Merge tag 'selinux-pr-20190726' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / powerpc / perf / core-book3s.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Performance event support - powerpc architecture code
4  *
5  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6  */
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/perf_event.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/uaccess.h>
14 #include <asm/reg.h>
15 #include <asm/pmc.h>
16 #include <asm/machdep.h>
17 #include <asm/firmware.h>
18 #include <asm/ptrace.h>
19 #include <asm/code-patching.h>
20
21 #ifdef CONFIG_PPC64
22 #include "internal.h"
23 #endif
24
25 #define BHRB_MAX_ENTRIES        32
26 #define BHRB_TARGET             0x0000000000000002
27 #define BHRB_PREDICTION         0x0000000000000001
28 #define BHRB_EA                 0xFFFFFFFFFFFFFFFCUL
29
30 struct cpu_hw_events {
31         int n_events;
32         int n_percpu;
33         int disabled;
34         int n_added;
35         int n_limited;
36         u8  pmcs_enabled;
37         struct perf_event *event[MAX_HWEVENTS];
38         u64 events[MAX_HWEVENTS];
39         unsigned int flags[MAX_HWEVENTS];
40         /*
41          * The order of the MMCR array is:
42          *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
43          *  - 32-bit, MMCR0, MMCR1, MMCR2
44          */
45         unsigned long mmcr[4];
46         struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
47         u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
48         u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49         unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
50         unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
51
52         unsigned int txn_flags;
53         int n_txn_start;
54
55         /* BHRB bits */
56         u64                             bhrb_filter;    /* BHRB HW branch filter */
57         unsigned int                    bhrb_users;
58         void                            *bhrb_context;
59         struct  perf_branch_stack       bhrb_stack;
60         struct  perf_branch_entry       bhrb_entries[BHRB_MAX_ENTRIES];
61         u64                             ic_init;
62 };
63
64 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
65
66 static struct power_pmu *ppmu;
67
68 /*
69  * Normally, to ignore kernel events we set the FCS (freeze counters
70  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
71  * hypervisor bit set in the MSR, or if we are running on a processor
72  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
73  * then we need to use the FCHV bit to ignore kernel events.
74  */
75 static unsigned int freeze_events_kernel = MMCR0_FCS;
76
77 /*
78  * 32-bit doesn't have MMCRA but does have an MMCR2,
79  * and a few other names are different.
80  */
81 #ifdef CONFIG_PPC32
82
83 #define MMCR0_FCHV              0
84 #define MMCR0_PMCjCE            MMCR0_PMCnCE
85 #define MMCR0_FC56              0
86 #define MMCR0_PMAO              0
87 #define MMCR0_EBE               0
88 #define MMCR0_BHRBA             0
89 #define MMCR0_PMCC              0
90 #define MMCR0_PMCC_U6           0
91
92 #define SPRN_MMCRA              SPRN_MMCR2
93 #define MMCRA_SAMPLE_ENABLE     0
94
95 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
96 {
97         return 0;
98 }
99 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
100 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
101 {
102         return 0;
103 }
104 static inline void perf_read_regs(struct pt_regs *regs)
105 {
106         regs->result = 0;
107 }
108 static inline int perf_intr_is_nmi(struct pt_regs *regs)
109 {
110         return 0;
111 }
112
113 static inline int siar_valid(struct pt_regs *regs)
114 {
115         return 1;
116 }
117
118 static bool is_ebb_event(struct perf_event *event) { return false; }
119 static int ebb_event_check(struct perf_event *event) { return 0; }
120 static void ebb_event_add(struct perf_event *event) { }
121 static void ebb_switch_out(unsigned long mmcr0) { }
122 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
123 {
124         return cpuhw->mmcr[0];
125 }
126
127 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
128 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
129 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
130 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
131 static void pmao_restore_workaround(bool ebb) { }
132 #endif /* CONFIG_PPC32 */
133
134 bool is_sier_available(void)
135 {
136         if (ppmu->flags & PPMU_HAS_SIER)
137                 return true;
138
139         return false;
140 }
141
142 static bool regs_use_siar(struct pt_regs *regs)
143 {
144         /*
145          * When we take a performance monitor exception the regs are setup
146          * using perf_read_regs() which overloads some fields, in particular
147          * regs->result to tell us whether to use SIAR.
148          *
149          * However if the regs are from another exception, eg. a syscall, then
150          * they have not been setup using perf_read_regs() and so regs->result
151          * is something random.
152          */
153         return ((TRAP(regs) == 0xf00) && regs->result);
154 }
155
156 /*
157  * Things that are specific to 64-bit implementations.
158  */
159 #ifdef CONFIG_PPC64
160
161 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
162 {
163         unsigned long mmcra = regs->dsisr;
164
165         if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
166                 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
167                 if (slot > 1)
168                         return 4 * (slot - 1);
169         }
170
171         return 0;
172 }
173
174 /*
175  * The user wants a data address recorded.
176  * If we're not doing instruction sampling, give them the SDAR
177  * (sampled data address).  If we are doing instruction sampling, then
178  * only give them the SDAR if it corresponds to the instruction
179  * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
180  * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
181  */
182 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
183 {
184         unsigned long mmcra = regs->dsisr;
185         bool sdar_valid;
186
187         if (ppmu->flags & PPMU_HAS_SIER)
188                 sdar_valid = regs->dar & SIER_SDAR_VALID;
189         else {
190                 unsigned long sdsync;
191
192                 if (ppmu->flags & PPMU_SIAR_VALID)
193                         sdsync = POWER7P_MMCRA_SDAR_VALID;
194                 else if (ppmu->flags & PPMU_ALT_SIPR)
195                         sdsync = POWER6_MMCRA_SDSYNC;
196                 else if (ppmu->flags & PPMU_NO_SIAR)
197                         sdsync = MMCRA_SAMPLE_ENABLE;
198                 else
199                         sdsync = MMCRA_SDSYNC;
200
201                 sdar_valid = mmcra & sdsync;
202         }
203
204         if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
205                 *addrp = mfspr(SPRN_SDAR);
206
207         if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
208                 is_kernel_addr(mfspr(SPRN_SDAR)))
209                 *addrp = 0;
210 }
211
212 static bool regs_sihv(struct pt_regs *regs)
213 {
214         unsigned long sihv = MMCRA_SIHV;
215
216         if (ppmu->flags & PPMU_HAS_SIER)
217                 return !!(regs->dar & SIER_SIHV);
218
219         if (ppmu->flags & PPMU_ALT_SIPR)
220                 sihv = POWER6_MMCRA_SIHV;
221
222         return !!(regs->dsisr & sihv);
223 }
224
225 static bool regs_sipr(struct pt_regs *regs)
226 {
227         unsigned long sipr = MMCRA_SIPR;
228
229         if (ppmu->flags & PPMU_HAS_SIER)
230                 return !!(regs->dar & SIER_SIPR);
231
232         if (ppmu->flags & PPMU_ALT_SIPR)
233                 sipr = POWER6_MMCRA_SIPR;
234
235         return !!(regs->dsisr & sipr);
236 }
237
238 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
239 {
240         if (regs->msr & MSR_PR)
241                 return PERF_RECORD_MISC_USER;
242         if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
243                 return PERF_RECORD_MISC_HYPERVISOR;
244         return PERF_RECORD_MISC_KERNEL;
245 }
246
247 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
248 {
249         bool use_siar = regs_use_siar(regs);
250
251         if (!use_siar)
252                 return perf_flags_from_msr(regs);
253
254         /*
255          * If we don't have flags in MMCRA, rather than using
256          * the MSR, we intuit the flags from the address in
257          * SIAR which should give slightly more reliable
258          * results
259          */
260         if (ppmu->flags & PPMU_NO_SIPR) {
261                 unsigned long siar = mfspr(SPRN_SIAR);
262                 if (is_kernel_addr(siar))
263                         return PERF_RECORD_MISC_KERNEL;
264                 return PERF_RECORD_MISC_USER;
265         }
266
267         /* PR has priority over HV, so order below is important */
268         if (regs_sipr(regs))
269                 return PERF_RECORD_MISC_USER;
270
271         if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
272                 return PERF_RECORD_MISC_HYPERVISOR;
273
274         return PERF_RECORD_MISC_KERNEL;
275 }
276
277 /*
278  * Overload regs->dsisr to store MMCRA so we only need to read it once
279  * on each interrupt.
280  * Overload regs->dar to store SIER if we have it.
281  * Overload regs->result to specify whether we should use the MSR (result
282  * is zero) or the SIAR (result is non zero).
283  */
284 static inline void perf_read_regs(struct pt_regs *regs)
285 {
286         unsigned long mmcra = mfspr(SPRN_MMCRA);
287         int marked = mmcra & MMCRA_SAMPLE_ENABLE;
288         int use_siar;
289
290         regs->dsisr = mmcra;
291
292         if (ppmu->flags & PPMU_HAS_SIER)
293                 regs->dar = mfspr(SPRN_SIER);
294
295         /*
296          * If this isn't a PMU exception (eg a software event) the SIAR is
297          * not valid. Use pt_regs.
298          *
299          * If it is a marked event use the SIAR.
300          *
301          * If the PMU doesn't update the SIAR for non marked events use
302          * pt_regs.
303          *
304          * If the PMU has HV/PR flags then check to see if they
305          * place the exception in userspace. If so, use pt_regs. In
306          * continuous sampling mode the SIAR and the PMU exception are
307          * not synchronised, so they may be many instructions apart.
308          * This can result in confusing backtraces. We still want
309          * hypervisor samples as well as samples in the kernel with
310          * interrupts off hence the userspace check.
311          */
312         if (TRAP(regs) != 0xf00)
313                 use_siar = 0;
314         else if ((ppmu->flags & PPMU_NO_SIAR))
315                 use_siar = 0;
316         else if (marked)
317                 use_siar = 1;
318         else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
319                 use_siar = 0;
320         else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
321                 use_siar = 0;
322         else
323                 use_siar = 1;
324
325         regs->result = use_siar;
326 }
327
328 /*
329  * If interrupts were soft-disabled when a PMU interrupt occurs, treat
330  * it as an NMI.
331  */
332 static inline int perf_intr_is_nmi(struct pt_regs *regs)
333 {
334         return (regs->softe & IRQS_DISABLED);
335 }
336
337 /*
338  * On processors like P7+ that have the SIAR-Valid bit, marked instructions
339  * must be sampled only if the SIAR-valid bit is set.
340  *
341  * For unmarked instructions and for processors that don't have the SIAR-Valid
342  * bit, assume that SIAR is valid.
343  */
344 static inline int siar_valid(struct pt_regs *regs)
345 {
346         unsigned long mmcra = regs->dsisr;
347         int marked = mmcra & MMCRA_SAMPLE_ENABLE;
348
349         if (marked) {
350                 if (ppmu->flags & PPMU_HAS_SIER)
351                         return regs->dar & SIER_SIAR_VALID;
352
353                 if (ppmu->flags & PPMU_SIAR_VALID)
354                         return mmcra & POWER7P_MMCRA_SIAR_VALID;
355         }
356
357         return 1;
358 }
359
360
361 /* Reset all possible BHRB entries */
362 static void power_pmu_bhrb_reset(void)
363 {
364         asm volatile(PPC_CLRBHRB);
365 }
366
367 static void power_pmu_bhrb_enable(struct perf_event *event)
368 {
369         struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
370
371         if (!ppmu->bhrb_nr)
372                 return;
373
374         /* Clear BHRB if we changed task context to avoid data leaks */
375         if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
376                 power_pmu_bhrb_reset();
377                 cpuhw->bhrb_context = event->ctx;
378         }
379         cpuhw->bhrb_users++;
380         perf_sched_cb_inc(event->ctx->pmu);
381 }
382
383 static void power_pmu_bhrb_disable(struct perf_event *event)
384 {
385         struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
386
387         if (!ppmu->bhrb_nr)
388                 return;
389
390         WARN_ON_ONCE(!cpuhw->bhrb_users);
391         cpuhw->bhrb_users--;
392         perf_sched_cb_dec(event->ctx->pmu);
393
394         if (!cpuhw->disabled && !cpuhw->bhrb_users) {
395                 /* BHRB cannot be turned off when other
396                  * events are active on the PMU.
397                  */
398
399                 /* avoid stale pointer */
400                 cpuhw->bhrb_context = NULL;
401         }
402 }
403
404 /* Called from ctxsw to prevent one process's branch entries to
405  * mingle with the other process's entries during context switch.
406  */
407 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
408 {
409         if (!ppmu->bhrb_nr)
410                 return;
411
412         if (sched_in)
413                 power_pmu_bhrb_reset();
414 }
415 /* Calculate the to address for a branch */
416 static __u64 power_pmu_bhrb_to(u64 addr)
417 {
418         unsigned int instr;
419         int ret;
420         __u64 target;
421
422         if (is_kernel_addr(addr)) {
423                 if (probe_kernel_read(&instr, (void *)addr, sizeof(instr)))
424                         return 0;
425
426                 return branch_target(&instr);
427         }
428
429         /* Userspace: need copy instruction here then translate it */
430         pagefault_disable();
431         ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
432         if (ret) {
433                 pagefault_enable();
434                 return 0;
435         }
436         pagefault_enable();
437
438         target = branch_target(&instr);
439         if ((!target) || (instr & BRANCH_ABSOLUTE))
440                 return target;
441
442         /* Translate relative branch target from kernel to user address */
443         return target - (unsigned long)&instr + addr;
444 }
445
446 /* Processing BHRB entries */
447 static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
448 {
449         u64 val;
450         u64 addr;
451         int r_index, u_index, pred;
452
453         r_index = 0;
454         u_index = 0;
455         while (r_index < ppmu->bhrb_nr) {
456                 /* Assembly read function */
457                 val = read_bhrb(r_index++);
458                 if (!val)
459                         /* Terminal marker: End of valid BHRB entries */
460                         break;
461                 else {
462                         addr = val & BHRB_EA;
463                         pred = val & BHRB_PREDICTION;
464
465                         if (!addr)
466                                 /* invalid entry */
467                                 continue;
468
469                         /*
470                          * BHRB rolling buffer could very much contain the kernel
471                          * addresses at this point. Check the privileges before
472                          * exporting it to userspace (avoid exposure of regions
473                          * where we could have speculative execution)
474                          */
475                         if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN) &&
476                                 is_kernel_addr(addr))
477                                 continue;
478
479                         /* Branches are read most recent first (ie. mfbhrb 0 is
480                          * the most recent branch).
481                          * There are two types of valid entries:
482                          * 1) a target entry which is the to address of a
483                          *    computed goto like a blr,bctr,btar.  The next
484                          *    entry read from the bhrb will be branch
485                          *    corresponding to this target (ie. the actual
486                          *    blr/bctr/btar instruction).
487                          * 2) a from address which is an actual branch.  If a
488                          *    target entry proceeds this, then this is the
489                          *    matching branch for that target.  If this is not
490                          *    following a target entry, then this is a branch
491                          *    where the target is given as an immediate field
492                          *    in the instruction (ie. an i or b form branch).
493                          *    In this case we need to read the instruction from
494                          *    memory to determine the target/to address.
495                          */
496
497                         if (val & BHRB_TARGET) {
498                                 /* Target branches use two entries
499                                  * (ie. computed gotos/XL form)
500                                  */
501                                 cpuhw->bhrb_entries[u_index].to = addr;
502                                 cpuhw->bhrb_entries[u_index].mispred = pred;
503                                 cpuhw->bhrb_entries[u_index].predicted = ~pred;
504
505                                 /* Get from address in next entry */
506                                 val = read_bhrb(r_index++);
507                                 addr = val & BHRB_EA;
508                                 if (val & BHRB_TARGET) {
509                                         /* Shouldn't have two targets in a
510                                            row.. Reset index and try again */
511                                         r_index--;
512                                         addr = 0;
513                                 }
514                                 cpuhw->bhrb_entries[u_index].from = addr;
515                         } else {
516                                 /* Branches to immediate field 
517                                    (ie I or B form) */
518                                 cpuhw->bhrb_entries[u_index].from = addr;
519                                 cpuhw->bhrb_entries[u_index].to =
520                                         power_pmu_bhrb_to(addr);
521                                 cpuhw->bhrb_entries[u_index].mispred = pred;
522                                 cpuhw->bhrb_entries[u_index].predicted = ~pred;
523                         }
524                         u_index++;
525
526                 }
527         }
528         cpuhw->bhrb_stack.nr = u_index;
529         return;
530 }
531
532 static bool is_ebb_event(struct perf_event *event)
533 {
534         /*
535          * This could be a per-PMU callback, but we'd rather avoid the cost. We
536          * check that the PMU supports EBB, meaning those that don't can still
537          * use bit 63 of the event code for something else if they wish.
538          */
539         return (ppmu->flags & PPMU_ARCH_207S) &&
540                ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
541 }
542
543 static int ebb_event_check(struct perf_event *event)
544 {
545         struct perf_event *leader = event->group_leader;
546
547         /* Event and group leader must agree on EBB */
548         if (is_ebb_event(leader) != is_ebb_event(event))
549                 return -EINVAL;
550
551         if (is_ebb_event(event)) {
552                 if (!(event->attach_state & PERF_ATTACH_TASK))
553                         return -EINVAL;
554
555                 if (!leader->attr.pinned || !leader->attr.exclusive)
556                         return -EINVAL;
557
558                 if (event->attr.freq ||
559                     event->attr.inherit ||
560                     event->attr.sample_type ||
561                     event->attr.sample_period ||
562                     event->attr.enable_on_exec)
563                         return -EINVAL;
564         }
565
566         return 0;
567 }
568
569 static void ebb_event_add(struct perf_event *event)
570 {
571         if (!is_ebb_event(event) || current->thread.used_ebb)
572                 return;
573
574         /*
575          * IFF this is the first time we've added an EBB event, set
576          * PMXE in the user MMCR0 so we can detect when it's cleared by
577          * userspace. We need this so that we can context switch while
578          * userspace is in the EBB handler (where PMXE is 0).
579          */
580         current->thread.used_ebb = 1;
581         current->thread.mmcr0 |= MMCR0_PMXE;
582 }
583
584 static void ebb_switch_out(unsigned long mmcr0)
585 {
586         if (!(mmcr0 & MMCR0_EBE))
587                 return;
588
589         current->thread.siar  = mfspr(SPRN_SIAR);
590         current->thread.sier  = mfspr(SPRN_SIER);
591         current->thread.sdar  = mfspr(SPRN_SDAR);
592         current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
593         current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
594 }
595
596 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
597 {
598         unsigned long mmcr0 = cpuhw->mmcr[0];
599
600         if (!ebb)
601                 goto out;
602
603         /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
604         mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
605
606         /*
607          * Add any bits from the user MMCR0, FC or PMAO. This is compatible
608          * with pmao_restore_workaround() because we may add PMAO but we never
609          * clear it here.
610          */
611         mmcr0 |= current->thread.mmcr0;
612
613         /*
614          * Be careful not to set PMXE if userspace had it cleared. This is also
615          * compatible with pmao_restore_workaround() because it has already
616          * cleared PMXE and we leave PMAO alone.
617          */
618         if (!(current->thread.mmcr0 & MMCR0_PMXE))
619                 mmcr0 &= ~MMCR0_PMXE;
620
621         mtspr(SPRN_SIAR, current->thread.siar);
622         mtspr(SPRN_SIER, current->thread.sier);
623         mtspr(SPRN_SDAR, current->thread.sdar);
624
625         /*
626          * Merge the kernel & user values of MMCR2. The semantics we implement
627          * are that the user MMCR2 can set bits, ie. cause counters to freeze,
628          * but not clear bits. If a task wants to be able to clear bits, ie.
629          * unfreeze counters, it should not set exclude_xxx in its events and
630          * instead manage the MMCR2 entirely by itself.
631          */
632         mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
633 out:
634         return mmcr0;
635 }
636
637 static void pmao_restore_workaround(bool ebb)
638 {
639         unsigned pmcs[6];
640
641         if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
642                 return;
643
644         /*
645          * On POWER8E there is a hardware defect which affects the PMU context
646          * switch logic, ie. power_pmu_disable/enable().
647          *
648          * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
649          * by the hardware. Sometime later the actual PMU exception is
650          * delivered.
651          *
652          * If we context switch, or simply disable/enable, the PMU prior to the
653          * exception arriving, the exception will be lost when we clear PMAO.
654          *
655          * When we reenable the PMU, we will write the saved MMCR0 with PMAO
656          * set, and this _should_ generate an exception. However because of the
657          * defect no exception is generated when we write PMAO, and we get
658          * stuck with no counters counting but no exception delivered.
659          *
660          * The workaround is to detect this case and tweak the hardware to
661          * create another pending PMU exception.
662          *
663          * We do that by setting up PMC6 (cycles) for an imminent overflow and
664          * enabling the PMU. That causes a new exception to be generated in the
665          * chip, but we don't take it yet because we have interrupts hard
666          * disabled. We then write back the PMU state as we want it to be seen
667          * by the exception handler. When we reenable interrupts the exception
668          * handler will be called and see the correct state.
669          *
670          * The logic is the same for EBB, except that the exception is gated by
671          * us having interrupts hard disabled as well as the fact that we are
672          * not in userspace. The exception is finally delivered when we return
673          * to userspace.
674          */
675
676         /* Only if PMAO is set and PMAO_SYNC is clear */
677         if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
678                 return;
679
680         /* If we're doing EBB, only if BESCR[GE] is set */
681         if (ebb && !(current->thread.bescr & BESCR_GE))
682                 return;
683
684         /*
685          * We are already soft-disabled in power_pmu_enable(). We need to hard
686          * disable to actually prevent the PMU exception from firing.
687          */
688         hard_irq_disable();
689
690         /*
691          * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
692          * Using read/write_pmc() in a for loop adds 12 function calls and
693          * almost doubles our code size.
694          */
695         pmcs[0] = mfspr(SPRN_PMC1);
696         pmcs[1] = mfspr(SPRN_PMC2);
697         pmcs[2] = mfspr(SPRN_PMC3);
698         pmcs[3] = mfspr(SPRN_PMC4);
699         pmcs[4] = mfspr(SPRN_PMC5);
700         pmcs[5] = mfspr(SPRN_PMC6);
701
702         /* Ensure all freeze bits are unset */
703         mtspr(SPRN_MMCR2, 0);
704
705         /* Set up PMC6 to overflow in one cycle */
706         mtspr(SPRN_PMC6, 0x7FFFFFFE);
707
708         /* Enable exceptions and unfreeze PMC6 */
709         mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
710
711         /* Now we need to refreeze and restore the PMCs */
712         mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
713
714         mtspr(SPRN_PMC1, pmcs[0]);
715         mtspr(SPRN_PMC2, pmcs[1]);
716         mtspr(SPRN_PMC3, pmcs[2]);
717         mtspr(SPRN_PMC4, pmcs[3]);
718         mtspr(SPRN_PMC5, pmcs[4]);
719         mtspr(SPRN_PMC6, pmcs[5]);
720 }
721
722 #endif /* CONFIG_PPC64 */
723
724 static void perf_event_interrupt(struct pt_regs *regs);
725
726 /*
727  * Read one performance monitor counter (PMC).
728  */
729 static unsigned long read_pmc(int idx)
730 {
731         unsigned long val;
732
733         switch (idx) {
734         case 1:
735                 val = mfspr(SPRN_PMC1);
736                 break;
737         case 2:
738                 val = mfspr(SPRN_PMC2);
739                 break;
740         case 3:
741                 val = mfspr(SPRN_PMC3);
742                 break;
743         case 4:
744                 val = mfspr(SPRN_PMC4);
745                 break;
746         case 5:
747                 val = mfspr(SPRN_PMC5);
748                 break;
749         case 6:
750                 val = mfspr(SPRN_PMC6);
751                 break;
752 #ifdef CONFIG_PPC64
753         case 7:
754                 val = mfspr(SPRN_PMC7);
755                 break;
756         case 8:
757                 val = mfspr(SPRN_PMC8);
758                 break;
759 #endif /* CONFIG_PPC64 */
760         default:
761                 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
762                 val = 0;
763         }
764         return val;
765 }
766
767 /*
768  * Write one PMC.
769  */
770 static void write_pmc(int idx, unsigned long val)
771 {
772         switch (idx) {
773         case 1:
774                 mtspr(SPRN_PMC1, val);
775                 break;
776         case 2:
777                 mtspr(SPRN_PMC2, val);
778                 break;
779         case 3:
780                 mtspr(SPRN_PMC3, val);
781                 break;
782         case 4:
783                 mtspr(SPRN_PMC4, val);
784                 break;
785         case 5:
786                 mtspr(SPRN_PMC5, val);
787                 break;
788         case 6:
789                 mtspr(SPRN_PMC6, val);
790                 break;
791 #ifdef CONFIG_PPC64
792         case 7:
793                 mtspr(SPRN_PMC7, val);
794                 break;
795         case 8:
796                 mtspr(SPRN_PMC8, val);
797                 break;
798 #endif /* CONFIG_PPC64 */
799         default:
800                 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
801         }
802 }
803
804 /* Called from sysrq_handle_showregs() */
805 void perf_event_print_debug(void)
806 {
807         unsigned long sdar, sier, flags;
808         u32 pmcs[MAX_HWEVENTS];
809         int i;
810
811         if (!ppmu) {
812                 pr_info("Performance monitor hardware not registered.\n");
813                 return;
814         }
815
816         if (!ppmu->n_counter)
817                 return;
818
819         local_irq_save(flags);
820
821         pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
822                  smp_processor_id(), ppmu->name, ppmu->n_counter);
823
824         for (i = 0; i < ppmu->n_counter; i++)
825                 pmcs[i] = read_pmc(i + 1);
826
827         for (; i < MAX_HWEVENTS; i++)
828                 pmcs[i] = 0xdeadbeef;
829
830         pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
831                  pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
832
833         if (ppmu->n_counter > 4)
834                 pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
835                          pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
836
837         pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
838                 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
839
840         sdar = sier = 0;
841 #ifdef CONFIG_PPC64
842         sdar = mfspr(SPRN_SDAR);
843
844         if (ppmu->flags & PPMU_HAS_SIER)
845                 sier = mfspr(SPRN_SIER);
846
847         if (ppmu->flags & PPMU_ARCH_207S) {
848                 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
849                         mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
850                 pr_info("EBBRR: %016lx BESCR: %016lx\n",
851                         mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
852         }
853 #endif
854         pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
855                 mfspr(SPRN_SIAR), sdar, sier);
856
857         local_irq_restore(flags);
858 }
859
860 /*
861  * Check if a set of events can all go on the PMU at once.
862  * If they can't, this will look at alternative codes for the events
863  * and see if any combination of alternative codes is feasible.
864  * The feasible set is returned in event_id[].
865  */
866 static int power_check_constraints(struct cpu_hw_events *cpuhw,
867                                    u64 event_id[], unsigned int cflags[],
868                                    int n_ev)
869 {
870         unsigned long mask, value, nv;
871         unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
872         int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
873         int i, j;
874         unsigned long addf = ppmu->add_fields;
875         unsigned long tadd = ppmu->test_adder;
876         unsigned long grp_mask = ppmu->group_constraint_mask;
877         unsigned long grp_val = ppmu->group_constraint_val;
878
879         if (n_ev > ppmu->n_counter)
880                 return -1;
881
882         /* First see if the events will go on as-is */
883         for (i = 0; i < n_ev; ++i) {
884                 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
885                     && !ppmu->limited_pmc_event(event_id[i])) {
886                         ppmu->get_alternatives(event_id[i], cflags[i],
887                                                cpuhw->alternatives[i]);
888                         event_id[i] = cpuhw->alternatives[i][0];
889                 }
890                 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
891                                          &cpuhw->avalues[i][0]))
892                         return -1;
893         }
894         value = mask = 0;
895         for (i = 0; i < n_ev; ++i) {
896                 nv = (value | cpuhw->avalues[i][0]) +
897                         (value & cpuhw->avalues[i][0] & addf);
898
899                 if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
900                         break;
901
902                 if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
903                         & (~grp_mask)) != 0)
904                         break;
905
906                 value = nv;
907                 mask |= cpuhw->amasks[i][0];
908         }
909         if (i == n_ev) {
910                 if ((value & mask & grp_mask) != (mask & grp_val))
911                         return -1;
912                 else
913                         return 0;       /* all OK */
914         }
915
916         /* doesn't work, gather alternatives... */
917         if (!ppmu->get_alternatives)
918                 return -1;
919         for (i = 0; i < n_ev; ++i) {
920                 choice[i] = 0;
921                 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
922                                                   cpuhw->alternatives[i]);
923                 for (j = 1; j < n_alt[i]; ++j)
924                         ppmu->get_constraint(cpuhw->alternatives[i][j],
925                                              &cpuhw->amasks[i][j],
926                                              &cpuhw->avalues[i][j]);
927         }
928
929         /* enumerate all possibilities and see if any will work */
930         i = 0;
931         j = -1;
932         value = mask = nv = 0;
933         while (i < n_ev) {
934                 if (j >= 0) {
935                         /* we're backtracking, restore context */
936                         value = svalues[i];
937                         mask = smasks[i];
938                         j = choice[i];
939                 }
940                 /*
941                  * See if any alternative k for event_id i,
942                  * where k > j, will satisfy the constraints.
943                  */
944                 while (++j < n_alt[i]) {
945                         nv = (value | cpuhw->avalues[i][j]) +
946                                 (value & cpuhw->avalues[i][j] & addf);
947                         if ((((nv + tadd) ^ value) & mask) == 0 &&
948                             (((nv + tadd) ^ cpuhw->avalues[i][j])
949                              & cpuhw->amasks[i][j]) == 0)
950                                 break;
951                 }
952                 if (j >= n_alt[i]) {
953                         /*
954                          * No feasible alternative, backtrack
955                          * to event_id i-1 and continue enumerating its
956                          * alternatives from where we got up to.
957                          */
958                         if (--i < 0)
959                                 return -1;
960                 } else {
961                         /*
962                          * Found a feasible alternative for event_id i,
963                          * remember where we got up to with this event_id,
964                          * go on to the next event_id, and start with
965                          * the first alternative for it.
966                          */
967                         choice[i] = j;
968                         svalues[i] = value;
969                         smasks[i] = mask;
970                         value = nv;
971                         mask |= cpuhw->amasks[i][j];
972                         ++i;
973                         j = -1;
974                 }
975         }
976
977         /* OK, we have a feasible combination, tell the caller the solution */
978         for (i = 0; i < n_ev; ++i)
979                 event_id[i] = cpuhw->alternatives[i][choice[i]];
980         return 0;
981 }
982
983 /*
984  * Check if newly-added events have consistent settings for
985  * exclude_{user,kernel,hv} with each other and any previously
986  * added events.
987  */
988 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
989                           int n_prev, int n_new)
990 {
991         int eu = 0, ek = 0, eh = 0;
992         int i, n, first;
993         struct perf_event *event;
994
995         /*
996          * If the PMU we're on supports per event exclude settings then we
997          * don't need to do any of this logic. NB. This assumes no PMU has both
998          * per event exclude and limited PMCs.
999          */
1000         if (ppmu->flags & PPMU_ARCH_207S)
1001                 return 0;
1002
1003         n = n_prev + n_new;
1004         if (n <= 1)
1005                 return 0;
1006
1007         first = 1;
1008         for (i = 0; i < n; ++i) {
1009                 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1010                         cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1011                         continue;
1012                 }
1013                 event = ctrs[i];
1014                 if (first) {
1015                         eu = event->attr.exclude_user;
1016                         ek = event->attr.exclude_kernel;
1017                         eh = event->attr.exclude_hv;
1018                         first = 0;
1019                 } else if (event->attr.exclude_user != eu ||
1020                            event->attr.exclude_kernel != ek ||
1021                            event->attr.exclude_hv != eh) {
1022                         return -EAGAIN;
1023                 }
1024         }
1025
1026         if (eu || ek || eh)
1027                 for (i = 0; i < n; ++i)
1028                         if (cflags[i] & PPMU_LIMITED_PMC_OK)
1029                                 cflags[i] |= PPMU_LIMITED_PMC_REQD;
1030
1031         return 0;
1032 }
1033
1034 static u64 check_and_compute_delta(u64 prev, u64 val)
1035 {
1036         u64 delta = (val - prev) & 0xfffffffful;
1037
1038         /*
1039          * POWER7 can roll back counter values, if the new value is smaller
1040          * than the previous value it will cause the delta and the counter to
1041          * have bogus values unless we rolled a counter over.  If a coutner is
1042          * rolled back, it will be smaller, but within 256, which is the maximum
1043          * number of events to rollback at once.  If we detect a rollback
1044          * return 0.  This can lead to a small lack of precision in the
1045          * counters.
1046          */
1047         if (prev > val && (prev - val) < 256)
1048                 delta = 0;
1049
1050         return delta;
1051 }
1052
1053 static void power_pmu_read(struct perf_event *event)
1054 {
1055         s64 val, delta, prev;
1056
1057         if (event->hw.state & PERF_HES_STOPPED)
1058                 return;
1059
1060         if (!event->hw.idx)
1061                 return;
1062
1063         if (is_ebb_event(event)) {
1064                 val = read_pmc(event->hw.idx);
1065                 local64_set(&event->hw.prev_count, val);
1066                 return;
1067         }
1068
1069         /*
1070          * Performance monitor interrupts come even when interrupts
1071          * are soft-disabled, as long as interrupts are hard-enabled.
1072          * Therefore we treat them like NMIs.
1073          */
1074         do {
1075                 prev = local64_read(&event->hw.prev_count);
1076                 barrier();
1077                 val = read_pmc(event->hw.idx);
1078                 delta = check_and_compute_delta(prev, val);
1079                 if (!delta)
1080                         return;
1081         } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1082
1083         local64_add(delta, &event->count);
1084
1085         /*
1086          * A number of places program the PMC with (0x80000000 - period_left).
1087          * We never want period_left to be less than 1 because we will program
1088          * the PMC with a value >= 0x800000000 and an edge detected PMC will
1089          * roll around to 0 before taking an exception. We have seen this
1090          * on POWER8.
1091          *
1092          * To fix this, clamp the minimum value of period_left to 1.
1093          */
1094         do {
1095                 prev = local64_read(&event->hw.period_left);
1096                 val = prev - delta;
1097                 if (val < 1)
1098                         val = 1;
1099         } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1100 }
1101
1102 /*
1103  * On some machines, PMC5 and PMC6 can't be written, don't respect
1104  * the freeze conditions, and don't generate interrupts.  This tells
1105  * us if `event' is using such a PMC.
1106  */
1107 static int is_limited_pmc(int pmcnum)
1108 {
1109         return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1110                 && (pmcnum == 5 || pmcnum == 6);
1111 }
1112
1113 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1114                                     unsigned long pmc5, unsigned long pmc6)
1115 {
1116         struct perf_event *event;
1117         u64 val, prev, delta;
1118         int i;
1119
1120         for (i = 0; i < cpuhw->n_limited; ++i) {
1121                 event = cpuhw->limited_counter[i];
1122                 if (!event->hw.idx)
1123                         continue;
1124                 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1125                 prev = local64_read(&event->hw.prev_count);
1126                 event->hw.idx = 0;
1127                 delta = check_and_compute_delta(prev, val);
1128                 if (delta)
1129                         local64_add(delta, &event->count);
1130         }
1131 }
1132
1133 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1134                                   unsigned long pmc5, unsigned long pmc6)
1135 {
1136         struct perf_event *event;
1137         u64 val, prev;
1138         int i;
1139
1140         for (i = 0; i < cpuhw->n_limited; ++i) {
1141                 event = cpuhw->limited_counter[i];
1142                 event->hw.idx = cpuhw->limited_hwidx[i];
1143                 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1144                 prev = local64_read(&event->hw.prev_count);
1145                 if (check_and_compute_delta(prev, val))
1146                         local64_set(&event->hw.prev_count, val);
1147                 perf_event_update_userpage(event);
1148         }
1149 }
1150
1151 /*
1152  * Since limited events don't respect the freeze conditions, we
1153  * have to read them immediately after freezing or unfreezing the
1154  * other events.  We try to keep the values from the limited
1155  * events as consistent as possible by keeping the delay (in
1156  * cycles and instructions) between freezing/unfreezing and reading
1157  * the limited events as small and consistent as possible.
1158  * Therefore, if any limited events are in use, we read them
1159  * both, and always in the same order, to minimize variability,
1160  * and do it inside the same asm that writes MMCR0.
1161  */
1162 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1163 {
1164         unsigned long pmc5, pmc6;
1165
1166         if (!cpuhw->n_limited) {
1167                 mtspr(SPRN_MMCR0, mmcr0);
1168                 return;
1169         }
1170
1171         /*
1172          * Write MMCR0, then read PMC5 and PMC6 immediately.
1173          * To ensure we don't get a performance monitor interrupt
1174          * between writing MMCR0 and freezing/thawing the limited
1175          * events, we first write MMCR0 with the event overflow
1176          * interrupt enable bits turned off.
1177          */
1178         asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1179                      : "=&r" (pmc5), "=&r" (pmc6)
1180                      : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1181                        "i" (SPRN_MMCR0),
1182                        "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1183
1184         if (mmcr0 & MMCR0_FC)
1185                 freeze_limited_counters(cpuhw, pmc5, pmc6);
1186         else
1187                 thaw_limited_counters(cpuhw, pmc5, pmc6);
1188
1189         /*
1190          * Write the full MMCR0 including the event overflow interrupt
1191          * enable bits, if necessary.
1192          */
1193         if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1194                 mtspr(SPRN_MMCR0, mmcr0);
1195 }
1196
1197 /*
1198  * Disable all events to prevent PMU interrupts and to allow
1199  * events to be added or removed.
1200  */
1201 static void power_pmu_disable(struct pmu *pmu)
1202 {
1203         struct cpu_hw_events *cpuhw;
1204         unsigned long flags, mmcr0, val;
1205
1206         if (!ppmu)
1207                 return;
1208         local_irq_save(flags);
1209         cpuhw = this_cpu_ptr(&cpu_hw_events);
1210
1211         if (!cpuhw->disabled) {
1212                 /*
1213                  * Check if we ever enabled the PMU on this cpu.
1214                  */
1215                 if (!cpuhw->pmcs_enabled) {
1216                         ppc_enable_pmcs();
1217                         cpuhw->pmcs_enabled = 1;
1218                 }
1219
1220                 /*
1221                  * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1222                  */
1223                 val  = mmcr0 = mfspr(SPRN_MMCR0);
1224                 val |= MMCR0_FC;
1225                 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1226                          MMCR0_FC56);
1227
1228                 /*
1229                  * The barrier is to make sure the mtspr has been
1230                  * executed and the PMU has frozen the events etc.
1231                  * before we return.
1232                  */
1233                 write_mmcr0(cpuhw, val);
1234                 mb();
1235                 isync();
1236
1237                 /*
1238                  * Disable instruction sampling if it was enabled
1239                  */
1240                 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1241                         mtspr(SPRN_MMCRA,
1242                               cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1243                         mb();
1244                         isync();
1245                 }
1246
1247                 cpuhw->disabled = 1;
1248                 cpuhw->n_added = 0;
1249
1250                 ebb_switch_out(mmcr0);
1251
1252 #ifdef CONFIG_PPC64
1253                 /*
1254                  * These are readable by userspace, may contain kernel
1255                  * addresses and are not switched by context switch, so clear
1256                  * them now to avoid leaking anything to userspace in general
1257                  * including to another process.
1258                  */
1259                 if (ppmu->flags & PPMU_ARCH_207S) {
1260                         mtspr(SPRN_SDAR, 0);
1261                         mtspr(SPRN_SIAR, 0);
1262                 }
1263 #endif
1264         }
1265
1266         local_irq_restore(flags);
1267 }
1268
1269 /*
1270  * Re-enable all events if disable == 0.
1271  * If we were previously disabled and events were added, then
1272  * put the new config on the PMU.
1273  */
1274 static void power_pmu_enable(struct pmu *pmu)
1275 {
1276         struct perf_event *event;
1277         struct cpu_hw_events *cpuhw;
1278         unsigned long flags;
1279         long i;
1280         unsigned long val, mmcr0;
1281         s64 left;
1282         unsigned int hwc_index[MAX_HWEVENTS];
1283         int n_lim;
1284         int idx;
1285         bool ebb;
1286
1287         if (!ppmu)
1288                 return;
1289         local_irq_save(flags);
1290
1291         cpuhw = this_cpu_ptr(&cpu_hw_events);
1292         if (!cpuhw->disabled)
1293                 goto out;
1294
1295         if (cpuhw->n_events == 0) {
1296                 ppc_set_pmu_inuse(0);
1297                 goto out;
1298         }
1299
1300         cpuhw->disabled = 0;
1301
1302         /*
1303          * EBB requires an exclusive group and all events must have the EBB
1304          * flag set, or not set, so we can just check a single event. Also we
1305          * know we have at least one event.
1306          */
1307         ebb = is_ebb_event(cpuhw->event[0]);
1308
1309         /*
1310          * If we didn't change anything, or only removed events,
1311          * no need to recalculate MMCR* settings and reset the PMCs.
1312          * Just reenable the PMU with the current MMCR* settings
1313          * (possibly updated for removal of events).
1314          */
1315         if (!cpuhw->n_added) {
1316                 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1317                 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1318                 goto out_enable;
1319         }
1320
1321         /*
1322          * Clear all MMCR settings and recompute them for the new set of events.
1323          */
1324         memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1325
1326         if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1327                                cpuhw->mmcr, cpuhw->event)) {
1328                 /* shouldn't ever get here */
1329                 printk(KERN_ERR "oops compute_mmcr failed\n");
1330                 goto out;
1331         }
1332
1333         if (!(ppmu->flags & PPMU_ARCH_207S)) {
1334                 /*
1335                  * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1336                  * bits for the first event. We have already checked that all
1337                  * events have the same value for these bits as the first event.
1338                  */
1339                 event = cpuhw->event[0];
1340                 if (event->attr.exclude_user)
1341                         cpuhw->mmcr[0] |= MMCR0_FCP;
1342                 if (event->attr.exclude_kernel)
1343                         cpuhw->mmcr[0] |= freeze_events_kernel;
1344                 if (event->attr.exclude_hv)
1345                         cpuhw->mmcr[0] |= MMCR0_FCHV;
1346         }
1347
1348         /*
1349          * Write the new configuration to MMCR* with the freeze
1350          * bit set and set the hardware events to their initial values.
1351          * Then unfreeze the events.
1352          */
1353         ppc_set_pmu_inuse(1);
1354         mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1355         mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1356         mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1357                                 | MMCR0_FC);
1358         if (ppmu->flags & PPMU_ARCH_207S)
1359                 mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1360
1361         /*
1362          * Read off any pre-existing events that need to move
1363          * to another PMC.
1364          */
1365         for (i = 0; i < cpuhw->n_events; ++i) {
1366                 event = cpuhw->event[i];
1367                 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1368                         power_pmu_read(event);
1369                         write_pmc(event->hw.idx, 0);
1370                         event->hw.idx = 0;
1371                 }
1372         }
1373
1374         /*
1375          * Initialize the PMCs for all the new and moved events.
1376          */
1377         cpuhw->n_limited = n_lim = 0;
1378         for (i = 0; i < cpuhw->n_events; ++i) {
1379                 event = cpuhw->event[i];
1380                 if (event->hw.idx)
1381                         continue;
1382                 idx = hwc_index[i] + 1;
1383                 if (is_limited_pmc(idx)) {
1384                         cpuhw->limited_counter[n_lim] = event;
1385                         cpuhw->limited_hwidx[n_lim] = idx;
1386                         ++n_lim;
1387                         continue;
1388                 }
1389
1390                 if (ebb)
1391                         val = local64_read(&event->hw.prev_count);
1392                 else {
1393                         val = 0;
1394                         if (event->hw.sample_period) {
1395                                 left = local64_read(&event->hw.period_left);
1396                                 if (left < 0x80000000L)
1397                                         val = 0x80000000L - left;
1398                         }
1399                         local64_set(&event->hw.prev_count, val);
1400                 }
1401
1402                 event->hw.idx = idx;
1403                 if (event->hw.state & PERF_HES_STOPPED)
1404                         val = 0;
1405                 write_pmc(idx, val);
1406
1407                 perf_event_update_userpage(event);
1408         }
1409         cpuhw->n_limited = n_lim;
1410         cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1411
1412  out_enable:
1413         pmao_restore_workaround(ebb);
1414
1415         mmcr0 = ebb_switch_in(ebb, cpuhw);
1416
1417         mb();
1418         if (cpuhw->bhrb_users)
1419                 ppmu->config_bhrb(cpuhw->bhrb_filter);
1420
1421         write_mmcr0(cpuhw, mmcr0);
1422
1423         /*
1424          * Enable instruction sampling if necessary
1425          */
1426         if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1427                 mb();
1428                 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1429         }
1430
1431  out:
1432
1433         local_irq_restore(flags);
1434 }
1435
1436 static int collect_events(struct perf_event *group, int max_count,
1437                           struct perf_event *ctrs[], u64 *events,
1438                           unsigned int *flags)
1439 {
1440         int n = 0;
1441         struct perf_event *event;
1442
1443         if (group->pmu->task_ctx_nr == perf_hw_context) {
1444                 if (n >= max_count)
1445                         return -1;
1446                 ctrs[n] = group;
1447                 flags[n] = group->hw.event_base;
1448                 events[n++] = group->hw.config;
1449         }
1450         for_each_sibling_event(event, group) {
1451                 if (event->pmu->task_ctx_nr == perf_hw_context &&
1452                     event->state != PERF_EVENT_STATE_OFF) {
1453                         if (n >= max_count)
1454                                 return -1;
1455                         ctrs[n] = event;
1456                         flags[n] = event->hw.event_base;
1457                         events[n++] = event->hw.config;
1458                 }
1459         }
1460         return n;
1461 }
1462
1463 /*
1464  * Add an event to the PMU.
1465  * If all events are not already frozen, then we disable and
1466  * re-enable the PMU in order to get hw_perf_enable to do the
1467  * actual work of reconfiguring the PMU.
1468  */
1469 static int power_pmu_add(struct perf_event *event, int ef_flags)
1470 {
1471         struct cpu_hw_events *cpuhw;
1472         unsigned long flags;
1473         int n0;
1474         int ret = -EAGAIN;
1475
1476         local_irq_save(flags);
1477         perf_pmu_disable(event->pmu);
1478
1479         /*
1480          * Add the event to the list (if there is room)
1481          * and check whether the total set is still feasible.
1482          */
1483         cpuhw = this_cpu_ptr(&cpu_hw_events);
1484         n0 = cpuhw->n_events;
1485         if (n0 >= ppmu->n_counter)
1486                 goto out;
1487         cpuhw->event[n0] = event;
1488         cpuhw->events[n0] = event->hw.config;
1489         cpuhw->flags[n0] = event->hw.event_base;
1490
1491         /*
1492          * This event may have been disabled/stopped in record_and_restart()
1493          * because we exceeded the ->event_limit. If re-starting the event,
1494          * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1495          * notification is re-enabled.
1496          */
1497         if (!(ef_flags & PERF_EF_START))
1498                 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1499         else
1500                 event->hw.state = 0;
1501
1502         /*
1503          * If group events scheduling transaction was started,
1504          * skip the schedulability test here, it will be performed
1505          * at commit time(->commit_txn) as a whole
1506          */
1507         if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1508                 goto nocheck;
1509
1510         if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1511                 goto out;
1512         if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1513                 goto out;
1514         event->hw.config = cpuhw->events[n0];
1515
1516 nocheck:
1517         ebb_event_add(event);
1518
1519         ++cpuhw->n_events;
1520         ++cpuhw->n_added;
1521
1522         ret = 0;
1523  out:
1524         if (has_branch_stack(event)) {
1525                 power_pmu_bhrb_enable(event);
1526                 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1527                                         event->attr.branch_sample_type);
1528         }
1529
1530         perf_pmu_enable(event->pmu);
1531         local_irq_restore(flags);
1532         return ret;
1533 }
1534
1535 /*
1536  * Remove an event from the PMU.
1537  */
1538 static void power_pmu_del(struct perf_event *event, int ef_flags)
1539 {
1540         struct cpu_hw_events *cpuhw;
1541         long i;
1542         unsigned long flags;
1543
1544         local_irq_save(flags);
1545         perf_pmu_disable(event->pmu);
1546
1547         power_pmu_read(event);
1548
1549         cpuhw = this_cpu_ptr(&cpu_hw_events);
1550         for (i = 0; i < cpuhw->n_events; ++i) {
1551                 if (event == cpuhw->event[i]) {
1552                         while (++i < cpuhw->n_events) {
1553                                 cpuhw->event[i-1] = cpuhw->event[i];
1554                                 cpuhw->events[i-1] = cpuhw->events[i];
1555                                 cpuhw->flags[i-1] = cpuhw->flags[i];
1556                         }
1557                         --cpuhw->n_events;
1558                         ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1559                         if (event->hw.idx) {
1560                                 write_pmc(event->hw.idx, 0);
1561                                 event->hw.idx = 0;
1562                         }
1563                         perf_event_update_userpage(event);
1564                         break;
1565                 }
1566         }
1567         for (i = 0; i < cpuhw->n_limited; ++i)
1568                 if (event == cpuhw->limited_counter[i])
1569                         break;
1570         if (i < cpuhw->n_limited) {
1571                 while (++i < cpuhw->n_limited) {
1572                         cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1573                         cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1574                 }
1575                 --cpuhw->n_limited;
1576         }
1577         if (cpuhw->n_events == 0) {
1578                 /* disable exceptions if no events are running */
1579                 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1580         }
1581
1582         if (has_branch_stack(event))
1583                 power_pmu_bhrb_disable(event);
1584
1585         perf_pmu_enable(event->pmu);
1586         local_irq_restore(flags);
1587 }
1588
1589 /*
1590  * POWER-PMU does not support disabling individual counters, hence
1591  * program their cycle counter to their max value and ignore the interrupts.
1592  */
1593
1594 static void power_pmu_start(struct perf_event *event, int ef_flags)
1595 {
1596         unsigned long flags;
1597         s64 left;
1598         unsigned long val;
1599
1600         if (!event->hw.idx || !event->hw.sample_period)
1601                 return;
1602
1603         if (!(event->hw.state & PERF_HES_STOPPED))
1604                 return;
1605
1606         if (ef_flags & PERF_EF_RELOAD)
1607                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1608
1609         local_irq_save(flags);
1610         perf_pmu_disable(event->pmu);
1611
1612         event->hw.state = 0;
1613         left = local64_read(&event->hw.period_left);
1614
1615         val = 0;
1616         if (left < 0x80000000L)
1617                 val = 0x80000000L - left;
1618
1619         write_pmc(event->hw.idx, val);
1620
1621         perf_event_update_userpage(event);
1622         perf_pmu_enable(event->pmu);
1623         local_irq_restore(flags);
1624 }
1625
1626 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1627 {
1628         unsigned long flags;
1629
1630         if (!event->hw.idx || !event->hw.sample_period)
1631                 return;
1632
1633         if (event->hw.state & PERF_HES_STOPPED)
1634                 return;
1635
1636         local_irq_save(flags);
1637         perf_pmu_disable(event->pmu);
1638
1639         power_pmu_read(event);
1640         event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1641         write_pmc(event->hw.idx, 0);
1642
1643         perf_event_update_userpage(event);
1644         perf_pmu_enable(event->pmu);
1645         local_irq_restore(flags);
1646 }
1647
1648 /*
1649  * Start group events scheduling transaction
1650  * Set the flag to make pmu::enable() not perform the
1651  * schedulability test, it will be performed at commit time
1652  *
1653  * We only support PERF_PMU_TXN_ADD transactions. Save the
1654  * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1655  * transactions.
1656  */
1657 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1658 {
1659         struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1660
1661         WARN_ON_ONCE(cpuhw->txn_flags);         /* txn already in flight */
1662
1663         cpuhw->txn_flags = txn_flags;
1664         if (txn_flags & ~PERF_PMU_TXN_ADD)
1665                 return;
1666
1667         perf_pmu_disable(pmu);
1668         cpuhw->n_txn_start = cpuhw->n_events;
1669 }
1670
1671 /*
1672  * Stop group events scheduling transaction
1673  * Clear the flag and pmu::enable() will perform the
1674  * schedulability test.
1675  */
1676 static void power_pmu_cancel_txn(struct pmu *pmu)
1677 {
1678         struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1679         unsigned int txn_flags;
1680
1681         WARN_ON_ONCE(!cpuhw->txn_flags);        /* no txn in flight */
1682
1683         txn_flags = cpuhw->txn_flags;
1684         cpuhw->txn_flags = 0;
1685         if (txn_flags & ~PERF_PMU_TXN_ADD)
1686                 return;
1687
1688         perf_pmu_enable(pmu);
1689 }
1690
1691 /*
1692  * Commit group events scheduling transaction
1693  * Perform the group schedulability test as a whole
1694  * Return 0 if success
1695  */
1696 static int power_pmu_commit_txn(struct pmu *pmu)
1697 {
1698         struct cpu_hw_events *cpuhw;
1699         long i, n;
1700
1701         if (!ppmu)
1702                 return -EAGAIN;
1703
1704         cpuhw = this_cpu_ptr(&cpu_hw_events);
1705         WARN_ON_ONCE(!cpuhw->txn_flags);        /* no txn in flight */
1706
1707         if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1708                 cpuhw->txn_flags = 0;
1709                 return 0;
1710         }
1711
1712         n = cpuhw->n_events;
1713         if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1714                 return -EAGAIN;
1715         i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1716         if (i < 0)
1717                 return -EAGAIN;
1718
1719         for (i = cpuhw->n_txn_start; i < n; ++i)
1720                 cpuhw->event[i]->hw.config = cpuhw->events[i];
1721
1722         cpuhw->txn_flags = 0;
1723         perf_pmu_enable(pmu);
1724         return 0;
1725 }
1726
1727 /*
1728  * Return 1 if we might be able to put event on a limited PMC,
1729  * or 0 if not.
1730  * An event can only go on a limited PMC if it counts something
1731  * that a limited PMC can count, doesn't require interrupts, and
1732  * doesn't exclude any processor mode.
1733  */
1734 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1735                                  unsigned int flags)
1736 {
1737         int n;
1738         u64 alt[MAX_EVENT_ALTERNATIVES];
1739
1740         if (event->attr.exclude_user
1741             || event->attr.exclude_kernel
1742             || event->attr.exclude_hv
1743             || event->attr.sample_period)
1744                 return 0;
1745
1746         if (ppmu->limited_pmc_event(ev))
1747                 return 1;
1748
1749         /*
1750          * The requested event_id isn't on a limited PMC already;
1751          * see if any alternative code goes on a limited PMC.
1752          */
1753         if (!ppmu->get_alternatives)
1754                 return 0;
1755
1756         flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1757         n = ppmu->get_alternatives(ev, flags, alt);
1758
1759         return n > 0;
1760 }
1761
1762 /*
1763  * Find an alternative event_id that goes on a normal PMC, if possible,
1764  * and return the event_id code, or 0 if there is no such alternative.
1765  * (Note: event_id code 0 is "don't count" on all machines.)
1766  */
1767 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1768 {
1769         u64 alt[MAX_EVENT_ALTERNATIVES];
1770         int n;
1771
1772         flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1773         n = ppmu->get_alternatives(ev, flags, alt);
1774         if (!n)
1775                 return 0;
1776         return alt[0];
1777 }
1778
1779 /* Number of perf_events counting hardware events */
1780 static atomic_t num_events;
1781 /* Used to avoid races in calling reserve/release_pmc_hardware */
1782 static DEFINE_MUTEX(pmc_reserve_mutex);
1783
1784 /*
1785  * Release the PMU if this is the last perf_event.
1786  */
1787 static void hw_perf_event_destroy(struct perf_event *event)
1788 {
1789         if (!atomic_add_unless(&num_events, -1, 1)) {
1790                 mutex_lock(&pmc_reserve_mutex);
1791                 if (atomic_dec_return(&num_events) == 0)
1792                         release_pmc_hardware();
1793                 mutex_unlock(&pmc_reserve_mutex);
1794         }
1795 }
1796
1797 /*
1798  * Translate a generic cache event_id config to a raw event_id code.
1799  */
1800 static int hw_perf_cache_event(u64 config, u64 *eventp)
1801 {
1802         unsigned long type, op, result;
1803         int ev;
1804
1805         if (!ppmu->cache_events)
1806                 return -EINVAL;
1807
1808         /* unpack config */
1809         type = config & 0xff;
1810         op = (config >> 8) & 0xff;
1811         result = (config >> 16) & 0xff;
1812
1813         if (type >= PERF_COUNT_HW_CACHE_MAX ||
1814             op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1815             result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1816                 return -EINVAL;
1817
1818         ev = (*ppmu->cache_events)[type][op][result];
1819         if (ev == 0)
1820                 return -EOPNOTSUPP;
1821         if (ev == -1)
1822                 return -EINVAL;
1823         *eventp = ev;
1824         return 0;
1825 }
1826
1827 static bool is_event_blacklisted(u64 ev)
1828 {
1829         int i;
1830
1831         for (i=0; i < ppmu->n_blacklist_ev; i++) {
1832                 if (ppmu->blacklist_ev[i] == ev)
1833                         return true;
1834         }
1835
1836         return false;
1837 }
1838
1839 static int power_pmu_event_init(struct perf_event *event)
1840 {
1841         u64 ev;
1842         unsigned long flags;
1843         struct perf_event *ctrs[MAX_HWEVENTS];
1844         u64 events[MAX_HWEVENTS];
1845         unsigned int cflags[MAX_HWEVENTS];
1846         int n;
1847         int err;
1848         struct cpu_hw_events *cpuhw;
1849         u64 bhrb_filter;
1850
1851         if (!ppmu)
1852                 return -ENOENT;
1853
1854         if (has_branch_stack(event)) {
1855                 /* PMU has BHRB enabled */
1856                 if (!(ppmu->flags & PPMU_ARCH_207S))
1857                         return -EOPNOTSUPP;
1858         }
1859
1860         switch (event->attr.type) {
1861         case PERF_TYPE_HARDWARE:
1862                 ev = event->attr.config;
1863                 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1864                         return -EOPNOTSUPP;
1865
1866                 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1867                         return -EINVAL;
1868                 ev = ppmu->generic_events[ev];
1869                 break;
1870         case PERF_TYPE_HW_CACHE:
1871                 err = hw_perf_cache_event(event->attr.config, &ev);
1872                 if (err)
1873                         return err;
1874
1875                 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1876                         return -EINVAL;
1877                 break;
1878         case PERF_TYPE_RAW:
1879                 ev = event->attr.config;
1880
1881                 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
1882                         return -EINVAL;
1883                 break;
1884         default:
1885                 return -ENOENT;
1886         }
1887
1888         event->hw.config_base = ev;
1889         event->hw.idx = 0;
1890
1891         /*
1892          * If we are not running on a hypervisor, force the
1893          * exclude_hv bit to 0 so that we don't care what
1894          * the user set it to.
1895          */
1896         if (!firmware_has_feature(FW_FEATURE_LPAR))
1897                 event->attr.exclude_hv = 0;
1898
1899         /*
1900          * If this is a per-task event, then we can use
1901          * PM_RUN_* events interchangeably with their non RUN_*
1902          * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1903          * XXX we should check if the task is an idle task.
1904          */
1905         flags = 0;
1906         if (event->attach_state & PERF_ATTACH_TASK)
1907                 flags |= PPMU_ONLY_COUNT_RUN;
1908
1909         /*
1910          * If this machine has limited events, check whether this
1911          * event_id could go on a limited event.
1912          */
1913         if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1914                 if (can_go_on_limited_pmc(event, ev, flags)) {
1915                         flags |= PPMU_LIMITED_PMC_OK;
1916                 } else if (ppmu->limited_pmc_event(ev)) {
1917                         /*
1918                          * The requested event_id is on a limited PMC,
1919                          * but we can't use a limited PMC; see if any
1920                          * alternative goes on a normal PMC.
1921                          */
1922                         ev = normal_pmc_alternative(ev, flags);
1923                         if (!ev)
1924                                 return -EINVAL;
1925                 }
1926         }
1927
1928         /* Extra checks for EBB */
1929         err = ebb_event_check(event);
1930         if (err)
1931                 return err;
1932
1933         /*
1934          * If this is in a group, check if it can go on with all the
1935          * other hardware events in the group.  We assume the event
1936          * hasn't been linked into its leader's sibling list at this point.
1937          */
1938         n = 0;
1939         if (event->group_leader != event) {
1940                 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1941                                    ctrs, events, cflags);
1942                 if (n < 0)
1943                         return -EINVAL;
1944         }
1945         events[n] = ev;
1946         ctrs[n] = event;
1947         cflags[n] = flags;
1948         if (check_excludes(ctrs, cflags, n, 1))
1949                 return -EINVAL;
1950
1951         cpuhw = &get_cpu_var(cpu_hw_events);
1952         err = power_check_constraints(cpuhw, events, cflags, n + 1);
1953
1954         if (has_branch_stack(event)) {
1955                 bhrb_filter = ppmu->bhrb_filter_map(
1956                                         event->attr.branch_sample_type);
1957
1958                 if (bhrb_filter == -1) {
1959                         put_cpu_var(cpu_hw_events);
1960                         return -EOPNOTSUPP;
1961                 }
1962                 cpuhw->bhrb_filter = bhrb_filter;
1963         }
1964
1965         put_cpu_var(cpu_hw_events);
1966         if (err)
1967                 return -EINVAL;
1968
1969         event->hw.config = events[n];
1970         event->hw.event_base = cflags[n];
1971         event->hw.last_period = event->hw.sample_period;
1972         local64_set(&event->hw.period_left, event->hw.last_period);
1973
1974         /*
1975          * For EBB events we just context switch the PMC value, we don't do any
1976          * of the sample_period logic. We use hw.prev_count for this.
1977          */
1978         if (is_ebb_event(event))
1979                 local64_set(&event->hw.prev_count, 0);
1980
1981         /*
1982          * See if we need to reserve the PMU.
1983          * If no events are currently in use, then we have to take a
1984          * mutex to ensure that we don't race with another task doing
1985          * reserve_pmc_hardware or release_pmc_hardware.
1986          */
1987         err = 0;
1988         if (!atomic_inc_not_zero(&num_events)) {
1989                 mutex_lock(&pmc_reserve_mutex);
1990                 if (atomic_read(&num_events) == 0 &&
1991                     reserve_pmc_hardware(perf_event_interrupt))
1992                         err = -EBUSY;
1993                 else
1994                         atomic_inc(&num_events);
1995                 mutex_unlock(&pmc_reserve_mutex);
1996         }
1997         event->destroy = hw_perf_event_destroy;
1998
1999         return err;
2000 }
2001
2002 static int power_pmu_event_idx(struct perf_event *event)
2003 {
2004         return event->hw.idx;
2005 }
2006
2007 ssize_t power_events_sysfs_show(struct device *dev,
2008                                 struct device_attribute *attr, char *page)
2009 {
2010         struct perf_pmu_events_attr *pmu_attr;
2011
2012         pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2013
2014         return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2015 }
2016
2017 static struct pmu power_pmu = {
2018         .pmu_enable     = power_pmu_enable,
2019         .pmu_disable    = power_pmu_disable,
2020         .event_init     = power_pmu_event_init,
2021         .add            = power_pmu_add,
2022         .del            = power_pmu_del,
2023         .start          = power_pmu_start,
2024         .stop           = power_pmu_stop,
2025         .read           = power_pmu_read,
2026         .start_txn      = power_pmu_start_txn,
2027         .cancel_txn     = power_pmu_cancel_txn,
2028         .commit_txn     = power_pmu_commit_txn,
2029         .event_idx      = power_pmu_event_idx,
2030         .sched_task     = power_pmu_sched_task,
2031 };
2032
2033 /*
2034  * A counter has overflowed; update its count and record
2035  * things if requested.  Note that interrupts are hard-disabled
2036  * here so there is no possibility of being interrupted.
2037  */
2038 static void record_and_restart(struct perf_event *event, unsigned long val,
2039                                struct pt_regs *regs)
2040 {
2041         u64 period = event->hw.sample_period;
2042         s64 prev, delta, left;
2043         int record = 0;
2044
2045         if (event->hw.state & PERF_HES_STOPPED) {
2046                 write_pmc(event->hw.idx, 0);
2047                 return;
2048         }
2049
2050         /* we don't have to worry about interrupts here */
2051         prev = local64_read(&event->hw.prev_count);
2052         delta = check_and_compute_delta(prev, val);
2053         local64_add(delta, &event->count);
2054
2055         /*
2056          * See if the total period for this event has expired,
2057          * and update for the next period.
2058          */
2059         val = 0;
2060         left = local64_read(&event->hw.period_left) - delta;
2061         if (delta == 0)
2062                 left++;
2063         if (period) {
2064                 if (left <= 0) {
2065                         left += period;
2066                         if (left <= 0)
2067                                 left = period;
2068                         record = siar_valid(regs);
2069                         event->hw.last_period = event->hw.sample_period;
2070                 }
2071                 if (left < 0x80000000LL)
2072                         val = 0x80000000LL - left;
2073         }
2074
2075         write_pmc(event->hw.idx, val);
2076         local64_set(&event->hw.prev_count, val);
2077         local64_set(&event->hw.period_left, left);
2078         perf_event_update_userpage(event);
2079
2080         /*
2081          * Finally record data if requested.
2082          */
2083         if (record) {
2084                 struct perf_sample_data data;
2085
2086                 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2087
2088                 if (event->attr.sample_type &
2089                     (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2090                         perf_get_data_addr(regs, &data.addr);
2091
2092                 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2093                         struct cpu_hw_events *cpuhw;
2094                         cpuhw = this_cpu_ptr(&cpu_hw_events);
2095                         power_pmu_bhrb_read(cpuhw);
2096                         data.br_stack = &cpuhw->bhrb_stack;
2097                 }
2098
2099                 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2100                                                 ppmu->get_mem_data_src)
2101                         ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2102
2103                 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2104                                                 ppmu->get_mem_weight)
2105                         ppmu->get_mem_weight(&data.weight);
2106
2107                 if (perf_event_overflow(event, &data, regs))
2108                         power_pmu_stop(event, 0);
2109         }
2110 }
2111
2112 /*
2113  * Called from generic code to get the misc flags (i.e. processor mode)
2114  * for an event_id.
2115  */
2116 unsigned long perf_misc_flags(struct pt_regs *regs)
2117 {
2118         u32 flags = perf_get_misc_flags(regs);
2119
2120         if (flags)
2121                 return flags;
2122         return user_mode(regs) ? PERF_RECORD_MISC_USER :
2123                 PERF_RECORD_MISC_KERNEL;
2124 }
2125
2126 /*
2127  * Called from generic code to get the instruction pointer
2128  * for an event_id.
2129  */
2130 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2131 {
2132         bool use_siar = regs_use_siar(regs);
2133
2134         if (use_siar && siar_valid(regs))
2135                 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2136         else if (use_siar)
2137                 return 0;               // no valid instruction pointer
2138         else
2139                 return regs->nip;
2140 }
2141
2142 static bool pmc_overflow_power7(unsigned long val)
2143 {
2144         /*
2145          * Events on POWER7 can roll back if a speculative event doesn't
2146          * eventually complete. Unfortunately in some rare cases they will
2147          * raise a performance monitor exception. We need to catch this to
2148          * ensure we reset the PMC. In all cases the PMC will be 256 or less
2149          * cycles from overflow.
2150          *
2151          * We only do this if the first pass fails to find any overflowing
2152          * PMCs because a user might set a period of less than 256 and we
2153          * don't want to mistakenly reset them.
2154          */
2155         if ((0x80000000 - val) <= 256)
2156                 return true;
2157
2158         return false;
2159 }
2160
2161 static bool pmc_overflow(unsigned long val)
2162 {
2163         if ((int)val < 0)
2164                 return true;
2165
2166         return false;
2167 }
2168
2169 /*
2170  * Performance monitor interrupt stuff
2171  */
2172 static void __perf_event_interrupt(struct pt_regs *regs)
2173 {
2174         int i, j;
2175         struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2176         struct perf_event *event;
2177         unsigned long val[8];
2178         int found, active;
2179         int nmi;
2180
2181         if (cpuhw->n_limited)
2182                 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2183                                         mfspr(SPRN_PMC6));
2184
2185         perf_read_regs(regs);
2186
2187         nmi = perf_intr_is_nmi(regs);
2188         if (nmi)
2189                 nmi_enter();
2190         else
2191                 irq_enter();
2192
2193         /* Read all the PMCs since we'll need them a bunch of times */
2194         for (i = 0; i < ppmu->n_counter; ++i)
2195                 val[i] = read_pmc(i + 1);
2196
2197         /* Try to find what caused the IRQ */
2198         found = 0;
2199         for (i = 0; i < ppmu->n_counter; ++i) {
2200                 if (!pmc_overflow(val[i]))
2201                         continue;
2202                 if (is_limited_pmc(i + 1))
2203                         continue; /* these won't generate IRQs */
2204                 /*
2205                  * We've found one that's overflowed.  For active
2206                  * counters we need to log this.  For inactive
2207                  * counters, we need to reset it anyway
2208                  */
2209                 found = 1;
2210                 active = 0;
2211                 for (j = 0; j < cpuhw->n_events; ++j) {
2212                         event = cpuhw->event[j];
2213                         if (event->hw.idx == (i + 1)) {
2214                                 active = 1;
2215                                 record_and_restart(event, val[i], regs);
2216                                 break;
2217                         }
2218                 }
2219                 if (!active)
2220                         /* reset non active counters that have overflowed */
2221                         write_pmc(i + 1, 0);
2222         }
2223         if (!found && pvr_version_is(PVR_POWER7)) {
2224                 /* check active counters for special buggy p7 overflow */
2225                 for (i = 0; i < cpuhw->n_events; ++i) {
2226                         event = cpuhw->event[i];
2227                         if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2228                                 continue;
2229                         if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2230                                 /* event has overflowed in a buggy way*/
2231                                 found = 1;
2232                                 record_and_restart(event,
2233                                                    val[event->hw.idx - 1],
2234                                                    regs);
2235                         }
2236                 }
2237         }
2238         if (!found && !nmi && printk_ratelimit())
2239                 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2240
2241         /*
2242          * Reset MMCR0 to its normal value.  This will set PMXE and
2243          * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2244          * and thus allow interrupts to occur again.
2245          * XXX might want to use MSR.PM to keep the events frozen until
2246          * we get back out of this interrupt.
2247          */
2248         write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2249
2250         if (nmi)
2251                 nmi_exit();
2252         else
2253                 irq_exit();
2254 }
2255
2256 static void perf_event_interrupt(struct pt_regs *regs)
2257 {
2258         u64 start_clock = sched_clock();
2259
2260         __perf_event_interrupt(regs);
2261         perf_sample_event_took(sched_clock() - start_clock);
2262 }
2263
2264 static int power_pmu_prepare_cpu(unsigned int cpu)
2265 {
2266         struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2267
2268         if (ppmu) {
2269                 memset(cpuhw, 0, sizeof(*cpuhw));
2270                 cpuhw->mmcr[0] = MMCR0_FC;
2271         }
2272         return 0;
2273 }
2274
2275 int register_power_pmu(struct power_pmu *pmu)
2276 {
2277         if (ppmu)
2278                 return -EBUSY;          /* something's already registered */
2279
2280         ppmu = pmu;
2281         pr_info("%s performance monitor hardware support registered\n",
2282                 pmu->name);
2283
2284         power_pmu.attr_groups = ppmu->attr_groups;
2285
2286 #ifdef MSR_HV
2287         /*
2288          * Use FCHV to ignore kernel events if MSR.HV is set.
2289          */
2290         if (mfmsr() & MSR_HV)
2291                 freeze_events_kernel = MMCR0_FCHV;
2292 #endif /* CONFIG_PPC64 */
2293
2294         perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2295         cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2296                           power_pmu_prepare_cpu, NULL);
2297         return 0;
2298 }
2299
2300 #ifdef CONFIG_PPC64
2301 static int __init init_ppc64_pmu(void)
2302 {
2303         /* run through all the pmu drivers one at a time */
2304         if (!init_power5_pmu())
2305                 return 0;
2306         else if (!init_power5p_pmu())
2307                 return 0;
2308         else if (!init_power6_pmu())
2309                 return 0;
2310         else if (!init_power7_pmu())
2311                 return 0;
2312         else if (!init_power8_pmu())
2313                 return 0;
2314         else if (!init_power9_pmu())
2315                 return 0;
2316         else if (!init_ppc970_pmu())
2317                 return 0;
2318         else
2319                 return init_generic_compat_pmu();
2320 }
2321 early_initcall(init_ppc64_pmu);
2322 #endif