Merge tag 'drm-intel-gt-next-2024-02-15' of git://anongit.freedesktop.org/drm/drm...
[sfrench/cifs-2.6.git] / arch / powerpc / kvm / book3s_hv_ras.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *
4  * Copyright 2012 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5  */
6
7 #include <linux/types.h>
8 #include <linux/string.h>
9 #include <linux/kvm.h>
10 #include <linux/kvm_host.h>
11 #include <linux/kernel.h>
12 #include <asm/lppaca.h>
13 #include <asm/opal.h>
14 #include <asm/mce.h>
15 #include <asm/machdep.h>
16 #include <asm/cputhreads.h>
17 #include <asm/hmi.h>
18 #include <asm/kvm_ppc.h>
19
20 /* SRR1 bits for machine check on POWER7 */
21 #define SRR1_MC_LDSTERR         (1ul << (63-42))
22 #define SRR1_MC_IFETCH_SH       (63-45)
23 #define SRR1_MC_IFETCH_MASK     0x7
24 #define SRR1_MC_IFETCH_SLBPAR           2       /* SLB parity error */
25 #define SRR1_MC_IFETCH_SLBMULTI         3       /* SLB multi-hit */
26 #define SRR1_MC_IFETCH_SLBPARMULTI      4       /* SLB parity + multi-hit */
27 #define SRR1_MC_IFETCH_TLBMULTI         5       /* I-TLB multi-hit */
28
29 /* DSISR bits for machine check on POWER7 */
30 #define DSISR_MC_DERAT_MULTI    0x800           /* D-ERAT multi-hit */
31 #define DSISR_MC_TLB_MULTI      0x400           /* D-TLB multi-hit */
32 #define DSISR_MC_SLB_PARITY     0x100           /* SLB parity error */
33 #define DSISR_MC_SLB_MULTI      0x080           /* SLB multi-hit */
34 #define DSISR_MC_SLB_PARMULTI   0x040           /* SLB parity + multi-hit */
35
36 /* POWER7 SLB flush and reload */
37 static void reload_slb(struct kvm_vcpu *vcpu)
38 {
39         struct slb_shadow *slb;
40         unsigned long i, n;
41
42         /* First clear out SLB */
43         asm volatile("slbmte %0,%0; slbia" : : "r" (0));
44
45         /* Do they have an SLB shadow buffer registered? */
46         slb = vcpu->arch.slb_shadow.pinned_addr;
47         if (!slb)
48                 return;
49
50         /* Sanity check */
51         n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE);
52         if ((void *) &slb->save_area[n] > vcpu->arch.slb_shadow.pinned_end)
53                 return;
54
55         /* Load up the SLB from that */
56         for (i = 0; i < n; ++i) {
57                 unsigned long rb = be64_to_cpu(slb->save_area[i].esid);
58                 unsigned long rs = be64_to_cpu(slb->save_area[i].vsid);
59
60                 rb = (rb & ~0xFFFul) | i;       /* insert entry number */
61                 asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb));
62         }
63 }
64
65 /*
66  * On POWER7, see if we can handle a machine check that occurred inside
67  * the guest in real mode, without switching to the host partition.
68  */
69 static long kvmppc_realmode_mc_power7(struct kvm_vcpu *vcpu)
70 {
71         unsigned long srr1 = vcpu->arch.shregs.msr;
72         long handled = 1;
73
74         if (srr1 & SRR1_MC_LDSTERR) {
75                 /* error on load/store */
76                 unsigned long dsisr = vcpu->arch.shregs.dsisr;
77
78                 if (dsisr & (DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
79                              DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI)) {
80                         /* flush and reload SLB; flushes D-ERAT too */
81                         reload_slb(vcpu);
82                         dsisr &= ~(DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI |
83                                    DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI);
84                 }
85                 if (dsisr & DSISR_MC_TLB_MULTI) {
86                         tlbiel_all_lpid(vcpu->kvm->arch.radix);
87                         dsisr &= ~DSISR_MC_TLB_MULTI;
88                 }
89                 /* Any other errors we don't understand? */
90                 if (dsisr & 0xffffffffUL)
91                         handled = 0;
92         }
93
94         switch ((srr1 >> SRR1_MC_IFETCH_SH) & SRR1_MC_IFETCH_MASK) {
95         case 0:
96                 break;
97         case SRR1_MC_IFETCH_SLBPAR:
98         case SRR1_MC_IFETCH_SLBMULTI:
99         case SRR1_MC_IFETCH_SLBPARMULTI:
100                 reload_slb(vcpu);
101                 break;
102         case SRR1_MC_IFETCH_TLBMULTI:
103                 tlbiel_all_lpid(vcpu->kvm->arch.radix);
104                 break;
105         default:
106                 handled = 0;
107         }
108
109         return handled;
110 }
111
112 void kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu)
113 {
114         struct machine_check_event mce_evt;
115         long handled;
116
117         if (vcpu->kvm->arch.fwnmi_enabled) {
118                 /* FWNMI guests handle their own recovery */
119                 handled = 0;
120         } else {
121                 handled = kvmppc_realmode_mc_power7(vcpu);
122         }
123
124         /*
125          * Now get the event and stash it in the vcpu struct so it can
126          * be handled by the primary thread in virtual mode.  We can't
127          * call machine_check_queue_event() here if we are running on
128          * an offline secondary thread.
129          */
130         if (get_mce_event(&mce_evt, MCE_EVENT_RELEASE)) {
131                 if (handled && mce_evt.version == MCE_V1)
132                         mce_evt.disposition = MCE_DISPOSITION_RECOVERED;
133         } else {
134                 memset(&mce_evt, 0, sizeof(mce_evt));
135         }
136
137         vcpu->arch.mce_evt = mce_evt;
138 }
139
140
141 long kvmppc_p9_realmode_hmi_handler(struct kvm_vcpu *vcpu)
142 {
143         struct kvmppc_vcore *vc = vcpu->arch.vcore;
144         long ret = 0;
145
146         /*
147          * Unapply and clear the offset first. That way, if the TB was not
148          * resynced then it will remain in host-offset, and if it was resynced
149          * then it is brought into host-offset. Then the tb offset is
150          * re-applied before continuing with the KVM exit.
151          *
152          * This way, we don't need to actually know whether not OPAL resynced
153          * the timebase or do any of the complicated dance that the P7/8
154          * path requires.
155          */
156         if (vc->tb_offset_applied) {
157                 u64 new_tb = mftb() - vc->tb_offset_applied;
158                 mtspr(SPRN_TBU40, new_tb);
159                 if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) {
160                         new_tb += 0x1000000;
161                         mtspr(SPRN_TBU40, new_tb);
162                 }
163                 vc->tb_offset_applied = 0;
164         }
165
166         local_paca->hmi_irqs++;
167
168         if (hmi_handle_debugtrig(NULL) >= 0) {
169                 ret = 1;
170                 goto out;
171         }
172
173         if (ppc_md.hmi_exception_early)
174                 ppc_md.hmi_exception_early(NULL);
175
176 out:
177         if (kvmppc_get_tb_offset(vcpu)) {
178                 u64 new_tb = mftb() + vc->tb_offset;
179                 mtspr(SPRN_TBU40, new_tb);
180                 if ((mftb() & 0xffffff) < (new_tb & 0xffffff)) {
181                         new_tb += 0x1000000;
182                         mtspr(SPRN_TBU40, new_tb);
183                 }
184                 vc->tb_offset_applied = kvmppc_get_tb_offset(vcpu);
185         }
186
187         return ret;
188 }
189
190 /*
191  * The following subcore HMI handling is all only for pre-POWER9 CPUs.
192  */
193
194 /* Check if dynamic split is in force and return subcore size accordingly. */
195 static inline int kvmppc_cur_subcore_size(void)
196 {
197         if (local_paca->kvm_hstate.kvm_split_mode)
198                 return local_paca->kvm_hstate.kvm_split_mode->subcore_size;
199
200         return threads_per_subcore;
201 }
202
203 void kvmppc_subcore_enter_guest(void)
204 {
205         int thread_id, subcore_id;
206
207         thread_id = cpu_thread_in_core(local_paca->paca_index);
208         subcore_id = thread_id / kvmppc_cur_subcore_size();
209
210         local_paca->sibling_subcore_state->in_guest[subcore_id] = 1;
211 }
212 EXPORT_SYMBOL_GPL(kvmppc_subcore_enter_guest);
213
214 void kvmppc_subcore_exit_guest(void)
215 {
216         int thread_id, subcore_id;
217
218         thread_id = cpu_thread_in_core(local_paca->paca_index);
219         subcore_id = thread_id / kvmppc_cur_subcore_size();
220
221         local_paca->sibling_subcore_state->in_guest[subcore_id] = 0;
222 }
223 EXPORT_SYMBOL_GPL(kvmppc_subcore_exit_guest);
224
225 static bool kvmppc_tb_resync_required(void)
226 {
227         if (test_and_set_bit(CORE_TB_RESYNC_REQ_BIT,
228                                 &local_paca->sibling_subcore_state->flags))
229                 return false;
230
231         return true;
232 }
233
234 static void kvmppc_tb_resync_done(void)
235 {
236         clear_bit(CORE_TB_RESYNC_REQ_BIT,
237                         &local_paca->sibling_subcore_state->flags);
238 }
239
240 /*
241  * kvmppc_realmode_hmi_handler() is called only by primary thread during
242  * guest exit path.
243  *
244  * There are multiple reasons why HMI could occur, one of them is
245  * Timebase (TB) error. If this HMI is due to TB error, then TB would
246  * have been in stopped state. The opal hmi handler Will fix it and
247  * restore the TB value with host timebase value. For HMI caused due
248  * to non-TB errors, opal hmi handler will not touch/restore TB register
249  * and hence there won't be any change in TB value.
250  *
251  * Since we are not sure about the cause of this HMI, we can't be sure
252  * about the content of TB register whether it holds guest or host timebase
253  * value. Hence the idea is to resync the TB on every HMI, so that we
254  * know about the exact state of the TB value. Resync TB call will
255  * restore TB to host timebase.
256  *
257  * Things to consider:
258  * - On TB error, HMI interrupt is reported on all the threads of the core
259  *   that has encountered TB error irrespective of split-core mode.
260  * - The very first thread on the core that get chance to fix TB error
261  *   would rsync the TB with local chipTOD value.
262  * - The resync TB is a core level action i.e. it will sync all the TBs
263  *   in that core independent of split-core mode. This means if we trigger
264  *   TB sync from a thread from one subcore, it would affect TB values of
265  *   sibling subcores of the same core.
266  *
267  * All threads need to co-ordinate before making opal hmi handler.
268  * All threads will use sibling_subcore_state->in_guest[] (shared by all
269  * threads in the core) in paca which holds information about whether
270  * sibling subcores are in Guest mode or host mode. The in_guest[] array
271  * is of size MAX_SUBCORE_PER_CORE=4, indexed using subcore id to set/unset
272  * subcore status. Only primary threads from each subcore is responsible
273  * to set/unset its designated array element while entering/exiting the
274  * guset.
275  *
276  * After invoking opal hmi handler call, one of the thread (of entire core)
277  * will need to resync the TB. Bit 63 from subcore state bitmap flags
278  * (sibling_subcore_state->flags) will be used to co-ordinate between
279  * primary threads to decide who takes up the responsibility.
280  *
281  * This is what we do:
282  * - Primary thread from each subcore tries to set resync required bit[63]
283  *   of paca->sibling_subcore_state->flags.
284  * - The first primary thread that is able to set the flag takes the
285  *   responsibility of TB resync. (Let us call it as thread leader)
286  * - All other threads which are in host will call
287  *   wait_for_subcore_guest_exit() and wait for in_guest[0-3] from
288  *   paca->sibling_subcore_state to get cleared.
289  * - All the primary thread will clear its subcore status from subcore
290  *   state in_guest[] array respectively.
291  * - Once all primary threads clear in_guest[0-3], all of them will invoke
292  *   opal hmi handler.
293  * - Now all threads will wait for TB resync to complete by invoking
294  *   wait_for_tb_resync() except the thread leader.
295  * - Thread leader will do a TB resync by invoking opal_resync_timebase()
296  *   call and the it will clear the resync required bit.
297  * - All other threads will now come out of resync wait loop and proceed
298  *   with individual execution.
299  * - On return of this function, primary thread will signal all
300  *   secondary threads to proceed.
301  * - All secondary threads will eventually call opal hmi handler on
302  *   their exit path.
303  *
304  * Returns 1 if the timebase offset should be applied, 0 if not.
305  */
306
307 long kvmppc_realmode_hmi_handler(void)
308 {
309         bool resync_req;
310
311         local_paca->hmi_irqs++;
312
313         if (hmi_handle_debugtrig(NULL) >= 0)
314                 return 1;
315
316         /*
317          * By now primary thread has already completed guest->host
318          * partition switch but haven't signaled secondaries yet.
319          * All the secondary threads on this subcore is waiting
320          * for primary thread to signal them to go ahead.
321          *
322          * For threads from subcore which isn't in guest, they all will
323          * wait until all other subcores on this core exit the guest.
324          *
325          * Now set the resync required bit. If you are the first to
326          * set this bit then kvmppc_tb_resync_required() function will
327          * return true. For rest all other subcores
328          * kvmppc_tb_resync_required() will return false.
329          *
330          * If resync_req == true, then this thread is responsible to
331          * initiate TB resync after hmi handler has completed.
332          * All other threads on this core will wait until this thread
333          * clears the resync required bit flag.
334          */
335         resync_req = kvmppc_tb_resync_required();
336
337         /* Reset the subcore status to indicate it has exited guest */
338         kvmppc_subcore_exit_guest();
339
340         /*
341          * Wait for other subcores on this core to exit the guest.
342          * All the primary threads and threads from subcore that are
343          * not in guest will wait here until all subcores are out
344          * of guest context.
345          */
346         wait_for_subcore_guest_exit();
347
348         /*
349          * At this point we are sure that primary threads from each
350          * subcore on this core have completed guest->host partition
351          * switch. Now it is safe to call HMI handler.
352          */
353         if (ppc_md.hmi_exception_early)
354                 ppc_md.hmi_exception_early(NULL);
355
356         /*
357          * Check if this thread is responsible to resync TB.
358          * All other threads will wait until this thread completes the
359          * TB resync.
360          */
361         if (resync_req) {
362                 opal_resync_timebase();
363                 /* Reset TB resync req bit */
364                 kvmppc_tb_resync_done();
365         } else {
366                 wait_for_tb_resync();
367         }
368
369         /*
370          * Reset tb_offset_applied so the guest exit code won't try
371          * to subtract the previous timebase offset from the timebase.
372          */
373         if (local_paca->kvm_hstate.kvm_vcore)
374                 local_paca->kvm_hstate.kvm_vcore->tb_offset_applied = 0;
375
376         return 0;
377 }