Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[sfrench/cifs-2.6.git] / arch / powerpc / mm / hash_utils_64.c
1 /*
2  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3  *   {mikejc|engebret}@us.ibm.com
4  *
5  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6  *
7  * SMP scalability work:
8  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9  * 
10  *    Module name: htab.c
11  *
12  *    Description:
13  *      PowerPC Hashed Page Table functions
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  */
20
21 #undef DEBUG
22 #undef DEBUG_LOW
23
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/export.h>
31 #include <linux/ctype.h>
32 #include <linux/cache.h>
33 #include <linux/init.h>
34 #include <linux/signal.h>
35 #include <linux/memblock.h>
36 #include <linux/context_tracking.h>
37 #include <linux/libfdt.h>
38
39 #include <asm/processor.h>
40 #include <asm/pgtable.h>
41 #include <asm/mmu.h>
42 #include <asm/mmu_context.h>
43 #include <asm/page.h>
44 #include <asm/types.h>
45 #include <asm/uaccess.h>
46 #include <asm/machdep.h>
47 #include <asm/prom.h>
48 #include <asm/tlbflush.h>
49 #include <asm/io.h>
50 #include <asm/eeh.h>
51 #include <asm/tlb.h>
52 #include <asm/cacheflush.h>
53 #include <asm/cputable.h>
54 #include <asm/sections.h>
55 #include <asm/copro.h>
56 #include <asm/udbg.h>
57 #include <asm/code-patching.h>
58 #include <asm/fadump.h>
59 #include <asm/firmware.h>
60 #include <asm/tm.h>
61 #include <asm/trace.h>
62 #include <asm/ps3.h>
63
64 #ifdef DEBUG
65 #define DBG(fmt...) udbg_printf(fmt)
66 #else
67 #define DBG(fmt...)
68 #endif
69
70 #ifdef DEBUG_LOW
71 #define DBG_LOW(fmt...) udbg_printf(fmt)
72 #else
73 #define DBG_LOW(fmt...)
74 #endif
75
76 #define KB (1024)
77 #define MB (1024*KB)
78 #define GB (1024L*MB)
79
80 /*
81  * Note:  pte   --> Linux PTE
82  *        HPTE  --> PowerPC Hashed Page Table Entry
83  *
84  * Execution context:
85  *   htab_initialize is called with the MMU off (of course), but
86  *   the kernel has been copied down to zero so it can directly
87  *   reference global data.  At this point it is very difficult
88  *   to print debug info.
89  *
90  */
91
92 static unsigned long _SDR1;
93 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
94 EXPORT_SYMBOL_GPL(mmu_psize_defs);
95
96 u8 hpte_page_sizes[1 << LP_BITS];
97 EXPORT_SYMBOL_GPL(hpte_page_sizes);
98
99 struct hash_pte *htab_address;
100 unsigned long htab_size_bytes;
101 unsigned long htab_hash_mask;
102 EXPORT_SYMBOL_GPL(htab_hash_mask);
103 int mmu_linear_psize = MMU_PAGE_4K;
104 EXPORT_SYMBOL_GPL(mmu_linear_psize);
105 int mmu_virtual_psize = MMU_PAGE_4K;
106 int mmu_vmalloc_psize = MMU_PAGE_4K;
107 #ifdef CONFIG_SPARSEMEM_VMEMMAP
108 int mmu_vmemmap_psize = MMU_PAGE_4K;
109 #endif
110 int mmu_io_psize = MMU_PAGE_4K;
111 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
112 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
113 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
114 u16 mmu_slb_size = 64;
115 EXPORT_SYMBOL_GPL(mmu_slb_size);
116 #ifdef CONFIG_PPC_64K_PAGES
117 int mmu_ci_restrictions;
118 #endif
119 #ifdef CONFIG_DEBUG_PAGEALLOC
120 static u8 *linear_map_hash_slots;
121 static unsigned long linear_map_hash_count;
122 static DEFINE_SPINLOCK(linear_map_hash_lock);
123 #endif /* CONFIG_DEBUG_PAGEALLOC */
124 struct mmu_hash_ops mmu_hash_ops;
125 EXPORT_SYMBOL(mmu_hash_ops);
126
127 /* There are definitions of page sizes arrays to be used when none
128  * is provided by the firmware.
129  */
130
131 /* Pre-POWER4 CPUs (4k pages only)
132  */
133 static struct mmu_psize_def mmu_psize_defaults_old[] = {
134         [MMU_PAGE_4K] = {
135                 .shift  = 12,
136                 .sllp   = 0,
137                 .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
138                 .avpnm  = 0,
139                 .tlbiel = 0,
140         },
141 };
142
143 /* POWER4, GPUL, POWER5
144  *
145  * Support for 16Mb large pages
146  */
147 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
148         [MMU_PAGE_4K] = {
149                 .shift  = 12,
150                 .sllp   = 0,
151                 .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
152                 .avpnm  = 0,
153                 .tlbiel = 1,
154         },
155         [MMU_PAGE_16M] = {
156                 .shift  = 24,
157                 .sllp   = SLB_VSID_L,
158                 .penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
159                             [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
160                 .avpnm  = 0x1UL,
161                 .tlbiel = 0,
162         },
163 };
164
165 /*
166  * 'R' and 'C' update notes:
167  *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
168  *     create writeable HPTEs without C set, because the hcall H_PROTECT
169  *     that we use in that case will not update C
170  *  - The above is however not a problem, because we also don't do that
171  *     fancy "no flush" variant of eviction and we use H_REMOVE which will
172  *     do the right thing and thus we don't have the race I described earlier
173  *
174  *    - Under bare metal,  we do have the race, so we need R and C set
175  *    - We make sure R is always set and never lost
176  *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
177  */
178 unsigned long htab_convert_pte_flags(unsigned long pteflags)
179 {
180         unsigned long rflags = 0;
181
182         /* _PAGE_EXEC -> NOEXEC */
183         if ((pteflags & _PAGE_EXEC) == 0)
184                 rflags |= HPTE_R_N;
185         /*
186          * PPP bits:
187          * Linux uses slb key 0 for kernel and 1 for user.
188          * kernel RW areas are mapped with PPP=0b000
189          * User area is mapped with PPP=0b010 for read/write
190          * or PPP=0b011 for read-only (including writeable but clean pages).
191          */
192         if (pteflags & _PAGE_PRIVILEGED) {
193                 /*
194                  * Kernel read only mapped with ppp bits 0b110
195                  */
196                 if (!(pteflags & _PAGE_WRITE)) {
197                         if (mmu_has_feature(MMU_FTR_KERNEL_RO))
198                                 rflags |= (HPTE_R_PP0 | 0x2);
199                         else
200                                 rflags |= 0x3;
201                 }
202         } else {
203                 if (pteflags & _PAGE_RWX)
204                         rflags |= 0x2;
205                 if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
206                         rflags |= 0x1;
207         }
208         /*
209          * We can't allow hardware to update hpte bits. Hence always
210          * set 'R' bit and set 'C' if it is a write fault
211          */
212         rflags |=  HPTE_R_R;
213
214         if (pteflags & _PAGE_DIRTY)
215                 rflags |= HPTE_R_C;
216         /*
217          * Add in WIG bits
218          */
219
220         if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
221                 rflags |= HPTE_R_I;
222         else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
223                 rflags |= (HPTE_R_I | HPTE_R_G);
224         else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
225                 rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
226         else
227                 /*
228                  * Add memory coherence if cache inhibited is not set
229                  */
230                 rflags |= HPTE_R_M;
231
232         return rflags;
233 }
234
235 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
236                       unsigned long pstart, unsigned long prot,
237                       int psize, int ssize)
238 {
239         unsigned long vaddr, paddr;
240         unsigned int step, shift;
241         int ret = 0;
242
243         shift = mmu_psize_defs[psize].shift;
244         step = 1 << shift;
245
246         prot = htab_convert_pte_flags(prot);
247
248         DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
249             vstart, vend, pstart, prot, psize, ssize);
250
251         for (vaddr = vstart, paddr = pstart; vaddr < vend;
252              vaddr += step, paddr += step) {
253                 unsigned long hash, hpteg;
254                 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
255                 unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
256                 unsigned long tprot = prot;
257
258                 /*
259                  * If we hit a bad address return error.
260                  */
261                 if (!vsid)
262                         return -1;
263                 /* Make kernel text executable */
264                 if (overlaps_kernel_text(vaddr, vaddr + step))
265                         tprot &= ~HPTE_R_N;
266
267                 /* Make kvm guest trampolines executable */
268                 if (overlaps_kvm_tmp(vaddr, vaddr + step))
269                         tprot &= ~HPTE_R_N;
270
271                 /*
272                  * If relocatable, check if it overlaps interrupt vectors that
273                  * are copied down to real 0. For relocatable kernel
274                  * (e.g. kdump case) we copy interrupt vectors down to real
275                  * address 0. Mark that region as executable. This is
276                  * because on p8 system with relocation on exception feature
277                  * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
278                  * in order to execute the interrupt handlers in virtual
279                  * mode the vector region need to be marked as executable.
280                  */
281                 if ((PHYSICAL_START > MEMORY_START) &&
282                         overlaps_interrupt_vector_text(vaddr, vaddr + step))
283                                 tprot &= ~HPTE_R_N;
284
285                 hash = hpt_hash(vpn, shift, ssize);
286                 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
287
288                 BUG_ON(!mmu_hash_ops.hpte_insert);
289                 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
290                                                HPTE_V_BOLTED, psize, psize,
291                                                ssize);
292
293                 if (ret < 0)
294                         break;
295
296 #ifdef CONFIG_DEBUG_PAGEALLOC
297                 if (debug_pagealloc_enabled() &&
298                         (paddr >> PAGE_SHIFT) < linear_map_hash_count)
299                         linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
300 #endif /* CONFIG_DEBUG_PAGEALLOC */
301         }
302         return ret < 0 ? ret : 0;
303 }
304
305 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
306                       int psize, int ssize)
307 {
308         unsigned long vaddr;
309         unsigned int step, shift;
310         int rc;
311         int ret = 0;
312
313         shift = mmu_psize_defs[psize].shift;
314         step = 1 << shift;
315
316         if (!mmu_hash_ops.hpte_removebolted)
317                 return -ENODEV;
318
319         for (vaddr = vstart; vaddr < vend; vaddr += step) {
320                 rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
321                 if (rc == -ENOENT) {
322                         ret = -ENOENT;
323                         continue;
324                 }
325                 if (rc < 0)
326                         return rc;
327         }
328
329         return ret;
330 }
331
332 static bool disable_1tb_segments = false;
333
334 static int __init parse_disable_1tb_segments(char *p)
335 {
336         disable_1tb_segments = true;
337         return 0;
338 }
339 early_param("disable_1tb_segments", parse_disable_1tb_segments);
340
341 static int __init htab_dt_scan_seg_sizes(unsigned long node,
342                                          const char *uname, int depth,
343                                          void *data)
344 {
345         const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
346         const __be32 *prop;
347         int size = 0;
348
349         /* We are scanning "cpu" nodes only */
350         if (type == NULL || strcmp(type, "cpu") != 0)
351                 return 0;
352
353         prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
354         if (prop == NULL)
355                 return 0;
356         for (; size >= 4; size -= 4, ++prop) {
357                 if (be32_to_cpu(prop[0]) == 40) {
358                         DBG("1T segment support detected\n");
359
360                         if (disable_1tb_segments) {
361                                 DBG("1T segments disabled by command line\n");
362                                 break;
363                         }
364
365                         cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
366                         return 1;
367                 }
368         }
369         cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
370         return 0;
371 }
372
373 static int __init get_idx_from_shift(unsigned int shift)
374 {
375         int idx = -1;
376
377         switch (shift) {
378         case 0xc:
379                 idx = MMU_PAGE_4K;
380                 break;
381         case 0x10:
382                 idx = MMU_PAGE_64K;
383                 break;
384         case 0x14:
385                 idx = MMU_PAGE_1M;
386                 break;
387         case 0x18:
388                 idx = MMU_PAGE_16M;
389                 break;
390         case 0x22:
391                 idx = MMU_PAGE_16G;
392                 break;
393         }
394         return idx;
395 }
396
397 static int __init htab_dt_scan_page_sizes(unsigned long node,
398                                           const char *uname, int depth,
399                                           void *data)
400 {
401         const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
402         const __be32 *prop;
403         int size = 0;
404
405         /* We are scanning "cpu" nodes only */
406         if (type == NULL || strcmp(type, "cpu") != 0)
407                 return 0;
408
409         prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
410         if (!prop)
411                 return 0;
412
413         pr_info("Page sizes from device-tree:\n");
414         size /= 4;
415         cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
416         while(size > 0) {
417                 unsigned int base_shift = be32_to_cpu(prop[0]);
418                 unsigned int slbenc = be32_to_cpu(prop[1]);
419                 unsigned int lpnum = be32_to_cpu(prop[2]);
420                 struct mmu_psize_def *def;
421                 int idx, base_idx;
422
423                 size -= 3; prop += 3;
424                 base_idx = get_idx_from_shift(base_shift);
425                 if (base_idx < 0) {
426                         /* skip the pte encoding also */
427                         prop += lpnum * 2; size -= lpnum * 2;
428                         continue;
429                 }
430                 def = &mmu_psize_defs[base_idx];
431                 if (base_idx == MMU_PAGE_16M)
432                         cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
433
434                 def->shift = base_shift;
435                 if (base_shift <= 23)
436                         def->avpnm = 0;
437                 else
438                         def->avpnm = (1 << (base_shift - 23)) - 1;
439                 def->sllp = slbenc;
440                 /*
441                  * We don't know for sure what's up with tlbiel, so
442                  * for now we only set it for 4K and 64K pages
443                  */
444                 if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
445                         def->tlbiel = 1;
446                 else
447                         def->tlbiel = 0;
448
449                 while (size > 0 && lpnum) {
450                         unsigned int shift = be32_to_cpu(prop[0]);
451                         int penc  = be32_to_cpu(prop[1]);
452
453                         prop += 2; size -= 2;
454                         lpnum--;
455
456                         idx = get_idx_from_shift(shift);
457                         if (idx < 0)
458                                 continue;
459
460                         if (penc == -1)
461                                 pr_err("Invalid penc for base_shift=%d "
462                                        "shift=%d\n", base_shift, shift);
463
464                         def->penc[idx] = penc;
465                         pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
466                                 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
467                                 base_shift, shift, def->sllp,
468                                 def->avpnm, def->tlbiel, def->penc[idx]);
469                 }
470         }
471
472         return 1;
473 }
474
475 #ifdef CONFIG_HUGETLB_PAGE
476 /* Scan for 16G memory blocks that have been set aside for huge pages
477  * and reserve those blocks for 16G huge pages.
478  */
479 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
480                                         const char *uname, int depth,
481                                         void *data) {
482         const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
483         const __be64 *addr_prop;
484         const __be32 *page_count_prop;
485         unsigned int expected_pages;
486         long unsigned int phys_addr;
487         long unsigned int block_size;
488
489         /* We are scanning "memory" nodes only */
490         if (type == NULL || strcmp(type, "memory") != 0)
491                 return 0;
492
493         /* This property is the log base 2 of the number of virtual pages that
494          * will represent this memory block. */
495         page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
496         if (page_count_prop == NULL)
497                 return 0;
498         expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
499         addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
500         if (addr_prop == NULL)
501                 return 0;
502         phys_addr = be64_to_cpu(addr_prop[0]);
503         block_size = be64_to_cpu(addr_prop[1]);
504         if (block_size != (16 * GB))
505                 return 0;
506         printk(KERN_INFO "Huge page(16GB) memory: "
507                         "addr = 0x%lX size = 0x%lX pages = %d\n",
508                         phys_addr, block_size, expected_pages);
509         if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
510                 memblock_reserve(phys_addr, block_size * expected_pages);
511                 add_gpage(phys_addr, block_size, expected_pages);
512         }
513         return 0;
514 }
515 #endif /* CONFIG_HUGETLB_PAGE */
516
517 static void mmu_psize_set_default_penc(void)
518 {
519         int bpsize, apsize;
520         for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
521                 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
522                         mmu_psize_defs[bpsize].penc[apsize] = -1;
523 }
524
525 #ifdef CONFIG_PPC_64K_PAGES
526
527 static bool might_have_hea(void)
528 {
529         /*
530          * The HEA ethernet adapter requires awareness of the
531          * GX bus. Without that awareness we can easily assume
532          * we will never see an HEA ethernet device.
533          */
534 #ifdef CONFIG_IBMEBUS
535         return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
536                 firmware_has_feature(FW_FEATURE_SPLPAR);
537 #else
538         return false;
539 #endif
540 }
541
542 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
543
544 static void __init htab_scan_page_sizes(void)
545 {
546         int rc;
547
548         /* se the invalid penc to -1 */
549         mmu_psize_set_default_penc();
550
551         /* Default to 4K pages only */
552         memcpy(mmu_psize_defs, mmu_psize_defaults_old,
553                sizeof(mmu_psize_defaults_old));
554
555         /*
556          * Try to find the available page sizes in the device-tree
557          */
558         rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
559         if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
560                 /*
561                  * Nothing in the device-tree, but the CPU supports 16M pages,
562                  * so let's fallback on a known size list for 16M capable CPUs.
563                  */
564                 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
565                        sizeof(mmu_psize_defaults_gp));
566         }
567
568 #ifdef CONFIG_HUGETLB_PAGE
569         /* Reserve 16G huge page memory sections for huge pages */
570         of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
571 #endif /* CONFIG_HUGETLB_PAGE */
572 }
573
574 /*
575  * Fill in the hpte_page_sizes[] array.
576  * We go through the mmu_psize_defs[] array looking for all the
577  * supported base/actual page size combinations.  Each combination
578  * has a unique pagesize encoding (penc) value in the low bits of
579  * the LP field of the HPTE.  For actual page sizes less than 1MB,
580  * some of the upper LP bits are used for RPN bits, meaning that
581  * we need to fill in several entries in hpte_page_sizes[].
582  *
583  * In diagrammatic form, with r = RPN bits and z = page size bits:
584  *        PTE LP     actual page size
585  *    rrrr rrrz         >=8KB
586  *    rrrr rrzz         >=16KB
587  *    rrrr rzzz         >=32KB
588  *    rrrr zzzz         >=64KB
589  *    ...
590  *
591  * The zzzz bits are implementation-specific but are chosen so that
592  * no encoding for a larger page size uses the same value in its
593  * low-order N bits as the encoding for the 2^(12+N) byte page size
594  * (if it exists).
595  */
596 static void init_hpte_page_sizes(void)
597 {
598         long int ap, bp;
599         long int shift, penc;
600
601         for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
602                 if (!mmu_psize_defs[bp].shift)
603                         continue;       /* not a supported page size */
604                 for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
605                         penc = mmu_psize_defs[bp].penc[ap];
606                         if (penc == -1)
607                                 continue;
608                         shift = mmu_psize_defs[ap].shift - LP_SHIFT;
609                         if (shift <= 0)
610                                 continue;       /* should never happen */
611                         /*
612                          * For page sizes less than 1MB, this loop
613                          * replicates the entry for all possible values
614                          * of the rrrr bits.
615                          */
616                         while (penc < (1 << LP_BITS)) {
617                                 hpte_page_sizes[penc] = (ap << 4) | bp;
618                                 penc += 1 << shift;
619                         }
620                 }
621         }
622 }
623
624 static void __init htab_init_page_sizes(void)
625 {
626         init_hpte_page_sizes();
627
628         if (!debug_pagealloc_enabled()) {
629                 /*
630                  * Pick a size for the linear mapping. Currently, we only
631                  * support 16M, 1M and 4K which is the default
632                  */
633                 if (mmu_psize_defs[MMU_PAGE_16M].shift)
634                         mmu_linear_psize = MMU_PAGE_16M;
635                 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
636                         mmu_linear_psize = MMU_PAGE_1M;
637         }
638
639 #ifdef CONFIG_PPC_64K_PAGES
640         /*
641          * Pick a size for the ordinary pages. Default is 4K, we support
642          * 64K for user mappings and vmalloc if supported by the processor.
643          * We only use 64k for ioremap if the processor
644          * (and firmware) support cache-inhibited large pages.
645          * If not, we use 4k and set mmu_ci_restrictions so that
646          * hash_page knows to switch processes that use cache-inhibited
647          * mappings to 4k pages.
648          */
649         if (mmu_psize_defs[MMU_PAGE_64K].shift) {
650                 mmu_virtual_psize = MMU_PAGE_64K;
651                 mmu_vmalloc_psize = MMU_PAGE_64K;
652                 if (mmu_linear_psize == MMU_PAGE_4K)
653                         mmu_linear_psize = MMU_PAGE_64K;
654                 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
655                         /*
656                          * When running on pSeries using 64k pages for ioremap
657                          * would stop us accessing the HEA ethernet. So if we
658                          * have the chance of ever seeing one, stay at 4k.
659                          */
660                         if (!might_have_hea())
661                                 mmu_io_psize = MMU_PAGE_64K;
662                 } else
663                         mmu_ci_restrictions = 1;
664         }
665 #endif /* CONFIG_PPC_64K_PAGES */
666
667 #ifdef CONFIG_SPARSEMEM_VMEMMAP
668         /* We try to use 16M pages for vmemmap if that is supported
669          * and we have at least 1G of RAM at boot
670          */
671         if (mmu_psize_defs[MMU_PAGE_16M].shift &&
672             memblock_phys_mem_size() >= 0x40000000)
673                 mmu_vmemmap_psize = MMU_PAGE_16M;
674         else if (mmu_psize_defs[MMU_PAGE_64K].shift)
675                 mmu_vmemmap_psize = MMU_PAGE_64K;
676         else
677                 mmu_vmemmap_psize = MMU_PAGE_4K;
678 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
679
680         printk(KERN_DEBUG "Page orders: linear mapping = %d, "
681                "virtual = %d, io = %d"
682 #ifdef CONFIG_SPARSEMEM_VMEMMAP
683                ", vmemmap = %d"
684 #endif
685                "\n",
686                mmu_psize_defs[mmu_linear_psize].shift,
687                mmu_psize_defs[mmu_virtual_psize].shift,
688                mmu_psize_defs[mmu_io_psize].shift
689 #ifdef CONFIG_SPARSEMEM_VMEMMAP
690                ,mmu_psize_defs[mmu_vmemmap_psize].shift
691 #endif
692                );
693 }
694
695 static int __init htab_dt_scan_pftsize(unsigned long node,
696                                        const char *uname, int depth,
697                                        void *data)
698 {
699         const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
700         const __be32 *prop;
701
702         /* We are scanning "cpu" nodes only */
703         if (type == NULL || strcmp(type, "cpu") != 0)
704                 return 0;
705
706         prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
707         if (prop != NULL) {
708                 /* pft_size[0] is the NUMA CEC cookie */
709                 ppc64_pft_size = be32_to_cpu(prop[1]);
710                 return 1;
711         }
712         return 0;
713 }
714
715 unsigned htab_shift_for_mem_size(unsigned long mem_size)
716 {
717         unsigned memshift = __ilog2(mem_size);
718         unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
719         unsigned pteg_shift;
720
721         /* round mem_size up to next power of 2 */
722         if ((1UL << memshift) < mem_size)
723                 memshift += 1;
724
725         /* aim for 2 pages / pteg */
726         pteg_shift = memshift - (pshift + 1);
727
728         /*
729          * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
730          * size permitted by the architecture.
731          */
732         return max(pteg_shift + 7, 18U);
733 }
734
735 static unsigned long __init htab_get_table_size(void)
736 {
737         /* If hash size isn't already provided by the platform, we try to
738          * retrieve it from the device-tree. If it's not there neither, we
739          * calculate it now based on the total RAM size
740          */
741         if (ppc64_pft_size == 0)
742                 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
743         if (ppc64_pft_size)
744                 return 1UL << ppc64_pft_size;
745
746         return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
747 }
748
749 #ifdef CONFIG_MEMORY_HOTPLUG
750 int create_section_mapping(unsigned long start, unsigned long end)
751 {
752         int rc = htab_bolt_mapping(start, end, __pa(start),
753                                    pgprot_val(PAGE_KERNEL), mmu_linear_psize,
754                                    mmu_kernel_ssize);
755
756         if (rc < 0) {
757                 int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
758                                               mmu_kernel_ssize);
759                 BUG_ON(rc2 && (rc2 != -ENOENT));
760         }
761         return rc;
762 }
763
764 int remove_section_mapping(unsigned long start, unsigned long end)
765 {
766         int rc = htab_remove_mapping(start, end, mmu_linear_psize,
767                                      mmu_kernel_ssize);
768         WARN_ON(rc < 0);
769         return rc;
770 }
771 #endif /* CONFIG_MEMORY_HOTPLUG */
772
773 static void update_hid_for_hash(void)
774 {
775         unsigned long hid0;
776         unsigned long rb = 3UL << PPC_BITLSHIFT(53); /* IS = 3 */
777
778         asm volatile("ptesync": : :"memory");
779         /* prs = 0, ric = 2, rs = 0, r = 1 is = 3 */
780         asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
781                      : : "r"(rb), "i"(0), "i"(0), "i"(2), "r"(0) : "memory");
782         asm volatile("eieio; tlbsync; ptesync; isync; slbia": : :"memory");
783         /*
784          * now switch the HID
785          */
786         hid0  = mfspr(SPRN_HID0);
787         hid0 &= ~HID0_POWER9_RADIX;
788         mtspr(SPRN_HID0, hid0);
789         asm volatile("isync": : :"memory");
790
791         /* Wait for it to happen */
792         while ((mfspr(SPRN_HID0) & HID0_POWER9_RADIX))
793                 cpu_relax();
794 }
795
796 static void __init hash_init_partition_table(phys_addr_t hash_table,
797                                              unsigned long htab_size)
798 {
799         mmu_partition_table_init();
800
801         /*
802          * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
803          * For now, UPRT is 0 and we have no segment table.
804          */
805         htab_size =  __ilog2(htab_size) - 18;
806         mmu_partition_table_set_entry(0, hash_table | htab_size, 0);
807         pr_info("Partition table %p\n", partition_tb);
808         if (cpu_has_feature(CPU_FTR_POWER9_DD1))
809                 update_hid_for_hash();
810 }
811
812 static void __init htab_initialize(void)
813 {
814         unsigned long table;
815         unsigned long pteg_count;
816         unsigned long prot;
817         unsigned long base = 0, size = 0;
818         struct memblock_region *reg;
819
820         DBG(" -> htab_initialize()\n");
821
822         if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
823                 mmu_kernel_ssize = MMU_SEGSIZE_1T;
824                 mmu_highuser_ssize = MMU_SEGSIZE_1T;
825                 printk(KERN_INFO "Using 1TB segments\n");
826         }
827
828         /*
829          * Calculate the required size of the htab.  We want the number of
830          * PTEGs to equal one half the number of real pages.
831          */ 
832         htab_size_bytes = htab_get_table_size();
833         pteg_count = htab_size_bytes >> 7;
834
835         htab_hash_mask = pteg_count - 1;
836
837         if (firmware_has_feature(FW_FEATURE_LPAR) ||
838             firmware_has_feature(FW_FEATURE_PS3_LV1)) {
839                 /* Using a hypervisor which owns the htab */
840                 htab_address = NULL;
841                 _SDR1 = 0; 
842 #ifdef CONFIG_FA_DUMP
843                 /*
844                  * If firmware assisted dump is active firmware preserves
845                  * the contents of htab along with entire partition memory.
846                  * Clear the htab if firmware assisted dump is active so
847                  * that we dont end up using old mappings.
848                  */
849                 if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
850                         mmu_hash_ops.hpte_clear_all();
851 #endif
852         } else {
853                 unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
854
855 #ifdef CONFIG_PPC_CELL
856                 /*
857                  * Cell may require the hash table down low when using the
858                  * Axon IOMMU in order to fit the dynamic region over it, see
859                  * comments in cell/iommu.c
860                  */
861                 if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
862                         limit = 0x80000000;
863                         pr_info("Hash table forced below 2G for Axon IOMMU\n");
864                 }
865 #endif /* CONFIG_PPC_CELL */
866
867                 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes,
868                                             limit);
869
870                 DBG("Hash table allocated at %lx, size: %lx\n", table,
871                     htab_size_bytes);
872
873                 htab_address = __va(table);
874
875                 /* htab absolute addr + encoded htabsize */
876                 _SDR1 = table + __ilog2(htab_size_bytes) - 18;
877
878                 /* Initialize the HPT with no entries */
879                 memset((void *)table, 0, htab_size_bytes);
880
881                 if (!cpu_has_feature(CPU_FTR_ARCH_300))
882                         /* Set SDR1 */
883                         mtspr(SPRN_SDR1, _SDR1);
884                 else
885                         hash_init_partition_table(table, htab_size_bytes);
886         }
887
888         prot = pgprot_val(PAGE_KERNEL);
889
890 #ifdef CONFIG_DEBUG_PAGEALLOC
891         if (debug_pagealloc_enabled()) {
892                 linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
893                 linear_map_hash_slots = __va(memblock_alloc_base(
894                                 linear_map_hash_count, 1, ppc64_rma_size));
895                 memset(linear_map_hash_slots, 0, linear_map_hash_count);
896         }
897 #endif /* CONFIG_DEBUG_PAGEALLOC */
898
899         /* On U3 based machines, we need to reserve the DART area and
900          * _NOT_ map it to avoid cache paradoxes as it's remapped non
901          * cacheable later on
902          */
903
904         /* create bolted the linear mapping in the hash table */
905         for_each_memblock(memory, reg) {
906                 base = (unsigned long)__va(reg->base);
907                 size = reg->size;
908
909                 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
910                     base, size, prot);
911
912                 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
913                                 prot, mmu_linear_psize, mmu_kernel_ssize));
914         }
915         memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
916
917         /*
918          * If we have a memory_limit and we've allocated TCEs then we need to
919          * explicitly map the TCE area at the top of RAM. We also cope with the
920          * case that the TCEs start below memory_limit.
921          * tce_alloc_start/end are 16MB aligned so the mapping should work
922          * for either 4K or 16MB pages.
923          */
924         if (tce_alloc_start) {
925                 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
926                 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
927
928                 if (base + size >= tce_alloc_start)
929                         tce_alloc_start = base + size + 1;
930
931                 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
932                                          __pa(tce_alloc_start), prot,
933                                          mmu_linear_psize, mmu_kernel_ssize));
934         }
935
936
937         DBG(" <- htab_initialize()\n");
938 }
939 #undef KB
940 #undef MB
941
942 void __init hash__early_init_devtree(void)
943 {
944         /* Initialize segment sizes */
945         of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
946
947         /* Initialize page sizes */
948         htab_scan_page_sizes();
949 }
950
951 void __init hash__early_init_mmu(void)
952 {
953         htab_init_page_sizes();
954
955         /*
956          * initialize page table size
957          */
958         __pte_frag_nr = H_PTE_FRAG_NR;
959         __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
960
961         __pte_index_size = H_PTE_INDEX_SIZE;
962         __pmd_index_size = H_PMD_INDEX_SIZE;
963         __pud_index_size = H_PUD_INDEX_SIZE;
964         __pgd_index_size = H_PGD_INDEX_SIZE;
965         __pmd_cache_index = H_PMD_CACHE_INDEX;
966         __pte_table_size = H_PTE_TABLE_SIZE;
967         __pmd_table_size = H_PMD_TABLE_SIZE;
968         __pud_table_size = H_PUD_TABLE_SIZE;
969         __pgd_table_size = H_PGD_TABLE_SIZE;
970         /*
971          * 4k use hugepd format, so for hash set then to
972          * zero
973          */
974         __pmd_val_bits = 0;
975         __pud_val_bits = 0;
976         __pgd_val_bits = 0;
977
978         __kernel_virt_start = H_KERN_VIRT_START;
979         __kernel_virt_size = H_KERN_VIRT_SIZE;
980         __vmalloc_start = H_VMALLOC_START;
981         __vmalloc_end = H_VMALLOC_END;
982         vmemmap = (struct page *)H_VMEMMAP_BASE;
983         ioremap_bot = IOREMAP_BASE;
984
985 #ifdef CONFIG_PCI
986         pci_io_base = ISA_IO_BASE;
987 #endif
988
989         /* Select appropriate backend */
990         if (firmware_has_feature(FW_FEATURE_PS3_LV1))
991                 ps3_early_mm_init();
992         else if (firmware_has_feature(FW_FEATURE_LPAR))
993                 hpte_init_pseries();
994         else if (IS_ENABLED(CONFIG_PPC_NATIVE))
995                 hpte_init_native();
996
997         if (!mmu_hash_ops.hpte_insert)
998                 panic("hash__early_init_mmu: No MMU hash ops defined!\n");
999
1000         /* Initialize the MMU Hash table and create the linear mapping
1001          * of memory. Has to be done before SLB initialization as this is
1002          * currently where the page size encoding is obtained.
1003          */
1004         htab_initialize();
1005
1006         pr_info("Initializing hash mmu with SLB\n");
1007         /* Initialize SLB management */
1008         slb_initialize();
1009 }
1010
1011 #ifdef CONFIG_SMP
1012 void hash__early_init_mmu_secondary(void)
1013 {
1014         /* Initialize hash table for that CPU */
1015         if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1016
1017                 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1018                         update_hid_for_hash();
1019
1020                 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1021                         mtspr(SPRN_SDR1, _SDR1);
1022                 else
1023                         mtspr(SPRN_PTCR,
1024                               __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
1025         }
1026         /* Initialize SLB */
1027         slb_initialize();
1028 }
1029 #endif /* CONFIG_SMP */
1030
1031 /*
1032  * Called by asm hashtable.S for doing lazy icache flush
1033  */
1034 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1035 {
1036         struct page *page;
1037
1038         if (!pfn_valid(pte_pfn(pte)))
1039                 return pp;
1040
1041         page = pte_page(pte);
1042
1043         /* page is dirty */
1044         if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
1045                 if (trap == 0x400) {
1046                         flush_dcache_icache_page(page);
1047                         set_bit(PG_arch_1, &page->flags);
1048                 } else
1049                         pp |= HPTE_R_N;
1050         }
1051         return pp;
1052 }
1053
1054 #ifdef CONFIG_PPC_MM_SLICES
1055 static unsigned int get_paca_psize(unsigned long addr)
1056 {
1057         u64 lpsizes;
1058         unsigned char *hpsizes;
1059         unsigned long index, mask_index;
1060
1061         if (addr < SLICE_LOW_TOP) {
1062                 lpsizes = get_paca()->mm_ctx_low_slices_psize;
1063                 index = GET_LOW_SLICE_INDEX(addr);
1064                 return (lpsizes >> (index * 4)) & 0xF;
1065         }
1066         hpsizes = get_paca()->mm_ctx_high_slices_psize;
1067         index = GET_HIGH_SLICE_INDEX(addr);
1068         mask_index = index & 0x1;
1069         return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xF;
1070 }
1071
1072 #else
1073 unsigned int get_paca_psize(unsigned long addr)
1074 {
1075         return get_paca()->mm_ctx_user_psize;
1076 }
1077 #endif
1078
1079 /*
1080  * Demote a segment to using 4k pages.
1081  * For now this makes the whole process use 4k pages.
1082  */
1083 #ifdef CONFIG_PPC_64K_PAGES
1084 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1085 {
1086         if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1087                 return;
1088         slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1089         copro_flush_all_slbs(mm);
1090         if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1091
1092                 copy_mm_to_paca(&mm->context);
1093                 slb_flush_and_rebolt();
1094         }
1095 }
1096 #endif /* CONFIG_PPC_64K_PAGES */
1097
1098 #ifdef CONFIG_PPC_SUBPAGE_PROT
1099 /*
1100  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1101  * Userspace sets the subpage permissions using the subpage_prot system call.
1102  *
1103  * Result is 0: full permissions, _PAGE_RW: read-only,
1104  * _PAGE_RWX: no access.
1105  */
1106 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1107 {
1108         struct subpage_prot_table *spt = &mm->context.spt;
1109         u32 spp = 0;
1110         u32 **sbpm, *sbpp;
1111
1112         if (ea >= spt->maxaddr)
1113                 return 0;
1114         if (ea < 0x100000000UL) {
1115                 /* addresses below 4GB use spt->low_prot */
1116                 sbpm = spt->low_prot;
1117         } else {
1118                 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1119                 if (!sbpm)
1120                         return 0;
1121         }
1122         sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1123         if (!sbpp)
1124                 return 0;
1125         spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1126
1127         /* extract 2-bit bitfield for this 4k subpage */
1128         spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1129
1130         /*
1131          * 0 -> full premission
1132          * 1 -> Read only
1133          * 2 -> no access.
1134          * We return the flag that need to be cleared.
1135          */
1136         spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1137         return spp;
1138 }
1139
1140 #else /* CONFIG_PPC_SUBPAGE_PROT */
1141 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1142 {
1143         return 0;
1144 }
1145 #endif
1146
1147 void hash_failure_debug(unsigned long ea, unsigned long access,
1148                         unsigned long vsid, unsigned long trap,
1149                         int ssize, int psize, int lpsize, unsigned long pte)
1150 {
1151         if (!printk_ratelimit())
1152                 return;
1153         pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1154                 ea, access, current->comm);
1155         pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1156                 trap, vsid, ssize, psize, lpsize, pte);
1157 }
1158
1159 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1160                              int psize, bool user_region)
1161 {
1162         if (user_region) {
1163                 if (psize != get_paca_psize(ea)) {
1164                         copy_mm_to_paca(&mm->context);
1165                         slb_flush_and_rebolt();
1166                 }
1167         } else if (get_paca()->vmalloc_sllp !=
1168                    mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1169                 get_paca()->vmalloc_sllp =
1170                         mmu_psize_defs[mmu_vmalloc_psize].sllp;
1171                 slb_vmalloc_update();
1172         }
1173 }
1174
1175 /* Result code is:
1176  *  0 - handled
1177  *  1 - normal page fault
1178  * -1 - critical hash insertion error
1179  * -2 - access not permitted by subpage protection mechanism
1180  */
1181 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1182                  unsigned long access, unsigned long trap,
1183                  unsigned long flags)
1184 {
1185         bool is_thp;
1186         enum ctx_state prev_state = exception_enter();
1187         pgd_t *pgdir;
1188         unsigned long vsid;
1189         pte_t *ptep;
1190         unsigned hugeshift;
1191         const struct cpumask *tmp;
1192         int rc, user_region = 0;
1193         int psize, ssize;
1194
1195         DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1196                 ea, access, trap);
1197         trace_hash_fault(ea, access, trap);
1198
1199         /* Get region & vsid */
1200         switch (REGION_ID(ea)) {
1201         case USER_REGION_ID:
1202                 user_region = 1;
1203                 if (! mm) {
1204                         DBG_LOW(" user region with no mm !\n");
1205                         rc = 1;
1206                         goto bail;
1207                 }
1208                 psize = get_slice_psize(mm, ea);
1209                 ssize = user_segment_size(ea);
1210                 vsid = get_vsid(mm->context.id, ea, ssize);
1211                 break;
1212         case VMALLOC_REGION_ID:
1213                 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1214                 if (ea < VMALLOC_END)
1215                         psize = mmu_vmalloc_psize;
1216                 else
1217                         psize = mmu_io_psize;
1218                 ssize = mmu_kernel_ssize;
1219                 break;
1220         default:
1221                 /* Not a valid range
1222                  * Send the problem up to do_page_fault 
1223                  */
1224                 rc = 1;
1225                 goto bail;
1226         }
1227         DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1228
1229         /* Bad address. */
1230         if (!vsid) {
1231                 DBG_LOW("Bad address!\n");
1232                 rc = 1;
1233                 goto bail;
1234         }
1235         /* Get pgdir */
1236         pgdir = mm->pgd;
1237         if (pgdir == NULL) {
1238                 rc = 1;
1239                 goto bail;
1240         }
1241
1242         /* Check CPU locality */
1243         tmp = cpumask_of(smp_processor_id());
1244         if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
1245                 flags |= HPTE_LOCAL_UPDATE;
1246
1247 #ifndef CONFIG_PPC_64K_PAGES
1248         /* If we use 4K pages and our psize is not 4K, then we might
1249          * be hitting a special driver mapping, and need to align the
1250          * address before we fetch the PTE.
1251          *
1252          * It could also be a hugepage mapping, in which case this is
1253          * not necessary, but it's not harmful, either.
1254          */
1255         if (psize != MMU_PAGE_4K)
1256                 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1257 #endif /* CONFIG_PPC_64K_PAGES */
1258
1259         /* Get PTE and page size from page tables */
1260         ptep = __find_linux_pte_or_hugepte(pgdir, ea, &is_thp, &hugeshift);
1261         if (ptep == NULL || !pte_present(*ptep)) {
1262                 DBG_LOW(" no PTE !\n");
1263                 rc = 1;
1264                 goto bail;
1265         }
1266
1267         /* Add _PAGE_PRESENT to the required access perm */
1268         access |= _PAGE_PRESENT;
1269
1270         /* Pre-check access permissions (will be re-checked atomically
1271          * in __hash_page_XX but this pre-check is a fast path
1272          */
1273         if (!check_pte_access(access, pte_val(*ptep))) {
1274                 DBG_LOW(" no access !\n");
1275                 rc = 1;
1276                 goto bail;
1277         }
1278
1279         if (hugeshift) {
1280                 if (is_thp)
1281                         rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1282                                              trap, flags, ssize, psize);
1283 #ifdef CONFIG_HUGETLB_PAGE
1284                 else
1285                         rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1286                                               flags, ssize, hugeshift, psize);
1287 #else
1288                 else {
1289                         /*
1290                          * if we have hugeshift, and is not transhuge with
1291                          * hugetlb disabled, something is really wrong.
1292                          */
1293                         rc = 1;
1294                         WARN_ON(1);
1295                 }
1296 #endif
1297                 if (current->mm == mm)
1298                         check_paca_psize(ea, mm, psize, user_region);
1299
1300                 goto bail;
1301         }
1302
1303 #ifndef CONFIG_PPC_64K_PAGES
1304         DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1305 #else
1306         DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1307                 pte_val(*(ptep + PTRS_PER_PTE)));
1308 #endif
1309         /* Do actual hashing */
1310 #ifdef CONFIG_PPC_64K_PAGES
1311         /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1312         if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1313                 demote_segment_4k(mm, ea);
1314                 psize = MMU_PAGE_4K;
1315         }
1316
1317         /* If this PTE is non-cacheable and we have restrictions on
1318          * using non cacheable large pages, then we switch to 4k
1319          */
1320         if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1321                 if (user_region) {
1322                         demote_segment_4k(mm, ea);
1323                         psize = MMU_PAGE_4K;
1324                 } else if (ea < VMALLOC_END) {
1325                         /*
1326                          * some driver did a non-cacheable mapping
1327                          * in vmalloc space, so switch vmalloc
1328                          * to 4k pages
1329                          */
1330                         printk(KERN_ALERT "Reducing vmalloc segment "
1331                                "to 4kB pages because of "
1332                                "non-cacheable mapping\n");
1333                         psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1334                         copro_flush_all_slbs(mm);
1335                 }
1336         }
1337
1338 #endif /* CONFIG_PPC_64K_PAGES */
1339
1340         if (current->mm == mm)
1341                 check_paca_psize(ea, mm, psize, user_region);
1342
1343 #ifdef CONFIG_PPC_64K_PAGES
1344         if (psize == MMU_PAGE_64K)
1345                 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1346                                      flags, ssize);
1347         else
1348 #endif /* CONFIG_PPC_64K_PAGES */
1349         {
1350                 int spp = subpage_protection(mm, ea);
1351                 if (access & spp)
1352                         rc = -2;
1353                 else
1354                         rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1355                                             flags, ssize, spp);
1356         }
1357
1358         /* Dump some info in case of hash insertion failure, they should
1359          * never happen so it is really useful to know if/when they do
1360          */
1361         if (rc == -1)
1362                 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1363                                    psize, pte_val(*ptep));
1364 #ifndef CONFIG_PPC_64K_PAGES
1365         DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1366 #else
1367         DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1368                 pte_val(*(ptep + PTRS_PER_PTE)));
1369 #endif
1370         DBG_LOW(" -> rc=%d\n", rc);
1371
1372 bail:
1373         exception_exit(prev_state);
1374         return rc;
1375 }
1376 EXPORT_SYMBOL_GPL(hash_page_mm);
1377
1378 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1379               unsigned long dsisr)
1380 {
1381         unsigned long flags = 0;
1382         struct mm_struct *mm = current->mm;
1383
1384         if (REGION_ID(ea) == VMALLOC_REGION_ID)
1385                 mm = &init_mm;
1386
1387         if (dsisr & DSISR_NOHPTE)
1388                 flags |= HPTE_NOHPTE_UPDATE;
1389
1390         return hash_page_mm(mm, ea, access, trap, flags);
1391 }
1392 EXPORT_SYMBOL_GPL(hash_page);
1393
1394 int __hash_page(unsigned long ea, unsigned long msr, unsigned long trap,
1395                 unsigned long dsisr)
1396 {
1397         unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1398         unsigned long flags = 0;
1399         struct mm_struct *mm = current->mm;
1400
1401         if (REGION_ID(ea) == VMALLOC_REGION_ID)
1402                 mm = &init_mm;
1403
1404         if (dsisr & DSISR_NOHPTE)
1405                 flags |= HPTE_NOHPTE_UPDATE;
1406
1407         if (dsisr & DSISR_ISSTORE)
1408                 access |= _PAGE_WRITE;
1409         /*
1410          * We set _PAGE_PRIVILEGED only when
1411          * kernel mode access kernel space.
1412          *
1413          * _PAGE_PRIVILEGED is NOT set
1414          * 1) when kernel mode access user space
1415          * 2) user space access kernel space.
1416          */
1417         access |= _PAGE_PRIVILEGED;
1418         if ((msr & MSR_PR) || (REGION_ID(ea) == USER_REGION_ID))
1419                 access &= ~_PAGE_PRIVILEGED;
1420
1421         if (trap == 0x400)
1422                 access |= _PAGE_EXEC;
1423
1424         return hash_page_mm(mm, ea, access, trap, flags);
1425 }
1426
1427 #ifdef CONFIG_PPC_MM_SLICES
1428 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1429 {
1430         int psize = get_slice_psize(mm, ea);
1431
1432         /* We only prefault standard pages for now */
1433         if (unlikely(psize != mm->context.user_psize))
1434                 return false;
1435
1436         /*
1437          * Don't prefault if subpage protection is enabled for the EA.
1438          */
1439         if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1440                 return false;
1441
1442         return true;
1443 }
1444 #else
1445 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1446 {
1447         return true;
1448 }
1449 #endif
1450
1451 void hash_preload(struct mm_struct *mm, unsigned long ea,
1452                   unsigned long access, unsigned long trap)
1453 {
1454         int hugepage_shift;
1455         unsigned long vsid;
1456         pgd_t *pgdir;
1457         pte_t *ptep;
1458         unsigned long flags;
1459         int rc, ssize, update_flags = 0;
1460
1461         BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1462
1463         if (!should_hash_preload(mm, ea))
1464                 return;
1465
1466         DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1467                 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1468
1469         /* Get Linux PTE if available */
1470         pgdir = mm->pgd;
1471         if (pgdir == NULL)
1472                 return;
1473
1474         /* Get VSID */
1475         ssize = user_segment_size(ea);
1476         vsid = get_vsid(mm->context.id, ea, ssize);
1477         if (!vsid)
1478                 return;
1479         /*
1480          * Hash doesn't like irqs. Walking linux page table with irq disabled
1481          * saves us from holding multiple locks.
1482          */
1483         local_irq_save(flags);
1484
1485         /*
1486          * THP pages use update_mmu_cache_pmd. We don't do
1487          * hash preload there. Hence can ignore THP here
1488          */
1489         ptep = find_linux_pte_or_hugepte(pgdir, ea, NULL, &hugepage_shift);
1490         if (!ptep)
1491                 goto out_exit;
1492
1493         WARN_ON(hugepage_shift);
1494 #ifdef CONFIG_PPC_64K_PAGES
1495         /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1496          * a 64K kernel), then we don't preload, hash_page() will take
1497          * care of it once we actually try to access the page.
1498          * That way we don't have to duplicate all of the logic for segment
1499          * page size demotion here
1500          */
1501         if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1502                 goto out_exit;
1503 #endif /* CONFIG_PPC_64K_PAGES */
1504
1505         /* Is that local to this CPU ? */
1506         if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1507                 update_flags |= HPTE_LOCAL_UPDATE;
1508
1509         /* Hash it in */
1510 #ifdef CONFIG_PPC_64K_PAGES
1511         if (mm->context.user_psize == MMU_PAGE_64K)
1512                 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1513                                      update_flags, ssize);
1514         else
1515 #endif /* CONFIG_PPC_64K_PAGES */
1516                 rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1517                                     ssize, subpage_protection(mm, ea));
1518
1519         /* Dump some info in case of hash insertion failure, they should
1520          * never happen so it is really useful to know if/when they do
1521          */
1522         if (rc == -1)
1523                 hash_failure_debug(ea, access, vsid, trap, ssize,
1524                                    mm->context.user_psize,
1525                                    mm->context.user_psize,
1526                                    pte_val(*ptep));
1527 out_exit:
1528         local_irq_restore(flags);
1529 }
1530
1531 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1532 static inline void tm_flush_hash_page(int local)
1533 {
1534         /*
1535          * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1536          * page back to a block device w/PIO could pick up transactional data
1537          * (bad!) so we force an abort here. Before the sync the page will be
1538          * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1539          * kernel uses a page from userspace without unmapping it first, it may
1540          * see the speculated version.
1541          */
1542         if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1543             MSR_TM_ACTIVE(current->thread.regs->msr)) {
1544                 tm_enable();
1545                 tm_abort(TM_CAUSE_TLBI);
1546         }
1547 }
1548 #else
1549 static inline void tm_flush_hash_page(int local)
1550 {
1551 }
1552 #endif
1553
1554 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1555  *          do not forget to update the assembly call site !
1556  */
1557 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1558                      unsigned long flags)
1559 {
1560         unsigned long hash, index, shift, hidx, slot;
1561         int local = flags & HPTE_LOCAL_UPDATE;
1562
1563         DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1564         pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1565                 hash = hpt_hash(vpn, shift, ssize);
1566                 hidx = __rpte_to_hidx(pte, index);
1567                 if (hidx & _PTEIDX_SECONDARY)
1568                         hash = ~hash;
1569                 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1570                 slot += hidx & _PTEIDX_GROUP_IX;
1571                 DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1572                 /*
1573                  * We use same base page size and actual psize, because we don't
1574                  * use these functions for hugepage
1575                  */
1576                 mmu_hash_ops.hpte_invalidate(slot, vpn, psize, psize,
1577                                              ssize, local);
1578         } pte_iterate_hashed_end();
1579
1580         tm_flush_hash_page(local);
1581 }
1582
1583 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1584 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1585                          pmd_t *pmdp, unsigned int psize, int ssize,
1586                          unsigned long flags)
1587 {
1588         int i, max_hpte_count, valid;
1589         unsigned long s_addr;
1590         unsigned char *hpte_slot_array;
1591         unsigned long hidx, shift, vpn, hash, slot;
1592         int local = flags & HPTE_LOCAL_UPDATE;
1593
1594         s_addr = addr & HPAGE_PMD_MASK;
1595         hpte_slot_array = get_hpte_slot_array(pmdp);
1596         /*
1597          * IF we try to do a HUGE PTE update after a withdraw is done.
1598          * we will find the below NULL. This happens when we do
1599          * split_huge_page_pmd
1600          */
1601         if (!hpte_slot_array)
1602                 return;
1603
1604         if (mmu_hash_ops.hugepage_invalidate) {
1605                 mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1606                                                  psize, ssize, local);
1607                 goto tm_abort;
1608         }
1609         /*
1610          * No bluk hpte removal support, invalidate each entry
1611          */
1612         shift = mmu_psize_defs[psize].shift;
1613         max_hpte_count = HPAGE_PMD_SIZE >> shift;
1614         for (i = 0; i < max_hpte_count; i++) {
1615                 /*
1616                  * 8 bits per each hpte entries
1617                  * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1618                  */
1619                 valid = hpte_valid(hpte_slot_array, i);
1620                 if (!valid)
1621                         continue;
1622                 hidx =  hpte_hash_index(hpte_slot_array, i);
1623
1624                 /* get the vpn */
1625                 addr = s_addr + (i * (1ul << shift));
1626                 vpn = hpt_vpn(addr, vsid, ssize);
1627                 hash = hpt_hash(vpn, shift, ssize);
1628                 if (hidx & _PTEIDX_SECONDARY)
1629                         hash = ~hash;
1630
1631                 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1632                 slot += hidx & _PTEIDX_GROUP_IX;
1633                 mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1634                                              MMU_PAGE_16M, ssize, local);
1635         }
1636 tm_abort:
1637         tm_flush_hash_page(local);
1638 }
1639 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1640
1641 void flush_hash_range(unsigned long number, int local)
1642 {
1643         if (mmu_hash_ops.flush_hash_range)
1644                 mmu_hash_ops.flush_hash_range(number, local);
1645         else {
1646                 int i;
1647                 struct ppc64_tlb_batch *batch =
1648                         this_cpu_ptr(&ppc64_tlb_batch);
1649
1650                 for (i = 0; i < number; i++)
1651                         flush_hash_page(batch->vpn[i], batch->pte[i],
1652                                         batch->psize, batch->ssize, local);
1653         }
1654 }
1655
1656 /*
1657  * low_hash_fault is called when we the low level hash code failed
1658  * to instert a PTE due to an hypervisor error
1659  */
1660 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1661 {
1662         enum ctx_state prev_state = exception_enter();
1663
1664         if (user_mode(regs)) {
1665 #ifdef CONFIG_PPC_SUBPAGE_PROT
1666                 if (rc == -2)
1667                         _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1668                 else
1669 #endif
1670                         _exception(SIGBUS, regs, BUS_ADRERR, address);
1671         } else
1672                 bad_page_fault(regs, address, SIGBUS);
1673
1674         exception_exit(prev_state);
1675 }
1676
1677 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1678                            unsigned long pa, unsigned long rflags,
1679                            unsigned long vflags, int psize, int ssize)
1680 {
1681         unsigned long hpte_group;
1682         long slot;
1683
1684 repeat:
1685         hpte_group = ((hash & htab_hash_mask) *
1686                        HPTES_PER_GROUP) & ~0x7UL;
1687
1688         /* Insert into the hash table, primary slot */
1689         slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1690                                         psize, psize, ssize);
1691
1692         /* Primary is full, try the secondary */
1693         if (unlikely(slot == -1)) {
1694                 hpte_group = ((~hash & htab_hash_mask) *
1695                               HPTES_PER_GROUP) & ~0x7UL;
1696                 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1697                                                 vflags | HPTE_V_SECONDARY,
1698                                                 psize, psize, ssize);
1699                 if (slot == -1) {
1700                         if (mftb() & 0x1)
1701                                 hpte_group = ((hash & htab_hash_mask) *
1702                                               HPTES_PER_GROUP)&~0x7UL;
1703
1704                         mmu_hash_ops.hpte_remove(hpte_group);
1705                         goto repeat;
1706                 }
1707         }
1708
1709         return slot;
1710 }
1711
1712 #ifdef CONFIG_DEBUG_PAGEALLOC
1713 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1714 {
1715         unsigned long hash;
1716         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1717         unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1718         unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1719         long ret;
1720
1721         hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1722
1723         /* Don't create HPTE entries for bad address */
1724         if (!vsid)
1725                 return;
1726
1727         ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1728                                     HPTE_V_BOLTED,
1729                                     mmu_linear_psize, mmu_kernel_ssize);
1730
1731         BUG_ON (ret < 0);
1732         spin_lock(&linear_map_hash_lock);
1733         BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1734         linear_map_hash_slots[lmi] = ret | 0x80;
1735         spin_unlock(&linear_map_hash_lock);
1736 }
1737
1738 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1739 {
1740         unsigned long hash, hidx, slot;
1741         unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1742         unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1743
1744         hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1745         spin_lock(&linear_map_hash_lock);
1746         BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1747         hidx = linear_map_hash_slots[lmi] & 0x7f;
1748         linear_map_hash_slots[lmi] = 0;
1749         spin_unlock(&linear_map_hash_lock);
1750         if (hidx & _PTEIDX_SECONDARY)
1751                 hash = ~hash;
1752         slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1753         slot += hidx & _PTEIDX_GROUP_IX;
1754         mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1755                                      mmu_linear_psize,
1756                                      mmu_kernel_ssize, 0);
1757 }
1758
1759 void __kernel_map_pages(struct page *page, int numpages, int enable)
1760 {
1761         unsigned long flags, vaddr, lmi;
1762         int i;
1763
1764         local_irq_save(flags);
1765         for (i = 0; i < numpages; i++, page++) {
1766                 vaddr = (unsigned long)page_address(page);
1767                 lmi = __pa(vaddr) >> PAGE_SHIFT;
1768                 if (lmi >= linear_map_hash_count)
1769                         continue;
1770                 if (enable)
1771                         kernel_map_linear_page(vaddr, lmi);
1772                 else
1773                         kernel_unmap_linear_page(vaddr, lmi);
1774         }
1775         local_irq_restore(flags);
1776 }
1777 #endif /* CONFIG_DEBUG_PAGEALLOC */
1778
1779 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1780                                 phys_addr_t first_memblock_size)
1781 {
1782         /* We don't currently support the first MEMBLOCK not mapping 0
1783          * physical on those processors
1784          */
1785         BUG_ON(first_memblock_base != 0);
1786
1787         /* On LPAR systems, the first entry is our RMA region,
1788          * non-LPAR 64-bit hash MMU systems don't have a limitation
1789          * on real mode access, but using the first entry works well
1790          * enough. We also clamp it to 1G to avoid some funky things
1791          * such as RTAS bugs etc...
1792          */
1793         ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1794
1795         /* Finally limit subsequent allocations */
1796         memblock_set_current_limit(ppc64_rma_size);
1797 }