr_warn("%s: No DMA for PHB#%x (type %d)\n",
1145                                 __func__, phb->hose->global_number, phb->type);
1146                 }
1147         }
1148
1149         if (pdn)
1150                 pdn->pe_number = pe->pe_number;
1151         pe->device_count++;
1152
1153         WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1154         pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
1155         set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1156
1157         /* PEs with a DMA weight of zero won't have a group */
1158         if (pe->table_group.group)
1159                 iommu_add_device(&pe->table_group, &pdev->dev);
1160 }
1161
1162 /*
1163  * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1164  *
1165  * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1166  * Devices can only access more than that if bit 59 of the PCI address is set
1167  * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1168  * Many PCI devices are not capable of addressing that many bits, and as a
1169  * result are limited to the 4GB of virtual memory made available to 32-bit
1170  * devices in TVE#0.
1171  *
1172  * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1173  * devices by configuring the virtual memory past the first 4GB inaccessible
1174  * by 64-bit DMAs.  This should only be used by devices that want more than
1175  * 4GB, and only on PEs that have no 32-bit devices.
1176  *
1177  * Currently this will only work on PHB3 (POWER8).
1178  */
1179 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1180 {
1181         u64 window_size, table_size, tce_count, addr;
1182         struct page *table_pages;
1183         u64 tce_order = 28; /* 256MB TCEs */
1184         __be64 *tces;
1185         s64 rc;
1186
1187         /*
1188          * Window size needs to be a power of two, but needs to account for
1189          * shifting memory by the 4GB offset required to skip 32bit space.
1190          */
1191         window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1192         tce_count = window_size >> tce_order;
1193         table_size = tce_count << 3;
1194
1195         if (table_size < PAGE_SIZE)
1196                 table_size = PAGE_SIZE;
1197
1198         table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1199                                        get_order(table_size));
1200         if (!table_pages)
1201                 goto err;
1202
1203         tces = page_address(table_pages);
1204         if (!tces)
1205                 goto err;
1206
1207         memset(tces, 0, table_size);
1208
1209         for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1210                 tces[(addr + (1ULL << 32)) >> tce_order] =
1211                         cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1212         }
1213
1214         rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1215                                         pe->pe_number,
1216                                         /* reconfigure window 0 */
1217                                         (pe->pe_number << 1) + 0,
1218                                         1,
1219                                         __pa(tces),
1220                                         table_size,
1221                                         1 << tce_order);
1222         if (rc == OPAL_SUCCESS) {
1223                 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1224                 return 0;
1225         }
1226 err:
1227         pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1228         return -EIO;
1229 }
1230
1231 static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
1232                 u64 dma_mask)
1233 {
1234         struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1235         struct pci_dn *pdn = pci_get_pdn(pdev);
1236         struct pnv_ioda_pe *pe;
1237
1238         if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1239                 return false;
1240
1241         pe = &phb->ioda.pe_array[pdn->pe_number];
1242         if (pe->tce_bypass_enabled) {
1243                 u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1244                 if (dma_mask >= top)
1245                         return true;
1246         }
1247
1248         /*
1249          * If the device can't set the TCE bypass bit but still wants
1250          * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1251          * bypass the 32-bit region and be usable for 64-bit DMAs.
1252          * The device needs to be able to address all of this space.
1253          */
1254         if (dma_mask >> 32 &&
1255             dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1256             /* pe->pdev should be set if it's a single device, pe->pbus if not */
1257             (pe->device_count == 1 || !pe->pbus) &&
1258             phb->model == PNV_PHB_MODEL_PHB3) {
1259                 /* Configure the bypass mode */
1260                 s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1261                 if (rc)
1262                         return false;
1263                 /* 4GB offset bypasses 32-bit space */
1264                 pdev->dev.archdata.dma_offset = (1ULL << 32);
1265                 return true;
1266         }
1267
1268         return false;
1269 }
1270
1271 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb)
1272 {
1273         return phb->regs + 0x210;
1274 }
1275
1276 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1277                 unsigned long index, unsigned long npages)
1278 {
1279         struct iommu_table_group_link *tgl = list_first_entry_or_null(
1280                         &tbl->it_group_list, struct iommu_table_group_link,
1281                         next);
1282         struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1283                         struct pnv_ioda_pe, table_group);
1284         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb);
1285         unsigned long start, end, inc;
1286
1287         start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1288         end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1289                         npages - 1);
1290
1291         /* p7ioc-style invalidation, 2 TCEs per write */
1292         start |= (1ull << 63);
1293         end |= (1ull << 63);
1294         inc = 16;
1295         end |= inc - 1; /* round up end to be different than start */
1296
1297         mb(); /* Ensure above stores are visible */
1298         while (start <= end) {
1299                 __raw_writeq_be(start, invalidate);
1300                 start += inc;
1301         }
1302
1303         /*
1304          * The iommu layer will do another mb() for us on build()
1305          * and we don't care on free()
1306          */
1307 }
1308
1309 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1310                 long npages, unsigned long uaddr,
1311                 enum dma_data_direction direction,
1312                 unsigned long attrs)
1313 {
1314         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1315                         attrs);
1316
1317         if (!ret)
1318                 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages);
1319
1320         return ret;
1321 }
1322
1323 #ifdef CONFIG_IOMMU_API
1324 /* Common for IODA1 and IODA2 */
1325 static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index,
1326                 unsigned long *hpa, enum dma_data_direction *direction)
1327 {
1328         return pnv_tce_xchg(tbl, index, hpa, direction);
1329 }
1330 #endif
1331
1332 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1333                 long npages)
1334 {
1335         pnv_tce_free(tbl, index, npages);
1336
1337         pnv_pci_p7ioc_tce_invalidate(tbl, index, npages);
1338 }
1339
1340 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1341         .set = pnv_ioda1_tce_build,
1342 #ifdef CONFIG_IOMMU_API
1343         .xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1344         .tce_kill = pnv_pci_p7ioc_tce_invalidate,
1345         .useraddrptr = pnv_tce_useraddrptr,
1346 #endif
1347         .clear = pnv_ioda1_tce_free,
1348         .get = pnv_tce_get,
1349 };
1350
1351 #define PHB3_TCE_KILL_INVAL_ALL         PPC_BIT(0)
1352 #define PHB3_TCE_KILL_INVAL_PE          PPC_BIT(1)
1353 #define PHB3_TCE_KILL_INVAL_ONE         PPC_BIT(2)
1354
1355 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1356 {
1357         /* 01xb - invalidate TCEs that match the specified PE# */
1358         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb);
1359         unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1360
1361         mb(); /* Ensure above stores are visible */
1362         __raw_writeq_be(val, invalidate);
1363 }
1364
1365 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe,
1366                                         unsigned shift, unsigned long index,
1367                                         unsigned long npages)
1368 {
1369         __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb);
1370         unsigned long start, end, inc;
1371
1372         /* We'll invalidate DMA address in PE scope */
1373         start = PHB3_TCE_KILL_INVAL_ONE;
1374         start |= (pe->pe_number & 0xFF);
1375         end = start;
1376
1377         /* Figure out the start, end and step */
1378         start |= (index << shift);
1379         end |= ((index + npages - 1) << shift);
1380         inc = (0x1ull << shift);
1381         mb();
1382
1383         while (start <= end) {
1384                 __raw_writeq_be(start, invalidate);
1385                 start += inc;
1386         }
1387 }
1388
1389 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1390 {
1391         struct pnv_phb *phb = pe->phb;
1392
1393         if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1394                 pnv_pci_phb3_tce_invalidate_pe(pe);
1395         else
1396                 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1397                                   pe->pe_number, 0, 0, 0);
1398 }
1399
1400 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1401                 unsigned long index, unsigned long npages)
1402 {
1403         struct iommu_table_group_link *tgl;
1404
1405         list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
1406                 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1407                                 struct pnv_ioda_pe, table_group);
1408                 struct pnv_phb *phb = pe->phb;
1409                 unsigned int shift = tbl->it_page_shift;
1410
1411                 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1412                         pnv_pci_phb3_tce_invalidate(pe, shift,
1413                                                     index, npages);
1414                 else
1415                         opal_pci_tce_kill(phb->opal_id,
1416                                           OPAL_PCI_TCE_KILL_PAGES,
1417                                           pe->pe_number, 1u << shift,
1418                                           index << shift, npages);
1419         }
1420 }
1421
1422 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1423                 long npages, unsigned long uaddr,
1424                 enum dma_data_direction direction,
1425                 unsigned long attrs)
1426 {
1427         int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1428                         attrs);
1429
1430         if (!ret)
1431                 pnv_pci_ioda2_tce_invalidate(tbl, index, npages);
1432
1433         return ret;
1434 }
1435
1436 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1437                 long npages)
1438 {
1439         pnv_tce_free(tbl, index, npages);
1440
1441         pnv_pci_ioda2_tce_invalidate(tbl, index, npages);
1442 }
1443
1444 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1445         .set = pnv_ioda2_tce_build,
1446 #ifdef CONFIG_IOMMU_API
1447         .xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1448         .tce_kill = pnv_pci_ioda2_tce_invalidate,
1449         .useraddrptr = pnv_tce_useraddrptr,
1450 #endif
1451         .clear = pnv_ioda2_tce_free,
1452         .get = pnv_tce_get,
1453         .free = pnv_pci_ioda2_table_free_pages,
1454 };
1455
1456 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
1457 {
1458         unsigned int *weight = (unsigned int *)data;
1459
1460         /* This is quite simplistic. The "base" weight of a device
1461          * is 10. 0 means no DMA is to be accounted for it.
1462          */
1463         if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
1464                 return 0;
1465
1466         if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
1467             dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
1468             dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1469                 *weight += 3;
1470         else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
1471                 *weight += 15;
1472         else
1473                 *weight += 10;
1474
1475         return 0;
1476 }
1477
1478 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
1479 {
1480         unsigned int weight = 0;
1481
1482         /* SRIOV VF has same DMA32 weight as its PF */
1483 #ifdef CONFIG_PCI_IOV
1484         if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
1485                 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
1486                 return weight;
1487         }
1488 #endif
1489
1490         if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
1491                 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
1492         } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
1493                 struct pci_dev *pdev;
1494
1495                 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
1496                         pnv_pci_ioda_dev_dma_weight(pdev, &weight);
1497         } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
1498                 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
1499         }
1500
1501         return weight;
1502 }
1503
1504 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
1505                                        struct pnv_ioda_pe *pe)
1506 {
1507
1508         struct page *tce_mem = NULL;
1509         struct iommu_table *tbl;
1510         unsigned int weight, total_weight = 0;
1511         unsigned int tce32_segsz, base, segs, avail, i;
1512         int64_t rc;
1513         void *addr;
1514
1515         /* XXX FIXME: Handle 64-bit only DMA devices */
1516         /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1517         /* XXX FIXME: Allocate multi-level tables on PHB3 */
1518         weight = pnv_pci_ioda_pe_dma_weight(pe);
1519         if (!weight)
1520                 return;
1521
1522         pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
1523                      &total_weight);
1524         segs = (weight * phb->ioda.dma32_count) / total_weight;
1525         if (!segs)
1526                 segs = 1;
1527
1528         /*
1529          * Allocate contiguous DMA32 segments. We begin with the expected
1530          * number of segments. With one more attempt, the number of DMA32
1531          * segments to be allocated is decreased by one until one segment
1532          * is allocated successfully.
1533          */
1534         do {
1535                 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
1536                         for (avail = 0, i = base; i < base + segs; i++) {
1537                                 if (phb->ioda.dma32_segmap[i] ==
1538                                     IODA_INVALID_PE)
1539                                         avail++;
1540                         }
1541
1542                         if (avail == segs)
1543                                 goto found;
1544                 }
1545         } while (--segs);
1546
1547         if (!segs) {
1548                 pe_warn(pe, "No available DMA32 segments\n");
1549                 return;
1550         }
1551
1552 found:
1553         tbl = pnv_pci_table_alloc(phb->hose->node);
1554         if (WARN_ON(!tbl))
1555                 return;
1556
1557         iommu_register_group(&pe->table_group, phb->hose->global_number,
1558                         pe->pe_number);
1559         pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1560
1561         /* Grab a 32-bit TCE table */
1562         pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
1563                 weight, total_weight, base, segs);
1564         pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1565                 base * PNV_IODA1_DMA32_SEGSIZE,
1566                 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
1567
1568         /* XXX Currently, we allocate one big contiguous table for the
1569          * TCEs. We only really need one chunk per 256M of TCE space
1570          * (ie per segment) but that's an optimization for later, it
1571          * requires some added smarts with our get/put_tce implementation
1572          *
1573          * Each TCE page is 4KB in size and each TCE entry occupies 8
1574          * bytes
1575          */
1576         tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
1577         tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1578                                    get_order(tce32_segsz * segs));
1579         if (!tce_mem) {
1580                 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1581                 goto fail;
1582         }
1583         addr = page_address(tce_mem);
1584         memset(addr, 0, tce32_segsz * segs);
1585
1586         /* Configure HW */
1587         for (i = 0; i < segs; i++) {
1588                 rc = opal_pci_map_pe_dma_window(phb->opal_id,
1589                                               pe->pe_number,
1590                                               base + i, 1,
1591                                               __pa(addr) + tce32_segsz * i,
1592                                               tce32_segsz, IOMMU_PAGE_SIZE_4K);
1593                 if (rc) {
1594                         pe_err(pe, " Failed to configure 32-bit TCE table, err %lld\n",
1595                                rc);
1596                         goto fail;
1597                 }
1598         }
1599
1600         /* Setup DMA32 segment mapping */
1601         for (i = base; i < base + segs; i++)
1602                 phb->ioda.dma32_segmap[i] = pe->pe_number;
1603
1604         /* Setup linux iommu table */
1605         pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
1606                                   base * PNV_IODA1_DMA32_SEGSIZE,
1607                                   IOMMU_PAGE_SHIFT_4K);
1608
1609         tbl->it_ops = &pnv_ioda1_iommu_ops;
1610         pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
1611         pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
1612         tbl->it_index = (phb->hose->global_number << 16) | pe->pe_number;
1613         if (!iommu_init_table(tbl, phb->hose->node, 0, 0))
1614                 panic("Failed to initialize iommu table");
1615
1616         pe->dma_setup_done = true;
1617         return;
1618  fail:
1619         /* XXX Failure: Try to fallback to 64-bit only ? */
1620         if (tce_mem)
1621                 __free_pages(tce_mem, get_order(tce32_segsz * segs));
1622         if (tbl) {
1623                 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1624                 iommu_tce_table_put(tbl);
1625         }
1626 }
1627
1628 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
1629                 int num, struct iommu_table *tbl)
1630 {
1631         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1632                         table_group);
1633         struct pnv_phb *phb = pe->phb;
1634         int64_t rc;
1635         const unsigned long size = tbl->it_indirect_levels ?
1636                         tbl->it_level_size : tbl->it_size;
1637         const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
1638         const __u64 win_size = tbl->it_size << tbl->it_page_shift;
1639
1640         pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
1641                 num, start_addr, start_addr + win_size - 1,
1642                 IOMMU_PAGE_SIZE(tbl));
1643
1644         /*
1645          * Map TCE table through TVT. The TVE index is the PE number
1646          * shifted by 1 bit for 32-bits DMA space.
1647          */
1648         rc = opal_pci_map_pe_dma_window(phb->opal_id,
1649                         pe->pe_number,
1650                         (pe->pe_number << 1) + num,
1651                         tbl->it_indirect_levels + 1,
1652                         __pa(tbl->it_base),
1653                         size << 3,
1654                         IOMMU_PAGE_SIZE(tbl));
1655         if (rc) {
1656                 pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
1657                 return rc;
1658         }
1659
1660         pnv_pci_link_table_and_group(phb->hose->node, num,
1661                         tbl, &pe->table_group);
1662         pnv_pci_ioda2_tce_invalidate_pe(pe);
1663
1664         return 0;
1665 }
1666
1667 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
1668 {
1669         uint16_t window_id = (pe->pe_number << 1 ) + 1;
1670         int64_t rc;
1671
1672         pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1673         if (enable) {
1674                 phys_addr_t top = memblock_end_of_DRAM();
1675
1676                 top = roundup_pow_of_two(top);
1677                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1678                                                      pe->pe_number,
1679                                                      window_id,
1680                                                      pe->tce_bypass_base,
1681                                                      top);
1682         } else {
1683                 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1684                                                      pe->pe_number,
1685                                                      window_id,
1686                                                      pe->tce_bypass_base,
1687                                                      0);
1688         }
1689         if (rc)
1690                 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1691         else
1692                 pe->tce_bypass_enabled = enable;
1693 }
1694
1695 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
1696                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
1697                 bool alloc_userspace_copy, struct iommu_table **ptbl)
1698 {
1699         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1700                         table_group);
1701         int nid = pe->phb->hose->node;
1702         __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
1703         long ret;
1704         struct iommu_table *tbl;
1705
1706         tbl = pnv_pci_table_alloc(nid);
1707         if (!tbl)
1708                 return -ENOMEM;
1709
1710         tbl->it_ops = &pnv_ioda2_iommu_ops;
1711
1712         ret = pnv_pci_ioda2_table_alloc_pages(nid,
1713                         bus_offset, page_shift, window_size,
1714                         levels, alloc_userspace_copy, tbl);
1715         if (ret) {
1716                 iommu_tce_table_put(tbl);
1717                 return ret;
1718         }
1719
1720         *ptbl = tbl;
1721
1722         return 0;
1723 }
1724
1725 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
1726 {
1727         struct iommu_table *tbl = NULL;
1728         long rc;
1729         unsigned long res_start, res_end;
1730
1731         /*
1732          * crashkernel= specifies the kdump kernel's maximum memory at
1733          * some offset and there is no guaranteed the result is a power
1734          * of 2, which will cause errors later.
1735          */
1736         const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
1737
1738         /*
1739          * In memory constrained environments, e.g. kdump kernel, the
1740          * DMA window can be larger than available memory, which will
1741          * cause errors later.
1742          */
1743         const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_ORDER - 1);
1744
1745         /*
1746          * We create the default window as big as we can. The constraint is
1747          * the max order of allocation possible. The TCE table is likely to
1748          * end up being multilevel and with on-demand allocation in place,
1749          * the initial use is not going to be huge as the default window aims
1750          * to support crippled devices (i.e. not fully 64bit DMAble) only.
1751          */
1752         /* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */
1753         const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory);
1754         /* Each TCE level cannot exceed maxblock so go multilevel if needed */
1755         unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT);
1756         unsigned long tcelevel_order = ilog2(maxblock >> 3);
1757         unsigned int levels = tces_order / tcelevel_order;
1758
1759         if (tces_order % tcelevel_order)
1760                 levels += 1;
1761         /*
1762          * We try to stick to default levels (which is >1 at the moment) in
1763          * order to save memory by relying on on-demain TCE level allocation.
1764          */
1765         levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS);
1766
1767         rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT,
1768                         window_size, levels, false, &tbl);
1769         if (rc) {
1770                 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
1771                                 rc);
1772                 return rc;
1773         }
1774
1775         /* We use top part of 32bit space for MMIO so exclude it from DMA */
1776         res_start = 0;
1777         res_end = 0;
1778         if (window_size > pe->phb->ioda.m32_pci_base) {
1779                 res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift;
1780                 res_end = min(window_size, SZ_4G) >> tbl->it_page_shift;
1781         }
1782
1783         tbl->it_index = (pe->phb->hose->global_number << 16) | pe->pe_number;
1784         if (iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end))
1785                 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
1786         else
1787                 rc = -ENOMEM;
1788         if (rc) {
1789                 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n", rc);
1790                 iommu_tce_table_put(tbl);
1791                 tbl = NULL; /* This clears iommu_table_base below */
1792         }
1793         if (!pnv_iommu_bypass_disabled)
1794                 pnv_pci_ioda2_set_bypass(pe, true);
1795
1796         /*
1797          * Set table base for the case of IOMMU DMA use. Usually this is done
1798          * from dma_dev_setup() which is not called when a device is returned
1799          * from VFIO so do it here.
1800          */
1801         if (pe->pdev)
1802                 set_iommu_table_base(&pe->pdev->dev, tbl);
1803
1804         return 0;
1805 }
1806
1807 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1808                 int num)
1809 {
1810         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1811                         table_group);
1812         struct pnv_phb *phb = pe->phb;
1813         long ret;
1814
1815         pe_info(pe, "Removing DMA window #%d\n", num);
1816
1817         ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1818                         (pe->pe_number << 1) + num,
1819                         0/* levels */, 0/* table address */,
1820                         0/* table size */, 0/* page size */);
1821         if (ret)
1822                 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
1823         else
1824                 pnv_pci_ioda2_tce_invalidate_pe(pe);
1825
1826         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
1827
1828         return ret;
1829 }
1830
1831 #ifdef CONFIG_IOMMU_API
1832 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
1833                 __u64 window_size, __u32 levels)
1834 {
1835         unsigned long bytes = 0;
1836         const unsigned window_shift = ilog2(window_size);
1837         unsigned entries_shift = window_shift - page_shift;
1838         unsigned table_shift = entries_shift + 3;
1839         unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
1840         unsigned long direct_table_size;
1841
1842         if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
1843                         !is_power_of_2(window_size))
1844                 return 0;
1845
1846         /* Calculate a direct table size from window_size and levels */
1847         entries_shift = (entries_shift + levels - 1) / levels;
1848         table_shift = entries_shift + 3;
1849         table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
1850         direct_table_size =  1UL << table_shift;
1851
1852         for ( ; levels; --levels) {
1853                 bytes += ALIGN(tce_table_size, direct_table_size);
1854
1855                 tce_table_size /= direct_table_size;
1856                 tce_table_size <<= 3;
1857                 tce_table_size = max_t(unsigned long,
1858                                 tce_table_size, direct_table_size);
1859         }
1860
1861         return bytes + bytes; /* one for HW table, one for userspace copy */
1862 }
1863
1864 static long pnv_pci_ioda2_create_table_userspace(
1865                 struct iommu_table_group *table_group,
1866                 int num, __u32 page_shift, __u64 window_size, __u32 levels,
1867                 struct iommu_table **ptbl)
1868 {
1869         long ret = pnv_pci_ioda2_create_table(table_group,
1870                         num, page_shift, window_size, levels, true, ptbl);
1871
1872         if (!ret)
1873                 (*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
1874                                 page_shift, window_size, levels);
1875         return ret;
1876 }
1877
1878 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
1879 {
1880         struct pci_dev *dev;
1881
1882         list_for_each_entry(dev, &bus->devices, bus_list) {
1883                 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1884                 dev->dev.archdata.dma_offset = pe->tce_bypass_base;
1885
1886                 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1887                         pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1888         }
1889 }
1890
1891 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
1892 {
1893         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1894                                                 table_group);
1895         /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
1896         struct iommu_table *tbl = pe->table_group.tables[0];
1897
1898         pnv_pci_ioda2_set_bypass(pe, false);
1899         pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1900         if (pe->pbus)
1901                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
1902         else if (pe->pdev)
1903                 set_iommu_table_base(&pe->pdev->dev, NULL);
1904         iommu_tce_table_put(tbl);
1905 }
1906
1907 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
1908 {
1909         struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1910                                                 table_group);
1911
1912         pnv_pci_ioda2_setup_default_config(pe);
1913         if (pe->pbus)
1914                 pnv_ioda_setup_bus_dma(pe, pe->pbus);
1915 }
1916
1917 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
1918         .get_table_size = pnv_pci_ioda2_get_table_size,
1919         .create_table = pnv_pci_ioda2_create_table_userspace,
1920         .set_window = pnv_pci_ioda2_set_window,
1921         .unset_window = pnv_pci_ioda2_unset_window,
1922         .take_ownership = pnv_ioda2_take_ownership,
1923         .release_ownership = pnv_ioda2_release_ownership,
1924 };
1925 #endif
1926
1927 void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1928                                 struct pnv_ioda_pe *pe)
1929 {
1930         int64_t rc;
1931
1932         /* TVE #1 is selected by PCI address bit 59 */
1933         pe->tce_bypass_base = 1ull << 59;
1934
1935         /* The PE will reserve all possible 32-bits space */
1936         pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
1937                 phb->ioda.m32_pci_base);
1938
1939         /* Setup linux iommu table */
1940         pe->table_group.tce32_start = 0;
1941         pe->table_group.tce32_size = phb->ioda.m32_pci_base;
1942         pe->table_group.max_dynamic_windows_supported =
1943                         IOMMU_TABLE_GROUP_MAX_TABLES;
1944         pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
1945         pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
1946
1947         rc = pnv_pci_ioda2_setup_default_config(pe);
1948         if (rc)
1949                 return;
1950
1951 #ifdef CONFIG_IOMMU_API
1952         pe->table_group.ops = &pnv_pci_ioda2_ops;
1953         iommu_register_group(&pe->table_group, phb->hose->global_number,
1954                              pe->pe_number);
1955 #endif
1956         pe->dma_setup_done = true;
1957 }
1958
1959 /*
1960  * Called from KVM in real mode to EOI passthru interrupts. The ICP
1961  * EOI is handled directly in KVM in kvmppc_deliver_irq_passthru().
1962  *
1963  * The IRQ data is mapped in the PCI-MSI domain and the EOI OPAL call
1964  * needs an HW IRQ number mapped in the XICS IRQ domain. The HW IRQ
1965  * numbers of the in-the-middle MSI domain are vector numbers and it's
1966  * good enough for OPAL. Use that.
1967  */
1968 int64_t pnv_opal_pci_msi_eoi(struct irq_data *d)
1969 {
1970         struct pci_controller *hose = irq_data_get_irq_chip_data(d->parent_data);
1971         struct pnv_phb *phb = hose->private_data;
1972
1973         return opal_pci_msi_eoi(phb->opal_id, d->parent_data->hwirq);
1974 }
1975
1976 /*
1977  * The IRQ data is mapped in the XICS domain, with OPAL HW IRQ numbers
1978  */
1979 static void pnv_ioda2_msi_eoi(struct irq_data *d)
1980 {
1981         int64_t rc;
1982         unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1983         struct pci_controller *hose = irq_data_get_irq_chip_data(d);
1984         struct pnv_phb *phb = hose->private_data;
1985
1986         rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
1987         WARN_ON_ONCE(rc);
1988
1989         icp_native_eoi(d);
1990 }
1991
1992 /* P8/CXL only */
1993 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
1994 {
1995         struct irq_data *idata;
1996         struct irq_chip *ichip;
1997
1998         /* The MSI EOI OPAL call is only needed on PHB3 */
1999         if (phb->model != PNV_PHB_MODEL_PHB3)
2000                 return;
2001
2002         if (!phb->ioda.irq_chip_init) {
2003                 /*
2004                  * First time we setup an MSI IRQ, we need to setup the
2005                  * corresponding IRQ chip to route correctly.
2006                  */
2007                 idata = irq_get_irq_data(virq);
2008                 ichip = irq_data_get_irq_chip(idata);
2009                 phb->ioda.irq_chip_init = 1;
2010                 phb->ioda.irq_chip = *ichip;
2011                 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2012         }
2013         irq_set_chip(virq, &phb->ioda.irq_chip);
2014         irq_set_chip_data(virq, phb->hose);
2015 }
2016
2017 static struct irq_chip pnv_pci_msi_irq_chip;
2018
2019 /*
2020  * Returns true iff chip is something that we could call
2021  * pnv_opal_pci_msi_eoi for.
2022  */
2023 bool is_pnv_opal_msi(struct irq_chip *chip)
2024 {
2025         return chip == &pnv_pci_msi_irq_chip;
2026 }
2027 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2028
2029 static int __pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2030                                     unsigned int xive_num,
2031                                     unsigned int is_64, struct msi_msg *msg)
2032 {
2033         struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2034         __be32 data;
2035         int rc;
2036
2037         dev_dbg(&dev->dev, "%s: setup %s-bit MSI for vector #%d\n", __func__,
2038                 is_64 ? "64" : "32", xive_num);
2039
2040         /* No PE assigned ? bail out ... no MSI for you ! */
2041         if (pe == NULL)
2042                 return -ENXIO;
2043
2044         /* Check if we have an MVE */
2045         if (pe->mve_number < 0)
2046                 return -ENXIO;
2047
2048         /* Force 32-bit MSI on some broken devices */
2049         if (dev->no_64bit_msi)
2050                 is_64 = 0;
2051
2052         /* Assign XIVE to PE */
2053         rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2054         if (rc) {
2055                 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2056                         pci_name(dev), rc, xive_num);
2057                 return -EIO;
2058         }
2059
2060         if (is_64) {
2061                 __be64 addr64;
2062
2063                 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2064                                      &addr64, &data);
2065                 if (rc) {
2066                         pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2067                                 pci_name(dev), rc);
2068                         return -EIO;
2069                 }
2070                 msg->address_hi = be64_to_cpu(addr64) >> 32;
2071                 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2072         } else {
2073                 __be32 addr32;
2074
2075                 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2076                                      &addr32, &data);
2077                 if (rc) {
2078                         pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2079                                 pci_name(dev), rc);
2080                         return -EIO;
2081                 }
2082                 msg->address_hi = 0;
2083                 msg->address_lo = be32_to_cpu(addr32);
2084         }
2085         msg->data = be32_to_cpu(data);
2086
2087         return 0;
2088 }
2089
2090 /*
2091  * The msi_free() op is called before irq_domain_free_irqs_top() when
2092  * the handler data is still available. Use that to clear the XIVE
2093  * controller.
2094  */
2095 static void pnv_msi_ops_msi_free(struct irq_domain *domain,
2096                                  struct msi_domain_info *info,
2097                                  unsigned int irq)
2098 {
2099         if (xive_enabled())
2100                 xive_irq_free_data(irq);
2101 }
2102
2103 static struct msi_domain_ops pnv_pci_msi_domain_ops = {
2104         .msi_free       = pnv_msi_ops_msi_free,
2105 };
2106
2107 static void pnv_msi_shutdown(struct irq_data *d)
2108 {
2109         d = d->parent_data;
2110         if (d->chip->irq_shutdown)
2111                 d->chip->irq_shutdown(d);
2112 }
2113
2114 static void pnv_msi_mask(struct irq_data *d)
2115 {
2116         pci_msi_mask_irq(d);
2117         irq_chip_mask_parent(d);
2118 }
2119
2120 static void pnv_msi_unmask(struct irq_data *d)
2121 {
2122         pci_msi_unmask_irq(d);
2123         irq_chip_unmask_parent(d);
2124 }
2125
2126 static struct irq_chip pnv_pci_msi_irq_chip = {
2127         .name           = "PNV-PCI-MSI",
2128         .irq_shutdown   = pnv_msi_shutdown,
2129         .irq_mask       = pnv_msi_mask,
2130         .irq_unmask     = pnv_msi_unmask,
2131         .irq_eoi        = irq_chip_eoi_parent,
2132 };
2133
2134 static struct msi_domain_info pnv_msi_domain_info = {
2135         .flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
2136                   MSI_FLAG_MULTI_PCI_MSI  | MSI_FLAG_PCI_MSIX),
2137         .ops   = &pnv_pci_msi_domain_ops,
2138         .chip  = &pnv_pci_msi_irq_chip,
2139 };
2140
2141 static void pnv_msi_compose_msg(struct irq_data *d, struct msi_msg *msg)
2142 {
2143         struct msi_desc *entry = irq_data_get_msi_desc(d);
2144         struct pci_dev *pdev = msi_desc_to_pci_dev(entry);
2145         struct pci_controller *hose = irq_data_get_irq_chip_data(d);
2146         struct pnv_phb *phb = hose->private_data;
2147         int rc;
2148
2149         rc = __pnv_pci_ioda_msi_setup(phb, pdev, d->hwirq,
2150                                       entry->pci.msi_attrib.is_64, msg);
2151         if (rc)
2152                 dev_err(&pdev->dev, "Failed to setup %s-bit MSI #%ld : %d\n",
2153                         entry->pci.msi_attrib.is_64 ? "64" : "32", d->hwirq, rc);
2154 }
2155
2156 /*
2157  * The IRQ data is mapped in the MSI domain in which HW IRQ numbers
2158  * correspond to vector numbers.
2159  */
2160 static void pnv_msi_eoi(struct irq_data *d)
2161 {
2162         struct pci_controller *hose = irq_data_get_irq_chip_data(d);
2163         struct pnv_phb *phb = hose->private_data;
2164
2165         if (phb->model == PNV_PHB_MODEL_PHB3) {
2166                 /*
2167                  * The EOI OPAL call takes an OPAL HW IRQ number but
2168                  * since it is translated into a vector number in
2169                  * OPAL, use that directly.
2170                  */
2171                 WARN_ON_ONCE(opal_pci_msi_eoi(phb->opal_id, d->hwirq));
2172         }
2173
2174         irq_chip_eoi_parent(d);
2175 }
2176
2177 static struct irq_chip pnv_msi_irq_chip = {
2178         .name                   = "PNV-MSI",
2179         .irq_shutdown           = pnv_msi_shutdown,
2180         .irq_mask               = irq_chip_mask_parent,
2181         .irq_unmask             = irq_chip_unmask_parent,
2182         .irq_eoi                = pnv_msi_eoi,
2183         .irq_set_affinity       = irq_chip_set_affinity_parent,
2184         .irq_compose_msi_msg    = pnv_msi_compose_msg,
2185 };
2186
2187 static int pnv_irq_parent_domain_alloc(struct irq_domain *domain,
2188                                        unsigned int virq, int hwirq)
2189 {
2190         struct irq_fwspec parent_fwspec;
2191         int ret;
2192
2193         parent_fwspec.fwnode = domain->parent->fwnode;
2194         parent_fwspec.param_count = 2;
2195         parent_fwspec.param[0] = hwirq;
2196         parent_fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2197
2198         ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &parent_fwspec);
2199         if (ret)
2200                 return ret;
2201
2202         return 0;
2203 }
2204
2205 static int pnv_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2206                                 unsigned int nr_irqs, void *arg)
2207 {
2208         struct pci_controller *hose = domain->host_data;
2209         struct pnv_phb *phb = hose->private_data;
2210         msi_alloc_info_t *info = arg;
2211         struct pci_dev *pdev = msi_desc_to_pci_dev(info->desc);
2212         int hwirq;
2213         int i, ret;
2214
2215         hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, nr_irqs);
2216         if (hwirq < 0) {
2217                 dev_warn(&pdev->dev, "failed to find a free MSI\n");
2218                 return -ENOSPC;
2219         }
2220
2221         dev_dbg(&pdev->dev, "%s bridge %pOF %d/%x #%d\n", __func__,
2222                 hose->dn, virq, hwirq, nr_irqs);
2223
2224         for (i = 0; i < nr_irqs; i++) {
2225                 ret = pnv_irq_parent_domain_alloc(domain, virq + i,
2226                                                   phb->msi_base + hwirq + i);
2227                 if (ret)
2228                         goto out;
2229
2230                 irq_domain_set_hwirq_and_chip(domain, virq + i, hwirq + i,
2231                                               &pnv_msi_irq_chip, hose);
2232         }
2233
2234         return 0;
2235
2236 out:
2237         irq_domain_free_irqs_parent(domain, virq, i - 1);
2238         msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq, nr_irqs);
2239         return ret;
2240 }
2241
2242 static void pnv_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2243                                 unsigned int nr_irqs)
2244 {
2245         struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2246         struct pci_controller *hose = irq_data_get_irq_chip_data(d);
2247         struct pnv_phb *phb = hose->private_data;
2248
2249         pr_debug("%s bridge %pOF %d/%lx #%d\n", __func__, hose->dn,
2250                  virq, d->hwirq, nr_irqs);
2251
2252         msi_bitmap_free_hwirqs(&phb->msi_bmp, d->hwirq, nr_irqs);
2253         /* XIVE domain is cleared through ->msi_free() */
2254 }
2255
2256 static const struct irq_domain_ops pnv_irq_domain_ops = {
2257         .alloc  = pnv_irq_domain_alloc,
2258         .free   = pnv_irq_domain_free,
2259 };
2260
2261 static int __init pnv_msi_allocate_domains(struct pci_controller *hose, unsigned int count)
2262 {
2263         struct pnv_phb *phb = hose->private_data;
2264         struct irq_domain *parent = irq_get_default_host();
2265
2266         hose->fwnode = irq_domain_alloc_named_id_fwnode("PNV-MSI", phb->opal_id);
2267         if (!hose->fwnode)
2268                 return -ENOMEM;
2269
2270         hose->dev_domain = irq_domain_create_hierarchy(parent, 0, count,
2271                                                        hose->fwnode,
2272                                                        &pnv_irq_domain_ops, hose);
2273         if (!hose->dev_domain) {
2274                 pr_err("PCI: failed to create IRQ domain bridge %pOF (domain %d)\n",
2275                        hose->dn, hose->global_number);
2276                 irq_domain_free_fwnode(hose->fwnode);
2277                 return -ENOMEM;
2278         }
2279
2280         hose->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(hose->dn),
2281                                                      &pnv_msi_domain_info,
2282                                                      hose->dev_domain);
2283         if (!hose->msi_domain) {
2284                 pr_err("PCI: failed to create MSI IRQ domain bridge %pOF (domain %d)\n",
2285                        hose->dn, hose->global_number);
2286                 irq_domain_free_fwnode(hose->fwnode);
2287                 irq_domain_remove(hose->dev_domain);
2288                 return -ENOMEM;
2289         }
2290
2291         return 0;
2292 }
2293
2294 static void __init pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2295 {
2296         unsigned int count;
2297         const __be32 *prop = of_get_property(phb->hose->dn,
2298                                              "ibm,opal-msi-ranges", NULL);
2299         if (!prop) {
2300                 /* BML Fallback */
2301                 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2302         }
2303         if (!prop)
2304                 return;
2305
2306         phb->msi_base = be32_to_cpup(prop);
2307         count = be32_to_cpup(prop + 1);
2308         if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2309                 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2310                        phb->hose->global_number);
2311                 return;
2312         }
2313
2314         pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2315                 count, phb->msi_base);
2316
2317         pnv_msi_allocate_domains(phb->hose, count);
2318 }
2319
2320 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2321                                   struct resource *res)
2322 {
2323         struct pnv_phb *phb = pe->phb;
2324         struct pci_bus_region region;
2325         int index;
2326         int64_t rc;
2327
2328         if (!res || !res->flags || res->start > res->end)
2329                 return;
2330
2331         if (res->flags & IORESOURCE_IO) {
2332                 region.start = res->start - phb->ioda.io_pci_base;
2333                 region.end   = res->end - phb->ioda.io_pci_base;
2334                 index = region.start / phb->ioda.io_segsize;
2335
2336                 while (index < phb->ioda.total_pe_num &&
2337                        region.start <= region.end) {
2338                         phb->ioda.io_segmap[index] = pe->pe_number;
2339                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2340                                 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2341                         if (rc != OPAL_SUCCESS) {
2342                                 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
2343                                        __func__, rc, index, pe->pe_number);
2344                                 break;
2345                         }
2346
2347                         region.start += phb->ioda.io_segsize;
2348                         index++;
2349                 }
2350         } else if ((res->flags & IORESOURCE_MEM) &&
2351                    !pnv_pci_is_m64(phb, res)) {
2352                 region.start = res->start -
2353                                phb->hose->mem_offset[0] -
2354                                phb->ioda.m32_pci_base;
2355                 region.end   = res->end -
2356                                phb->hose->mem_offset[0] -
2357                                phb->ioda.m32_pci_base;
2358                 index = region.start / phb->ioda.m32_segsize;
2359
2360                 while (index < phb->ioda.total_pe_num &&
2361                        region.start <= region.end) {
2362                         phb->ioda.m32_segmap[index] = pe->pe_number;
2363                         rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2364                                 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2365                         if (rc != OPAL_SUCCESS) {
2366                                 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
2367                                        __func__, rc, index, pe->pe_number);
2368                                 break;
2369                         }
2370
2371                         region.start += phb->ioda.m32_segsize;
2372                         index++;
2373                 }
2374         }
2375 }
2376
2377 /*
2378  * This function is supposed to be called on basis of PE from top
2379  * to bottom style. So the I/O or MMIO segment assigned to
2380  * parent PE could be overridden by its child PEs if necessary.
2381  */
2382 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
2383 {
2384         struct pci_dev *pdev;
2385         int i;
2386
2387         /*
2388          * NOTE: We only care PCI bus based PE for now. For PCI
2389          * device based PE, for example SRIOV sensitive VF should
2390          * be figured out later.
2391          */
2392         BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2393
2394         list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
2395                 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2396                         pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
2397
2398                 /*
2399                  * If the PE contains all subordinate PCI buses, the
2400                  * windows of the child bridges should be mapped to
2401                  * the PE as well.
2402                  */
2403                 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
2404                         continue;
2405                 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
2406                         pnv_ioda_setup_pe_res(pe,
2407                                 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
2408         }
2409 }
2410
2411 #ifdef CONFIG_DEBUG_FS
2412 static int pnv_pci_diag_data_set(void *data, u64 val)
2413 {
2414         struct pnv_phb *phb = data;
2415         s64 ret;
2416
2417         /* Retrieve the diag data from firmware */
2418         ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
2419                                           phb->diag_data_size);
2420         if (ret != OPAL_SUCCESS)
2421                 return -EIO;
2422
2423         /* Print the diag data to the kernel log */
2424         pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
2425         return 0;
2426 }
2427
2428 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set,
2429                          "%llu\n");
2430
2431 static int pnv_pci_ioda_pe_dump(void *data, u64 val)
2432 {
2433         struct pnv_phb *phb = data;
2434         int pe_num;
2435
2436         for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
2437                 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_num];
2438
2439                 if (!test_bit(pe_num, phb->ioda.pe_alloc))
2440                         continue;
2441
2442                 pe_warn(pe, "rid: %04x dev count: %2d flags: %s%s%s%s%s%s\n",
2443                         pe->rid, pe->device_count,
2444                         (pe->flags & PNV_IODA_PE_DEV) ? "dev " : "",
2445                         (pe->flags & PNV_IODA_PE_BUS) ? "bus " : "",
2446                         (pe->flags & PNV_IODA_PE_BUS_ALL) ? "all " : "",
2447                         (pe->flags & PNV_IODA_PE_MASTER) ? "master " : "",
2448                         (pe->flags & PNV_IODA_PE_SLAVE) ? "slave " : "",
2449                         (pe->flags & PNV_IODA_PE_VF) ? "vf " : "");
2450         }
2451
2452         return 0;
2453 }
2454
2455 DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_ioda_pe_dump_fops, NULL,
2456                          pnv_pci_ioda_pe_dump, "%llu\n");
2457
2458 #endif /* CONFIG_DEBUG_FS */
2459
2460 static void pnv_pci_ioda_create_dbgfs(void)
2461 {
2462 #ifdef CONFIG_DEBUG_FS
2463         struct pci_controller *hose, *tmp;
2464         struct pnv_phb *phb;
2465         char name[16];
2466
2467         list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2468                 phb = hose->private_data;
2469
2470                 sprintf(name, "PCI%04x", hose->global_number);
2471                 phb->dbgfs = debugfs_create_dir(name, arch_debugfs_dir);
2472
2473                 debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs,
2474                                            phb, &pnv_pci_diag_data_fops);
2475                 debugfs_create_file_unsafe("dump_ioda_pe_state", 0200, phb->dbgfs,
2476                                            phb, &pnv_pci_ioda_pe_dump_fops);
2477         }
2478 #endif /* CONFIG_DEBUG_FS */
2479 }
2480
2481 static void pnv_pci_enable_bridge(struct pci_bus *bus)
2482 {
2483         struct pci_dev *dev = bus->self;
2484         struct pci_bus *child;
2485
2486         /* Empty bus ? bail */
2487         if (list_empty(&bus->devices))
2488                 return;
2489
2490         /*
2491          * If there's a bridge associated with that bus enable it. This works
2492          * around races in the generic code if the enabling is done during
2493          * parallel probing. This can be removed once those races have been
2494          * fixed.
2495          */
2496         if (dev) {
2497                 int rc = pci_enable_device(dev);
2498                 if (rc)
2499                         pci_err(dev, "Error enabling bridge (%d)\n", rc);
2500                 pci_set_master(dev);
2501         }
2502
2503         /* Perform the same to child busses */
2504         list_for_each_entry(child, &bus->children, node)
2505                 pnv_pci_enable_bridge(child);
2506 }
2507
2508 static void pnv_pci_enable_bridges(void)
2509 {
2510         struct pci_controller *hose;
2511
2512         list_for_each_entry(hose, &hose_list, list_node)
2513                 pnv_pci_enable_bridge(hose->bus);
2514 }
2515
2516 static void pnv_pci_ioda_fixup(void)
2517 {
2518         pnv_pci_ioda_create_dbgfs();
2519
2520         pnv_pci_enable_bridges();
2521
2522 #ifdef CONFIG_EEH
2523         pnv_eeh_post_init();
2524 #endif
2525 }
2526
2527 /*
2528  * Returns the alignment for I/O or memory windows for P2P
2529  * bridges. That actually depends on how PEs are segmented.
2530  * For now, we return I/O or M32 segment size for PE sensitive
2531  * P2P bridges. Otherwise, the default values (4KiB for I/O,
2532  * 1MiB for memory) will be returned.
2533  *
2534  * The current PCI bus might be put into one PE, which was
2535  * create against the parent PCI bridge. For that case, we
2536  * needn't enlarge the alignment so that we can save some
2537  * resources.
2538  */
2539 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2540                                                 unsigned long type)
2541 {
2542         struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2543         int num_pci_bridges = 0;
2544         struct pci_dev *bridge;
2545
2546         bridge = bus->self;
2547         while (bridge) {
2548                 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2549                         num_pci_bridges++;
2550                         if (num_pci_bridges >= 2)
2551                                 return 1;
2552                 }
2553
2554                 bridge = bridge->bus->self;
2555         }
2556
2557         /*
2558          * We fall back to M32 if M64 isn't supported. We enforce the M64
2559          * alignment for any 64-bit resource, PCIe doesn't care and
2560          * bridges only do 64-bit prefetchable anyway.
2561          */
2562         if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
2563                 return phb->ioda.m64_segsize;
2564         if (type & IORESOURCE_MEM)
2565                 return phb->ioda.m32_segsize;
2566
2567         return phb->ioda.io_segsize;
2568 }
2569
2570 /*
2571  * We are updating root port or the upstream port of the
2572  * bridge behind the root port with PHB's windows in order
2573  * to accommodate the changes on required resources during
2574  * PCI (slot) hotplug, which is connected to either root
2575  * port or the downstream ports of PCIe switch behind the
2576  * root port.
2577  */
2578 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
2579                                            unsigned long type)
2580 {
2581         struct pci_controller *hose = pci_bus_to_host(bus);
2582         struct pnv_phb *phb = hose->private_data;
2583         struct pci_dev *bridge = bus->self;
2584         struct resource *r, *w;
2585         bool msi_region = false;
2586         int i;
2587
2588         /* Check if we need apply fixup to the bridge's windows */
2589         if (!pci_is_root_bus(bridge->bus) &&
2590             !pci_is_root_bus(bridge->bus->self->bus))
2591                 return;
2592
2593         /* Fixup the resources */
2594         for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
2595                 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
2596                 if (!r->flags || !r->parent)
2597                         continue;
2598
2599                 w = NULL;
2600                 if (r->flags & type & IORESOURCE_IO)
2601                         w = &hose->io_resource;
2602                 else if (pnv_pci_is_m64(phb, r) &&
2603                          (type & IORESOURCE_PREFETCH) &&
2604                          phb->ioda.m64_segsize)
2605                         w = &hose->mem_resources[1];
2606                 else if (r->flags & type & IORESOURCE_MEM) {
2607                         w = &hose->mem_resources[0];
2608                         msi_region = true;
2609                 }
2610
2611                 r->start = w->start;
2612                 r->end = w->end;
2613
2614                 /* The 64KB 32-bits MSI region shouldn't be included in
2615                  * the 32-bits bridge window. Otherwise, we can see strange
2616                  * issues. One of them is EEH error observed on Garrison.
2617                  *
2618                  * Exclude top 1MB region which is the minimal alignment of
2619                  * 32-bits bridge window.
2620                  */
2621                 if (msi_region) {
2622                         r->end += 0x10000;
2623                         r->end -= 0x100000;
2624                 }
2625         }
2626 }
2627
2628 static void pnv_pci_configure_bus(struct pci_bus *bus)
2629 {
2630         struct pci_dev *bridge = bus->self;
2631         struct pnv_ioda_pe *pe;
2632         bool all = (bridge && pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
2633
2634         dev_info(&bus->dev, "Configuring PE for bus\n");
2635
2636         /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
2637         if (WARN_ON(list_empty(&bus->devices)))
2638                 return;
2639
2640         /* Reserve PEs according to used M64 resources */
2641         pnv_ioda_reserve_m64_pe(bus, NULL, all);
2642
2643         /*
2644          * Assign PE. We might run here because of partial hotplug.
2645          * For the case, we just pick up the existing PE and should
2646          * not allocate resources again.
2647          */
2648         pe = pnv_ioda_setup_bus_PE(bus, all);
2649         if (!pe)
2650                 return;
2651
2652         pnv_ioda_setup_pe_seg(pe);
2653 }
2654
2655 static resource_size_t pnv_pci_default_alignment(void)
2656 {
2657         return PAGE_SIZE;
2658 }
2659
2660 /* Prevent enabling devices for which we couldn't properly
2661  * assign a PE
2662  */
2663 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
2664 {
2665         struct pci_dn *pdn;
2666
2667         pdn = pci_get_pdn(dev);
2668         if (!pdn || pdn->pe_number == IODA_INVALID_PE) {
2669                 pci_err(dev, "pci_enable_device() blocked, no PE assigned.\n");
2670                 return false;
2671         }
2672
2673         return true;
2674 }
2675
2676 static bool pnv_ocapi_enable_device_hook(struct pci_dev *dev)
2677 {
2678         struct pci_dn *pdn;
2679         struct pnv_ioda_pe *pe;
2680
2681         pdn = pci_get_pdn(dev);
2682         if (!pdn)
2683                 return false;
2684
2685         if (pdn->pe_number == IODA_INVALID_PE) {
2686                 pe = pnv_ioda_setup_dev_PE(dev);
2687                 if (!pe)
2688                         return false;
2689         }
2690         return true;
2691 }
2692
2693 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
2694                                        int num)
2695 {
2696         struct pnv_ioda_pe *pe = container_of(table_group,
2697                                               struct pnv_ioda_pe, table_group);
2698         struct pnv_phb *phb = pe->phb;
2699         unsigned int idx;
2700         long rc;
2701
2702         pe_info(pe, "Removing DMA window #%d\n", num);
2703         for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
2704                 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
2705                         continue;
2706
2707                 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2708                                                 idx, 0, 0ul, 0ul, 0ul);
2709                 if (rc != OPAL_SUCCESS) {
2710                         pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
2711                                 rc, idx);
2712                         return rc;
2713                 }
2714
2715                 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
2716         }
2717
2718         pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2719         return OPAL_SUCCESS;
2720 }
2721
2722 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
2723 {
2724         struct iommu_table *tbl = pe->table_group.tables[0];
2725         int64_t rc;
2726
2727         if (!pe->dma_setup_done)
2728                 return;
2729
2730         rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
2731         if (rc != OPAL_SUCCESS)
2732                 return;
2733
2734         pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size);
2735         if (pe->table_group.group) {
2736                 iommu_group_put(pe->table_group.group);
2737                 WARN_ON(pe->table_group.group);
2738         }
2739
2740         free_pages(tbl->it_base, get_order(tbl->it_size << 3));
2741         iommu_tce_table_put(tbl);
2742 }
2743
2744 void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
2745 {
2746         struct iommu_table *tbl = pe->table_group.tables[0];
2747         int64_t rc;
2748
2749         if (!pe->dma_setup_done)
2750                 return;
2751
2752         rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2753         if (rc)
2754                 pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
2755
2756         pnv_pci_ioda2_set_bypass(pe, false);
2757         if (pe->table_group.group) {
2758                 iommu_group_put(pe->table_group.group);
2759                 WARN_ON(pe->table_group.group);
2760         }
2761
2762         iommu_tce_table_put(tbl);
2763 }
2764
2765 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
2766                                  unsigned short win,
2767                                  unsigned int *map)
2768 {
2769         struct pnv_phb *phb = pe->phb;
2770         int idx;
2771         int64_t rc;
2772
2773         for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
2774                 if (map[idx] != pe->pe_number)
2775                         continue;
2776
2777                 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2778                                 phb->ioda.reserved_pe_idx, win, 0, idx);
2779
2780                 if (rc != OPAL_SUCCESS)
2781                         pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
2782                                 rc, win, idx);
2783
2784                 map[idx] = IODA_INVALID_PE;
2785         }
2786 }
2787
2788 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
2789 {
2790         struct pnv_phb *phb = pe->phb;
2791
2792         if (phb->type == PNV_PHB_IODA1) {
2793                 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
2794                                      phb->ioda.io_segmap);
2795                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2796                                      phb->ioda.m32_segmap);
2797                 /* M64 is pre-configured by pnv_ioda1_init_m64() */
2798         } else if (phb->type == PNV_PHB_IODA2) {
2799                 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2800                                      phb->ioda.m32_segmap);
2801         }
2802 }
2803
2804 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
2805 {
2806         struct pnv_phb *phb = pe->phb;
2807         struct pnv_ioda_pe *slave, *tmp;
2808
2809         pe_info(pe, "Releasing PE\n");
2810
2811         mutex_lock(&phb->ioda.pe_list_mutex);
2812         list_del(&pe->list);
2813         mutex_unlock(&phb->ioda.pe_list_mutex);
2814
2815         switch (phb->type) {
2816         case PNV_PHB_IODA1:
2817                 pnv_pci_ioda1_release_pe_dma(pe);
2818                 break;
2819         case PNV_PHB_IODA2:
2820                 pnv_pci_ioda2_release_pe_dma(pe);
2821                 break;
2822         case PNV_PHB_NPU_OCAPI:
2823                 break;
2824         default:
2825                 WARN_ON(1);
2826         }
2827
2828         pnv_ioda_release_pe_seg(pe);
2829         pnv_ioda_deconfigure_pe(pe->phb, pe);
2830
2831         /* Release slave PEs in the compound PE */
2832         if (pe->flags & PNV_IODA_PE_MASTER) {
2833                 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
2834                         list_del(&slave->list);
2835                         pnv_ioda_free_pe(slave);
2836                 }
2837         }
2838
2839         /*
2840          * The PE for root bus can be removed because of hotplug in EEH
2841          * recovery for fenced PHB error. We need to mark the PE dead so
2842          * that it can be populated again in PCI hot add path. The PE
2843          * shouldn't be destroyed as it's the global reserved resource.
2844          */
2845         if (phb->ioda.root_pe_idx == pe->pe_number)
2846                 return;
2847
2848         pnv_ioda_free_pe(pe);
2849 }
2850
2851 static void pnv_pci_release_device(struct pci_dev *pdev)
2852 {
2853         struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
2854         struct pci_dn *pdn = pci_get_pdn(pdev);
2855         struct pnv_ioda_pe *pe;
2856
2857         /* The VF PE state is torn down when sriov_disable() is called */
2858         if (pdev->is_virtfn)
2859                 return;
2860
2861         if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2862                 return;
2863
2864 #ifdef CONFIG_PCI_IOV
2865         /*
2866          * FIXME: Try move this to sriov_disable(). It's here since we allocate
2867          * the iov state at probe time since we need to fiddle with the IOV
2868          * resources.
2869          */
2870         if (pdev->is_physfn)
2871                 kfree(pdev->dev.archdata.iov_data);
2872 #endif
2873
2874         /*
2875          * PCI hotplug can happen as part of EEH error recovery. The @pdn
2876          * isn't removed and added afterwards in this scenario. We should
2877          * set the PE number in @pdn to an invalid one. Otherwise, the PE's
2878          * device count is decreased on removing devices while failing to
2879          * be increased on adding devices. It leads to unbalanced PE's device
2880          * count and eventually make normal PCI hotplug path broken.
2881          */
2882         pe = &phb->ioda.pe_array[pdn->pe_number];
2883         pdn->pe_number = IODA_INVALID_PE;
2884
2885         WARN_ON(--pe->device_count < 0);
2886         if (pe->device_count == 0)
2887                 pnv_ioda_release_pe(pe);
2888 }
2889
2890 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
2891 {
2892         struct pnv_phb *phb = hose->private_data;
2893
2894         opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
2895                        OPAL_ASSERT_RESET);
2896 }
2897
2898 static void pnv_pci_ioda_dma_bus_setup(struct pci_bus *bus)
2899 {
2900         struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2901         struct pnv_ioda_pe *pe;
2902
2903         list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2904                 if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)))
2905                         continue;
2906
2907                 if (!pe->pbus)
2908                         continue;
2909
2910                 if (bus->number == ((pe->rid >> 8) & 0xFF)) {
2911                         pe->pbus = bus;
2912                         break;
2913                 }
2914         }
2915 }
2916
2917 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
2918         .dma_dev_setup          = pnv_pci_ioda_dma_dev_setup,
2919         .dma_bus_setup          = pnv_pci_ioda_dma_bus_setup,
2920         .iommu_bypass_supported = pnv_pci_ioda_iommu_bypass_supported,
2921         .enable_device_hook     = pnv_pci_enable_device_hook,
2922         .release_device         = pnv_pci_release_device,
2923         .window_alignment       = pnv_pci_window_alignment,
2924         .setup_bridge           = pnv_pci_fixup_bridge_resources,
2925         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
2926         .shutdown               = pnv_pci_ioda_shutdown,
2927 };
2928
2929 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
2930         .enable_device_hook     = pnv_ocapi_enable_device_hook,
2931         .release_device         = pnv_pci_release_device,
2932         .window_alignment       = pnv_pci_window_alignment,
2933         .reset_secondary_bus    = pnv_pci_reset_secondary_bus,
2934         .shutdown               = pnv_pci_ioda_shutdown,
2935 };
2936
2937 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
2938                                          u64 hub_id, int ioda_type)
2939 {
2940         struct pci_controller *hose;
2941         struct pnv_phb *phb;
2942         unsigned long size, m64map_off, m32map_off, pemap_off;
2943         unsigned long iomap_off = 0, dma32map_off = 0;
2944         struct pnv_ioda_pe *root_pe;
2945         struct resource r;
2946         const __be64 *prop64;
2947         const __be32 *prop32;
2948         int len;
2949         unsigned int segno;
2950         u64 phb_id;
2951         void *aux;
2952         long rc;
2953
2954         if (!of_device_is_available(np))
2955                 return;
2956
2957         pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np);
2958
2959         prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
2960         if (!prop64) {
2961                 pr_err("  Missing \"ibm,opal-phbid\" property !\n");
2962                 return;
2963         }
2964         phb_id = be64_to_cpup(prop64);
2965         pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
2966
2967         phb = kzalloc(sizeof(*phb), GFP_KERNEL);
2968         if (!phb)
2969                 panic("%s: Failed to allocate %zu bytes\n", __func__,
2970                       sizeof(*phb));
2971
2972         /* Allocate PCI controller */
2973         phb->hose = hose = pcibios_alloc_controller(np);
2974         if (!phb->hose) {
2975                 pr_err("  Can't allocate PCI controller for %pOF\n",
2976                        np);
2977                 memblock_free(phb, sizeof(struct pnv_phb));
2978                 return;
2979         }
2980
2981         spin_lock_init(&phb->lock);
2982         prop32 = of_get_property(np, "bus-range", &len);
2983         if (prop32 && len == 8) {
2984                 hose->first_busno = be32_to_cpu(prop32[0]);
2985                 hose->last_busno = be32_to_cpu(prop32[1]);
2986         } else {
2987                 pr_warn("  Broken <bus-range> on %pOF\n", np);
2988                 hose->first_busno = 0;
2989                 hose->last_busno = 0xff;
2990         }
2991         hose->private_data = phb;
2992         phb->hub_id = hub_id;
2993         phb->opal_id = phb_id;
2994         phb->type = ioda_type;
2995         mutex_init(&phb->ioda.pe_alloc_mutex);
2996
2997         /* Detect specific models for error handling */
2998         if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
2999                 phb->model = PNV_PHB_MODEL_P7IOC;
3000         else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3001                 phb->model = PNV_PHB_MODEL_PHB3;
3002         else
3003                 phb->model = PNV_PHB_MODEL_UNKNOWN;
3004
3005         /* Initialize diagnostic data buffer */
3006         prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3007         if (prop32)
3008                 phb->diag_data_size = be32_to_cpup(prop32);
3009         else
3010                 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3011
3012         phb->diag_data = kzalloc(phb->diag_data_size, GFP_KERNEL);
3013         if (!phb->diag_data)
3014                 panic("%s: Failed to allocate %u bytes\n", __func__,
3015                       phb->diag_data_size);
3016
3017         /* Parse 32-bit and IO ranges (if any) */
3018         pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3019
3020         /* Get registers */
3021         if (!of_address_to_resource(np, 0, &r)) {
3022                 phb->regs_phys = r.start;
3023                 phb->regs = ioremap(r.start, resource_size(&r));
3024                 if (phb->regs == NULL)
3025                         pr_err("  Failed to map registers !\n");
3026         }
3027
3028         /* Initialize more IODA stuff */
3029         phb->ioda.total_pe_num = 1;
3030         prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3031         if (prop32)
3032                 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3033         prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3034         if (prop32)
3035                 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3036
3037         /* Invalidate RID to PE# mapping */
3038         for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3039                 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3040
3041         /* Parse 64-bit MMIO range */
3042         pnv_ioda_parse_m64_window(phb);
3043
3044         phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3045         /* FW Has already off top 64k of M32 space (MSI space) */
3046         phb->ioda.m32_size += 0x10000;
3047
3048         phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3049         phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3050         phb->ioda.io_size = hose->pci_io_size;
3051         phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3052         phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3053
3054         /* Calculate how many 32-bit TCE segments we have */
3055         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3056                                 PNV_IODA1_DMA32_SEGSIZE;
3057
3058         /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3059         size = ALIGN(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3060                         sizeof(unsigned long));
3061         m64map_off = size;
3062         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3063         m32map_off = size;
3064         size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3065         if (phb->type == PNV_PHB_IODA1) {
3066                 iomap_off = size;
3067                 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3068                 dma32map_off = size;
3069                 size += phb->ioda.dma32_count *
3070                         sizeof(phb->ioda.dma32_segmap[0]);
3071         }
3072         pemap_off = size;
3073         size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3074         aux = kzalloc(size, GFP_KERNEL);
3075         if (!aux)
3076                 panic("%s: Failed to allocate %lu bytes\n", __func__, size);
3077
3078         phb->ioda.pe_alloc = aux;
3079         phb->ioda.m64_segmap = aux + m64map_off;
3080         phb->ioda.m32_segmap = aux + m32map_off;
3081         for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3082                 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3083                 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3084         }
3085         if (phb->type == PNV_PHB_IODA1) {
3086                 phb->ioda.io_segmap = aux + iomap_off;
3087                 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3088                         phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3089
3090                 phb->ioda.dma32_segmap = aux + dma32map_off;
3091                 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3092                         phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3093         }
3094         phb->ioda.pe_array = aux + pemap_off;
3095
3096         /*
3097          * Choose PE number for root bus, which shouldn't have
3098          * M64 resources consumed by its child devices. To pick
3099          * the PE number adjacent to the reserved one if possible.
3100          */
3101         pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3102         if (phb->ioda.reserved_pe_idx == 0) {
3103                 phb->ioda.root_pe_idx = 1;
3104                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3105         } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3106                 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3107                 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3108         } else {
3109                 /* otherwise just allocate one */
3110                 root_pe = pnv_ioda_alloc_pe(phb, 1);
3111                 phb->ioda.root_pe_idx = root_pe->pe_number;
3112         }
3113
3114         INIT_LIST_HEAD(&phb->ioda.pe_list);
3115         mutex_init(&phb->ioda.pe_list_mutex);
3116
3117         /* Calculate how many 32-bit TCE segments we have */
3118         phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3119                                 PNV_IODA1_DMA32_SEGSIZE;
3120
3121 #if 0 /* We should really do that ... */
3122         rc = opal_pci_set_phb_mem_window(opal->phb_id,
3123                                          window_type,
3124                                          window_num,
3125                                          starting_real_address,
3126                                          starting_pci_address,
3127                                          segment_size);
3128 #endif
3129
3130         pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3131                 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3132                 phb->ioda.m32_size, phb->ioda.m32_segsize);
3133         if (phb->ioda.m64_size)
3134                 pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3135                         phb->ioda.m64_size, phb->ioda.m64_segsize);
3136         if (phb->ioda.io_size)
3137                 pr_info("                  IO: 0x%x [segment=0x%x]\n",
3138                         phb->ioda.io_size, phb->ioda.io_segsize);
3139
3140
3141         phb->hose->ops = &pnv_pci_ops;
3142         phb->get_pe_state = pnv_ioda_get_pe_state;
3143         phb->freeze_pe = pnv_ioda_freeze_pe;
3144         phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3145
3146         /* Setup MSI support */
3147         pnv_pci_init_ioda_msis(phb);
3148
3149         /*
3150          * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3151          * to let the PCI core do resource assignment. It's supposed
3152          * that the PCI core will do correct I/O and MMIO alignment
3153          * for the P2P bridge bars so that each PCI bus (excluding
3154          * the child P2P bridges) can form individual PE.
3155          */
3156         ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3157
3158         switch (phb->type) {
3159         case PNV_PHB_NPU_OCAPI:
3160                 hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3161                 break;
3162         default:
3163                 hose->controller_ops = pnv_pci_ioda_controller_ops;
3164         }
3165
3166         ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3167
3168 #ifdef CONFIG_PCI_IOV
3169         ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov;
3170         ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3171         ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3172         ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3173 #endif
3174
3175         pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3176
3177         /* Reset IODA tables to a clean state */
3178         rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3179         if (rc)
3180                 pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
3181
3182         /*
3183          * If we're running in kdump kernel, the previous kernel never
3184          * shutdown PCI devices correctly. We already got IODA table
3185          * cleaned out. So we have to issue PHB reset to stop all PCI
3186          * transactions from previous kernel. The ppc_pci_reset_phbs
3187          * kernel parameter will force this reset too. Additionally,
3188          * if the IODA reset above failed then use a bigger hammer.
3189          * This can happen if we get a PHB fatal error in very early
3190          * boot.
3191          */
3192         if (is_kdump_kernel() || pci_reset_phbs || rc) {
3193                 pr_info("  Issue PHB reset ...\n");
3194                 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3195                 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3196         }
3197
3198         /* Remove M64 resource if we can't configure it successfully */
3199         if (!phb->init_m64 || phb->init_m64(phb))
3200                 hose->mem_resources[1].flags = 0;
3201
3202         /* create pci_dn's for DT nodes under this PHB */
3203         pci_devs_phb_init_dynamic(hose);
3204 }
3205
3206 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3207 {
3208         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3209 }
3210
3211 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
3212 {
3213         pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
3214 }
3215
3216 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
3217 {
3218         struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
3219
3220         if (!machine_is(powernv))
3221                 return;
3222
3223         if (phb->type == PNV_PHB_NPU_OCAPI)
3224                 dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
3225 }
3226 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
3227
3228 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3229 {
3230         struct device_node *phbn;
3231         const __be64 *prop64;
3232         u64 hub_id;
3233
3234         pr_info("Probing IODA IO-Hub %pOF\n", np);
3235
3236         prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3237         if (!prop64) {
3238                 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3239                 return;
3240         }
3241         hub_id = be64_to_cpup(prop64);
3242         pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3243
3244         /* Count child PHBs */
3245         for_each_child_of_node(np, phbn) {
3246                 /* Look for IODA1 PHBs */
3247                 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3248                         pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3249         }
3250 }