Merge tag 'mtd/for-4.16' of git://git.infradead.org/linux-mtd
[sfrench/cifs-2.6.git] / arch / powerpc / kvm / book3s_hv.c
1 /*
2  * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
3  * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
4  *
5  * Authors:
6  *    Paul Mackerras <paulus@au1.ibm.com>
7  *    Alexander Graf <agraf@suse.de>
8  *    Kevin Wolf <mail@kevin-wolf.de>
9  *
10  * Description: KVM functions specific to running on Book 3S
11  * processors in hypervisor mode (specifically POWER7 and later).
12  *
13  * This file is derived from arch/powerpc/kvm/book3s.c,
14  * by Alexander Graf <agraf@suse.de>.
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of the GNU General Public License, version 2, as
18  * published by the Free Software Foundation.
19  */
20
21 #include <linux/kvm_host.h>
22 #include <linux/kernel.h>
23 #include <linux/err.h>
24 #include <linux/slab.h>
25 #include <linux/preempt.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sched/stat.h>
28 #include <linux/delay.h>
29 #include <linux/export.h>
30 #include <linux/fs.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/cpu.h>
33 #include <linux/cpumask.h>
34 #include <linux/spinlock.h>
35 #include <linux/page-flags.h>
36 #include <linux/srcu.h>
37 #include <linux/miscdevice.h>
38 #include <linux/debugfs.h>
39 #include <linux/gfp.h>
40 #include <linux/vmalloc.h>
41 #include <linux/highmem.h>
42 #include <linux/hugetlb.h>
43 #include <linux/kvm_irqfd.h>
44 #include <linux/irqbypass.h>
45 #include <linux/module.h>
46 #include <linux/compiler.h>
47 #include <linux/of.h>
48
49 #include <asm/reg.h>
50 #include <asm/ppc-opcode.h>
51 #include <asm/asm-prototypes.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <asm/tlbflush.h>
56 #include <linux/uaccess.h>
57 #include <asm/io.h>
58 #include <asm/kvm_ppc.h>
59 #include <asm/kvm_book3s.h>
60 #include <asm/mmu_context.h>
61 #include <asm/lppaca.h>
62 #include <asm/processor.h>
63 #include <asm/cputhreads.h>
64 #include <asm/page.h>
65 #include <asm/hvcall.h>
66 #include <asm/switch_to.h>
67 #include <asm/smp.h>
68 #include <asm/dbell.h>
69 #include <asm/hmi.h>
70 #include <asm/pnv-pci.h>
71 #include <asm/mmu.h>
72 #include <asm/opal.h>
73 #include <asm/xics.h>
74 #include <asm/xive.h>
75
76 #include "book3s.h"
77
78 #define CREATE_TRACE_POINTS
79 #include "trace_hv.h"
80
81 /* #define EXIT_DEBUG */
82 /* #define EXIT_DEBUG_SIMPLE */
83 /* #define EXIT_DEBUG_INT */
84
85 /* Used to indicate that a guest page fault needs to be handled */
86 #define RESUME_PAGE_FAULT       (RESUME_GUEST | RESUME_FLAG_ARCH1)
87 /* Used to indicate that a guest passthrough interrupt needs to be handled */
88 #define RESUME_PASSTHROUGH      (RESUME_GUEST | RESUME_FLAG_ARCH2)
89
90 /* Used as a "null" value for timebase values */
91 #define TB_NIL  (~(u64)0)
92
93 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
94
95 static int dynamic_mt_modes = 6;
96 module_param(dynamic_mt_modes, int, S_IRUGO | S_IWUSR);
97 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
98 static int target_smt_mode;
99 module_param(target_smt_mode, int, S_IRUGO | S_IWUSR);
100 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
101
102 static bool indep_threads_mode = true;
103 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
104 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
105
106 #ifdef CONFIG_KVM_XICS
107 static struct kernel_param_ops module_param_ops = {
108         .set = param_set_int,
109         .get = param_get_int,
110 };
111
112 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass,
113                                                         S_IRUGO | S_IWUSR);
114 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
115
116 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect,
117                                                         S_IRUGO | S_IWUSR);
118 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
119 #endif
120
121 static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
122 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
123
124 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
125                 int *ip)
126 {
127         int i = *ip;
128         struct kvm_vcpu *vcpu;
129
130         while (++i < MAX_SMT_THREADS) {
131                 vcpu = READ_ONCE(vc->runnable_threads[i]);
132                 if (vcpu) {
133                         *ip = i;
134                         return vcpu;
135                 }
136         }
137         return NULL;
138 }
139
140 /* Used to traverse the list of runnable threads for a given vcore */
141 #define for_each_runnable_thread(i, vcpu, vc) \
142         for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
143
144 static bool kvmppc_ipi_thread(int cpu)
145 {
146         unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
147
148         /* On POWER9 we can use msgsnd to IPI any cpu */
149         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
150                 msg |= get_hard_smp_processor_id(cpu);
151                 smp_mb();
152                 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
153                 return true;
154         }
155
156         /* On POWER8 for IPIs to threads in the same core, use msgsnd */
157         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
158                 preempt_disable();
159                 if (cpu_first_thread_sibling(cpu) ==
160                     cpu_first_thread_sibling(smp_processor_id())) {
161                         msg |= cpu_thread_in_core(cpu);
162                         smp_mb();
163                         __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
164                         preempt_enable();
165                         return true;
166                 }
167                 preempt_enable();
168         }
169
170 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
171         if (cpu >= 0 && cpu < nr_cpu_ids) {
172                 if (paca[cpu].kvm_hstate.xics_phys) {
173                         xics_wake_cpu(cpu);
174                         return true;
175                 }
176                 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
177                 return true;
178         }
179 #endif
180
181         return false;
182 }
183
184 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
185 {
186         int cpu;
187         struct swait_queue_head *wqp;
188
189         wqp = kvm_arch_vcpu_wq(vcpu);
190         if (swq_has_sleeper(wqp)) {
191                 swake_up(wqp);
192                 ++vcpu->stat.halt_wakeup;
193         }
194
195         cpu = READ_ONCE(vcpu->arch.thread_cpu);
196         if (cpu >= 0 && kvmppc_ipi_thread(cpu))
197                 return;
198
199         /* CPU points to the first thread of the core */
200         cpu = vcpu->cpu;
201         if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
202                 smp_send_reschedule(cpu);
203 }
204
205 /*
206  * We use the vcpu_load/put functions to measure stolen time.
207  * Stolen time is counted as time when either the vcpu is able to
208  * run as part of a virtual core, but the task running the vcore
209  * is preempted or sleeping, or when the vcpu needs something done
210  * in the kernel by the task running the vcpu, but that task is
211  * preempted or sleeping.  Those two things have to be counted
212  * separately, since one of the vcpu tasks will take on the job
213  * of running the core, and the other vcpu tasks in the vcore will
214  * sleep waiting for it to do that, but that sleep shouldn't count
215  * as stolen time.
216  *
217  * Hence we accumulate stolen time when the vcpu can run as part of
218  * a vcore using vc->stolen_tb, and the stolen time when the vcpu
219  * needs its task to do other things in the kernel (for example,
220  * service a page fault) in busy_stolen.  We don't accumulate
221  * stolen time for a vcore when it is inactive, or for a vcpu
222  * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
223  * a misnomer; it means that the vcpu task is not executing in
224  * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
225  * the kernel.  We don't have any way of dividing up that time
226  * between time that the vcpu is genuinely stopped, time that
227  * the task is actively working on behalf of the vcpu, and time
228  * that the task is preempted, so we don't count any of it as
229  * stolen.
230  *
231  * Updates to busy_stolen are protected by arch.tbacct_lock;
232  * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
233  * lock.  The stolen times are measured in units of timebase ticks.
234  * (Note that the != TB_NIL checks below are purely defensive;
235  * they should never fail.)
236  */
237
238 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
239 {
240         unsigned long flags;
241
242         spin_lock_irqsave(&vc->stoltb_lock, flags);
243         vc->preempt_tb = mftb();
244         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
245 }
246
247 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
248 {
249         unsigned long flags;
250
251         spin_lock_irqsave(&vc->stoltb_lock, flags);
252         if (vc->preempt_tb != TB_NIL) {
253                 vc->stolen_tb += mftb() - vc->preempt_tb;
254                 vc->preempt_tb = TB_NIL;
255         }
256         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
257 }
258
259 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
260 {
261         struct kvmppc_vcore *vc = vcpu->arch.vcore;
262         unsigned long flags;
263
264         /*
265          * We can test vc->runner without taking the vcore lock,
266          * because only this task ever sets vc->runner to this
267          * vcpu, and once it is set to this vcpu, only this task
268          * ever sets it to NULL.
269          */
270         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
271                 kvmppc_core_end_stolen(vc);
272
273         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
274         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
275             vcpu->arch.busy_preempt != TB_NIL) {
276                 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
277                 vcpu->arch.busy_preempt = TB_NIL;
278         }
279         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
280 }
281
282 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
283 {
284         struct kvmppc_vcore *vc = vcpu->arch.vcore;
285         unsigned long flags;
286
287         if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
288                 kvmppc_core_start_stolen(vc);
289
290         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
291         if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
292                 vcpu->arch.busy_preempt = mftb();
293         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
294 }
295
296 static void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
297 {
298         /*
299          * Check for illegal transactional state bit combination
300          * and if we find it, force the TS field to a safe state.
301          */
302         if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
303                 msr &= ~MSR_TS_MASK;
304         vcpu->arch.shregs.msr = msr;
305         kvmppc_end_cede(vcpu);
306 }
307
308 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
309 {
310         vcpu->arch.pvr = pvr;
311 }
312
313 /* Dummy value used in computing PCR value below */
314 #define PCR_ARCH_300    (PCR_ARCH_207 << 1)
315
316 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
317 {
318         unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
319         struct kvmppc_vcore *vc = vcpu->arch.vcore;
320
321         /* We can (emulate) our own architecture version and anything older */
322         if (cpu_has_feature(CPU_FTR_ARCH_300))
323                 host_pcr_bit = PCR_ARCH_300;
324         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
325                 host_pcr_bit = PCR_ARCH_207;
326         else if (cpu_has_feature(CPU_FTR_ARCH_206))
327                 host_pcr_bit = PCR_ARCH_206;
328         else
329                 host_pcr_bit = PCR_ARCH_205;
330
331         /* Determine lowest PCR bit needed to run guest in given PVR level */
332         guest_pcr_bit = host_pcr_bit;
333         if (arch_compat) {
334                 switch (arch_compat) {
335                 case PVR_ARCH_205:
336                         guest_pcr_bit = PCR_ARCH_205;
337                         break;
338                 case PVR_ARCH_206:
339                 case PVR_ARCH_206p:
340                         guest_pcr_bit = PCR_ARCH_206;
341                         break;
342                 case PVR_ARCH_207:
343                         guest_pcr_bit = PCR_ARCH_207;
344                         break;
345                 case PVR_ARCH_300:
346                         guest_pcr_bit = PCR_ARCH_300;
347                         break;
348                 default:
349                         return -EINVAL;
350                 }
351         }
352
353         /* Check requested PCR bits don't exceed our capabilities */
354         if (guest_pcr_bit > host_pcr_bit)
355                 return -EINVAL;
356
357         spin_lock(&vc->lock);
358         vc->arch_compat = arch_compat;
359         /* Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit */
360         vc->pcr = host_pcr_bit - guest_pcr_bit;
361         spin_unlock(&vc->lock);
362
363         return 0;
364 }
365
366 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
367 {
368         int r;
369
370         pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
371         pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
372                vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
373         for (r = 0; r < 16; ++r)
374                 pr_err("r%2d = %.16lx  r%d = %.16lx\n",
375                        r, kvmppc_get_gpr(vcpu, r),
376                        r+16, kvmppc_get_gpr(vcpu, r+16));
377         pr_err("ctr = %.16lx  lr  = %.16lx\n",
378                vcpu->arch.ctr, vcpu->arch.lr);
379         pr_err("srr0 = %.16llx srr1 = %.16llx\n",
380                vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
381         pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
382                vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
383         pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
384                vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
385         pr_err("cr = %.8x  xer = %.16lx  dsisr = %.8x\n",
386                vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
387         pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
388         pr_err("fault dar = %.16lx dsisr = %.8x\n",
389                vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
390         pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
391         for (r = 0; r < vcpu->arch.slb_max; ++r)
392                 pr_err("  ESID = %.16llx VSID = %.16llx\n",
393                        vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
394         pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
395                vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
396                vcpu->arch.last_inst);
397 }
398
399 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
400 {
401         struct kvm_vcpu *ret;
402
403         mutex_lock(&kvm->lock);
404         ret = kvm_get_vcpu_by_id(kvm, id);
405         mutex_unlock(&kvm->lock);
406         return ret;
407 }
408
409 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
410 {
411         vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
412         vpa->yield_count = cpu_to_be32(1);
413 }
414
415 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
416                    unsigned long addr, unsigned long len)
417 {
418         /* check address is cacheline aligned */
419         if (addr & (L1_CACHE_BYTES - 1))
420                 return -EINVAL;
421         spin_lock(&vcpu->arch.vpa_update_lock);
422         if (v->next_gpa != addr || v->len != len) {
423                 v->next_gpa = addr;
424                 v->len = addr ? len : 0;
425                 v->update_pending = 1;
426         }
427         spin_unlock(&vcpu->arch.vpa_update_lock);
428         return 0;
429 }
430
431 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
432 struct reg_vpa {
433         u32 dummy;
434         union {
435                 __be16 hword;
436                 __be32 word;
437         } length;
438 };
439
440 static int vpa_is_registered(struct kvmppc_vpa *vpap)
441 {
442         if (vpap->update_pending)
443                 return vpap->next_gpa != 0;
444         return vpap->pinned_addr != NULL;
445 }
446
447 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
448                                        unsigned long flags,
449                                        unsigned long vcpuid, unsigned long vpa)
450 {
451         struct kvm *kvm = vcpu->kvm;
452         unsigned long len, nb;
453         void *va;
454         struct kvm_vcpu *tvcpu;
455         int err;
456         int subfunc;
457         struct kvmppc_vpa *vpap;
458
459         tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
460         if (!tvcpu)
461                 return H_PARAMETER;
462
463         subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
464         if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
465             subfunc == H_VPA_REG_SLB) {
466                 /* Registering new area - address must be cache-line aligned */
467                 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
468                         return H_PARAMETER;
469
470                 /* convert logical addr to kernel addr and read length */
471                 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
472                 if (va == NULL)
473                         return H_PARAMETER;
474                 if (subfunc == H_VPA_REG_VPA)
475                         len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
476                 else
477                         len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
478                 kvmppc_unpin_guest_page(kvm, va, vpa, false);
479
480                 /* Check length */
481                 if (len > nb || len < sizeof(struct reg_vpa))
482                         return H_PARAMETER;
483         } else {
484                 vpa = 0;
485                 len = 0;
486         }
487
488         err = H_PARAMETER;
489         vpap = NULL;
490         spin_lock(&tvcpu->arch.vpa_update_lock);
491
492         switch (subfunc) {
493         case H_VPA_REG_VPA:             /* register VPA */
494                 /*
495                  * The size of our lppaca is 1kB because of the way we align
496                  * it for the guest to avoid crossing a 4kB boundary. We only
497                  * use 640 bytes of the structure though, so we should accept
498                  * clients that set a size of 640.
499                  */
500                 if (len < 640)
501                         break;
502                 vpap = &tvcpu->arch.vpa;
503                 err = 0;
504                 break;
505
506         case H_VPA_REG_DTL:             /* register DTL */
507                 if (len < sizeof(struct dtl_entry))
508                         break;
509                 len -= len % sizeof(struct dtl_entry);
510
511                 /* Check that they have previously registered a VPA */
512                 err = H_RESOURCE;
513                 if (!vpa_is_registered(&tvcpu->arch.vpa))
514                         break;
515
516                 vpap = &tvcpu->arch.dtl;
517                 err = 0;
518                 break;
519
520         case H_VPA_REG_SLB:             /* register SLB shadow buffer */
521                 /* Check that they have previously registered a VPA */
522                 err = H_RESOURCE;
523                 if (!vpa_is_registered(&tvcpu->arch.vpa))
524                         break;
525
526                 vpap = &tvcpu->arch.slb_shadow;
527                 err = 0;
528                 break;
529
530         case H_VPA_DEREG_VPA:           /* deregister VPA */
531                 /* Check they don't still have a DTL or SLB buf registered */
532                 err = H_RESOURCE;
533                 if (vpa_is_registered(&tvcpu->arch.dtl) ||
534                     vpa_is_registered(&tvcpu->arch.slb_shadow))
535                         break;
536
537                 vpap = &tvcpu->arch.vpa;
538                 err = 0;
539                 break;
540
541         case H_VPA_DEREG_DTL:           /* deregister DTL */
542                 vpap = &tvcpu->arch.dtl;
543                 err = 0;
544                 break;
545
546         case H_VPA_DEREG_SLB:           /* deregister SLB shadow buffer */
547                 vpap = &tvcpu->arch.slb_shadow;
548                 err = 0;
549                 break;
550         }
551
552         if (vpap) {
553                 vpap->next_gpa = vpa;
554                 vpap->len = len;
555                 vpap->update_pending = 1;
556         }
557
558         spin_unlock(&tvcpu->arch.vpa_update_lock);
559
560         return err;
561 }
562
563 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
564 {
565         struct kvm *kvm = vcpu->kvm;
566         void *va;
567         unsigned long nb;
568         unsigned long gpa;
569
570         /*
571          * We need to pin the page pointed to by vpap->next_gpa,
572          * but we can't call kvmppc_pin_guest_page under the lock
573          * as it does get_user_pages() and down_read().  So we
574          * have to drop the lock, pin the page, then get the lock
575          * again and check that a new area didn't get registered
576          * in the meantime.
577          */
578         for (;;) {
579                 gpa = vpap->next_gpa;
580                 spin_unlock(&vcpu->arch.vpa_update_lock);
581                 va = NULL;
582                 nb = 0;
583                 if (gpa)
584                         va = kvmppc_pin_guest_page(kvm, gpa, &nb);
585                 spin_lock(&vcpu->arch.vpa_update_lock);
586                 if (gpa == vpap->next_gpa)
587                         break;
588                 /* sigh... unpin that one and try again */
589                 if (va)
590                         kvmppc_unpin_guest_page(kvm, va, gpa, false);
591         }
592
593         vpap->update_pending = 0;
594         if (va && nb < vpap->len) {
595                 /*
596                  * If it's now too short, it must be that userspace
597                  * has changed the mappings underlying guest memory,
598                  * so unregister the region.
599                  */
600                 kvmppc_unpin_guest_page(kvm, va, gpa, false);
601                 va = NULL;
602         }
603         if (vpap->pinned_addr)
604                 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
605                                         vpap->dirty);
606         vpap->gpa = gpa;
607         vpap->pinned_addr = va;
608         vpap->dirty = false;
609         if (va)
610                 vpap->pinned_end = va + vpap->len;
611 }
612
613 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
614 {
615         if (!(vcpu->arch.vpa.update_pending ||
616               vcpu->arch.slb_shadow.update_pending ||
617               vcpu->arch.dtl.update_pending))
618                 return;
619
620         spin_lock(&vcpu->arch.vpa_update_lock);
621         if (vcpu->arch.vpa.update_pending) {
622                 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
623                 if (vcpu->arch.vpa.pinned_addr)
624                         init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
625         }
626         if (vcpu->arch.dtl.update_pending) {
627                 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
628                 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
629                 vcpu->arch.dtl_index = 0;
630         }
631         if (vcpu->arch.slb_shadow.update_pending)
632                 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
633         spin_unlock(&vcpu->arch.vpa_update_lock);
634 }
635
636 /*
637  * Return the accumulated stolen time for the vcore up until `now'.
638  * The caller should hold the vcore lock.
639  */
640 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
641 {
642         u64 p;
643         unsigned long flags;
644
645         spin_lock_irqsave(&vc->stoltb_lock, flags);
646         p = vc->stolen_tb;
647         if (vc->vcore_state != VCORE_INACTIVE &&
648             vc->preempt_tb != TB_NIL)
649                 p += now - vc->preempt_tb;
650         spin_unlock_irqrestore(&vc->stoltb_lock, flags);
651         return p;
652 }
653
654 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
655                                     struct kvmppc_vcore *vc)
656 {
657         struct dtl_entry *dt;
658         struct lppaca *vpa;
659         unsigned long stolen;
660         unsigned long core_stolen;
661         u64 now;
662         unsigned long flags;
663
664         dt = vcpu->arch.dtl_ptr;
665         vpa = vcpu->arch.vpa.pinned_addr;
666         now = mftb();
667         core_stolen = vcore_stolen_time(vc, now);
668         stolen = core_stolen - vcpu->arch.stolen_logged;
669         vcpu->arch.stolen_logged = core_stolen;
670         spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
671         stolen += vcpu->arch.busy_stolen;
672         vcpu->arch.busy_stolen = 0;
673         spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
674         if (!dt || !vpa)
675                 return;
676         memset(dt, 0, sizeof(struct dtl_entry));
677         dt->dispatch_reason = 7;
678         dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
679         dt->timebase = cpu_to_be64(now + vc->tb_offset);
680         dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
681         dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
682         dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
683         ++dt;
684         if (dt == vcpu->arch.dtl.pinned_end)
685                 dt = vcpu->arch.dtl.pinned_addr;
686         vcpu->arch.dtl_ptr = dt;
687         /* order writing *dt vs. writing vpa->dtl_idx */
688         smp_wmb();
689         vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
690         vcpu->arch.dtl.dirty = true;
691 }
692
693 /* See if there is a doorbell interrupt pending for a vcpu */
694 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
695 {
696         int thr;
697         struct kvmppc_vcore *vc;
698
699         if (vcpu->arch.doorbell_request)
700                 return true;
701         /*
702          * Ensure that the read of vcore->dpdes comes after the read
703          * of vcpu->doorbell_request.  This barrier matches the
704          * lwsync in book3s_hv_rmhandlers.S just before the
705          * fast_guest_return label.
706          */
707         smp_rmb();
708         vc = vcpu->arch.vcore;
709         thr = vcpu->vcpu_id - vc->first_vcpuid;
710         return !!(vc->dpdes & (1 << thr));
711 }
712
713 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
714 {
715         if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
716                 return true;
717         if ((!vcpu->arch.vcore->arch_compat) &&
718             cpu_has_feature(CPU_FTR_ARCH_207S))
719                 return true;
720         return false;
721 }
722
723 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
724                              unsigned long resource, unsigned long value1,
725                              unsigned long value2)
726 {
727         switch (resource) {
728         case H_SET_MODE_RESOURCE_SET_CIABR:
729                 if (!kvmppc_power8_compatible(vcpu))
730                         return H_P2;
731                 if (value2)
732                         return H_P4;
733                 if (mflags)
734                         return H_UNSUPPORTED_FLAG_START;
735                 /* Guests can't breakpoint the hypervisor */
736                 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
737                         return H_P3;
738                 vcpu->arch.ciabr  = value1;
739                 return H_SUCCESS;
740         case H_SET_MODE_RESOURCE_SET_DAWR:
741                 if (!kvmppc_power8_compatible(vcpu))
742                         return H_P2;
743                 if (mflags)
744                         return H_UNSUPPORTED_FLAG_START;
745                 if (value2 & DABRX_HYP)
746                         return H_P4;
747                 vcpu->arch.dawr  = value1;
748                 vcpu->arch.dawrx = value2;
749                 return H_SUCCESS;
750         default:
751                 return H_TOO_HARD;
752         }
753 }
754
755 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
756 {
757         struct kvmppc_vcore *vcore = target->arch.vcore;
758
759         /*
760          * We expect to have been called by the real mode handler
761          * (kvmppc_rm_h_confer()) which would have directly returned
762          * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
763          * have useful work to do and should not confer) so we don't
764          * recheck that here.
765          */
766
767         spin_lock(&vcore->lock);
768         if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
769             vcore->vcore_state != VCORE_INACTIVE &&
770             vcore->runner)
771                 target = vcore->runner;
772         spin_unlock(&vcore->lock);
773
774         return kvm_vcpu_yield_to(target);
775 }
776
777 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
778 {
779         int yield_count = 0;
780         struct lppaca *lppaca;
781
782         spin_lock(&vcpu->arch.vpa_update_lock);
783         lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
784         if (lppaca)
785                 yield_count = be32_to_cpu(lppaca->yield_count);
786         spin_unlock(&vcpu->arch.vpa_update_lock);
787         return yield_count;
788 }
789
790 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
791 {
792         unsigned long req = kvmppc_get_gpr(vcpu, 3);
793         unsigned long target, ret = H_SUCCESS;
794         int yield_count;
795         struct kvm_vcpu *tvcpu;
796         int idx, rc;
797
798         if (req <= MAX_HCALL_OPCODE &&
799             !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
800                 return RESUME_HOST;
801
802         switch (req) {
803         case H_CEDE:
804                 break;
805         case H_PROD:
806                 target = kvmppc_get_gpr(vcpu, 4);
807                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
808                 if (!tvcpu) {
809                         ret = H_PARAMETER;
810                         break;
811                 }
812                 tvcpu->arch.prodded = 1;
813                 smp_mb();
814                 if (tvcpu->arch.ceded)
815                         kvmppc_fast_vcpu_kick_hv(tvcpu);
816                 break;
817         case H_CONFER:
818                 target = kvmppc_get_gpr(vcpu, 4);
819                 if (target == -1)
820                         break;
821                 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
822                 if (!tvcpu) {
823                         ret = H_PARAMETER;
824                         break;
825                 }
826                 yield_count = kvmppc_get_gpr(vcpu, 5);
827                 if (kvmppc_get_yield_count(tvcpu) != yield_count)
828                         break;
829                 kvm_arch_vcpu_yield_to(tvcpu);
830                 break;
831         case H_REGISTER_VPA:
832                 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
833                                         kvmppc_get_gpr(vcpu, 5),
834                                         kvmppc_get_gpr(vcpu, 6));
835                 break;
836         case H_RTAS:
837                 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
838                         return RESUME_HOST;
839
840                 idx = srcu_read_lock(&vcpu->kvm->srcu);
841                 rc = kvmppc_rtas_hcall(vcpu);
842                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
843
844                 if (rc == -ENOENT)
845                         return RESUME_HOST;
846                 else if (rc == 0)
847                         break;
848
849                 /* Send the error out to userspace via KVM_RUN */
850                 return rc;
851         case H_LOGICAL_CI_LOAD:
852                 ret = kvmppc_h_logical_ci_load(vcpu);
853                 if (ret == H_TOO_HARD)
854                         return RESUME_HOST;
855                 break;
856         case H_LOGICAL_CI_STORE:
857                 ret = kvmppc_h_logical_ci_store(vcpu);
858                 if (ret == H_TOO_HARD)
859                         return RESUME_HOST;
860                 break;
861         case H_SET_MODE:
862                 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
863                                         kvmppc_get_gpr(vcpu, 5),
864                                         kvmppc_get_gpr(vcpu, 6),
865                                         kvmppc_get_gpr(vcpu, 7));
866                 if (ret == H_TOO_HARD)
867                         return RESUME_HOST;
868                 break;
869         case H_XIRR:
870         case H_CPPR:
871         case H_EOI:
872         case H_IPI:
873         case H_IPOLL:
874         case H_XIRR_X:
875                 if (kvmppc_xics_enabled(vcpu)) {
876                         if (xive_enabled()) {
877                                 ret = H_NOT_AVAILABLE;
878                                 return RESUME_GUEST;
879                         }
880                         ret = kvmppc_xics_hcall(vcpu, req);
881                         break;
882                 }
883                 return RESUME_HOST;
884         case H_PUT_TCE:
885                 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
886                                                 kvmppc_get_gpr(vcpu, 5),
887                                                 kvmppc_get_gpr(vcpu, 6));
888                 if (ret == H_TOO_HARD)
889                         return RESUME_HOST;
890                 break;
891         case H_PUT_TCE_INDIRECT:
892                 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
893                                                 kvmppc_get_gpr(vcpu, 5),
894                                                 kvmppc_get_gpr(vcpu, 6),
895                                                 kvmppc_get_gpr(vcpu, 7));
896                 if (ret == H_TOO_HARD)
897                         return RESUME_HOST;
898                 break;
899         case H_STUFF_TCE:
900                 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
901                                                 kvmppc_get_gpr(vcpu, 5),
902                                                 kvmppc_get_gpr(vcpu, 6),
903                                                 kvmppc_get_gpr(vcpu, 7));
904                 if (ret == H_TOO_HARD)
905                         return RESUME_HOST;
906                 break;
907         default:
908                 return RESUME_HOST;
909         }
910         kvmppc_set_gpr(vcpu, 3, ret);
911         vcpu->arch.hcall_needed = 0;
912         return RESUME_GUEST;
913 }
914
915 static int kvmppc_hcall_impl_hv(unsigned long cmd)
916 {
917         switch (cmd) {
918         case H_CEDE:
919         case H_PROD:
920         case H_CONFER:
921         case H_REGISTER_VPA:
922         case H_SET_MODE:
923         case H_LOGICAL_CI_LOAD:
924         case H_LOGICAL_CI_STORE:
925 #ifdef CONFIG_KVM_XICS
926         case H_XIRR:
927         case H_CPPR:
928         case H_EOI:
929         case H_IPI:
930         case H_IPOLL:
931         case H_XIRR_X:
932 #endif
933                 return 1;
934         }
935
936         /* See if it's in the real-mode table */
937         return kvmppc_hcall_impl_hv_realmode(cmd);
938 }
939
940 static int kvmppc_emulate_debug_inst(struct kvm_run *run,
941                                         struct kvm_vcpu *vcpu)
942 {
943         u32 last_inst;
944
945         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
946                                         EMULATE_DONE) {
947                 /*
948                  * Fetch failed, so return to guest and
949                  * try executing it again.
950                  */
951                 return RESUME_GUEST;
952         }
953
954         if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
955                 run->exit_reason = KVM_EXIT_DEBUG;
956                 run->debug.arch.address = kvmppc_get_pc(vcpu);
957                 return RESUME_HOST;
958         } else {
959                 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
960                 return RESUME_GUEST;
961         }
962 }
963
964 static void do_nothing(void *x)
965 {
966 }
967
968 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
969 {
970         int thr, cpu, pcpu, nthreads;
971         struct kvm_vcpu *v;
972         unsigned long dpdes;
973
974         nthreads = vcpu->kvm->arch.emul_smt_mode;
975         dpdes = 0;
976         cpu = vcpu->vcpu_id & ~(nthreads - 1);
977         for (thr = 0; thr < nthreads; ++thr, ++cpu) {
978                 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
979                 if (!v)
980                         continue;
981                 /*
982                  * If the vcpu is currently running on a physical cpu thread,
983                  * interrupt it in order to pull it out of the guest briefly,
984                  * which will update its vcore->dpdes value.
985                  */
986                 pcpu = READ_ONCE(v->cpu);
987                 if (pcpu >= 0)
988                         smp_call_function_single(pcpu, do_nothing, NULL, 1);
989                 if (kvmppc_doorbell_pending(v))
990                         dpdes |= 1 << thr;
991         }
992         return dpdes;
993 }
994
995 /*
996  * On POWER9, emulate doorbell-related instructions in order to
997  * give the guest the illusion of running on a multi-threaded core.
998  * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
999  * and mfspr DPDES.
1000  */
1001 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1002 {
1003         u32 inst, rb, thr;
1004         unsigned long arg;
1005         struct kvm *kvm = vcpu->kvm;
1006         struct kvm_vcpu *tvcpu;
1007
1008         if (!cpu_has_feature(CPU_FTR_ARCH_300))
1009                 return EMULATE_FAIL;
1010         if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1011                 return RESUME_GUEST;
1012         if (get_op(inst) != 31)
1013                 return EMULATE_FAIL;
1014         rb = get_rb(inst);
1015         thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1016         switch (get_xop(inst)) {
1017         case OP_31_XOP_MSGSNDP:
1018                 arg = kvmppc_get_gpr(vcpu, rb);
1019                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1020                         break;
1021                 arg &= 0x3f;
1022                 if (arg >= kvm->arch.emul_smt_mode)
1023                         break;
1024                 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1025                 if (!tvcpu)
1026                         break;
1027                 if (!tvcpu->arch.doorbell_request) {
1028                         tvcpu->arch.doorbell_request = 1;
1029                         kvmppc_fast_vcpu_kick_hv(tvcpu);
1030                 }
1031                 break;
1032         case OP_31_XOP_MSGCLRP:
1033                 arg = kvmppc_get_gpr(vcpu, rb);
1034                 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1035                         break;
1036                 vcpu->arch.vcore->dpdes = 0;
1037                 vcpu->arch.doorbell_request = 0;
1038                 break;
1039         case OP_31_XOP_MFSPR:
1040                 switch (get_sprn(inst)) {
1041                 case SPRN_TIR:
1042                         arg = thr;
1043                         break;
1044                 case SPRN_DPDES:
1045                         arg = kvmppc_read_dpdes(vcpu);
1046                         break;
1047                 default:
1048                         return EMULATE_FAIL;
1049                 }
1050                 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1051                 break;
1052         default:
1053                 return EMULATE_FAIL;
1054         }
1055         kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1056         return RESUME_GUEST;
1057 }
1058
1059 static int kvmppc_handle_exit_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
1060                                  struct task_struct *tsk)
1061 {
1062         int r = RESUME_HOST;
1063
1064         vcpu->stat.sum_exits++;
1065
1066         /*
1067          * This can happen if an interrupt occurs in the last stages
1068          * of guest entry or the first stages of guest exit (i.e. after
1069          * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1070          * and before setting it to KVM_GUEST_MODE_HOST_HV).
1071          * That can happen due to a bug, or due to a machine check
1072          * occurring at just the wrong time.
1073          */
1074         if (vcpu->arch.shregs.msr & MSR_HV) {
1075                 printk(KERN_EMERG "KVM trap in HV mode!\n");
1076                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1077                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1078                         vcpu->arch.shregs.msr);
1079                 kvmppc_dump_regs(vcpu);
1080                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1081                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1082                 return RESUME_HOST;
1083         }
1084         run->exit_reason = KVM_EXIT_UNKNOWN;
1085         run->ready_for_interrupt_injection = 1;
1086         switch (vcpu->arch.trap) {
1087         /* We're good on these - the host merely wanted to get our attention */
1088         case BOOK3S_INTERRUPT_HV_DECREMENTER:
1089                 vcpu->stat.dec_exits++;
1090                 r = RESUME_GUEST;
1091                 break;
1092         case BOOK3S_INTERRUPT_EXTERNAL:
1093         case BOOK3S_INTERRUPT_H_DOORBELL:
1094         case BOOK3S_INTERRUPT_H_VIRT:
1095                 vcpu->stat.ext_intr_exits++;
1096                 r = RESUME_GUEST;
1097                 break;
1098         /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1099         case BOOK3S_INTERRUPT_HMI:
1100         case BOOK3S_INTERRUPT_PERFMON:
1101         case BOOK3S_INTERRUPT_SYSTEM_RESET:
1102                 r = RESUME_GUEST;
1103                 break;
1104         case BOOK3S_INTERRUPT_MACHINE_CHECK:
1105                 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1106                 run->exit_reason = KVM_EXIT_NMI;
1107                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1108                 /* Clear out the old NMI status from run->flags */
1109                 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1110                 /* Now set the NMI status */
1111                 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1112                         run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1113                 else
1114                         run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1115
1116                 r = RESUME_HOST;
1117                 /* Print the MCE event to host console. */
1118                 machine_check_print_event_info(&vcpu->arch.mce_evt, false);
1119                 break;
1120         case BOOK3S_INTERRUPT_PROGRAM:
1121         {
1122                 ulong flags;
1123                 /*
1124                  * Normally program interrupts are delivered directly
1125                  * to the guest by the hardware, but we can get here
1126                  * as a result of a hypervisor emulation interrupt
1127                  * (e40) getting turned into a 700 by BML RTAS.
1128                  */
1129                 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1130                 kvmppc_core_queue_program(vcpu, flags);
1131                 r = RESUME_GUEST;
1132                 break;
1133         }
1134         case BOOK3S_INTERRUPT_SYSCALL:
1135         {
1136                 /* hcall - punt to userspace */
1137                 int i;
1138
1139                 /* hypercall with MSR_PR has already been handled in rmode,
1140                  * and never reaches here.
1141                  */
1142
1143                 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1144                 for (i = 0; i < 9; ++i)
1145                         run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1146                 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1147                 vcpu->arch.hcall_needed = 1;
1148                 r = RESUME_HOST;
1149                 break;
1150         }
1151         /*
1152          * We get these next two if the guest accesses a page which it thinks
1153          * it has mapped but which is not actually present, either because
1154          * it is for an emulated I/O device or because the corresonding
1155          * host page has been paged out.  Any other HDSI/HISI interrupts
1156          * have been handled already.
1157          */
1158         case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1159                 r = RESUME_PAGE_FAULT;
1160                 break;
1161         case BOOK3S_INTERRUPT_H_INST_STORAGE:
1162                 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1163                 vcpu->arch.fault_dsisr = 0;
1164                 r = RESUME_PAGE_FAULT;
1165                 break;
1166         /*
1167          * This occurs if the guest executes an illegal instruction.
1168          * If the guest debug is disabled, generate a program interrupt
1169          * to the guest. If guest debug is enabled, we need to check
1170          * whether the instruction is a software breakpoint instruction.
1171          * Accordingly return to Guest or Host.
1172          */
1173         case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1174                 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1175                         vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1176                                 swab32(vcpu->arch.emul_inst) :
1177                                 vcpu->arch.emul_inst;
1178                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1179                         r = kvmppc_emulate_debug_inst(run, vcpu);
1180                 } else {
1181                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1182                         r = RESUME_GUEST;
1183                 }
1184                 break;
1185         /*
1186          * This occurs if the guest (kernel or userspace), does something that
1187          * is prohibited by HFSCR.
1188          * On POWER9, this could be a doorbell instruction that we need
1189          * to emulate.
1190          * Otherwise, we just generate a program interrupt to the guest.
1191          */
1192         case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1193                 r = EMULATE_FAIL;
1194                 if ((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG)
1195                         r = kvmppc_emulate_doorbell_instr(vcpu);
1196                 if (r == EMULATE_FAIL) {
1197                         kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1198                         r = RESUME_GUEST;
1199                 }
1200                 break;
1201         case BOOK3S_INTERRUPT_HV_RM_HARD:
1202                 r = RESUME_PASSTHROUGH;
1203                 break;
1204         default:
1205                 kvmppc_dump_regs(vcpu);
1206                 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1207                         vcpu->arch.trap, kvmppc_get_pc(vcpu),
1208                         vcpu->arch.shregs.msr);
1209                 run->hw.hardware_exit_reason = vcpu->arch.trap;
1210                 r = RESUME_HOST;
1211                 break;
1212         }
1213
1214         return r;
1215 }
1216
1217 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1218                                             struct kvm_sregs *sregs)
1219 {
1220         int i;
1221
1222         memset(sregs, 0, sizeof(struct kvm_sregs));
1223         sregs->pvr = vcpu->arch.pvr;
1224         for (i = 0; i < vcpu->arch.slb_max; i++) {
1225                 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1226                 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1227         }
1228
1229         return 0;
1230 }
1231
1232 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1233                                             struct kvm_sregs *sregs)
1234 {
1235         int i, j;
1236
1237         /* Only accept the same PVR as the host's, since we can't spoof it */
1238         if (sregs->pvr != vcpu->arch.pvr)
1239                 return -EINVAL;
1240
1241         j = 0;
1242         for (i = 0; i < vcpu->arch.slb_nr; i++) {
1243                 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1244                         vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1245                         vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1246                         ++j;
1247                 }
1248         }
1249         vcpu->arch.slb_max = j;
1250
1251         return 0;
1252 }
1253
1254 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1255                 bool preserve_top32)
1256 {
1257         struct kvm *kvm = vcpu->kvm;
1258         struct kvmppc_vcore *vc = vcpu->arch.vcore;
1259         u64 mask;
1260
1261         mutex_lock(&kvm->lock);
1262         spin_lock(&vc->lock);
1263         /*
1264          * If ILE (interrupt little-endian) has changed, update the
1265          * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1266          */
1267         if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1268                 struct kvm_vcpu *vcpu;
1269                 int i;
1270
1271                 kvm_for_each_vcpu(i, vcpu, kvm) {
1272                         if (vcpu->arch.vcore != vc)
1273                                 continue;
1274                         if (new_lpcr & LPCR_ILE)
1275                                 vcpu->arch.intr_msr |= MSR_LE;
1276                         else
1277                                 vcpu->arch.intr_msr &= ~MSR_LE;
1278                 }
1279         }
1280
1281         /*
1282          * Userspace can only modify DPFD (default prefetch depth),
1283          * ILE (interrupt little-endian) and TC (translation control).
1284          * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1285          */
1286         mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1287         if (cpu_has_feature(CPU_FTR_ARCH_207S))
1288                 mask |= LPCR_AIL;
1289         /*
1290          * On POWER9, allow userspace to enable large decrementer for the
1291          * guest, whether or not the host has it enabled.
1292          */
1293         if (cpu_has_feature(CPU_FTR_ARCH_300))
1294                 mask |= LPCR_LD;
1295
1296         /* Broken 32-bit version of LPCR must not clear top bits */
1297         if (preserve_top32)
1298                 mask &= 0xFFFFFFFF;
1299         vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1300         spin_unlock(&vc->lock);
1301         mutex_unlock(&kvm->lock);
1302 }
1303
1304 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1305                                  union kvmppc_one_reg *val)
1306 {
1307         int r = 0;
1308         long int i;
1309
1310         switch (id) {
1311         case KVM_REG_PPC_DEBUG_INST:
1312                 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1313                 break;
1314         case KVM_REG_PPC_HIOR:
1315                 *val = get_reg_val(id, 0);
1316                 break;
1317         case KVM_REG_PPC_DABR:
1318                 *val = get_reg_val(id, vcpu->arch.dabr);
1319                 break;
1320         case KVM_REG_PPC_DABRX:
1321                 *val = get_reg_val(id, vcpu->arch.dabrx);
1322                 break;
1323         case KVM_REG_PPC_DSCR:
1324                 *val = get_reg_val(id, vcpu->arch.dscr);
1325                 break;
1326         case KVM_REG_PPC_PURR:
1327                 *val = get_reg_val(id, vcpu->arch.purr);
1328                 break;
1329         case KVM_REG_PPC_SPURR:
1330                 *val = get_reg_val(id, vcpu->arch.spurr);
1331                 break;
1332         case KVM_REG_PPC_AMR:
1333                 *val = get_reg_val(id, vcpu->arch.amr);
1334                 break;
1335         case KVM_REG_PPC_UAMOR:
1336                 *val = get_reg_val(id, vcpu->arch.uamor);
1337                 break;
1338         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1339                 i = id - KVM_REG_PPC_MMCR0;
1340                 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1341                 break;
1342         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1343                 i = id - KVM_REG_PPC_PMC1;
1344                 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1345                 break;
1346         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1347                 i = id - KVM_REG_PPC_SPMC1;
1348                 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1349                 break;
1350         case KVM_REG_PPC_SIAR:
1351                 *val = get_reg_val(id, vcpu->arch.siar);
1352                 break;
1353         case KVM_REG_PPC_SDAR:
1354                 *val = get_reg_val(id, vcpu->arch.sdar);
1355                 break;
1356         case KVM_REG_PPC_SIER:
1357                 *val = get_reg_val(id, vcpu->arch.sier);
1358                 break;
1359         case KVM_REG_PPC_IAMR:
1360                 *val = get_reg_val(id, vcpu->arch.iamr);
1361                 break;
1362         case KVM_REG_PPC_PSPB:
1363                 *val = get_reg_val(id, vcpu->arch.pspb);
1364                 break;
1365         case KVM_REG_PPC_DPDES:
1366                 *val = get_reg_val(id, vcpu->arch.vcore->dpdes);
1367                 break;
1368         case KVM_REG_PPC_VTB:
1369                 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1370                 break;
1371         case KVM_REG_PPC_DAWR:
1372                 *val = get_reg_val(id, vcpu->arch.dawr);
1373                 break;
1374         case KVM_REG_PPC_DAWRX:
1375                 *val = get_reg_val(id, vcpu->arch.dawrx);
1376                 break;
1377         case KVM_REG_PPC_CIABR:
1378                 *val = get_reg_val(id, vcpu->arch.ciabr);
1379                 break;
1380         case KVM_REG_PPC_CSIGR:
1381                 *val = get_reg_val(id, vcpu->arch.csigr);
1382                 break;
1383         case KVM_REG_PPC_TACR:
1384                 *val = get_reg_val(id, vcpu->arch.tacr);
1385                 break;
1386         case KVM_REG_PPC_TCSCR:
1387                 *val = get_reg_val(id, vcpu->arch.tcscr);
1388                 break;
1389         case KVM_REG_PPC_PID:
1390                 *val = get_reg_val(id, vcpu->arch.pid);
1391                 break;
1392         case KVM_REG_PPC_ACOP:
1393                 *val = get_reg_val(id, vcpu->arch.acop);
1394                 break;
1395         case KVM_REG_PPC_WORT:
1396                 *val = get_reg_val(id, vcpu->arch.wort);
1397                 break;
1398         case KVM_REG_PPC_TIDR:
1399                 *val = get_reg_val(id, vcpu->arch.tid);
1400                 break;
1401         case KVM_REG_PPC_PSSCR:
1402                 *val = get_reg_val(id, vcpu->arch.psscr);
1403                 break;
1404         case KVM_REG_PPC_VPA_ADDR:
1405                 spin_lock(&vcpu->arch.vpa_update_lock);
1406                 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1407                 spin_unlock(&vcpu->arch.vpa_update_lock);
1408                 break;
1409         case KVM_REG_PPC_VPA_SLB:
1410                 spin_lock(&vcpu->arch.vpa_update_lock);
1411                 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1412                 val->vpaval.length = vcpu->arch.slb_shadow.len;
1413                 spin_unlock(&vcpu->arch.vpa_update_lock);
1414                 break;
1415         case KVM_REG_PPC_VPA_DTL:
1416                 spin_lock(&vcpu->arch.vpa_update_lock);
1417                 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1418                 val->vpaval.length = vcpu->arch.dtl.len;
1419                 spin_unlock(&vcpu->arch.vpa_update_lock);
1420                 break;
1421         case KVM_REG_PPC_TB_OFFSET:
1422                 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1423                 break;
1424         case KVM_REG_PPC_LPCR:
1425         case KVM_REG_PPC_LPCR_64:
1426                 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1427                 break;
1428         case KVM_REG_PPC_PPR:
1429                 *val = get_reg_val(id, vcpu->arch.ppr);
1430                 break;
1431 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1432         case KVM_REG_PPC_TFHAR:
1433                 *val = get_reg_val(id, vcpu->arch.tfhar);
1434                 break;
1435         case KVM_REG_PPC_TFIAR:
1436                 *val = get_reg_val(id, vcpu->arch.tfiar);
1437                 break;
1438         case KVM_REG_PPC_TEXASR:
1439                 *val = get_reg_val(id, vcpu->arch.texasr);
1440                 break;
1441         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1442                 i = id - KVM_REG_PPC_TM_GPR0;
1443                 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1444                 break;
1445         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1446         {
1447                 int j;
1448                 i = id - KVM_REG_PPC_TM_VSR0;
1449                 if (i < 32)
1450                         for (j = 0; j < TS_FPRWIDTH; j++)
1451                                 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1452                 else {
1453                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1454                                 val->vval = vcpu->arch.vr_tm.vr[i-32];
1455                         else
1456                                 r = -ENXIO;
1457                 }
1458                 break;
1459         }
1460         case KVM_REG_PPC_TM_CR:
1461                 *val = get_reg_val(id, vcpu->arch.cr_tm);
1462                 break;
1463         case KVM_REG_PPC_TM_XER:
1464                 *val = get_reg_val(id, vcpu->arch.xer_tm);
1465                 break;
1466         case KVM_REG_PPC_TM_LR:
1467                 *val = get_reg_val(id, vcpu->arch.lr_tm);
1468                 break;
1469         case KVM_REG_PPC_TM_CTR:
1470                 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1471                 break;
1472         case KVM_REG_PPC_TM_FPSCR:
1473                 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1474                 break;
1475         case KVM_REG_PPC_TM_AMR:
1476                 *val = get_reg_val(id, vcpu->arch.amr_tm);
1477                 break;
1478         case KVM_REG_PPC_TM_PPR:
1479                 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1480                 break;
1481         case KVM_REG_PPC_TM_VRSAVE:
1482                 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1483                 break;
1484         case KVM_REG_PPC_TM_VSCR:
1485                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1486                         *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1487                 else
1488                         r = -ENXIO;
1489                 break;
1490         case KVM_REG_PPC_TM_DSCR:
1491                 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1492                 break;
1493         case KVM_REG_PPC_TM_TAR:
1494                 *val = get_reg_val(id, vcpu->arch.tar_tm);
1495                 break;
1496 #endif
1497         case KVM_REG_PPC_ARCH_COMPAT:
1498                 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1499                 break;
1500         default:
1501                 r = -EINVAL;
1502                 break;
1503         }
1504
1505         return r;
1506 }
1507
1508 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1509                                  union kvmppc_one_reg *val)
1510 {
1511         int r = 0;
1512         long int i;
1513         unsigned long addr, len;
1514
1515         switch (id) {
1516         case KVM_REG_PPC_HIOR:
1517                 /* Only allow this to be set to zero */
1518                 if (set_reg_val(id, *val))
1519                         r = -EINVAL;
1520                 break;
1521         case KVM_REG_PPC_DABR:
1522                 vcpu->arch.dabr = set_reg_val(id, *val);
1523                 break;
1524         case KVM_REG_PPC_DABRX:
1525                 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1526                 break;
1527         case KVM_REG_PPC_DSCR:
1528                 vcpu->arch.dscr = set_reg_val(id, *val);
1529                 break;
1530         case KVM_REG_PPC_PURR:
1531                 vcpu->arch.purr = set_reg_val(id, *val);
1532                 break;
1533         case KVM_REG_PPC_SPURR:
1534                 vcpu->arch.spurr = set_reg_val(id, *val);
1535                 break;
1536         case KVM_REG_PPC_AMR:
1537                 vcpu->arch.amr = set_reg_val(id, *val);
1538                 break;
1539         case KVM_REG_PPC_UAMOR:
1540                 vcpu->arch.uamor = set_reg_val(id, *val);
1541                 break;
1542         case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRS:
1543                 i = id - KVM_REG_PPC_MMCR0;
1544                 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1545                 break;
1546         case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1547                 i = id - KVM_REG_PPC_PMC1;
1548                 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1549                 break;
1550         case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1551                 i = id - KVM_REG_PPC_SPMC1;
1552                 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1553                 break;
1554         case KVM_REG_PPC_SIAR:
1555                 vcpu->arch.siar = set_reg_val(id, *val);
1556                 break;
1557         case KVM_REG_PPC_SDAR:
1558                 vcpu->arch.sdar = set_reg_val(id, *val);
1559                 break;
1560         case KVM_REG_PPC_SIER:
1561                 vcpu->arch.sier = set_reg_val(id, *val);
1562                 break;
1563         case KVM_REG_PPC_IAMR:
1564                 vcpu->arch.iamr = set_reg_val(id, *val);
1565                 break;
1566         case KVM_REG_PPC_PSPB:
1567                 vcpu->arch.pspb = set_reg_val(id, *val);
1568                 break;
1569         case KVM_REG_PPC_DPDES:
1570                 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1571                 break;
1572         case KVM_REG_PPC_VTB:
1573                 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1574                 break;
1575         case KVM_REG_PPC_DAWR:
1576                 vcpu->arch.dawr = set_reg_val(id, *val);
1577                 break;
1578         case KVM_REG_PPC_DAWRX:
1579                 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1580                 break;
1581         case KVM_REG_PPC_CIABR:
1582                 vcpu->arch.ciabr = set_reg_val(id, *val);
1583                 /* Don't allow setting breakpoints in hypervisor code */
1584                 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1585                         vcpu->arch.ciabr &= ~CIABR_PRIV;        /* disable */
1586                 break;
1587         case KVM_REG_PPC_CSIGR:
1588                 vcpu->arch.csigr = set_reg_val(id, *val);
1589                 break;
1590         case KVM_REG_PPC_TACR:
1591                 vcpu->arch.tacr = set_reg_val(id, *val);
1592                 break;
1593         case KVM_REG_PPC_TCSCR:
1594                 vcpu->arch.tcscr = set_reg_val(id, *val);
1595                 break;
1596         case KVM_REG_PPC_PID:
1597                 vcpu->arch.pid = set_reg_val(id, *val);
1598                 break;
1599         case KVM_REG_PPC_ACOP:
1600                 vcpu->arch.acop = set_reg_val(id, *val);
1601                 break;
1602         case KVM_REG_PPC_WORT:
1603                 vcpu->arch.wort = set_reg_val(id, *val);
1604                 break;
1605         case KVM_REG_PPC_TIDR:
1606                 vcpu->arch.tid = set_reg_val(id, *val);
1607                 break;
1608         case KVM_REG_PPC_PSSCR:
1609                 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
1610                 break;
1611         case KVM_REG_PPC_VPA_ADDR:
1612                 addr = set_reg_val(id, *val);
1613                 r = -EINVAL;
1614                 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
1615                               vcpu->arch.dtl.next_gpa))
1616                         break;
1617                 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
1618                 break;
1619         case KVM_REG_PPC_VPA_SLB:
1620                 addr = val->vpaval.addr;
1621                 len = val->vpaval.length;
1622                 r = -EINVAL;
1623                 if (addr && !vcpu->arch.vpa.next_gpa)
1624                         break;
1625                 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
1626                 break;
1627         case KVM_REG_PPC_VPA_DTL:
1628                 addr = val->vpaval.addr;
1629                 len = val->vpaval.length;
1630                 r = -EINVAL;
1631                 if (addr && (len < sizeof(struct dtl_entry) ||
1632                              !vcpu->arch.vpa.next_gpa))
1633                         break;
1634                 len -= len % sizeof(struct dtl_entry);
1635                 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
1636                 break;
1637         case KVM_REG_PPC_TB_OFFSET:
1638                 /*
1639                  * POWER9 DD1 has an erratum where writing TBU40 causes
1640                  * the timebase to lose ticks.  So we don't let the
1641                  * timebase offset be changed on P9 DD1.  (It is
1642                  * initialized to zero.)
1643                  */
1644                 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1645                         break;
1646                 /* round up to multiple of 2^24 */
1647                 vcpu->arch.vcore->tb_offset =
1648                         ALIGN(set_reg_val(id, *val), 1UL << 24);
1649                 break;
1650         case KVM_REG_PPC_LPCR:
1651                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
1652                 break;
1653         case KVM_REG_PPC_LPCR_64:
1654                 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
1655                 break;
1656         case KVM_REG_PPC_PPR:
1657                 vcpu->arch.ppr = set_reg_val(id, *val);
1658                 break;
1659 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1660         case KVM_REG_PPC_TFHAR:
1661                 vcpu->arch.tfhar = set_reg_val(id, *val);
1662                 break;
1663         case KVM_REG_PPC_TFIAR:
1664                 vcpu->arch.tfiar = set_reg_val(id, *val);
1665                 break;
1666         case KVM_REG_PPC_TEXASR:
1667                 vcpu->arch.texasr = set_reg_val(id, *val);
1668                 break;
1669         case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1670                 i = id - KVM_REG_PPC_TM_GPR0;
1671                 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
1672                 break;
1673         case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1674         {
1675                 int j;
1676                 i = id - KVM_REG_PPC_TM_VSR0;
1677                 if (i < 32)
1678                         for (j = 0; j < TS_FPRWIDTH; j++)
1679                                 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
1680                 else
1681                         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1682                                 vcpu->arch.vr_tm.vr[i-32] = val->vval;
1683                         else
1684                                 r = -ENXIO;
1685                 break;
1686         }
1687         case KVM_REG_PPC_TM_CR:
1688                 vcpu->arch.cr_tm = set_reg_val(id, *val);
1689                 break;
1690         case KVM_REG_PPC_TM_XER:
1691                 vcpu->arch.xer_tm = set_reg_val(id, *val);
1692                 break;
1693         case KVM_REG_PPC_TM_LR:
1694                 vcpu->arch.lr_tm = set_reg_val(id, *val);
1695                 break;
1696         case KVM_REG_PPC_TM_CTR:
1697                 vcpu->arch.ctr_tm = set_reg_val(id, *val);
1698                 break;
1699         case KVM_REG_PPC_TM_FPSCR:
1700                 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
1701                 break;
1702         case KVM_REG_PPC_TM_AMR:
1703                 vcpu->arch.amr_tm = set_reg_val(id, *val);
1704                 break;
1705         case KVM_REG_PPC_TM_PPR:
1706                 vcpu->arch.ppr_tm = set_reg_val(id, *val);
1707                 break;
1708         case KVM_REG_PPC_TM_VRSAVE:
1709                 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
1710                 break;
1711         case KVM_REG_PPC_TM_VSCR:
1712                 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1713                         vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
1714                 else
1715                         r = - ENXIO;
1716                 break;
1717         case KVM_REG_PPC_TM_DSCR:
1718                 vcpu->arch.dscr_tm = set_reg_val(id, *val);
1719                 break;
1720         case KVM_REG_PPC_TM_TAR:
1721                 vcpu->arch.tar_tm = set_reg_val(id, *val);
1722                 break;
1723 #endif
1724         case KVM_REG_PPC_ARCH_COMPAT:
1725                 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
1726                 break;
1727         default:
1728                 r = -EINVAL;
1729                 break;
1730         }
1731
1732         return r;
1733 }
1734
1735 /*
1736  * On POWER9, threads are independent and can be in different partitions.
1737  * Therefore we consider each thread to be a subcore.
1738  * There is a restriction that all threads have to be in the same
1739  * MMU mode (radix or HPT), unfortunately, but since we only support
1740  * HPT guests on a HPT host so far, that isn't an impediment yet.
1741  */
1742 static int threads_per_vcore(struct kvm *kvm)
1743 {
1744         if (kvm->arch.threads_indep)
1745                 return 1;
1746         return threads_per_subcore;
1747 }
1748
1749 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int core)
1750 {
1751         struct kvmppc_vcore *vcore;
1752
1753         vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
1754
1755         if (vcore == NULL)
1756                 return NULL;
1757
1758         spin_lock_init(&vcore->lock);
1759         spin_lock_init(&vcore->stoltb_lock);
1760         init_swait_queue_head(&vcore->wq);
1761         vcore->preempt_tb = TB_NIL;
1762         vcore->lpcr = kvm->arch.lpcr;
1763         vcore->first_vcpuid = core * kvm->arch.smt_mode;
1764         vcore->kvm = kvm;
1765         INIT_LIST_HEAD(&vcore->preempt_list);
1766
1767         return vcore;
1768 }
1769
1770 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
1771 static struct debugfs_timings_element {
1772         const char *name;
1773         size_t offset;
1774 } timings[] = {
1775         {"rm_entry",    offsetof(struct kvm_vcpu, arch.rm_entry)},
1776         {"rm_intr",     offsetof(struct kvm_vcpu, arch.rm_intr)},
1777         {"rm_exit",     offsetof(struct kvm_vcpu, arch.rm_exit)},
1778         {"guest",       offsetof(struct kvm_vcpu, arch.guest_time)},
1779         {"cede",        offsetof(struct kvm_vcpu, arch.cede_time)},
1780 };
1781
1782 #define N_TIMINGS       (ARRAY_SIZE(timings))
1783
1784 struct debugfs_timings_state {
1785         struct kvm_vcpu *vcpu;
1786         unsigned int    buflen;
1787         char            buf[N_TIMINGS * 100];
1788 };
1789
1790 static int debugfs_timings_open(struct inode *inode, struct file *file)
1791 {
1792         struct kvm_vcpu *vcpu = inode->i_private;
1793         struct debugfs_timings_state *p;
1794
1795         p = kzalloc(sizeof(*p), GFP_KERNEL);
1796         if (!p)
1797                 return -ENOMEM;
1798
1799         kvm_get_kvm(vcpu->kvm);
1800         p->vcpu = vcpu;
1801         file->private_data = p;
1802
1803         return nonseekable_open(inode, file);
1804 }
1805
1806 static int debugfs_timings_release(struct inode *inode, struct file *file)
1807 {
1808         struct debugfs_timings_state *p = file->private_data;
1809
1810         kvm_put_kvm(p->vcpu->kvm);
1811         kfree(p);
1812         return 0;
1813 }
1814
1815 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
1816                                     size_t len, loff_t *ppos)
1817 {
1818         struct debugfs_timings_state *p = file->private_data;
1819         struct kvm_vcpu *vcpu = p->vcpu;
1820         char *s, *buf_end;
1821         struct kvmhv_tb_accumulator tb;
1822         u64 count;
1823         loff_t pos;
1824         ssize_t n;
1825         int i, loops;
1826         bool ok;
1827
1828         if (!p->buflen) {
1829                 s = p->buf;
1830                 buf_end = s + sizeof(p->buf);
1831                 for (i = 0; i < N_TIMINGS; ++i) {
1832                         struct kvmhv_tb_accumulator *acc;
1833
1834                         acc = (struct kvmhv_tb_accumulator *)
1835                                 ((unsigned long)vcpu + timings[i].offset);
1836                         ok = false;
1837                         for (loops = 0; loops < 1000; ++loops) {
1838                                 count = acc->seqcount;
1839                                 if (!(count & 1)) {
1840                                         smp_rmb();
1841                                         tb = *acc;
1842                                         smp_rmb();
1843                                         if (count == acc->seqcount) {
1844                                                 ok = true;
1845                                                 break;
1846                                         }
1847                                 }
1848                                 udelay(1);
1849                         }
1850                         if (!ok)
1851                                 snprintf(s, buf_end - s, "%s: stuck\n",
1852                                         timings[i].name);
1853                         else
1854                                 snprintf(s, buf_end - s,
1855                                         "%s: %llu %llu %llu %llu\n",
1856                                         timings[i].name, count / 2,
1857                                         tb_to_ns(tb.tb_total),
1858                                         tb_to_ns(tb.tb_min),
1859                                         tb_to_ns(tb.tb_max));
1860                         s += strlen(s);
1861                 }
1862                 p->buflen = s - p->buf;
1863         }
1864
1865         pos = *ppos;
1866         if (pos >= p->buflen)
1867                 return 0;
1868         if (len > p->buflen - pos)
1869                 len = p->buflen - pos;
1870         n = copy_to_user(buf, p->buf + pos, len);
1871         if (n) {
1872                 if (n == len)
1873                         return -EFAULT;
1874                 len -= n;
1875         }
1876         *ppos = pos + len;
1877         return len;
1878 }
1879
1880 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
1881                                      size_t len, loff_t *ppos)
1882 {
1883         return -EACCES;
1884 }
1885
1886 static const struct file_operations debugfs_timings_ops = {
1887         .owner   = THIS_MODULE,
1888         .open    = debugfs_timings_open,
1889         .release = debugfs_timings_release,
1890         .read    = debugfs_timings_read,
1891         .write   = debugfs_timings_write,
1892         .llseek  = generic_file_llseek,
1893 };
1894
1895 /* Create a debugfs directory for the vcpu */
1896 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1897 {
1898         char buf[16];
1899         struct kvm *kvm = vcpu->kvm;
1900
1901         snprintf(buf, sizeof(buf), "vcpu%u", id);
1902         if (IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
1903                 return;
1904         vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
1905         if (IS_ERR_OR_NULL(vcpu->arch.debugfs_dir))
1906                 return;
1907         vcpu->arch.debugfs_timings =
1908                 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir,
1909                                     vcpu, &debugfs_timings_ops);
1910 }
1911
1912 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1913 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
1914 {
1915 }
1916 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
1917
1918 static struct kvm_vcpu *kvmppc_core_vcpu_create_hv(struct kvm *kvm,
1919                                                    unsigned int id)
1920 {
1921         struct kvm_vcpu *vcpu;
1922         int err;
1923         int core;
1924         struct kvmppc_vcore *vcore;
1925
1926         err = -ENOMEM;
1927         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1928         if (!vcpu)
1929                 goto out;
1930
1931         err = kvm_vcpu_init(vcpu, kvm, id);
1932         if (err)
1933                 goto free_vcpu;
1934
1935         vcpu->arch.shared = &vcpu->arch.shregs;
1936 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
1937         /*
1938          * The shared struct is never shared on HV,
1939          * so we can always use host endianness
1940          */
1941 #ifdef __BIG_ENDIAN__
1942         vcpu->arch.shared_big_endian = true;
1943 #else
1944         vcpu->arch.shared_big_endian = false;
1945 #endif
1946 #endif
1947         vcpu->arch.mmcr[0] = MMCR0_FC;
1948         vcpu->arch.ctrl = CTRL_RUNLATCH;
1949         /* default to host PVR, since we can't spoof it */
1950         kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
1951         spin_lock_init(&vcpu->arch.vpa_update_lock);
1952         spin_lock_init(&vcpu->arch.tbacct_lock);
1953         vcpu->arch.busy_preempt = TB_NIL;
1954         vcpu->arch.intr_msr = MSR_SF | MSR_ME;
1955
1956         /*
1957          * Set the default HFSCR for the guest from the host value.
1958          * This value is only used on POWER9.
1959          * On POWER9 DD1, TM doesn't work, so we make sure to
1960          * prevent the guest from using it.
1961          * On POWER9, we want to virtualize the doorbell facility, so we
1962          * turn off the HFSCR bit, which causes those instructions to trap.
1963          */
1964         vcpu->arch.hfscr = mfspr(SPRN_HFSCR);
1965         if (!cpu_has_feature(CPU_FTR_TM))
1966                 vcpu->arch.hfscr &= ~HFSCR_TM;
1967         if (cpu_has_feature(CPU_FTR_ARCH_300))
1968                 vcpu->arch.hfscr &= ~HFSCR_MSGP;
1969
1970         kvmppc_mmu_book3s_hv_init(vcpu);
1971
1972         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
1973
1974         init_waitqueue_head(&vcpu->arch.cpu_run);
1975
1976         mutex_lock(&kvm->lock);
1977         vcore = NULL;
1978         err = -EINVAL;
1979         core = id / kvm->arch.smt_mode;
1980         if (core < KVM_MAX_VCORES) {
1981                 vcore = kvm->arch.vcores[core];
1982                 if (!vcore) {
1983                         err = -ENOMEM;
1984                         vcore = kvmppc_vcore_create(kvm, core);
1985                         kvm->arch.vcores[core] = vcore;
1986                         kvm->arch.online_vcores++;
1987                 }
1988         }
1989         mutex_unlock(&kvm->lock);
1990
1991         if (!vcore)
1992                 goto free_vcpu;
1993
1994         spin_lock(&vcore->lock);
1995         ++vcore->num_threads;
1996         spin_unlock(&vcore->lock);
1997         vcpu->arch.vcore = vcore;
1998         vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
1999         vcpu->arch.thread_cpu = -1;
2000         vcpu->arch.prev_cpu = -1;
2001
2002         vcpu->arch.cpu_type = KVM_CPU_3S_64;
2003         kvmppc_sanity_check(vcpu);
2004
2005         debugfs_vcpu_init(vcpu, id);
2006
2007         return vcpu;
2008
2009 free_vcpu:
2010         kmem_cache_free(kvm_vcpu_cache, vcpu);
2011 out:
2012         return ERR_PTR(err);
2013 }
2014
2015 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2016                               unsigned long flags)
2017 {
2018         int err;
2019         int esmt = 0;
2020
2021         if (flags)
2022                 return -EINVAL;
2023         if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2024                 return -EINVAL;
2025         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2026                 /*
2027                  * On POWER8 (or POWER7), the threading mode is "strict",
2028                  * so we pack smt_mode vcpus per vcore.
2029                  */
2030                 if (smt_mode > threads_per_subcore)
2031                         return -EINVAL;
2032         } else {
2033                 /*
2034                  * On POWER9, the threading mode is "loose",
2035                  * so each vcpu gets its own vcore.
2036                  */
2037                 esmt = smt_mode;
2038                 smt_mode = 1;
2039         }
2040         mutex_lock(&kvm->lock);
2041         err = -EBUSY;
2042         if (!kvm->arch.online_vcores) {
2043                 kvm->arch.smt_mode = smt_mode;
2044                 kvm->arch.emul_smt_mode = esmt;
2045                 err = 0;
2046         }
2047         mutex_unlock(&kvm->lock);
2048
2049         return err;
2050 }
2051
2052 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2053 {
2054         if (vpa->pinned_addr)
2055                 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2056                                         vpa->dirty);
2057 }
2058
2059 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2060 {
2061         spin_lock(&vcpu->arch.vpa_update_lock);
2062         unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2063         unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2064         unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2065         spin_unlock(&vcpu->arch.vpa_update_lock);
2066         kvm_vcpu_uninit(vcpu);
2067         kmem_cache_free(kvm_vcpu_cache, vcpu);
2068 }
2069
2070 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2071 {
2072         /* Indicate we want to get back into the guest */
2073         return 1;
2074 }
2075
2076 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2077 {
2078         unsigned long dec_nsec, now;
2079
2080         now = get_tb();
2081         if (now > vcpu->arch.dec_expires) {
2082                 /* decrementer has already gone negative */
2083                 kvmppc_core_queue_dec(vcpu);
2084                 kvmppc_core_prepare_to_enter(vcpu);
2085                 return;
2086         }
2087         dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
2088                    / tb_ticks_per_sec;
2089         hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2090         vcpu->arch.timer_running = 1;
2091 }
2092
2093 static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
2094 {
2095         vcpu->arch.ceded = 0;
2096         if (vcpu->arch.timer_running) {
2097                 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2098                 vcpu->arch.timer_running = 0;
2099         }
2100 }
2101
2102 extern int __kvmppc_vcore_entry(void);
2103
2104 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2105                                    struct kvm_vcpu *vcpu)
2106 {
2107         u64 now;
2108
2109         if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2110                 return;
2111         spin_lock_irq(&vcpu->arch.tbacct_lock);
2112         now = mftb();
2113         vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2114                 vcpu->arch.stolen_logged;
2115         vcpu->arch.busy_preempt = now;
2116         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2117         spin_unlock_irq(&vcpu->arch.tbacct_lock);
2118         --vc->n_runnable;
2119         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2120 }
2121
2122 static int kvmppc_grab_hwthread(int cpu)
2123 {
2124         struct paca_struct *tpaca;
2125         long timeout = 10000;
2126
2127         tpaca = &paca[cpu];
2128
2129         /* Ensure the thread won't go into the kernel if it wakes */
2130         tpaca->kvm_hstate.kvm_vcpu = NULL;
2131         tpaca->kvm_hstate.kvm_vcore = NULL;
2132         tpaca->kvm_hstate.napping = 0;
2133         smp_wmb();
2134         tpaca->kvm_hstate.hwthread_req = 1;
2135
2136         /*
2137          * If the thread is already executing in the kernel (e.g. handling
2138          * a stray interrupt), wait for it to get back to nap mode.
2139          * The smp_mb() is to ensure that our setting of hwthread_req
2140          * is visible before we look at hwthread_state, so if this
2141          * races with the code at system_reset_pSeries and the thread
2142          * misses our setting of hwthread_req, we are sure to see its
2143          * setting of hwthread_state, and vice versa.
2144          */
2145         smp_mb();
2146         while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2147                 if (--timeout <= 0) {
2148                         pr_err("KVM: couldn't grab cpu %d\n", cpu);
2149                         return -EBUSY;
2150                 }
2151                 udelay(1);
2152         }
2153         return 0;
2154 }
2155
2156 static void kvmppc_release_hwthread(int cpu)
2157 {
2158         struct paca_struct *tpaca;
2159
2160         tpaca = &paca[cpu];
2161         tpaca->kvm_hstate.hwthread_req = 0;
2162         tpaca->kvm_hstate.kvm_vcpu = NULL;
2163         tpaca->kvm_hstate.kvm_vcore = NULL;
2164         tpaca->kvm_hstate.kvm_split_mode = NULL;
2165 }
2166
2167 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2168 {
2169         int i;
2170
2171         cpu = cpu_first_thread_sibling(cpu);
2172         cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2173         /*
2174          * Make sure setting of bit in need_tlb_flush precedes
2175          * testing of cpu_in_guest bits.  The matching barrier on
2176          * the other side is the first smp_mb() in kvmppc_run_core().
2177          */
2178         smp_mb();
2179         for (i = 0; i < threads_per_core; ++i)
2180                 if (cpumask_test_cpu(cpu + i, &kvm->arch.cpu_in_guest))
2181                         smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2182 }
2183
2184 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2185 {
2186         struct kvm *kvm = vcpu->kvm;
2187
2188         /*
2189          * With radix, the guest can do TLB invalidations itself,
2190          * and it could choose to use the local form (tlbiel) if
2191          * it is invalidating a translation that has only ever been
2192          * used on one vcpu.  However, that doesn't mean it has
2193          * only ever been used on one physical cpu, since vcpus
2194          * can move around between pcpus.  To cope with this, when
2195          * a vcpu moves from one pcpu to another, we need to tell
2196          * any vcpus running on the same core as this vcpu previously
2197          * ran to flush the TLB.  The TLB is shared between threads,
2198          * so we use a single bit in .need_tlb_flush for all 4 threads.
2199          */
2200         if (vcpu->arch.prev_cpu != pcpu) {
2201                 if (vcpu->arch.prev_cpu >= 0 &&
2202                     cpu_first_thread_sibling(vcpu->arch.prev_cpu) !=
2203                     cpu_first_thread_sibling(pcpu))
2204                         radix_flush_cpu(kvm, vcpu->arch.prev_cpu, vcpu);
2205                 vcpu->arch.prev_cpu = pcpu;
2206         }
2207 }
2208
2209 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2210 {
2211         int cpu;
2212         struct paca_struct *tpaca;
2213         struct kvm *kvm = vc->kvm;
2214
2215         cpu = vc->pcpu;
2216         if (vcpu) {
2217                 if (vcpu->arch.timer_running) {
2218                         hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2219                         vcpu->arch.timer_running = 0;
2220                 }
2221                 cpu += vcpu->arch.ptid;
2222                 vcpu->cpu = vc->pcpu;
2223                 vcpu->arch.thread_cpu = cpu;
2224                 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2225         }
2226         tpaca = &paca[cpu];
2227         tpaca->kvm_hstate.kvm_vcpu = vcpu;
2228         tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2229         /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2230         smp_wmb();
2231         tpaca->kvm_hstate.kvm_vcore = vc;
2232         if (cpu != smp_processor_id())
2233                 kvmppc_ipi_thread(cpu);
2234 }
2235
2236 static void kvmppc_wait_for_nap(int n_threads)
2237 {
2238         int cpu = smp_processor_id();
2239         int i, loops;
2240
2241         if (n_threads <= 1)
2242                 return;
2243         for (loops = 0; loops < 1000000; ++loops) {
2244                 /*
2245                  * Check if all threads are finished.
2246                  * We set the vcore pointer when starting a thread
2247                  * and the thread clears it when finished, so we look
2248                  * for any threads that still have a non-NULL vcore ptr.
2249                  */
2250                 for (i = 1; i < n_threads; ++i)
2251                         if (paca[cpu + i].kvm_hstate.kvm_vcore)
2252                                 break;
2253                 if (i == n_threads) {
2254                         HMT_medium();
2255                         return;
2256                 }
2257                 HMT_low();
2258         }
2259         HMT_medium();
2260         for (i = 1; i < n_threads; ++i)
2261                 if (paca[cpu + i].kvm_hstate.kvm_vcore)
2262                         pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2263 }
2264
2265 /*
2266  * Check that we are on thread 0 and that any other threads in
2267  * this core are off-line.  Then grab the threads so they can't
2268  * enter the kernel.
2269  */
2270 static int on_primary_thread(void)
2271 {
2272         int cpu = smp_processor_id();
2273         int thr;
2274
2275         /* Are we on a primary subcore? */
2276         if (cpu_thread_in_subcore(cpu))
2277                 return 0;
2278
2279         thr = 0;
2280         while (++thr < threads_per_subcore)
2281                 if (cpu_online(cpu + thr))
2282                         return 0;
2283
2284         /* Grab all hw threads so they can't go into the kernel */
2285         for (thr = 1; thr < threads_per_subcore; ++thr) {
2286                 if (kvmppc_grab_hwthread(cpu + thr)) {
2287                         /* Couldn't grab one; let the others go */
2288                         do {
2289                                 kvmppc_release_hwthread(cpu + thr);
2290                         } while (--thr > 0);
2291                         return 0;
2292                 }
2293         }
2294         return 1;
2295 }
2296
2297 /*
2298  * A list of virtual cores for each physical CPU.
2299  * These are vcores that could run but their runner VCPU tasks are
2300  * (or may be) preempted.
2301  */
2302 struct preempted_vcore_list {
2303         struct list_head        list;
2304         spinlock_t              lock;
2305 };
2306
2307 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2308
2309 static void init_vcore_lists(void)
2310 {
2311         int cpu;
2312
2313         for_each_possible_cpu(cpu) {
2314                 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2315                 spin_lock_init(&lp->lock);
2316                 INIT_LIST_HEAD(&lp->list);
2317         }
2318 }
2319
2320 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2321 {
2322         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2323
2324         vc->vcore_state = VCORE_PREEMPT;
2325         vc->pcpu = smp_processor_id();
2326         if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2327                 spin_lock(&lp->lock);
2328                 list_add_tail(&vc->preempt_list, &lp->list);
2329                 spin_unlock(&lp->lock);
2330         }
2331
2332         /* Start accumulating stolen time */
2333         kvmppc_core_start_stolen(vc);
2334 }
2335
2336 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2337 {
2338         struct preempted_vcore_list *lp;
2339
2340         kvmppc_core_end_stolen(vc);
2341         if (!list_empty(&vc->preempt_list)) {
2342                 lp = &per_cpu(preempted_vcores, vc->pcpu);
2343                 spin_lock(&lp->lock);
2344                 list_del_init(&vc->preempt_list);
2345                 spin_unlock(&lp->lock);
2346         }
2347         vc->vcore_state = VCORE_INACTIVE;
2348 }
2349
2350 /*
2351  * This stores information about the virtual cores currently
2352  * assigned to a physical core.
2353  */
2354 struct core_info {
2355         int             n_subcores;
2356         int             max_subcore_threads;
2357         int             total_threads;
2358         int             subcore_threads[MAX_SUBCORES];
2359         struct kvmppc_vcore *vc[MAX_SUBCORES];
2360 };
2361
2362 /*
2363  * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2364  * respectively in 2-way micro-threading (split-core) mode on POWER8.
2365  */
2366 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2367
2368 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2369 {
2370         memset(cip, 0, sizeof(*cip));
2371         cip->n_subcores = 1;
2372         cip->max_subcore_threads = vc->num_threads;
2373         cip->total_threads = vc->num_threads;
2374         cip->subcore_threads[0] = vc->num_threads;
2375         cip->vc[0] = vc;
2376 }
2377
2378 static bool subcore_config_ok(int n_subcores, int n_threads)
2379 {
2380         /*
2381          * POWER9 "SMT4" cores are permanently in what is effectively a 4-way split-core
2382          * mode, with one thread per subcore.
2383          */
2384         if (cpu_has_feature(CPU_FTR_ARCH_300))
2385                 return n_subcores <= 4 && n_threads == 1;
2386
2387         /* On POWER8, can only dynamically split if unsplit to begin with */
2388         if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2389                 return false;
2390         if (n_subcores > MAX_SUBCORES)
2391                 return false;
2392         if (n_subcores > 1) {
2393                 if (!(dynamic_mt_modes & 2))
2394                         n_subcores = 4;
2395                 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2396                         return false;
2397         }
2398
2399         return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2400 }
2401
2402 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2403 {
2404         vc->entry_exit_map = 0;
2405         vc->in_guest = 0;
2406         vc->napping_threads = 0;
2407         vc->conferring_threads = 0;
2408 }
2409
2410 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2411 {
2412         int n_threads = vc->num_threads;
2413         int sub;
2414
2415         if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2416                 return false;
2417
2418         /* POWER9 currently requires all threads to be in the same MMU mode */
2419         if (cpu_has_feature(CPU_FTR_ARCH_300) &&
2420             kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2421                 return false;
2422
2423         if (n_threads < cip->max_subcore_threads)
2424                 n_threads = cip->max_subcore_threads;
2425         if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2426                 return false;
2427         cip->max_subcore_threads = n_threads;
2428
2429         sub = cip->n_subcores;
2430         ++cip->n_subcores;
2431         cip->total_threads += vc->num_threads;
2432         cip->subcore_threads[sub] = vc->num_threads;
2433         cip->vc[sub] = vc;
2434         init_vcore_to_run(vc);
2435         list_del_init(&vc->preempt_list);
2436
2437         return true;
2438 }
2439
2440 /*
2441  * Work out whether it is possible to piggyback the execution of
2442  * vcore *pvc onto the execution of the other vcores described in *cip.
2443  */
2444 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2445                           int target_threads)
2446 {
2447         if (cip->total_threads + pvc->num_threads > target_threads)
2448                 return false;
2449
2450         return can_dynamic_split(pvc, cip);
2451 }
2452
2453 static void prepare_threads(struct kvmppc_vcore *vc)
2454 {
2455         int i;
2456         struct kvm_vcpu *vcpu;
2457
2458         for_each_runnable_thread(i, vcpu, vc) {
2459                 if (signal_pending(vcpu->arch.run_task))
2460                         vcpu->arch.ret = -EINTR;
2461                 else if (vcpu->arch.vpa.update_pending ||
2462                          vcpu->arch.slb_shadow.update_pending ||
2463                          vcpu->arch.dtl.update_pending)
2464                         vcpu->arch.ret = RESUME_GUEST;
2465                 else
2466                         continue;
2467                 kvmppc_remove_runnable(vc, vcpu);
2468                 wake_up(&vcpu->arch.cpu_run);
2469         }
2470 }
2471
2472 static void collect_piggybacks(struct core_info *cip, int target_threads)
2473 {
2474         struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2475         struct kvmppc_vcore *pvc, *vcnext;
2476
2477         spin_lock(&lp->lock);
2478         list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2479                 if (!spin_trylock(&pvc->lock))
2480                         continue;
2481                 prepare_threads(pvc);
2482                 if (!pvc->n_runnable) {
2483                         list_del_init(&pvc->preempt_list);
2484                         if (pvc->runner == NULL) {
2485                                 pvc->vcore_state = VCORE_INACTIVE;
2486                                 kvmppc_core_end_stolen(pvc);
2487                         }
2488                         spin_unlock(&pvc->lock);
2489                         continue;
2490                 }
2491                 if (!can_piggyback(pvc, cip, target_threads)) {
2492                         spin_unlock(&pvc->lock);
2493                         continue;
2494                 }
2495                 kvmppc_core_end_stolen(pvc);
2496                 pvc->vcore_state = VCORE_PIGGYBACK;
2497                 if (cip->total_threads >= target_threads)
2498                         break;
2499         }
2500         spin_unlock(&lp->lock);
2501 }
2502
2503 static bool recheck_signals(struct core_info *cip)
2504 {
2505         int sub, i;
2506         struct kvm_vcpu *vcpu;
2507
2508         for (sub = 0; sub < cip->n_subcores; ++sub)
2509                 for_each_runnable_thread(i, vcpu, cip->vc[sub])
2510                         if (signal_pending(vcpu->arch.run_task))
2511                                 return true;
2512         return false;
2513 }
2514
2515 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2516 {
2517         int still_running = 0, i;
2518         u64 now;
2519         long ret;
2520         struct kvm_vcpu *vcpu;
2521
2522         spin_lock(&vc->lock);
2523         now = get_tb();
2524         for_each_runnable_thread(i, vcpu, vc) {
2525                 /* cancel pending dec exception if dec is positive */
2526                 if (now < vcpu->arch.dec_expires &&
2527                     kvmppc_core_pending_dec(vcpu))
2528                         kvmppc_core_dequeue_dec(vcpu);
2529
2530                 trace_kvm_guest_exit(vcpu);
2531
2532                 ret = RESUME_GUEST;
2533                 if (vcpu->arch.trap)
2534                         ret = kvmppc_handle_exit_hv(vcpu->arch.kvm_run, vcpu,
2535                                                     vcpu->arch.run_task);
2536
2537                 vcpu->arch.ret = ret;
2538                 vcpu->arch.trap = 0;
2539
2540                 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2541                         if (vcpu->arch.pending_exceptions)
2542                                 kvmppc_core_prepare_to_enter(vcpu);
2543                         if (vcpu->arch.ceded)
2544                                 kvmppc_set_timer(vcpu);
2545                         else
2546                                 ++still_running;
2547                 } else {
2548                         kvmppc_remove_runnable(vc, vcpu);
2549                         wake_up(&vcpu->arch.cpu_run);
2550                 }
2551         }
2552         if (!is_master) {
2553                 if (still_running > 0) {
2554                         kvmppc_vcore_preempt(vc);
2555                 } else if (vc->runner) {
2556                         vc->vcore_state = VCORE_PREEMPT;
2557                         kvmppc_core_start_stolen(vc);
2558                 } else {
2559                         vc->vcore_state = VCORE_INACTIVE;
2560                 }
2561                 if (vc->n_runnable > 0 && vc->runner == NULL) {
2562                         /* make sure there's a candidate runner awake */
2563                         i = -1;
2564                         vcpu = next_runnable_thread(vc, &i);
2565                         wake_up(&vcpu->arch.cpu_run);
2566                 }
2567         }
2568         spin_unlock(&vc->lock);
2569 }
2570
2571 /*
2572  * Clear core from the list of active host cores as we are about to
2573  * enter the guest. Only do this if it is the primary thread of the
2574  * core (not if a subcore) that is entering the guest.
2575  */
2576 static inline int kvmppc_clear_host_core(unsigned int cpu)
2577 {
2578         int core;
2579
2580         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2581                 return 0;
2582         /*
2583          * Memory barrier can be omitted here as we will do a smp_wmb()
2584          * later in kvmppc_start_thread and we need ensure that state is
2585          * visible to other CPUs only after we enter guest.
2586          */
2587         core = cpu >> threads_shift;
2588         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
2589         return 0;
2590 }
2591
2592 /*
2593  * Advertise this core as an active host core since we exited the guest
2594  * Only need to do this if it is the primary thread of the core that is
2595  * exiting.
2596  */
2597 static inline int kvmppc_set_host_core(unsigned int cpu)
2598 {
2599         int core;
2600
2601         if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
2602                 return 0;
2603
2604         /*
2605          * Memory barrier can be omitted here because we do a spin_unlock
2606          * immediately after this which provides the memory barrier.
2607          */
2608         core = cpu >> threads_shift;
2609         kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
2610         return 0;
2611 }
2612
2613 static void set_irq_happened(int trap)
2614 {
2615         switch (trap) {
2616         case BOOK3S_INTERRUPT_EXTERNAL:
2617                 local_paca->irq_happened |= PACA_IRQ_EE;
2618                 break;
2619         case BOOK3S_INTERRUPT_H_DOORBELL:
2620                 local_paca->irq_happened |= PACA_IRQ_DBELL;
2621                 break;
2622         case BOOK3S_INTERRUPT_HMI:
2623                 local_paca->irq_happened |= PACA_IRQ_HMI;
2624                 break;
2625         case BOOK3S_INTERRUPT_SYSTEM_RESET:
2626                 replay_system_reset();
2627                 break;
2628         }
2629 }
2630
2631 /*
2632  * Run a set of guest threads on a physical core.
2633  * Called with vc->lock held.
2634  */
2635 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
2636 {
2637         struct kvm_vcpu *vcpu;
2638         int i;
2639         int srcu_idx;
2640         struct core_info core_info;
2641         struct kvmppc_vcore *pvc;
2642         struct kvm_split_mode split_info, *sip;
2643         int split, subcore_size, active;
2644         int sub;
2645         bool thr0_done;
2646         unsigned long cmd_bit, stat_bit;
2647         int pcpu, thr;
2648         int target_threads;
2649         int controlled_threads;
2650         int trap;
2651         bool is_power8;
2652         bool hpt_on_radix;
2653
2654         /*
2655          * Remove from the list any threads that have a signal pending
2656          * or need a VPA update done
2657          */
2658         prepare_threads(vc);
2659
2660         /* if the runner is no longer runnable, let the caller pick a new one */
2661         if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
2662                 return;
2663
2664         /*
2665          * Initialize *vc.
2666          */
2667         init_vcore_to_run(vc);
2668         vc->preempt_tb = TB_NIL;
2669
2670         /*
2671          * Number of threads that we will be controlling: the same as
2672          * the number of threads per subcore, except on POWER9,
2673          * where it's 1 because the threads are (mostly) independent.
2674          */
2675         controlled_threads = threads_per_vcore(vc->kvm);
2676
2677         /*
2678          * Make sure we are running on primary threads, and that secondary
2679          * threads are offline.  Also check if the number of threads in this
2680          * guest are greater than the current system threads per guest.
2681          * On POWER9, we need to be not in independent-threads mode if
2682          * this is a HPT guest on a radix host.
2683          */
2684         hpt_on_radix = radix_enabled() && !kvm_is_radix(vc->kvm);
2685         if (((controlled_threads > 1) &&
2686              ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
2687             (hpt_on_radix && vc->kvm->arch.threads_indep)) {
2688                 for_each_runnable_thread(i, vcpu, vc) {
2689                         vcpu->arch.ret = -EBUSY;
2690                         kvmppc_remove_runnable(vc, vcpu);
2691                         wake_up(&vcpu->arch.cpu_run);
2692                 }
2693                 goto out;
2694         }
2695
2696         /*
2697          * See if we could run any other vcores on the physical core
2698          * along with this one.
2699          */
2700         init_core_info(&core_info, vc);
2701         pcpu = smp_processor_id();
2702         target_threads = controlled_threads;
2703         if (target_smt_mode && target_smt_mode < target_threads)
2704                 target_threads = target_smt_mode;
2705         if (vc->num_threads < target_threads)
2706                 collect_piggybacks(&core_info, target_threads);
2707
2708         /*
2709          * On radix, arrange for TLB flushing if necessary.
2710          * This has to be done before disabling interrupts since
2711          * it uses smp_call_function().
2712          */
2713         pcpu = smp_processor_id();
2714         if (kvm_is_radix(vc->kvm)) {
2715                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2716                         for_each_runnable_thread(i, vcpu, core_info.vc[sub])
2717                                 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
2718         }
2719
2720         /*
2721          * Hard-disable interrupts, and check resched flag and signals.
2722          * If we need to reschedule or deliver a signal, clean up
2723          * and return without going into the guest(s).
2724          * If the mmu_ready flag has been cleared, don't go into the
2725          * guest because that means a HPT resize operation is in progress.
2726          */
2727         local_irq_disable();
2728         hard_irq_disable();
2729         if (lazy_irq_pending() || need_resched() ||
2730             recheck_signals(&core_info) || !vc->kvm->arch.mmu_ready) {
2731                 local_irq_enable();
2732                 vc->vcore_state = VCORE_INACTIVE;
2733                 /* Unlock all except the primary vcore */
2734                 for (sub = 1; sub < core_info.n_subcores; ++sub) {
2735                         pvc = core_info.vc[sub];
2736                         /* Put back on to the preempted vcores list */
2737                         kvmppc_vcore_preempt(pvc);
2738                         spin_unlock(&pvc->lock);
2739                 }
2740                 for (i = 0; i < controlled_threads; ++i)
2741                         kvmppc_release_hwthread(pcpu + i);
2742                 return;
2743         }
2744
2745         kvmppc_clear_host_core(pcpu);
2746
2747         /* Decide on micro-threading (split-core) mode */
2748         subcore_size = threads_per_subcore;
2749         cmd_bit = stat_bit = 0;
2750         split = core_info.n_subcores;
2751         sip = NULL;
2752         is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
2753                 && !cpu_has_feature(CPU_FTR_ARCH_300);
2754
2755         if (split > 1 || hpt_on_radix) {
2756                 sip = &split_info;
2757                 memset(&split_info, 0, sizeof(split_info));
2758                 for (sub = 0; sub < core_info.n_subcores; ++sub)
2759                         split_info.vc[sub] = core_info.vc[sub];
2760
2761                 if (is_power8) {
2762                         if (split == 2 && (dynamic_mt_modes & 2)) {
2763                                 cmd_bit = HID0_POWER8_1TO2LPAR;
2764                                 stat_bit = HID0_POWER8_2LPARMODE;
2765                         } else {
2766                                 split = 4;
2767                                 cmd_bit = HID0_POWER8_1TO4LPAR;
2768                                 stat_bit = HID0_POWER8_4LPARMODE;
2769                         }
2770                         subcore_size = MAX_SMT_THREADS / split;
2771                         split_info.rpr = mfspr(SPRN_RPR);
2772                         split_info.pmmar = mfspr(SPRN_PMMAR);
2773                         split_info.ldbar = mfspr(SPRN_LDBAR);
2774                         split_info.subcore_size = subcore_size;
2775                 } else {
2776                         split_info.subcore_size = 1;
2777                         if (hpt_on_radix) {
2778                                 /* Use the split_info for LPCR/LPIDR changes */
2779                                 split_info.lpcr_req = vc->lpcr;
2780                                 split_info.lpidr_req = vc->kvm->arch.lpid;
2781                                 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
2782                                 split_info.do_set = 1;
2783                         }
2784                 }
2785
2786                 /* order writes to split_info before kvm_split_mode pointer */
2787                 smp_wmb();
2788         }
2789
2790         for (thr = 0; thr < controlled_threads; ++thr) {
2791                 paca[pcpu + thr].kvm_hstate.tid = thr;
2792                 paca[pcpu + thr].kvm_hstate.napping = 0;
2793                 paca[pcpu + thr].kvm_hstate.kvm_split_mode = sip;
2794         }
2795
2796         /* Initiate micro-threading (split-core) on POWER8 if required */
2797         if (cmd_bit) {
2798                 unsigned long hid0 = mfspr(SPRN_HID0);
2799
2800                 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
2801                 mb();
2802                 mtspr(SPRN_HID0, hid0);
2803                 isync();
2804                 for (;;) {
2805                         hid0 = mfspr(SPRN_HID0);
2806                         if (hid0 & stat_bit)
2807                                 break;
2808                         cpu_relax();
2809                 }
2810         }
2811
2812         /* Start all the threads */
2813         active = 0;
2814         for (sub = 0; sub < core_info.n_subcores; ++sub) {
2815                 thr = is_power8 ? subcore_thread_map[sub] : sub;
2816                 thr0_done = false;
2817                 active |= 1 << thr;
2818                 pvc = core_info.vc[sub];
2819                 pvc->pcpu = pcpu + thr;
2820                 for_each_runnable_thread(i, vcpu, pvc) {
2821                         kvmppc_start_thread(vcpu, pvc);
2822                         kvmppc_create_dtl_entry(vcpu, pvc);
2823                         trace_kvm_guest_enter(vcpu);
2824                         if (!vcpu->arch.ptid)
2825                                 thr0_done = true;
2826                         active |= 1 << (thr + vcpu->arch.ptid);
2827                 }
2828                 /*
2829                  * We need to start the first thread of each subcore
2830                  * even if it doesn't have a vcpu.
2831                  */
2832                 if (!thr0_done)
2833                         kvmppc_start_thread(NULL, pvc);
2834                 thr += pvc->num_threads;
2835         }
2836
2837         /*
2838          * Ensure that split_info.do_nap is set after setting
2839          * the vcore pointer in the PACA of the secondaries.
2840          */
2841         smp_mb();
2842
2843         /*
2844          * When doing micro-threading, poke the inactive threads as well.
2845          * This gets them to the nap instruction after kvm_do_nap,
2846          * which reduces the time taken to unsplit later.
2847          * For POWER9 HPT guest on radix host, we need all the secondary
2848          * threads woken up so they can do the LPCR/LPIDR change.
2849          */
2850         if (cmd_bit || hpt_on_radix) {
2851                 split_info.do_nap = 1;  /* ask secondaries to nap when done */
2852                 for (thr = 1; thr < threads_per_subcore; ++thr)
2853                         if (!(active & (1 << thr)))
2854                                 kvmppc_ipi_thread(pcpu + thr);
2855         }
2856
2857         vc->vcore_state = VCORE_RUNNING;
2858         preempt_disable();
2859
2860         trace_kvmppc_run_core(vc, 0);
2861
2862         for (sub = 0; sub < core_info.n_subcores; ++sub)
2863                 spin_unlock(&core_info.vc[sub]->lock);
2864
2865         /*
2866          * Interrupts will be enabled once we get into the guest,
2867          * so tell lockdep that we're about to enable interrupts.
2868          */
2869         trace_hardirqs_on();
2870
2871         guest_enter();
2872
2873         srcu_idx = srcu_read_lock(&vc->kvm->srcu);
2874
2875         trap = __kvmppc_vcore_entry();
2876
2877         srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
2878
2879         guest_exit();
2880
2881         trace_hardirqs_off();
2882         set_irq_happened(trap);
2883
2884         spin_lock(&vc->lock);
2885         /* prevent other vcpu threads from doing kvmppc_start_thread() now */
2886         vc->vcore_state = VCORE_EXITING;
2887
2888         /* wait for secondary threads to finish writing their state to memory */
2889         kvmppc_wait_for_nap(controlled_threads);
2890
2891         /* Return to whole-core mode if we split the core earlier */
2892         if (cmd_bit) {
2893                 unsigned long hid0 = mfspr(SPRN_HID0);
2894                 unsigned long loops = 0;
2895
2896                 hid0 &= ~HID0_POWER8_DYNLPARDIS;
2897                 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
2898                 mb();
2899                 mtspr(SPRN_HID0, hid0);
2900                 isync();
2901                 for (;;) {
2902                         hid0 = mfspr(SPRN_HID0);
2903                         if (!(hid0 & stat_bit))
2904                                 break;
2905                         cpu_relax();
2906                         ++loops;
2907                 }
2908         } else if (hpt_on_radix) {
2909                 /* Wait for all threads to have seen final sync */
2910                 for (thr = 1; thr < controlled_threads; ++thr) {
2911                         while (paca[pcpu + thr].kvm_hstate.kvm_split_mode) {
2912                                 HMT_low();
2913                                 barrier();
2914                         }
2915                         HMT_medium();
2916                 }
2917         }
2918         split_info.do_nap = 0;
2919
2920         kvmppc_set_host_core(pcpu);
2921
2922         local_irq_enable();
2923
2924         /* Let secondaries go back to the offline loop */
2925         for (i = 0; i < controlled_threads; ++i) {
2926                 kvmppc_release_hwthread(pcpu + i);
2927                 if (sip && sip->napped[i])
2928                         kvmppc_ipi_thread(pcpu + i);
2929                 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
2930         }
2931
2932         spin_unlock(&vc->lock);
2933
2934         /* make sure updates to secondary vcpu structs are visible now */
2935         smp_mb();
2936
2937         for (sub = 0; sub < core_info.n_subcores; ++sub) {
2938                 pvc = core_info.vc[sub];
2939                 post_guest_process(pvc, pvc == vc);
2940         }
2941
2942         spin_lock(&vc->lock);
2943         preempt_enable();
2944
2945  out:
2946         vc->vcore_state = VCORE_INACTIVE;
2947         trace_kvmppc_run_core(vc, 1);
2948 }
2949
2950 /*
2951  * Wait for some other vcpu thread to execute us, and
2952  * wake us up when we need to handle something in the host.
2953  */
2954 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
2955                                  struct kvm_vcpu *vcpu, int wait_state)
2956 {
2957         DEFINE_WAIT(wait);
2958
2959         prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
2960         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
2961                 spin_unlock(&vc->lock);
2962                 schedule();
2963                 spin_lock(&vc->lock);
2964         }
2965         finish_wait(&vcpu->arch.cpu_run, &wait);
2966 }
2967
2968 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
2969 {
2970         /* 10us base */
2971         if (vc->halt_poll_ns == 0 && halt_poll_ns_grow)
2972                 vc->halt_poll_ns = 10000;
2973         else
2974                 vc->halt_poll_ns *= halt_poll_ns_grow;
2975 }
2976
2977 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
2978 {
2979         if (halt_poll_ns_shrink == 0)
2980                 vc->halt_poll_ns = 0;
2981         else
2982                 vc->halt_poll_ns /= halt_poll_ns_shrink;
2983 }
2984
2985 #ifdef CONFIG_KVM_XICS
2986 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2987 {
2988         if (!xive_enabled())
2989                 return false;
2990         return vcpu->arch.xive_saved_state.pipr <
2991                 vcpu->arch.xive_saved_state.cppr;
2992 }
2993 #else
2994 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
2995 {
2996         return false;
2997 }
2998 #endif /* CONFIG_KVM_XICS */
2999
3000 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3001 {
3002         if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3003             kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3004                 return true;
3005
3006         return false;
3007 }
3008
3009 /*
3010  * Check to see if any of the runnable vcpus on the vcore have pending
3011  * exceptions or are no longer ceded
3012  */
3013 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3014 {
3015         struct kvm_vcpu *vcpu;
3016         int i;
3017
3018         for_each_runnable_thread(i, vcpu, vc) {
3019                 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3020                         return 1;
3021         }
3022
3023         return 0;
3024 }
3025
3026 /*
3027  * All the vcpus in this vcore are idle, so wait for a decrementer
3028  * or external interrupt to one of the vcpus.  vc->lock is held.
3029  */
3030 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3031 {
3032         ktime_t cur, start_poll, start_wait;
3033         int do_sleep = 1;
3034         u64 block_ns;
3035         DECLARE_SWAITQUEUE(wait);
3036
3037         /* Poll for pending exceptions and ceded state */
3038         cur = start_poll = ktime_get();
3039         if (vc->halt_poll_ns) {
3040                 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3041                 ++vc->runner->stat.halt_attempted_poll;
3042
3043                 vc->vcore_state = VCORE_POLLING;
3044                 spin_unlock(&vc->lock);
3045
3046                 do {
3047                         if (kvmppc_vcore_check_block(vc)) {
3048                                 do_sleep = 0;
3049                                 break;
3050                         }
3051                         cur = ktime_get();
3052                 } while (single_task_running() && ktime_before(cur, stop));
3053
3054                 spin_lock(&vc->lock);
3055                 vc->vcore_state = VCORE_INACTIVE;
3056
3057                 if (!do_sleep) {
3058                         ++vc->runner->stat.halt_successful_poll;
3059                         goto out;
3060                 }
3061         }
3062
3063         prepare_to_swait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
3064
3065         if (kvmppc_vcore_check_block(vc)) {
3066                 finish_swait(&vc->wq, &wait);
3067                 do_sleep = 0;
3068                 /* If we polled, count this as a successful poll */
3069                 if (vc->halt_poll_ns)
3070                         ++vc->runner->stat.halt_successful_poll;
3071                 goto out;
3072         }
3073
3074         start_wait = ktime_get();
3075
3076         vc->vcore_state = VCORE_SLEEPING;
3077         trace_kvmppc_vcore_blocked(vc, 0);
3078         spin_unlock(&vc->lock);
3079         schedule();
3080         finish_swait(&vc->wq, &wait);
3081         spin_lock(&vc->lock);
3082         vc->vcore_state = VCORE_INACTIVE;
3083         trace_kvmppc_vcore_blocked(vc, 1);
3084         ++vc->runner->stat.halt_successful_wait;
3085
3086         cur = ktime_get();
3087
3088 out:
3089         block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3090
3091         /* Attribute wait time */
3092         if (do_sleep) {
3093                 vc->runner->stat.halt_wait_ns +=
3094                         ktime_to_ns(cur) - ktime_to_ns(start_wait);
3095                 /* Attribute failed poll time */
3096                 if (vc->halt_poll_ns)
3097                         vc->runner->stat.halt_poll_fail_ns +=
3098                                 ktime_to_ns(start_wait) -
3099                                 ktime_to_ns(start_poll);
3100         } else {
3101                 /* Attribute successful poll time */
3102                 if (vc->halt_poll_ns)
3103                         vc->runner->stat.halt_poll_success_ns +=
3104                                 ktime_to_ns(cur) -
3105                                 ktime_to_ns(start_poll);
3106         }
3107
3108         /* Adjust poll time */
3109         if (halt_poll_ns) {
3110                 if (block_ns <= vc->halt_poll_ns)
3111                         ;
3112                 /* We slept and blocked for longer than the max halt time */
3113                 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3114                         shrink_halt_poll_ns(vc);
3115                 /* We slept and our poll time is too small */
3116                 else if (vc->halt_poll_ns < halt_poll_ns &&
3117                                 block_ns < halt_poll_ns)
3118                         grow_halt_poll_ns(vc);
3119                 if (vc->halt_poll_ns > halt_poll_ns)
3120                         vc->halt_poll_ns = halt_poll_ns;
3121         } else
3122                 vc->halt_poll_ns = 0;
3123
3124         trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3125 }
3126
3127 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3128 {
3129         int r = 0;
3130         struct kvm *kvm = vcpu->kvm;
3131
3132         mutex_lock(&kvm->lock);
3133         if (!kvm->arch.mmu_ready) {
3134                 if (!kvm_is_radix(kvm))
3135                         r = kvmppc_hv_setup_htab_rma(vcpu);
3136                 if (!r) {
3137                         if (cpu_has_feature(CPU_FTR_ARCH_300))
3138                                 kvmppc_setup_partition_table(kvm);
3139                         kvm->arch.mmu_ready = 1;
3140                 }
3141         }
3142         mutex_unlock(&kvm->lock);
3143         return r;
3144 }
3145
3146 static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
3147 {
3148         int n_ceded, i, r;
3149         struct kvmppc_vcore *vc;
3150         struct kvm_vcpu *v;
3151
3152         trace_kvmppc_run_vcpu_enter(vcpu);
3153
3154         kvm_run->exit_reason = 0;
3155         vcpu->arch.ret = RESUME_GUEST;
3156         vcpu->arch.trap = 0;
3157         kvmppc_update_vpas(vcpu);
3158
3159         /*
3160          * Synchronize with other threads in this virtual core
3161          */
3162         vc = vcpu->arch.vcore;
3163         spin_lock(&vc->lock);
3164         vcpu->arch.ceded = 0;
3165         vcpu->arch.run_task = current;
3166         vcpu->arch.kvm_run = kvm_run;
3167         vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3168         vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3169         vcpu->arch.busy_preempt = TB_NIL;
3170         WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3171         ++vc->n_runnable;
3172
3173         /*
3174          * This happens the first time this is called for a vcpu.
3175          * If the vcore is already running, we may be able to start
3176          * this thread straight away and have it join in.
3177          */
3178         if (!signal_pending(current)) {
3179                 if (vc->vcore_state == VCORE_PIGGYBACK) {
3180                         if (spin_trylock(&vc->lock)) {
3181                                 if (vc->vcore_state == VCORE_RUNNING &&
3182                                     !VCORE_IS_EXITING(vc)) {
3183                                         kvmppc_create_dtl_entry(vcpu, vc);
3184                                         kvmppc_start_thread(vcpu, vc);
3185                                         trace_kvm_guest_enter(vcpu);
3186                                 }
3187                                 spin_unlock(&vc->lock);
3188                         }
3189                 } else if (vc->vcore_state == VCORE_RUNNING &&
3190                            !VCORE_IS_EXITING(vc)) {
3191                         kvmppc_create_dtl_entry(vcpu, vc);
3192                         kvmppc_start_thread(vcpu, vc);
3193                         trace_kvm_guest_enter(vcpu);
3194                 } else if (vc->vcore_state == VCORE_SLEEPING) {
3195                         swake_up(&vc->wq);
3196                 }
3197
3198         }
3199
3200         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3201                !signal_pending(current)) {
3202                 /* See if the MMU is ready to go */
3203                 if (!vcpu->kvm->arch.mmu_ready) {
3204                         spin_unlock(&vc->lock);
3205                         r = kvmhv_setup_mmu(vcpu);
3206                         spin_lock(&vc->lock);
3207                         if (r) {
3208                                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3209                                 kvm_run->fail_entry.
3210                                         hardware_entry_failure_reason = 0;
3211                                 vcpu->arch.ret = r;
3212                                 break;
3213                         }
3214                 }
3215
3216                 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3217                         kvmppc_vcore_end_preempt(vc);
3218
3219                 if (vc->vcore_state != VCORE_INACTIVE) {
3220                         kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
3221                         continue;
3222                 }
3223                 for_each_runnable_thread(i, v, vc) {
3224                         kvmppc_core_prepare_to_enter(v);
3225                         if (signal_pending(v->arch.run_task)) {
3226                                 kvmppc_remove_runnable(vc, v);
3227                                 v->stat.signal_exits++;
3228                                 v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
3229                                 v->arch.ret = -EINTR;
3230                                 wake_up(&v->arch.cpu_run);
3231                         }
3232                 }
3233                 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3234                         break;
3235                 n_ceded = 0;
3236                 for_each_runnable_thread(i, v, vc) {
3237                         if (!kvmppc_vcpu_woken(v))
3238                                 n_ceded += v->arch.ceded;
3239                         else
3240                                 v->arch.ceded = 0;
3241                 }
3242                 vc->runner = vcpu;
3243                 if (n_ceded == vc->n_runnable) {
3244                         kvmppc_vcore_blocked(vc);
3245                 } else if (need_resched()) {
3246                         kvmppc_vcore_preempt(vc);
3247                         /* Let something else run */
3248                         cond_resched_lock(&vc->lock);
3249                         if (vc->vcore_state == VCORE_PREEMPT)
3250                                 kvmppc_vcore_end_preempt(vc);
3251                 } else {
3252                         kvmppc_run_core(vc);
3253                 }
3254                 vc->runner = NULL;
3255         }
3256
3257         while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
3258                (vc->vcore_state == VCORE_RUNNING ||
3259                 vc->vcore_state == VCORE_EXITING ||
3260                 vc->vcore_state == VCORE_PIGGYBACK))
3261                 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
3262
3263         if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
3264                 kvmppc_vcore_end_preempt(vc);
3265
3266         if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3267                 kvmppc_remove_runnable(vc, vcpu);
3268                 vcpu->stat.signal_exits++;
3269                 kvm_run->exit_reason = KVM_EXIT_INTR;
3270                 vcpu->arch.ret = -EINTR;
3271         }
3272
3273         if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
3274                 /* Wake up some vcpu to run the core */
3275                 i = -1;
3276                 v = next_runnable_thread(vc, &i);
3277                 wake_up(&v->arch.cpu_run);
3278         }
3279
3280         trace_kvmppc_run_vcpu_exit(vcpu, kvm_run);
3281         spin_unlock(&vc->lock);
3282         return vcpu->arch.ret;
3283 }
3284
3285 static int kvmppc_vcpu_run_hv(struct kvm_run *run, struct kvm_vcpu *vcpu)
3286 {
3287         int r;
3288         int srcu_idx;
3289         unsigned long ebb_regs[3] = {}; /* shut up GCC */
3290         unsigned long user_tar = 0;
3291         unsigned int user_vrsave;
3292         struct kvm *kvm;
3293
3294         if (!vcpu->arch.sane) {
3295                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3296                 return -EINVAL;
3297         }
3298
3299         /*
3300          * Don't allow entry with a suspended transaction, because
3301          * the guest entry/exit code will lose it.
3302          * If the guest has TM enabled, save away their TM-related SPRs
3303          * (they will get restored by the TM unavailable interrupt).
3304          */
3305 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
3306         if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
3307             (current->thread.regs->msr & MSR_TM)) {
3308                 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
3309                         run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3310                         run->fail_entry.hardware_entry_failure_reason = 0;
3311                         return -EINVAL;
3312                 }
3313                 /* Enable TM so we can read the TM SPRs */
3314                 mtmsr(mfmsr() | MSR_TM);
3315                 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
3316                 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
3317                 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
3318                 current->thread.regs->msr &= ~MSR_TM;
3319         }
3320 #endif
3321
3322         kvmppc_core_prepare_to_enter(vcpu);
3323
3324         /* No need to go into the guest when all we'll do is come back out */
3325         if (signal_pending(current)) {
3326                 run->exit_reason = KVM_EXIT_INTR;
3327                 return -EINTR;
3328         }
3329
3330         kvm = vcpu->kvm;
3331         atomic_inc(&kvm->arch.vcpus_running);
3332         /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
3333         smp_mb();
3334
3335         flush_all_to_thread(current);
3336
3337         /* Save userspace EBB and other register values */
3338         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3339                 ebb_regs[0] = mfspr(SPRN_EBBHR);
3340                 ebb_regs[1] = mfspr(SPRN_EBBRR);
3341                 ebb_regs[2] = mfspr(SPRN_BESCR);
3342                 user_tar = mfspr(SPRN_TAR);
3343         }
3344         user_vrsave = mfspr(SPRN_VRSAVE);
3345
3346         vcpu->arch.wqp = &vcpu->arch.vcore->wq;
3347         vcpu->arch.pgdir = current->mm->pgd;
3348         vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3349
3350         do {
3351                 r = kvmppc_run_vcpu(run, vcpu);
3352
3353                 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
3354                     !(vcpu->arch.shregs.msr & MSR_PR)) {
3355                         trace_kvm_hcall_enter(vcpu);
3356                         r = kvmppc_pseries_do_hcall(vcpu);
3357                         trace_kvm_hcall_exit(vcpu, r);
3358                         kvmppc_core_prepare_to_enter(vcpu);
3359                 } else if (r == RESUME_PAGE_FAULT) {
3360                         srcu_idx = srcu_read_lock(&kvm->srcu);
3361                         r = kvmppc_book3s_hv_page_fault(run, vcpu,
3362                                 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
3363                         srcu_read_unlock(&kvm->srcu, srcu_idx);
3364                 } else if (r == RESUME_PASSTHROUGH) {
3365                         if (WARN_ON(xive_enabled()))
3366                                 r = H_SUCCESS;
3367                         else
3368                                 r = kvmppc_xics_rm_complete(vcpu, 0);
3369                 }
3370         } while (is_kvmppc_resume_guest(r));
3371
3372         /* Restore userspace EBB and other register values */
3373         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
3374                 mtspr(SPRN_EBBHR, ebb_regs[0]);
3375                 mtspr(SPRN_EBBRR, ebb_regs[1]);
3376                 mtspr(SPRN_BESCR, ebb_regs[2]);
3377                 mtspr(SPRN_TAR, user_tar);
3378                 mtspr(SPRN_FSCR, current->thread.fscr);
3379         }
3380         mtspr(SPRN_VRSAVE, user_vrsave);
3381
3382         vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
3383         atomic_dec(&kvm->arch.vcpus_running);
3384         return r;
3385 }
3386
3387 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
3388                                      int shift, int sllp)
3389 {
3390         (*sps)->page_shift = shift;
3391         (*sps)->slb_enc = sllp;
3392         (*sps)->enc[0].page_shift = shift;
3393         (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
3394         /*
3395          * Add 16MB MPSS support (may get filtered out by userspace)
3396          */
3397         if (shift != 24) {
3398                 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
3399                 if (penc != -1) {
3400                         (*sps)->enc[1].page_shift = 24;
3401                         (*sps)->enc[1].pte_enc = penc;
3402                 }
3403         }
3404         (*sps)++;
3405 }
3406
3407 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
3408                                          struct kvm_ppc_smmu_info *info)
3409 {
3410         struct kvm_ppc_one_seg_page_size *sps;
3411
3412         /*
3413          * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
3414          * POWER7 doesn't support keys for instruction accesses,
3415          * POWER8 and POWER9 do.
3416          */
3417         info->data_keys = 32;
3418         info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
3419
3420         /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
3421         info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
3422         info->slb_size = 32;
3423
3424         /* We only support these sizes for now, and no muti-size segments */
3425         sps = &info->sps[0];
3426         kvmppc_add_seg_page_size(&sps, 12, 0);
3427         kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
3428         kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
3429
3430         return 0;
3431 }
3432
3433 /*
3434  * Get (and clear) the dirty memory log for a memory slot.
3435  */
3436 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
3437                                          struct kvm_dirty_log *log)
3438 {
3439         struct kvm_memslots *slots;
3440         struct kvm_memory_slot *memslot;
3441         int i, r;
3442         unsigned long n;
3443         unsigned long *buf, *p;
3444         struct kvm_vcpu *vcpu;
3445
3446         mutex_lock(&kvm->slots_lock);
3447
3448         r = -EINVAL;
3449         if (log->slot >= KVM_USER_MEM_SLOTS)
3450                 goto out;
3451
3452         slots = kvm_memslots(kvm);
3453         memslot = id_to_memslot(slots, log->slot);
3454         r = -ENOENT;
3455         if (!memslot->dirty_bitmap)
3456                 goto out;
3457
3458         /*
3459          * Use second half of bitmap area because both HPT and radix
3460          * accumulate bits in the first half.
3461          */
3462         n = kvm_dirty_bitmap_bytes(memslot);
3463         buf = memslot->dirty_bitmap + n / sizeof(long);
3464         memset(buf, 0, n);
3465
3466         if (kvm_is_radix(kvm))
3467                 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
3468         else
3469                 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
3470         if (r)
3471                 goto out;
3472
3473         /*
3474          * We accumulate dirty bits in the first half of the
3475          * memslot's dirty_bitmap area, for when pages are paged
3476          * out or modified by the host directly.  Pick up these
3477          * bits and add them to the map.
3478          */
3479         p = memslot->dirty_bitmap;
3480         for (i = 0; i < n / sizeof(long); ++i)
3481                 buf[i] |= xchg(&p[i], 0);
3482
3483         /* Harvest dirty bits from VPA and DTL updates */
3484         /* Note: we never modify the SLB shadow buffer areas */
3485         kvm_for_each_vcpu(i, vcpu, kvm) {
3486                 spin_lock(&vcpu->arch.vpa_update_lock);
3487                 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
3488                 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
3489                 spin_unlock(&vcpu->arch.vpa_update_lock);
3490         }
3491
3492         r = -EFAULT;
3493         if (copy_to_user(log->dirty_bitmap, buf, n))
3494                 goto out;
3495
3496         r = 0;
3497 out:
3498         mutex_unlock(&kvm->slots_lock);
3499         return r;
3500 }
3501
3502 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *free,
3503                                         struct kvm_memory_slot *dont)
3504 {
3505         if (!dont || free->arch.rmap != dont->arch.rmap) {
3506                 vfree(free->arch.rmap);
3507                 free->arch.rmap = NULL;
3508         }
3509 }
3510
3511 static int kvmppc_core_create_memslot_hv(struct kvm_memory_slot *slot,
3512                                          unsigned long npages)
3513 {
3514         slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
3515         if (!slot->arch.rmap)
3516                 return -ENOMEM;
3517
3518         return 0;
3519 }
3520
3521 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
3522                                         struct kvm_memory_slot *memslot,
3523                                         const struct kvm_userspace_memory_region *mem)
3524 {
3525         return 0;
3526 }
3527
3528 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
3529                                 const struct kvm_userspace_memory_region *mem,
3530                                 const struct kvm_memory_slot *old,
3531                                 const struct kvm_memory_slot *new)
3532 {
3533         unsigned long npages = mem->memory_size >> PAGE_SHIFT;
3534
3535         /*
3536          * If we are making a new memslot, it might make
3537          * some address that was previously cached as emulated
3538          * MMIO be no longer emulated MMIO, so invalidate
3539          * all the caches of emulated MMIO translations.
3540          */
3541         if (npages)
3542                 atomic64_inc(&kvm->arch.mmio_update);
3543 }
3544
3545 /*
3546  * Update LPCR values in kvm->arch and in vcores.
3547  * Caller must hold kvm->lock.
3548  */
3549 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
3550 {
3551         long int i;
3552         u32 cores_done = 0;
3553
3554         if ((kvm->arch.lpcr & mask) == lpcr)
3555                 return;
3556
3557         kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
3558
3559         for (i = 0; i < KVM_MAX_VCORES; ++i) {
3560                 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
3561                 if (!vc)
3562                         continue;
3563                 spin_lock(&vc->lock);
3564                 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
3565                 spin_unlock(&vc->lock);
3566                 if (++cores_done >= kvm->arch.online_vcores)
3567                         break;
3568         }
3569 }
3570
3571 static void kvmppc_mmu_destroy_hv(struct kvm_vcpu *vcpu)
3572 {
3573         return;
3574 }
3575
3576 void kvmppc_setup_partition_table(struct kvm *kvm)
3577 {
3578         unsigned long dw0, dw1;
3579
3580         if (!kvm_is_radix(kvm)) {
3581                 /* PS field - page size for VRMA */
3582                 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
3583                         ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
3584                 /* HTABSIZE and HTABORG fields */
3585                 dw0 |= kvm->arch.sdr1;
3586
3587                 /* Second dword as set by userspace */
3588                 dw1 = kvm->arch.process_table;
3589         } else {
3590                 dw0 = PATB_HR | radix__get_tree_size() |
3591                         __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
3592                 dw1 = PATB_GR | kvm->arch.process_table;
3593         }
3594
3595         mmu_partition_table_set_entry(kvm->arch.lpid, dw0, dw1);
3596 }
3597
3598 /*
3599  * Set up HPT (hashed page table) and RMA (real-mode area).
3600  * Must be called with kvm->lock held.
3601  */
3602 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
3603 {
3604         int err = 0;
3605         struct kvm *kvm = vcpu->kvm;
3606         unsigned long hva;
3607         struct kvm_memory_slot *memslot;
3608         struct vm_area_struct *vma;
3609         unsigned long lpcr = 0, senc;
3610         unsigned long psize, porder;
3611         int srcu_idx;
3612
3613         /* Allocate hashed page table (if not done already) and reset it */
3614         if (!kvm->arch.hpt.virt) {
3615                 int order = KVM_DEFAULT_HPT_ORDER;
3616                 struct kvm_hpt_info info;
3617
3618                 err = kvmppc_allocate_hpt(&info, order);
3619                 /* If we get here, it means userspace didn't specify a
3620                  * size explicitly.  So, try successively smaller
3621                  * sizes if the default failed. */
3622                 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
3623                         err  = kvmppc_allocate_hpt(&info, order);
3624
3625                 if (err < 0) {
3626                         pr_err("KVM: Couldn't alloc HPT\n");
3627                         goto out;
3628                 }
3629
3630                 kvmppc_set_hpt(kvm, &info);
3631         }
3632
3633         /* Look up the memslot for guest physical address 0 */
3634         srcu_idx = srcu_read_lock(&kvm->srcu);
3635         memslot = gfn_to_memslot(kvm, 0);
3636
3637         /* We must have some memory at 0 by now */
3638         err = -EINVAL;
3639         if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
3640                 goto out_srcu;
3641
3642         /* Look up the VMA for the start of this memory slot */
3643         hva = memslot->userspace_addr;
3644         down_read(&current->mm->mmap_sem);
3645         vma = find_vma(current->mm, hva);
3646         if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
3647                 goto up_out;
3648
3649         psize = vma_kernel_pagesize(vma);
3650         porder = __ilog2(psize);
3651
3652         up_read(&current->mm->mmap_sem);
3653
3654         /* We can handle 4k, 64k or 16M pages in the VRMA */
3655         err = -EINVAL;
3656         if (!(psize == 0x1000 || psize == 0x10000 ||
3657               psize == 0x1000000))
3658                 goto out_srcu;
3659
3660         senc = slb_pgsize_encoding(psize);
3661         kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
3662                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3663         /* Create HPTEs in the hash page table for the VRMA */
3664         kvmppc_map_vrma(vcpu, memslot, porder);
3665
3666         /* Update VRMASD field in the LPCR */
3667         if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3668                 /* the -4 is to account for senc values starting at 0x10 */
3669                 lpcr = senc << (LPCR_VRMASD_SH - 4);
3670                 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
3671         }
3672
3673         /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
3674         smp_wmb();
3675         err = 0;
3676  out_srcu:
3677         srcu_read_unlock(&kvm->srcu, srcu_idx);
3678  out:
3679         return err;
3680
3681  up_out:
3682         up_read(&current->mm->mmap_sem);
3683         goto out_srcu;
3684 }
3685
3686 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3687 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
3688 {
3689         kvmppc_free_radix(kvm);
3690         kvmppc_update_lpcr(kvm, LPCR_VPM1,
3691                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3692         kvmppc_rmap_reset(kvm);
3693         kvm->arch.radix = 0;
3694         kvm->arch.process_table = 0;
3695         return 0;
3696 }
3697
3698 /* Must be called with kvm->lock held and mmu_ready = 0 and no vcpus running */
3699 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
3700 {
3701         int err;
3702
3703         err = kvmppc_init_vm_radix(kvm);
3704         if (err)
3705                 return err;
3706
3707         kvmppc_free_hpt(&kvm->arch.hpt);
3708         kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
3709                            LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
3710         kvm->arch.radix = 1;
3711         return 0;
3712 }
3713
3714 #ifdef CONFIG_KVM_XICS
3715 /*
3716  * Allocate a per-core structure for managing state about which cores are
3717  * running in the host versus the guest and for exchanging data between
3718  * real mode KVM and CPU running in the host.
3719  * This is only done for the first VM.
3720  * The allocated structure stays even if all VMs have stopped.
3721  * It is only freed when the kvm-hv module is unloaded.
3722  * It's OK for this routine to fail, we just don't support host
3723  * core operations like redirecting H_IPI wakeups.
3724  */
3725 void kvmppc_alloc_host_rm_ops(void)
3726 {
3727         struct kvmppc_host_rm_ops *ops;
3728         unsigned long l_ops;
3729         int cpu, core;
3730         int size;
3731
3732         /* Not the first time here ? */
3733         if (kvmppc_host_rm_ops_hv != NULL)
3734                 return;
3735
3736         ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
3737         if (!ops)
3738                 return;
3739
3740         size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
3741         ops->rm_core = kzalloc(size, GFP_KERNEL);
3742
3743         if (!ops->rm_core) {
3744                 kfree(ops);
3745                 return;
3746         }
3747
3748         cpus_read_lock();
3749
3750         for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
3751                 if (!cpu_online(cpu))
3752                         continue;
3753
3754                 core = cpu >> threads_shift;
3755                 ops->rm_core[core].rm_state.in_host = 1;
3756         }
3757
3758         ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
3759
3760         /*
3761          * Make the contents of the kvmppc_host_rm_ops structure visible
3762          * to other CPUs before we assign it to the global variable.
3763          * Do an atomic assignment (no locks used here), but if someone
3764          * beats us to it, just free our copy and return.
3765          */
3766         smp_wmb();
3767         l_ops = (unsigned long) ops;
3768
3769         if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
3770                 cpus_read_unlock();
3771                 kfree(ops->rm_core);
3772                 kfree(ops);
3773                 return;
3774         }
3775
3776         cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
3777                                              "ppc/kvm_book3s:prepare",
3778                                              kvmppc_set_host_core,
3779                                              kvmppc_clear_host_core);
3780         cpus_read_unlock();
3781 }
3782
3783 void kvmppc_free_host_rm_ops(void)
3784 {
3785         if (kvmppc_host_rm_ops_hv) {
3786                 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
3787                 kfree(kvmppc_host_rm_ops_hv->rm_core);
3788                 kfree(kvmppc_host_rm_ops_hv);
3789                 kvmppc_host_rm_ops_hv = NULL;
3790         }
3791 }
3792 #endif
3793
3794 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
3795 {
3796         unsigned long lpcr, lpid;
3797         char buf[32];
3798         int ret;
3799
3800         /* Allocate the guest's logical partition ID */
3801
3802         lpid = kvmppc_alloc_lpid();
3803         if ((long)lpid < 0)
3804                 return -ENOMEM;
3805         kvm->arch.lpid = lpid;
3806
3807         kvmppc_alloc_host_rm_ops();
3808
3809         /*
3810          * Since we don't flush the TLB when tearing down a VM,
3811          * and this lpid might have previously been used,
3812          * make sure we flush on each core before running the new VM.
3813          * On POWER9, the tlbie in mmu_partition_table_set_entry()
3814          * does this flush for us.
3815          */
3816         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3817                 cpumask_setall(&kvm->arch.need_tlb_flush);
3818
3819         /* Start out with the default set of hcalls enabled */
3820         memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
3821                sizeof(kvm->arch.enabled_hcalls));
3822
3823         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3824                 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
3825
3826         /* Init LPCR for virtual RMA mode */
3827         kvm->arch.host_lpid = mfspr(SPRN_LPID);
3828         kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
3829         lpcr &= LPCR_PECE | LPCR_LPES;
3830         lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
3831                 LPCR_VPM0 | LPCR_VPM1;
3832         kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
3833                 (VRMA_VSID << SLB_VSID_SHIFT_1T);
3834         /* On POWER8 turn on online bit to enable PURR/SPURR */
3835         if (cpu_has_feature(CPU_FTR_ARCH_207S))
3836                 lpcr |= LPCR_ONL;
3837         /*
3838          * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
3839          * Set HVICE bit to enable hypervisor virtualization interrupts.
3840          * Set HEIC to prevent OS interrupts to go to hypervisor (should
3841          * be unnecessary but better safe than sorry in case we re-enable
3842          * EE in HV mode with this LPCR still set)
3843          */
3844         if (cpu_has_feature(CPU_FTR_ARCH_300)) {
3845                 lpcr &= ~LPCR_VPM0;
3846                 lpcr |= LPCR_HVICE | LPCR_HEIC;
3847
3848                 /*
3849                  * If xive is enabled, we route 0x500 interrupts directly
3850                  * to the guest.
3851                  */
3852                 if (xive_enabled())
3853                         lpcr |= LPCR_LPES;
3854         }
3855
3856         /*
3857          * If the host uses radix, the guest starts out as radix.
3858          */
3859         if (radix_enabled()) {
3860                 kvm->arch.radix = 1;
3861                 kvm->arch.mmu_ready = 1;
3862                 lpcr &= ~LPCR_VPM1;
3863                 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
3864                 ret = kvmppc_init_vm_radix(kvm);
3865                 if (ret) {
3866                         kvmppc_free_lpid(kvm->arch.lpid);
3867                         return ret;
3868                 }
3869                 kvmppc_setup_partition_table(kvm);
3870         }
3871
3872         kvm->arch.lpcr = lpcr;
3873
3874         /* Initialization for future HPT resizes */
3875         kvm->arch.resize_hpt = NULL;
3876
3877         /*
3878          * Work out how many sets the TLB has, for the use of
3879          * the TLB invalidation loop in book3s_hv_rmhandlers.S.
3880          */
3881         if (radix_enabled())
3882                 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;     /* 128 */
3883         else if (cpu_has_feature(CPU_FTR_ARCH_300))
3884                 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;      /* 256 */
3885         else if (cpu_has_feature(CPU_FTR_ARCH_207S))
3886                 kvm->arch.tlb_sets = POWER8_TLB_SETS;           /* 512 */
3887         else
3888                 kvm->arch.tlb_sets = POWER7_TLB_SETS;           /* 128 */
3889
3890         /*
3891          * Track that we now have a HV mode VM active. This blocks secondary
3892          * CPU threads from coming online.
3893          * On POWER9, we only need to do this if the "indep_threads_mode"
3894          * module parameter has been set to N.
3895          */
3896         if (cpu_has_feature(CPU_FTR_ARCH_300))
3897                 kvm->arch.threads_indep = indep_threads_mode;
3898         if (!kvm->arch.threads_indep)
3899                 kvm_hv_vm_activated();
3900
3901         /*
3902          * Initialize smt_mode depending on processor.
3903          * POWER8 and earlier have to use "strict" threading, where
3904          * all vCPUs in a vcore have to run on the same (sub)core,
3905          * whereas on POWER9 the threads can each run a different
3906          * guest.
3907          */
3908         if (!cpu_has_feature(CPU_FTR_ARCH_300))
3909                 kvm->arch.smt_mode = threads_per_subcore;
3910         else
3911                 kvm->arch.smt_mode = 1;
3912         kvm->arch.emul_smt_mode = 1;
3913
3914         /*
3915          * Create a debugfs directory for the VM
3916          */
3917         snprintf(buf, sizeof(buf), "vm%d", current->pid);
3918         kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
3919         if (!IS_ERR_OR_NULL(kvm->arch.debugfs_dir))
3920                 kvmppc_mmu_debugfs_init(kvm);
3921
3922         return 0;
3923 }
3924
3925 static void kvmppc_free_vcores(struct kvm *kvm)
3926 {
3927         long int i;
3928
3929         for (i = 0; i < KVM_MAX_VCORES; ++i)
3930                 kfree(kvm->arch.vcores[i]);
3931         kvm->arch.online_vcores = 0;
3932 }
3933
3934 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
3935 {
3936         debugfs_remove_recursive(kvm->arch.debugfs_dir);
3937
3938         if (!kvm->arch.threads_indep)
3939                 kvm_hv_vm_deactivated();
3940
3941         kvmppc_free_vcores(kvm);
3942
3943         kvmppc_free_lpid(kvm->arch.lpid);
3944
3945         if (kvm_is_radix(kvm))
3946                 kvmppc_free_radix(kvm);
3947         else
3948                 kvmppc_free_hpt(&kvm->arch.hpt);
3949
3950         kvmppc_free_pimap(kvm);
3951 }
3952
3953 /* We don't need to emulate any privileged instructions or dcbz */
3954 static int kvmppc_core_emulate_op_hv(struct kvm_run *run, struct kvm_vcpu *vcpu,
3955                                      unsigned int inst, int *advance)
3956 {
3957         return EMULATE_FAIL;
3958 }
3959
3960 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
3961                                         ulong spr_val)
3962 {
3963         return EMULATE_FAIL;
3964 }
3965
3966 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
3967                                         ulong *spr_val)
3968 {
3969         return EMULATE_FAIL;
3970 }
3971
3972 static int kvmppc_core_check_processor_compat_hv(void)
3973 {
3974         if (!cpu_has_feature(CPU_FTR_HVMODE) ||
3975             !cpu_has_feature(CPU_FTR_ARCH_206))
3976                 return -EIO;
3977
3978         return 0;
3979 }
3980
3981 #ifdef CONFIG_KVM_XICS
3982
3983 void kvmppc_free_pimap(struct kvm *kvm)
3984 {
3985         kfree(kvm->arch.pimap);
3986 }
3987
3988 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
3989 {
3990         return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
3991 }
3992
3993 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
3994 {
3995         struct irq_desc *desc;
3996         struct kvmppc_irq_map *irq_map;
3997         struct kvmppc_passthru_irqmap *pimap;
3998         struct irq_chip *chip;
3999         int i, rc = 0;
4000
4001         if (!kvm_irq_bypass)
4002                 return 1;
4003
4004         desc = irq_to_desc(host_irq);
4005         if (!desc)
4006                 return -EIO;
4007
4008         mutex_lock(&kvm->lock);
4009
4010         pimap = kvm->arch.pimap;
4011         if (pimap == NULL) {
4012                 /* First call, allocate structure to hold IRQ map */
4013                 pimap = kvmppc_alloc_pimap();
4014                 if (pimap == NULL) {
4015                         mutex_unlock(&kvm->lock);
4016                         return -ENOMEM;
4017                 }
4018                 kvm->arch.pimap = pimap;
4019         }
4020
4021         /*
4022          * For now, we only support interrupts for which the EOI operation
4023          * is an OPAL call followed by a write to XIRR, since that's
4024          * what our real-mode EOI code does, or a XIVE interrupt
4025          */
4026         chip = irq_data_get_irq_chip(&desc->irq_data);
4027         if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
4028                 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
4029                         host_irq, guest_gsi);
4030                 mutex_unlock(&kvm->lock);
4031                 return -ENOENT;
4032         }
4033
4034         /*
4035          * See if we already have an entry for this guest IRQ number.
4036          * If it's mapped to a hardware IRQ number, that's an error,
4037          * otherwise re-use this entry.
4038          */
4039         for (i = 0; i < pimap->n_mapped; i++) {
4040                 if (guest_gsi == pimap->mapped[i].v_hwirq) {
4041                         if (pimap->mapped[i].r_hwirq) {
4042                                 mutex_unlock(&kvm->lock);
4043                                 return -EINVAL;
4044                         }
4045                         break;
4046                 }
4047         }
4048
4049         if (i == KVMPPC_PIRQ_MAPPED) {
4050                 mutex_unlock(&kvm->lock);
4051                 return -EAGAIN;         /* table is full */
4052         }
4053
4054         irq_map = &pimap->mapped[i];
4055
4056         irq_map->v_hwirq = guest_gsi;
4057         irq_map->desc = desc;
4058
4059         /*
4060          * Order the above two stores before the next to serialize with
4061          * the KVM real mode handler.
4062          */
4063         smp_wmb();
4064         irq_map->r_hwirq = desc->irq_data.hwirq;
4065
4066         if (i == pimap->n_mapped)
4067                 pimap->n_mapped++;
4068
4069         if (xive_enabled())
4070                 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
4071         else
4072                 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
4073         if (rc)
4074                 irq_map->r_hwirq = 0;
4075
4076         mutex_unlock(&kvm->lock);
4077
4078         return 0;
4079 }
4080
4081 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
4082 {
4083         struct irq_desc *desc;
4084         struct kvmppc_passthru_irqmap *pimap;
4085         int i, rc = 0;
4086
4087         if (!kvm_irq_bypass)
4088                 return 0;
4089
4090         desc = irq_to_desc(host_irq);
4091         if (!desc)
4092                 return -EIO;
4093
4094         mutex_lock(&kvm->lock);
4095         if (!kvm->arch.pimap)
4096                 goto unlock;
4097
4098         pimap = kvm->arch.pimap;
4099
4100         for (i = 0; i < pimap->n_mapped; i++) {
4101                 if (guest_gsi == pimap->mapped[i].v_hwirq)
4102                         break;
4103         }
4104
4105         if (i == pimap->n_mapped) {
4106                 mutex_unlock(&kvm->lock);
4107                 return -ENODEV;
4108         }
4109
4110         if (xive_enabled())
4111                 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
4112         else
4113                 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
4114
4115         /* invalidate the entry (what do do on error from the above ?) */
4116         pimap->mapped[i].r_hwirq = 0;
4117
4118         /*
4119          * We don't free this structure even when the count goes to
4120          * zero. The structure is freed when we destroy the VM.
4121          */
4122  unlock:
4123         mutex_unlock(&kvm->lock);
4124         return rc;
4125 }
4126
4127 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
4128                                              struct irq_bypass_producer *prod)
4129 {
4130         int ret = 0;
4131         struct kvm_kernel_irqfd *irqfd =
4132                 container_of(cons, struct kvm_kernel_irqfd, consumer);
4133
4134         irqfd->producer = prod;
4135
4136         ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4137         if (ret)
4138                 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
4139                         prod->irq, irqfd->gsi, ret);
4140
4141         return ret;
4142 }
4143
4144 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
4145                                               struct irq_bypass_producer *prod)
4146 {
4147         int ret;
4148         struct kvm_kernel_irqfd *irqfd =
4149                 container_of(cons, struct kvm_kernel_irqfd, consumer);
4150
4151         irqfd->producer = NULL;
4152
4153         /*
4154          * When producer of consumer is unregistered, we change back to
4155          * default external interrupt handling mode - KVM real mode
4156          * will switch back to host.
4157          */
4158         ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
4159         if (ret)
4160                 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
4161                         prod->irq, irqfd->gsi, ret);
4162 }
4163 #endif
4164
4165 static long kvm_arch_vm_ioctl_hv(struct file *filp,
4166                                  unsigned int ioctl, unsigned long arg)
4167 {
4168         struct kvm *kvm __maybe_unused = filp->private_data;
4169         void __user *argp = (void __user *)arg;
4170         long r;
4171
4172         switch (ioctl) {
4173
4174         case KVM_PPC_ALLOCATE_HTAB: {
4175                 u32 htab_order;
4176
4177                 r = -EFAULT;
4178                 if (get_user(htab_order, (u32 __user *)argp))
4179                         break;
4180                 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
4181                 if (r)
4182                         break;
4183                 r = 0;
4184                 break;
4185         }
4186
4187         case KVM_PPC_GET_HTAB_FD: {
4188                 struct kvm_get_htab_fd ghf;
4189
4190                 r = -EFAULT;
4191                 if (copy_from_user(&ghf, argp, sizeof(ghf)))
4192                         break;
4193                 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
4194                 break;
4195         }
4196
4197         case KVM_PPC_RESIZE_HPT_PREPARE: {
4198                 struct kvm_ppc_resize_hpt rhpt;
4199
4200                 r = -EFAULT;
4201                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4202                         break;
4203
4204                 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
4205                 break;
4206         }
4207
4208         case KVM_PPC_RESIZE_HPT_COMMIT: {
4209                 struct kvm_ppc_resize_hpt rhpt;
4210
4211                 r = -EFAULT;
4212                 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
4213                         break;
4214
4215                 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
4216                 break;
4217         }
4218
4219         default:
4220                 r = -ENOTTY;
4221         }
4222
4223         return r;
4224 }
4225
4226 /*
4227  * List of hcall numbers to enable by default.
4228  * For compatibility with old userspace, we enable by default
4229  * all hcalls that were implemented before the hcall-enabling
4230  * facility was added.  Note this list should not include H_RTAS.
4231  */
4232 static unsigned int default_hcall_list[] = {
4233         H_REMOVE,
4234         H_ENTER,
4235         H_READ,
4236         H_PROTECT,
4237         H_BULK_REMOVE,
4238         H_GET_TCE,
4239         H_PUT_TCE,
4240         H_SET_DABR,
4241         H_SET_XDABR,
4242         H_CEDE,
4243         H_PROD,
4244         H_CONFER,
4245         H_REGISTER_VPA,
4246 #ifdef CONFIG_KVM_XICS
4247         H_EOI,
4248         H_CPPR,
4249         H_IPI,
4250         H_IPOLL,
4251         H_XIRR,
4252         H_XIRR_X,
4253 #endif
4254         0
4255 };
4256
4257 static void init_default_hcalls(void)
4258 {
4259         int i;
4260         unsigned int hcall;
4261
4262         for (i = 0; default_hcall_list[i]; ++i) {
4263                 hcall = default_hcall_list[i];
4264                 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
4265                 __set_bit(hcall / 4, default_enabled_hcalls);
4266         }
4267 }
4268
4269 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
4270 {
4271         unsigned long lpcr;
4272         int radix;
4273         int err;
4274
4275         /* If not on a POWER9, reject it */
4276         if (!cpu_has_feature(CPU_FTR_ARCH_300))
4277                 return -ENODEV;
4278
4279         /* If any unknown flags set, reject it */
4280         if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
4281                 return -EINVAL;
4282
4283         /* GR (guest radix) bit in process_table field must match */
4284         radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
4285         if (!!(cfg->process_table & PATB_GR) != radix)
4286                 return -EINVAL;
4287
4288         /* Process table size field must be reasonable, i.e. <= 24 */
4289         if ((cfg->process_table & PRTS_MASK) > 24)
4290                 return -EINVAL;
4291
4292         /* We can change a guest to/from radix now, if the host is radix */
4293         if (radix && !radix_enabled())
4294                 return -EINVAL;
4295
4296         mutex_lock(&kvm->lock);
4297         if (radix != kvm_is_radix(kvm)) {
4298                 if (kvm->arch.mmu_ready) {
4299                         kvm->arch.mmu_ready = 0;
4300                         /* order mmu_ready vs. vcpus_running */
4301                         smp_mb();
4302                         if (atomic_read(&kvm->arch.vcpus_running)) {
4303                                 kvm->arch.mmu_ready = 1;
4304                                 err = -EBUSY;
4305                                 goto out_unlock;
4306                         }
4307                 }
4308                 if (radix)
4309                         err = kvmppc_switch_mmu_to_radix(kvm);
4310                 else
4311                         err = kvmppc_switch_mmu_to_hpt(kvm);
4312                 if (err)
4313                         goto out_unlock;
4314         }
4315
4316         kvm->arch.process_table = cfg->process_table;
4317         kvmppc_setup_partition_table(kvm);
4318
4319         lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
4320         kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
4321         err = 0;
4322
4323  out_unlock:
4324         mutex_unlock(&kvm->lock);
4325         return err;
4326 }
4327
4328 static struct kvmppc_ops kvm_ops_hv = {
4329         .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
4330         .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
4331         .get_one_reg = kvmppc_get_one_reg_hv,
4332         .set_one_reg = kvmppc_set_one_reg_hv,
4333         .vcpu_load   = kvmppc_core_vcpu_load_hv,
4334         .vcpu_put    = kvmppc_core_vcpu_put_hv,
4335         .set_msr     = kvmppc_set_msr_hv,
4336         .vcpu_run    = kvmppc_vcpu_run_hv,
4337         .vcpu_create = kvmppc_core_vcpu_create_hv,
4338         .vcpu_free   = kvmppc_core_vcpu_free_hv,
4339         .check_requests = kvmppc_core_check_requests_hv,
4340         .get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
4341         .flush_memslot  = kvmppc_core_flush_memslot_hv,
4342         .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
4343         .commit_memory_region  = kvmppc_core_commit_memory_region_hv,
4344         .unmap_hva = kvm_unmap_hva_hv,
4345         .unmap_hva_range = kvm_unmap_hva_range_hv,
4346         .age_hva  = kvm_age_hva_hv,
4347         .test_age_hva = kvm_test_age_hva_hv,
4348         .set_spte_hva = kvm_set_spte_hva_hv,
4349         .mmu_destroy  = kvmppc_mmu_destroy_hv,
4350         .free_memslot = kvmppc_core_free_memslot_hv,
4351         .create_memslot = kvmppc_core_create_memslot_hv,
4352         .init_vm =  kvmppc_core_init_vm_hv,
4353         .destroy_vm = kvmppc_core_destroy_vm_hv,
4354         .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
4355         .emulate_op = kvmppc_core_emulate_op_hv,
4356         .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
4357         .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
4358         .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
4359         .arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
4360         .hcall_implemented = kvmppc_hcall_impl_hv,
4361 #ifdef CONFIG_KVM_XICS
4362         .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
4363         .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
4364 #endif
4365         .configure_mmu = kvmhv_configure_mmu,
4366         .get_rmmu_info = kvmhv_get_rmmu_info,
4367         .set_smt_mode = kvmhv_set_smt_mode,
4368 };
4369
4370 static int kvm_init_subcore_bitmap(void)
4371 {
4372         int i, j;
4373         int nr_cores = cpu_nr_cores();
4374         struct sibling_subcore_state *sibling_subcore_state;
4375
4376         for (i = 0; i < nr_cores; i++) {
4377                 int first_cpu = i * threads_per_core;
4378                 int node = cpu_to_node(first_cpu);
4379
4380                 /* Ignore if it is already allocated. */
4381                 if (paca[first_cpu].sibling_subcore_state)
4382                         continue;
4383
4384                 sibling_subcore_state =
4385                         kmalloc_node(sizeof(struct sibling_subcore_state),
4386                                                         GFP_KERNEL, node);
4387                 if (!sibling_subcore_state)
4388                         return -ENOMEM;
4389
4390                 memset(sibling_subcore_state, 0,
4391                                 sizeof(struct sibling_subcore_state));
4392
4393                 for (j = 0; j < threads_per_core; j++) {
4394                         int cpu = first_cpu + j;
4395
4396                         paca[cpu].sibling_subcore_state = sibling_subcore_state;
4397                 }
4398         }
4399         return 0;
4400 }
4401
4402 static int kvmppc_radix_possible(void)
4403 {
4404         return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
4405 }
4406
4407 static int kvmppc_book3s_init_hv(void)
4408 {
4409         int r;
4410         /*
4411          * FIXME!! Do we need to check on all cpus ?
4412          */
4413         r = kvmppc_core_check_processor_compat_hv();
4414         if (r < 0)
4415                 return -ENODEV;
4416
4417         r = kvm_init_subcore_bitmap();
4418         if (r)
4419                 return r;
4420
4421         /*
4422          * We need a way of accessing the XICS interrupt controller,
4423          * either directly, via paca[cpu].kvm_hstate.xics_phys, or
4424          * indirectly, via OPAL.
4425          */
4426 #ifdef CONFIG_SMP
4427         if (!xive_enabled() && !local_paca->kvm_hstate.xics_phys) {
4428                 struct device_node *np;
4429
4430                 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
4431                 if (!np) {
4432                         pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
4433                         return -ENODEV;
4434                 }
4435         }
4436 #endif
4437
4438         kvm_ops_hv.owner = THIS_MODULE;
4439         kvmppc_hv_ops = &kvm_ops_hv;
4440
4441         init_default_hcalls();
4442
4443         init_vcore_lists();
4444
4445         r = kvmppc_mmu_hv_init();
4446         if (r)
4447                 return r;
4448
4449         if (kvmppc_radix_possible())
4450                 r = kvmppc_radix_init();
4451         return r;
4452 }
4453
4454 static void kvmppc_book3s_exit_hv(void)
4455 {
4456         kvmppc_free_host_rm_ops();
4457         if (kvmppc_radix_possible())
4458                 kvmppc_radix_exit();
4459         kvmppc_hv_ops = NULL;
4460 }
4461
4462 module_init(kvmppc_book3s_init_hv);
4463 module_exit(kvmppc_book3s_exit_hv);
4464 MODULE_LICENSE("GPL");
4465 MODULE_ALIAS_MISCDEV(KVM_MINOR);
4466 MODULE_ALIAS("devname:kvm");