Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[sfrench/cifs-2.6.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45
46 #include <asm/pgtable.h>
47 #include <asm/io.h>
48 #include <asm/processor.h>
49 #include <asm/mmu.h>
50 #include <asm/prom.h>
51 #include <asm/machdep.h>
52 #include <asm/time.h>
53 #include <asm/runlatch.h>
54 #include <asm/syscalls.h>
55 #include <asm/switch_to.h>
56 #include <asm/tm.h>
57 #include <asm/debug.h>
58 #ifdef CONFIG_PPC64
59 #include <asm/firmware.h>
60 #endif
61 #include <asm/code-patching.h>
62 #include <asm/exec.h>
63 #include <asm/livepatch.h>
64 #include <asm/cpu_has_feature.h>
65 #include <asm/asm-prototypes.h>
66
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
69
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
76
77 extern unsigned long _get_SP(void);
78
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 static void check_if_tm_restore_required(struct task_struct *tsk)
81 {
82         /*
83          * If we are saving the current thread's registers, and the
84          * thread is in a transactional state, set the TIF_RESTORE_TM
85          * bit so that we know to restore the registers before
86          * returning to userspace.
87          */
88         if (tsk == current && tsk->thread.regs &&
89             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
90             !test_thread_flag(TIF_RESTORE_TM)) {
91                 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
92                 set_thread_flag(TIF_RESTORE_TM);
93         }
94 }
95
96 static inline bool msr_tm_active(unsigned long msr)
97 {
98         return MSR_TM_ACTIVE(msr);
99 }
100 #else
101 static inline bool msr_tm_active(unsigned long msr) { return false; }
102 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
103 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
104
105 bool strict_msr_control;
106 EXPORT_SYMBOL(strict_msr_control);
107
108 static int __init enable_strict_msr_control(char *str)
109 {
110         strict_msr_control = true;
111         pr_info("Enabling strict facility control\n");
112
113         return 0;
114 }
115 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
116
117 unsigned long msr_check_and_set(unsigned long bits)
118 {
119         unsigned long oldmsr = mfmsr();
120         unsigned long newmsr;
121
122         newmsr = oldmsr | bits;
123
124 #ifdef CONFIG_VSX
125         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
126                 newmsr |= MSR_VSX;
127 #endif
128
129         if (oldmsr != newmsr)
130                 mtmsr_isync(newmsr);
131
132         return newmsr;
133 }
134
135 void __msr_check_and_clear(unsigned long bits)
136 {
137         unsigned long oldmsr = mfmsr();
138         unsigned long newmsr;
139
140         newmsr = oldmsr & ~bits;
141
142 #ifdef CONFIG_VSX
143         if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
144                 newmsr &= ~MSR_VSX;
145 #endif
146
147         if (oldmsr != newmsr)
148                 mtmsr_isync(newmsr);
149 }
150 EXPORT_SYMBOL(__msr_check_and_clear);
151
152 #ifdef CONFIG_PPC_FPU
153 void __giveup_fpu(struct task_struct *tsk)
154 {
155         unsigned long msr;
156
157         save_fpu(tsk);
158         msr = tsk->thread.regs->msr;
159         msr &= ~MSR_FP;
160 #ifdef CONFIG_VSX
161         if (cpu_has_feature(CPU_FTR_VSX))
162                 msr &= ~MSR_VSX;
163 #endif
164         tsk->thread.regs->msr = msr;
165 }
166
167 void giveup_fpu(struct task_struct *tsk)
168 {
169         check_if_tm_restore_required(tsk);
170
171         msr_check_and_set(MSR_FP);
172         __giveup_fpu(tsk);
173         msr_check_and_clear(MSR_FP);
174 }
175 EXPORT_SYMBOL(giveup_fpu);
176
177 /*
178  * Make sure the floating-point register state in the
179  * the thread_struct is up to date for task tsk.
180  */
181 void flush_fp_to_thread(struct task_struct *tsk)
182 {
183         if (tsk->thread.regs) {
184                 /*
185                  * We need to disable preemption here because if we didn't,
186                  * another process could get scheduled after the regs->msr
187                  * test but before we have finished saving the FP registers
188                  * to the thread_struct.  That process could take over the
189                  * FPU, and then when we get scheduled again we would store
190                  * bogus values for the remaining FP registers.
191                  */
192                 preempt_disable();
193                 if (tsk->thread.regs->msr & MSR_FP) {
194                         /*
195                          * This should only ever be called for current or
196                          * for a stopped child process.  Since we save away
197                          * the FP register state on context switch,
198                          * there is something wrong if a stopped child appears
199                          * to still have its FP state in the CPU registers.
200                          */
201                         BUG_ON(tsk != current);
202                         giveup_fpu(tsk);
203                 }
204                 preempt_enable();
205         }
206 }
207 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
208
209 void enable_kernel_fp(void)
210 {
211         unsigned long cpumsr;
212
213         WARN_ON(preemptible());
214
215         cpumsr = msr_check_and_set(MSR_FP);
216
217         if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
218                 check_if_tm_restore_required(current);
219                 /*
220                  * If a thread has already been reclaimed then the
221                  * checkpointed registers are on the CPU but have definitely
222                  * been saved by the reclaim code. Don't need to and *cannot*
223                  * giveup as this would save  to the 'live' structure not the
224                  * checkpointed structure.
225                  */
226                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
227                         return;
228                 __giveup_fpu(current);
229         }
230 }
231 EXPORT_SYMBOL(enable_kernel_fp);
232
233 static int restore_fp(struct task_struct *tsk) {
234         if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
235                 load_fp_state(&current->thread.fp_state);
236                 current->thread.load_fp++;
237                 return 1;
238         }
239         return 0;
240 }
241 #else
242 static int restore_fp(struct task_struct *tsk) { return 0; }
243 #endif /* CONFIG_PPC_FPU */
244
245 #ifdef CONFIG_ALTIVEC
246 #define loadvec(thr) ((thr).load_vec)
247
248 static void __giveup_altivec(struct task_struct *tsk)
249 {
250         unsigned long msr;
251
252         save_altivec(tsk);
253         msr = tsk->thread.regs->msr;
254         msr &= ~MSR_VEC;
255 #ifdef CONFIG_VSX
256         if (cpu_has_feature(CPU_FTR_VSX))
257                 msr &= ~MSR_VSX;
258 #endif
259         tsk->thread.regs->msr = msr;
260 }
261
262 void giveup_altivec(struct task_struct *tsk)
263 {
264         check_if_tm_restore_required(tsk);
265
266         msr_check_and_set(MSR_VEC);
267         __giveup_altivec(tsk);
268         msr_check_and_clear(MSR_VEC);
269 }
270 EXPORT_SYMBOL(giveup_altivec);
271
272 void enable_kernel_altivec(void)
273 {
274         unsigned long cpumsr;
275
276         WARN_ON(preemptible());
277
278         cpumsr = msr_check_and_set(MSR_VEC);
279
280         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
281                 check_if_tm_restore_required(current);
282                 /*
283                  * If a thread has already been reclaimed then the
284                  * checkpointed registers are on the CPU but have definitely
285                  * been saved by the reclaim code. Don't need to and *cannot*
286                  * giveup as this would save  to the 'live' structure not the
287                  * checkpointed structure.
288                  */
289                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
290                         return;
291                 __giveup_altivec(current);
292         }
293 }
294 EXPORT_SYMBOL(enable_kernel_altivec);
295
296 /*
297  * Make sure the VMX/Altivec register state in the
298  * the thread_struct is up to date for task tsk.
299  */
300 void flush_altivec_to_thread(struct task_struct *tsk)
301 {
302         if (tsk->thread.regs) {
303                 preempt_disable();
304                 if (tsk->thread.regs->msr & MSR_VEC) {
305                         BUG_ON(tsk != current);
306                         giveup_altivec(tsk);
307                 }
308                 preempt_enable();
309         }
310 }
311 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
312
313 static int restore_altivec(struct task_struct *tsk)
314 {
315         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
316                 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
317                 load_vr_state(&tsk->thread.vr_state);
318                 tsk->thread.used_vr = 1;
319                 tsk->thread.load_vec++;
320
321                 return 1;
322         }
323         return 0;
324 }
325 #else
326 #define loadvec(thr) 0
327 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
328 #endif /* CONFIG_ALTIVEC */
329
330 #ifdef CONFIG_VSX
331 static void __giveup_vsx(struct task_struct *tsk)
332 {
333         if (tsk->thread.regs->msr & MSR_FP)
334                 __giveup_fpu(tsk);
335         if (tsk->thread.regs->msr & MSR_VEC)
336                 __giveup_altivec(tsk);
337         tsk->thread.regs->msr &= ~MSR_VSX;
338 }
339
340 static void giveup_vsx(struct task_struct *tsk)
341 {
342         check_if_tm_restore_required(tsk);
343
344         msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
345         __giveup_vsx(tsk);
346         msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
347 }
348
349 static void save_vsx(struct task_struct *tsk)
350 {
351         if (tsk->thread.regs->msr & MSR_FP)
352                 save_fpu(tsk);
353         if (tsk->thread.regs->msr & MSR_VEC)
354                 save_altivec(tsk);
355 }
356
357 void enable_kernel_vsx(void)
358 {
359         unsigned long cpumsr;
360
361         WARN_ON(preemptible());
362
363         cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
364
365         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
366                 check_if_tm_restore_required(current);
367                 /*
368                  * If a thread has already been reclaimed then the
369                  * checkpointed registers are on the CPU but have definitely
370                  * been saved by the reclaim code. Don't need to and *cannot*
371                  * giveup as this would save  to the 'live' structure not the
372                  * checkpointed structure.
373                  */
374                 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
375                         return;
376                 if (current->thread.regs->msr & MSR_FP)
377                         __giveup_fpu(current);
378                 if (current->thread.regs->msr & MSR_VEC)
379                         __giveup_altivec(current);
380                 __giveup_vsx(current);
381         }
382 }
383 EXPORT_SYMBOL(enable_kernel_vsx);
384
385 void flush_vsx_to_thread(struct task_struct *tsk)
386 {
387         if (tsk->thread.regs) {
388                 preempt_disable();
389                 if (tsk->thread.regs->msr & MSR_VSX) {
390                         BUG_ON(tsk != current);
391                         giveup_vsx(tsk);
392                 }
393                 preempt_enable();
394         }
395 }
396 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
397
398 static int restore_vsx(struct task_struct *tsk)
399 {
400         if (cpu_has_feature(CPU_FTR_VSX)) {
401                 tsk->thread.used_vsr = 1;
402                 return 1;
403         }
404
405         return 0;
406 }
407 #else
408 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
409 static inline void save_vsx(struct task_struct *tsk) { }
410 #endif /* CONFIG_VSX */
411
412 #ifdef CONFIG_SPE
413 void giveup_spe(struct task_struct *tsk)
414 {
415         check_if_tm_restore_required(tsk);
416
417         msr_check_and_set(MSR_SPE);
418         __giveup_spe(tsk);
419         msr_check_and_clear(MSR_SPE);
420 }
421 EXPORT_SYMBOL(giveup_spe);
422
423 void enable_kernel_spe(void)
424 {
425         WARN_ON(preemptible());
426
427         msr_check_and_set(MSR_SPE);
428
429         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
430                 check_if_tm_restore_required(current);
431                 __giveup_spe(current);
432         }
433 }
434 EXPORT_SYMBOL(enable_kernel_spe);
435
436 void flush_spe_to_thread(struct task_struct *tsk)
437 {
438         if (tsk->thread.regs) {
439                 preempt_disable();
440                 if (tsk->thread.regs->msr & MSR_SPE) {
441                         BUG_ON(tsk != current);
442                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
443                         giveup_spe(tsk);
444                 }
445                 preempt_enable();
446         }
447 }
448 #endif /* CONFIG_SPE */
449
450 static unsigned long msr_all_available;
451
452 static int __init init_msr_all_available(void)
453 {
454 #ifdef CONFIG_PPC_FPU
455         msr_all_available |= MSR_FP;
456 #endif
457 #ifdef CONFIG_ALTIVEC
458         if (cpu_has_feature(CPU_FTR_ALTIVEC))
459                 msr_all_available |= MSR_VEC;
460 #endif
461 #ifdef CONFIG_VSX
462         if (cpu_has_feature(CPU_FTR_VSX))
463                 msr_all_available |= MSR_VSX;
464 #endif
465 #ifdef CONFIG_SPE
466         if (cpu_has_feature(CPU_FTR_SPE))
467                 msr_all_available |= MSR_SPE;
468 #endif
469
470         return 0;
471 }
472 early_initcall(init_msr_all_available);
473
474 void giveup_all(struct task_struct *tsk)
475 {
476         unsigned long usermsr;
477
478         if (!tsk->thread.regs)
479                 return;
480
481         usermsr = tsk->thread.regs->msr;
482
483         if ((usermsr & msr_all_available) == 0)
484                 return;
485
486         msr_check_and_set(msr_all_available);
487         check_if_tm_restore_required(tsk);
488
489 #ifdef CONFIG_PPC_FPU
490         if (usermsr & MSR_FP)
491                 __giveup_fpu(tsk);
492 #endif
493 #ifdef CONFIG_ALTIVEC
494         if (usermsr & MSR_VEC)
495                 __giveup_altivec(tsk);
496 #endif
497 #ifdef CONFIG_VSX
498         if (usermsr & MSR_VSX)
499                 __giveup_vsx(tsk);
500 #endif
501 #ifdef CONFIG_SPE
502         if (usermsr & MSR_SPE)
503                 __giveup_spe(tsk);
504 #endif
505
506         msr_check_and_clear(msr_all_available);
507 }
508 EXPORT_SYMBOL(giveup_all);
509
510 void restore_math(struct pt_regs *regs)
511 {
512         unsigned long msr;
513
514         if (!msr_tm_active(regs->msr) &&
515                 !current->thread.load_fp && !loadvec(current->thread))
516                 return;
517
518         msr = regs->msr;
519         msr_check_and_set(msr_all_available);
520
521         /*
522          * Only reload if the bit is not set in the user MSR, the bit BEING set
523          * indicates that the registers are hot
524          */
525         if ((!(msr & MSR_FP)) && restore_fp(current))
526                 msr |= MSR_FP | current->thread.fpexc_mode;
527
528         if ((!(msr & MSR_VEC)) && restore_altivec(current))
529                 msr |= MSR_VEC;
530
531         if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
532                         restore_vsx(current)) {
533                 msr |= MSR_VSX;
534         }
535
536         msr_check_and_clear(msr_all_available);
537
538         regs->msr = msr;
539 }
540
541 void save_all(struct task_struct *tsk)
542 {
543         unsigned long usermsr;
544
545         if (!tsk->thread.regs)
546                 return;
547
548         usermsr = tsk->thread.regs->msr;
549
550         if ((usermsr & msr_all_available) == 0)
551                 return;
552
553         msr_check_and_set(msr_all_available);
554
555         /*
556          * Saving the way the register space is in hardware, save_vsx boils
557          * down to a save_fpu() and save_altivec()
558          */
559         if (usermsr & MSR_VSX) {
560                 save_vsx(tsk);
561         } else {
562                 if (usermsr & MSR_FP)
563                         save_fpu(tsk);
564
565                 if (usermsr & MSR_VEC)
566                         save_altivec(tsk);
567         }
568
569         if (usermsr & MSR_SPE)
570                 __giveup_spe(tsk);
571
572         msr_check_and_clear(msr_all_available);
573 }
574
575 void flush_all_to_thread(struct task_struct *tsk)
576 {
577         if (tsk->thread.regs) {
578                 preempt_disable();
579                 BUG_ON(tsk != current);
580                 save_all(tsk);
581
582 #ifdef CONFIG_SPE
583                 if (tsk->thread.regs->msr & MSR_SPE)
584                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
585 #endif
586
587                 preempt_enable();
588         }
589 }
590 EXPORT_SYMBOL(flush_all_to_thread);
591
592 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
593 void do_send_trap(struct pt_regs *regs, unsigned long address,
594                   unsigned long error_code, int signal_code, int breakpt)
595 {
596         siginfo_t info;
597
598         current->thread.trap_nr = signal_code;
599         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
600                         11, SIGSEGV) == NOTIFY_STOP)
601                 return;
602
603         /* Deliver the signal to userspace */
604         info.si_signo = SIGTRAP;
605         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
606         info.si_code = signal_code;
607         info.si_addr = (void __user *)address;
608         force_sig_info(SIGTRAP, &info, current);
609 }
610 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
611 void do_break (struct pt_regs *regs, unsigned long address,
612                     unsigned long error_code)
613 {
614         siginfo_t info;
615
616         current->thread.trap_nr = TRAP_HWBKPT;
617         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
618                         11, SIGSEGV) == NOTIFY_STOP)
619                 return;
620
621         if (debugger_break_match(regs))
622                 return;
623
624         /* Clear the breakpoint */
625         hw_breakpoint_disable();
626
627         /* Deliver the signal to userspace */
628         info.si_signo = SIGTRAP;
629         info.si_errno = 0;
630         info.si_code = TRAP_HWBKPT;
631         info.si_addr = (void __user *)address;
632         force_sig_info(SIGTRAP, &info, current);
633 }
634 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
635
636 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
637
638 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
639 /*
640  * Set the debug registers back to their default "safe" values.
641  */
642 static void set_debug_reg_defaults(struct thread_struct *thread)
643 {
644         thread->debug.iac1 = thread->debug.iac2 = 0;
645 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
646         thread->debug.iac3 = thread->debug.iac4 = 0;
647 #endif
648         thread->debug.dac1 = thread->debug.dac2 = 0;
649 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
650         thread->debug.dvc1 = thread->debug.dvc2 = 0;
651 #endif
652         thread->debug.dbcr0 = 0;
653 #ifdef CONFIG_BOOKE
654         /*
655          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
656          */
657         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
658                         DBCR1_IAC3US | DBCR1_IAC4US;
659         /*
660          * Force Data Address Compare User/Supervisor bits to be User-only
661          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
662          */
663         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
664 #else
665         thread->debug.dbcr1 = 0;
666 #endif
667 }
668
669 static void prime_debug_regs(struct debug_reg *debug)
670 {
671         /*
672          * We could have inherited MSR_DE from userspace, since
673          * it doesn't get cleared on exception entry.  Make sure
674          * MSR_DE is clear before we enable any debug events.
675          */
676         mtmsr(mfmsr() & ~MSR_DE);
677
678         mtspr(SPRN_IAC1, debug->iac1);
679         mtspr(SPRN_IAC2, debug->iac2);
680 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
681         mtspr(SPRN_IAC3, debug->iac3);
682         mtspr(SPRN_IAC4, debug->iac4);
683 #endif
684         mtspr(SPRN_DAC1, debug->dac1);
685         mtspr(SPRN_DAC2, debug->dac2);
686 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
687         mtspr(SPRN_DVC1, debug->dvc1);
688         mtspr(SPRN_DVC2, debug->dvc2);
689 #endif
690         mtspr(SPRN_DBCR0, debug->dbcr0);
691         mtspr(SPRN_DBCR1, debug->dbcr1);
692 #ifdef CONFIG_BOOKE
693         mtspr(SPRN_DBCR2, debug->dbcr2);
694 #endif
695 }
696 /*
697  * Unless neither the old or new thread are making use of the
698  * debug registers, set the debug registers from the values
699  * stored in the new thread.
700  */
701 void switch_booke_debug_regs(struct debug_reg *new_debug)
702 {
703         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
704                 || (new_debug->dbcr0 & DBCR0_IDM))
705                         prime_debug_regs(new_debug);
706 }
707 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
708 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
709 #ifndef CONFIG_HAVE_HW_BREAKPOINT
710 static void set_debug_reg_defaults(struct thread_struct *thread)
711 {
712         thread->hw_brk.address = 0;
713         thread->hw_brk.type = 0;
714         set_breakpoint(&thread->hw_brk);
715 }
716 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
717 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
718
719 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
720 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
721 {
722         mtspr(SPRN_DAC1, dabr);
723 #ifdef CONFIG_PPC_47x
724         isync();
725 #endif
726         return 0;
727 }
728 #elif defined(CONFIG_PPC_BOOK3S)
729 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
730 {
731         mtspr(SPRN_DABR, dabr);
732         if (cpu_has_feature(CPU_FTR_DABRX))
733                 mtspr(SPRN_DABRX, dabrx);
734         return 0;
735 }
736 #elif defined(CONFIG_PPC_8xx)
737 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
738 {
739         unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
740         unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
741         unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
742
743         if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
744                 lctrl1 |= 0xa0000;
745         else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
746                 lctrl1 |= 0xf0000;
747         else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
748                 lctrl2 = 0;
749
750         mtspr(SPRN_LCTRL2, 0);
751         mtspr(SPRN_CMPE, addr);
752         mtspr(SPRN_CMPF, addr + 4);
753         mtspr(SPRN_LCTRL1, lctrl1);
754         mtspr(SPRN_LCTRL2, lctrl2);
755
756         return 0;
757 }
758 #else
759 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
760 {
761         return -EINVAL;
762 }
763 #endif
764
765 static inline int set_dabr(struct arch_hw_breakpoint *brk)
766 {
767         unsigned long dabr, dabrx;
768
769         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
770         dabrx = ((brk->type >> 3) & 0x7);
771
772         if (ppc_md.set_dabr)
773                 return ppc_md.set_dabr(dabr, dabrx);
774
775         return __set_dabr(dabr, dabrx);
776 }
777
778 static inline int set_dawr(struct arch_hw_breakpoint *brk)
779 {
780         unsigned long dawr, dawrx, mrd;
781
782         dawr = brk->address;
783
784         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
785                                    << (63 - 58); //* read/write bits */
786         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
787                                    << (63 - 59); //* translate */
788         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
789                                    >> 3; //* PRIM bits */
790         /* dawr length is stored in field MDR bits 48:53.  Matches range in
791            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
792            0b111111=64DW.
793            brk->len is in bytes.
794            This aligns up to double word size, shifts and does the bias.
795         */
796         mrd = ((brk->len + 7) >> 3) - 1;
797         dawrx |= (mrd & 0x3f) << (63 - 53);
798
799         if (ppc_md.set_dawr)
800                 return ppc_md.set_dawr(dawr, dawrx);
801         mtspr(SPRN_DAWR, dawr);
802         mtspr(SPRN_DAWRX, dawrx);
803         return 0;
804 }
805
806 void __set_breakpoint(struct arch_hw_breakpoint *brk)
807 {
808         memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
809
810         if (cpu_has_feature(CPU_FTR_DAWR))
811                 set_dawr(brk);
812         else
813                 set_dabr(brk);
814 }
815
816 void set_breakpoint(struct arch_hw_breakpoint *brk)
817 {
818         preempt_disable();
819         __set_breakpoint(brk);
820         preempt_enable();
821 }
822
823 #ifdef CONFIG_PPC64
824 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
825 #endif
826
827 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
828                               struct arch_hw_breakpoint *b)
829 {
830         if (a->address != b->address)
831                 return false;
832         if (a->type != b->type)
833                 return false;
834         if (a->len != b->len)
835                 return false;
836         return true;
837 }
838
839 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
840
841 static inline bool tm_enabled(struct task_struct *tsk)
842 {
843         return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
844 }
845
846 static void tm_reclaim_thread(struct thread_struct *thr,
847                               struct thread_info *ti, uint8_t cause)
848 {
849         /*
850          * Use the current MSR TM suspended bit to track if we have
851          * checkpointed state outstanding.
852          * On signal delivery, we'd normally reclaim the checkpointed
853          * state to obtain stack pointer (see:get_tm_stackpointer()).
854          * This will then directly return to userspace without going
855          * through __switch_to(). However, if the stack frame is bad,
856          * we need to exit this thread which calls __switch_to() which
857          * will again attempt to reclaim the already saved tm state.
858          * Hence we need to check that we've not already reclaimed
859          * this state.
860          * We do this using the current MSR, rather tracking it in
861          * some specific thread_struct bit, as it has the additional
862          * benefit of checking for a potential TM bad thing exception.
863          */
864         if (!MSR_TM_SUSPENDED(mfmsr()))
865                 return;
866
867         /*
868          * If we are in a transaction and FP is off then we can't have
869          * used FP inside that transaction. Hence the checkpointed
870          * state is the same as the live state. We need to copy the
871          * live state to the checkpointed state so that when the
872          * transaction is restored, the checkpointed state is correct
873          * and the aborted transaction sees the correct state. We use
874          * ckpt_regs.msr here as that's what tm_reclaim will use to
875          * determine if it's going to write the checkpointed state or
876          * not. So either this will write the checkpointed registers,
877          * or reclaim will. Similarly for VMX.
878          */
879         if ((thr->ckpt_regs.msr & MSR_FP) == 0)
880                 memcpy(&thr->ckfp_state, &thr->fp_state,
881                        sizeof(struct thread_fp_state));
882         if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
883                 memcpy(&thr->ckvr_state, &thr->vr_state,
884                        sizeof(struct thread_vr_state));
885
886         giveup_all(container_of(thr, struct task_struct, thread));
887
888         tm_reclaim(thr, thr->ckpt_regs.msr, cause);
889 }
890
891 void tm_reclaim_current(uint8_t cause)
892 {
893         tm_enable();
894         tm_reclaim_thread(&current->thread, current_thread_info(), cause);
895 }
896
897 static inline void tm_reclaim_task(struct task_struct *tsk)
898 {
899         /* We have to work out if we're switching from/to a task that's in the
900          * middle of a transaction.
901          *
902          * In switching we need to maintain a 2nd register state as
903          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
904          * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
905          * ckvr_state
906          *
907          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
908          */
909         struct thread_struct *thr = &tsk->thread;
910
911         if (!thr->regs)
912                 return;
913
914         if (!MSR_TM_ACTIVE(thr->regs->msr))
915                 goto out_and_saveregs;
916
917         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
918                  "ccr=%lx, msr=%lx, trap=%lx)\n",
919                  tsk->pid, thr->regs->nip,
920                  thr->regs->ccr, thr->regs->msr,
921                  thr->regs->trap);
922
923         tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
924
925         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
926                  tsk->pid);
927
928 out_and_saveregs:
929         /* Always save the regs here, even if a transaction's not active.
930          * This context-switches a thread's TM info SPRs.  We do it here to
931          * be consistent with the restore path (in recheckpoint) which
932          * cannot happen later in _switch().
933          */
934         tm_save_sprs(thr);
935 }
936
937 extern void __tm_recheckpoint(struct thread_struct *thread,
938                               unsigned long orig_msr);
939
940 void tm_recheckpoint(struct thread_struct *thread,
941                      unsigned long orig_msr)
942 {
943         unsigned long flags;
944
945         if (!(thread->regs->msr & MSR_TM))
946                 return;
947
948         /* We really can't be interrupted here as the TEXASR registers can't
949          * change and later in the trecheckpoint code, we have a userspace R1.
950          * So let's hard disable over this region.
951          */
952         local_irq_save(flags);
953         hard_irq_disable();
954
955         /* The TM SPRs are restored here, so that TEXASR.FS can be set
956          * before the trecheckpoint and no explosion occurs.
957          */
958         tm_restore_sprs(thread);
959
960         __tm_recheckpoint(thread, orig_msr);
961
962         local_irq_restore(flags);
963 }
964
965 static inline void tm_recheckpoint_new_task(struct task_struct *new)
966 {
967         unsigned long msr;
968
969         if (!cpu_has_feature(CPU_FTR_TM))
970                 return;
971
972         /* Recheckpoint the registers of the thread we're about to switch to.
973          *
974          * If the task was using FP, we non-lazily reload both the original and
975          * the speculative FP register states.  This is because the kernel
976          * doesn't see if/when a TM rollback occurs, so if we take an FP
977          * unavailable later, we are unable to determine which set of FP regs
978          * need to be restored.
979          */
980         if (!tm_enabled(new))
981                 return;
982
983         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
984                 tm_restore_sprs(&new->thread);
985                 return;
986         }
987         msr = new->thread.ckpt_regs.msr;
988         /* Recheckpoint to restore original checkpointed register state. */
989         TM_DEBUG("*** tm_recheckpoint of pid %d "
990                  "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
991                  new->pid, new->thread.regs->msr, msr);
992
993         tm_recheckpoint(&new->thread, msr);
994
995         /*
996          * The checkpointed state has been restored but the live state has
997          * not, ensure all the math functionality is turned off to trigger
998          * restore_math() to reload.
999          */
1000         new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1001
1002         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1003                  "(kernel msr 0x%lx)\n",
1004                  new->pid, mfmsr());
1005 }
1006
1007 static inline void __switch_to_tm(struct task_struct *prev,
1008                 struct task_struct *new)
1009 {
1010         if (cpu_has_feature(CPU_FTR_TM)) {
1011                 if (tm_enabled(prev) || tm_enabled(new))
1012                         tm_enable();
1013
1014                 if (tm_enabled(prev)) {
1015                         prev->thread.load_tm++;
1016                         tm_reclaim_task(prev);
1017                         if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1018                                 prev->thread.regs->msr &= ~MSR_TM;
1019                 }
1020
1021                 tm_recheckpoint_new_task(new);
1022         }
1023 }
1024
1025 /*
1026  * This is called if we are on the way out to userspace and the
1027  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1028  * FP and/or vector state and does so if necessary.
1029  * If userspace is inside a transaction (whether active or
1030  * suspended) and FP/VMX/VSX instructions have ever been enabled
1031  * inside that transaction, then we have to keep them enabled
1032  * and keep the FP/VMX/VSX state loaded while ever the transaction
1033  * continues.  The reason is that if we didn't, and subsequently
1034  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1035  * we don't know whether it's the same transaction, and thus we
1036  * don't know which of the checkpointed state and the transactional
1037  * state to use.
1038  */
1039 void restore_tm_state(struct pt_regs *regs)
1040 {
1041         unsigned long msr_diff;
1042
1043         /*
1044          * This is the only moment we should clear TIF_RESTORE_TM as
1045          * it is here that ckpt_regs.msr and pt_regs.msr become the same
1046          * again, anything else could lead to an incorrect ckpt_msr being
1047          * saved and therefore incorrect signal contexts.
1048          */
1049         clear_thread_flag(TIF_RESTORE_TM);
1050         if (!MSR_TM_ACTIVE(regs->msr))
1051                 return;
1052
1053         msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1054         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1055
1056         /* Ensure that restore_math() will restore */
1057         if (msr_diff & MSR_FP)
1058                 current->thread.load_fp = 1;
1059 #ifdef CONFIG_ALTIVEC
1060         if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1061                 current->thread.load_vec = 1;
1062 #endif
1063         restore_math(regs);
1064
1065         regs->msr |= msr_diff;
1066 }
1067
1068 #else
1069 #define tm_recheckpoint_new_task(new)
1070 #define __switch_to_tm(prev, new)
1071 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1072
1073 static inline void save_sprs(struct thread_struct *t)
1074 {
1075 #ifdef CONFIG_ALTIVEC
1076         if (cpu_has_feature(CPU_FTR_ALTIVEC))
1077                 t->vrsave = mfspr(SPRN_VRSAVE);
1078 #endif
1079 #ifdef CONFIG_PPC_BOOK3S_64
1080         if (cpu_has_feature(CPU_FTR_DSCR))
1081                 t->dscr = mfspr(SPRN_DSCR);
1082
1083         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1084                 t->bescr = mfspr(SPRN_BESCR);
1085                 t->ebbhr = mfspr(SPRN_EBBHR);
1086                 t->ebbrr = mfspr(SPRN_EBBRR);
1087
1088                 t->fscr = mfspr(SPRN_FSCR);
1089
1090                 /*
1091                  * Note that the TAR is not available for use in the kernel.
1092                  * (To provide this, the TAR should be backed up/restored on
1093                  * exception entry/exit instead, and be in pt_regs.  FIXME,
1094                  * this should be in pt_regs anyway (for debug).)
1095                  */
1096                 t->tar = mfspr(SPRN_TAR);
1097         }
1098 #endif
1099 }
1100
1101 static inline void restore_sprs(struct thread_struct *old_thread,
1102                                 struct thread_struct *new_thread)
1103 {
1104 #ifdef CONFIG_ALTIVEC
1105         if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1106             old_thread->vrsave != new_thread->vrsave)
1107                 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1108 #endif
1109 #ifdef CONFIG_PPC_BOOK3S_64
1110         if (cpu_has_feature(CPU_FTR_DSCR)) {
1111                 u64 dscr = get_paca()->dscr_default;
1112                 if (new_thread->dscr_inherit)
1113                         dscr = new_thread->dscr;
1114
1115                 if (old_thread->dscr != dscr)
1116                         mtspr(SPRN_DSCR, dscr);
1117         }
1118
1119         if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1120                 if (old_thread->bescr != new_thread->bescr)
1121                         mtspr(SPRN_BESCR, new_thread->bescr);
1122                 if (old_thread->ebbhr != new_thread->ebbhr)
1123                         mtspr(SPRN_EBBHR, new_thread->ebbhr);
1124                 if (old_thread->ebbrr != new_thread->ebbrr)
1125                         mtspr(SPRN_EBBRR, new_thread->ebbrr);
1126
1127                 if (old_thread->fscr != new_thread->fscr)
1128                         mtspr(SPRN_FSCR, new_thread->fscr);
1129
1130                 if (old_thread->tar != new_thread->tar)
1131                         mtspr(SPRN_TAR, new_thread->tar);
1132         }
1133 #endif
1134 }
1135
1136 struct task_struct *__switch_to(struct task_struct *prev,
1137         struct task_struct *new)
1138 {
1139         struct thread_struct *new_thread, *old_thread;
1140         struct task_struct *last;
1141 #ifdef CONFIG_PPC_BOOK3S_64
1142         struct ppc64_tlb_batch *batch;
1143 #endif
1144
1145         new_thread = &new->thread;
1146         old_thread = &current->thread;
1147
1148         WARN_ON(!irqs_disabled());
1149
1150 #ifdef CONFIG_PPC64
1151         /*
1152          * Collect processor utilization data per process
1153          */
1154         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1155                 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1156                 long unsigned start_tb, current_tb;
1157                 start_tb = old_thread->start_tb;
1158                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
1159                 old_thread->accum_tb += (current_tb - start_tb);
1160                 new_thread->start_tb = current_tb;
1161         }
1162 #endif /* CONFIG_PPC64 */
1163
1164 #ifdef CONFIG_PPC_STD_MMU_64
1165         batch = this_cpu_ptr(&ppc64_tlb_batch);
1166         if (batch->active) {
1167                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1168                 if (batch->index)
1169                         __flush_tlb_pending(batch);
1170                 batch->active = 0;
1171         }
1172 #endif /* CONFIG_PPC_STD_MMU_64 */
1173
1174 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1175         switch_booke_debug_regs(&new->thread.debug);
1176 #else
1177 /*
1178  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1179  * schedule DABR
1180  */
1181 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1182         if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1183                 __set_breakpoint(&new->thread.hw_brk);
1184 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1185 #endif
1186
1187         /*
1188          * We need to save SPRs before treclaim/trecheckpoint as these will
1189          * change a number of them.
1190          */
1191         save_sprs(&prev->thread);
1192
1193         /* Save FPU, Altivec, VSX and SPE state */
1194         giveup_all(prev);
1195
1196         __switch_to_tm(prev, new);
1197
1198         /*
1199          * We can't take a PMU exception inside _switch() since there is a
1200          * window where the kernel stack SLB and the kernel stack are out
1201          * of sync. Hard disable here.
1202          */
1203         hard_irq_disable();
1204
1205         /*
1206          * Call restore_sprs() before calling _switch(). If we move it after
1207          * _switch() then we miss out on calling it for new tasks. The reason
1208          * for this is we manually create a stack frame for new tasks that
1209          * directly returns through ret_from_fork() or
1210          * ret_from_kernel_thread(). See copy_thread() for details.
1211          */
1212         restore_sprs(old_thread, new_thread);
1213
1214         last = _switch(old_thread, new_thread);
1215
1216 #ifdef CONFIG_PPC_STD_MMU_64
1217         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1218                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1219                 batch = this_cpu_ptr(&ppc64_tlb_batch);
1220                 batch->active = 1;
1221         }
1222
1223         if (current_thread_info()->task->thread.regs)
1224                 restore_math(current_thread_info()->task->thread.regs);
1225 #endif /* CONFIG_PPC_STD_MMU_64 */
1226
1227         return last;
1228 }
1229
1230 static int instructions_to_print = 16;
1231
1232 static void show_instructions(struct pt_regs *regs)
1233 {
1234         int i;
1235         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1236                         sizeof(int));
1237
1238         printk("Instruction dump:");
1239
1240         for (i = 0; i < instructions_to_print; i++) {
1241                 int instr;
1242
1243                 if (!(i % 8))
1244                         pr_cont("\n");
1245
1246 #if !defined(CONFIG_BOOKE)
1247                 /* If executing with the IMMU off, adjust pc rather
1248                  * than print XXXXXXXX.
1249                  */
1250                 if (!(regs->msr & MSR_IR))
1251                         pc = (unsigned long)phys_to_virt(pc);
1252 #endif
1253
1254                 if (!__kernel_text_address(pc) ||
1255                      probe_kernel_address((unsigned int __user *)pc, instr)) {
1256                         pr_cont("XXXXXXXX ");
1257                 } else {
1258                         if (regs->nip == pc)
1259                                 pr_cont("<%08x> ", instr);
1260                         else
1261                                 pr_cont("%08x ", instr);
1262                 }
1263
1264                 pc += sizeof(int);
1265         }
1266
1267         pr_cont("\n");
1268 }
1269
1270 struct regbit {
1271         unsigned long bit;
1272         const char *name;
1273 };
1274
1275 static struct regbit msr_bits[] = {
1276 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1277         {MSR_SF,        "SF"},
1278         {MSR_HV,        "HV"},
1279 #endif
1280         {MSR_VEC,       "VEC"},
1281         {MSR_VSX,       "VSX"},
1282 #ifdef CONFIG_BOOKE
1283         {MSR_CE,        "CE"},
1284 #endif
1285         {MSR_EE,        "EE"},
1286         {MSR_PR,        "PR"},
1287         {MSR_FP,        "FP"},
1288         {MSR_ME,        "ME"},
1289 #ifdef CONFIG_BOOKE
1290         {MSR_DE,        "DE"},
1291 #else
1292         {MSR_SE,        "SE"},
1293         {MSR_BE,        "BE"},
1294 #endif
1295         {MSR_IR,        "IR"},
1296         {MSR_DR,        "DR"},
1297         {MSR_PMM,       "PMM"},
1298 #ifndef CONFIG_BOOKE
1299         {MSR_RI,        "RI"},
1300         {MSR_LE,        "LE"},
1301 #endif
1302         {0,             NULL}
1303 };
1304
1305 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1306 {
1307         const char *s = "";
1308
1309         for (; bits->bit; ++bits)
1310                 if (val & bits->bit) {
1311                         pr_cont("%s%s", s, bits->name);
1312                         s = sep;
1313                 }
1314 }
1315
1316 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1317 static struct regbit msr_tm_bits[] = {
1318         {MSR_TS_T,      "T"},
1319         {MSR_TS_S,      "S"},
1320         {MSR_TM,        "E"},
1321         {0,             NULL}
1322 };
1323
1324 static void print_tm_bits(unsigned long val)
1325 {
1326 /*
1327  * This only prints something if at least one of the TM bit is set.
1328  * Inside the TM[], the output means:
1329  *   E: Enabled         (bit 32)
1330  *   S: Suspended       (bit 33)
1331  *   T: Transactional   (bit 34)
1332  */
1333         if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1334                 pr_cont(",TM[");
1335                 print_bits(val, msr_tm_bits, "");
1336                 pr_cont("]");
1337         }
1338 }
1339 #else
1340 static void print_tm_bits(unsigned long val) {}
1341 #endif
1342
1343 static void print_msr_bits(unsigned long val)
1344 {
1345         pr_cont("<");
1346         print_bits(val, msr_bits, ",");
1347         print_tm_bits(val);
1348         pr_cont(">");
1349 }
1350
1351 #ifdef CONFIG_PPC64
1352 #define REG             "%016lx"
1353 #define REGS_PER_LINE   4
1354 #define LAST_VOLATILE   13
1355 #else
1356 #define REG             "%08lx"
1357 #define REGS_PER_LINE   8
1358 #define LAST_VOLATILE   12
1359 #endif
1360
1361 void show_regs(struct pt_regs * regs)
1362 {
1363         int i, trap;
1364
1365         show_regs_print_info(KERN_DEFAULT);
1366
1367         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1368                regs->nip, regs->link, regs->ctr);
1369         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1370                regs, regs->trap, print_tainted(), init_utsname()->release);
1371         printk("MSR: "REG" ", regs->msr);
1372         print_msr_bits(regs->msr);
1373         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1374         trap = TRAP(regs);
1375         if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1376                 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1377         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1378 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1379                 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1380 #else
1381                 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1382 #endif
1383 #ifdef CONFIG_PPC64
1384         pr_cont("SOFTE: %ld ", regs->softe);
1385 #endif
1386 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1387         if (MSR_TM_ACTIVE(regs->msr))
1388                 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1389 #endif
1390
1391         for (i = 0;  i < 32;  i++) {
1392                 if ((i % REGS_PER_LINE) == 0)
1393                         pr_cont("\nGPR%02d: ", i);
1394                 pr_cont(REG " ", regs->gpr[i]);
1395                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1396                         break;
1397         }
1398         pr_cont("\n");
1399 #ifdef CONFIG_KALLSYMS
1400         /*
1401          * Lookup NIP late so we have the best change of getting the
1402          * above info out without failing
1403          */
1404         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1405         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1406 #endif
1407         show_stack(current, (unsigned long *) regs->gpr[1]);
1408         if (!user_mode(regs))
1409                 show_instructions(regs);
1410 }
1411
1412 void flush_thread(void)
1413 {
1414 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1415         flush_ptrace_hw_breakpoint(current);
1416 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1417         set_debug_reg_defaults(&current->thread);
1418 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1419 }
1420
1421 void
1422 release_thread(struct task_struct *t)
1423 {
1424 }
1425
1426 /*
1427  * this gets called so that we can store coprocessor state into memory and
1428  * copy the current task into the new thread.
1429  */
1430 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1431 {
1432         flush_all_to_thread(src);
1433         /*
1434          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1435          * flush but it removes the checkpointed state from the current CPU and
1436          * transitions the CPU out of TM mode.  Hence we need to call
1437          * tm_recheckpoint_new_task() (on the same task) to restore the
1438          * checkpointed state back and the TM mode.
1439          *
1440          * Can't pass dst because it isn't ready. Doesn't matter, passing
1441          * dst is only important for __switch_to()
1442          */
1443         __switch_to_tm(src, src);
1444
1445         *dst = *src;
1446
1447         clear_task_ebb(dst);
1448
1449         return 0;
1450 }
1451
1452 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1453 {
1454 #ifdef CONFIG_PPC_STD_MMU_64
1455         unsigned long sp_vsid;
1456         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1457
1458         if (radix_enabled())
1459                 return;
1460
1461         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1462                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1463                         << SLB_VSID_SHIFT_1T;
1464         else
1465                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1466                         << SLB_VSID_SHIFT;
1467         sp_vsid |= SLB_VSID_KERNEL | llp;
1468         p->thread.ksp_vsid = sp_vsid;
1469 #endif
1470 }
1471
1472 /*
1473  * Copy a thread..
1474  */
1475
1476 /*
1477  * Copy architecture-specific thread state
1478  */
1479 int copy_thread(unsigned long clone_flags, unsigned long usp,
1480                 unsigned long kthread_arg, struct task_struct *p)
1481 {
1482         struct pt_regs *childregs, *kregs;
1483         extern void ret_from_fork(void);
1484         extern void ret_from_kernel_thread(void);
1485         void (*f)(void);
1486         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1487         struct thread_info *ti = task_thread_info(p);
1488
1489         klp_init_thread_info(ti);
1490
1491         /* Copy registers */
1492         sp -= sizeof(struct pt_regs);
1493         childregs = (struct pt_regs *) sp;
1494         if (unlikely(p->flags & PF_KTHREAD)) {
1495                 /* kernel thread */
1496                 memset(childregs, 0, sizeof(struct pt_regs));
1497                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1498                 /* function */
1499                 if (usp)
1500                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1501 #ifdef CONFIG_PPC64
1502                 clear_tsk_thread_flag(p, TIF_32BIT);
1503                 childregs->softe = 1;
1504 #endif
1505                 childregs->gpr[15] = kthread_arg;
1506                 p->thread.regs = NULL;  /* no user register state */
1507                 ti->flags |= _TIF_RESTOREALL;
1508                 f = ret_from_kernel_thread;
1509         } else {
1510                 /* user thread */
1511                 struct pt_regs *regs = current_pt_regs();
1512                 CHECK_FULL_REGS(regs);
1513                 *childregs = *regs;
1514                 if (usp)
1515                         childregs->gpr[1] = usp;
1516                 p->thread.regs = childregs;
1517                 childregs->gpr[3] = 0;  /* Result from fork() */
1518                 if (clone_flags & CLONE_SETTLS) {
1519 #ifdef CONFIG_PPC64
1520                         if (!is_32bit_task())
1521                                 childregs->gpr[13] = childregs->gpr[6];
1522                         else
1523 #endif
1524                                 childregs->gpr[2] = childregs->gpr[6];
1525                 }
1526
1527                 f = ret_from_fork;
1528         }
1529         childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1530         sp -= STACK_FRAME_OVERHEAD;
1531
1532         /*
1533          * The way this works is that at some point in the future
1534          * some task will call _switch to switch to the new task.
1535          * That will pop off the stack frame created below and start
1536          * the new task running at ret_from_fork.  The new task will
1537          * do some house keeping and then return from the fork or clone
1538          * system call, using the stack frame created above.
1539          */
1540         ((unsigned long *)sp)[0] = 0;
1541         sp -= sizeof(struct pt_regs);
1542         kregs = (struct pt_regs *) sp;
1543         sp -= STACK_FRAME_OVERHEAD;
1544         p->thread.ksp = sp;
1545 #ifdef CONFIG_PPC32
1546         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1547                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1548 #endif
1549 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1550         p->thread.ptrace_bps[0] = NULL;
1551 #endif
1552
1553         p->thread.fp_save_area = NULL;
1554 #ifdef CONFIG_ALTIVEC
1555         p->thread.vr_save_area = NULL;
1556 #endif
1557
1558         setup_ksp_vsid(p, sp);
1559
1560 #ifdef CONFIG_PPC64 
1561         if (cpu_has_feature(CPU_FTR_DSCR)) {
1562                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1563                 p->thread.dscr = mfspr(SPRN_DSCR);
1564         }
1565         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1566                 p->thread.ppr = INIT_PPR;
1567 #endif
1568         kregs->nip = ppc_function_entry(f);
1569         return 0;
1570 }
1571
1572 /*
1573  * Set up a thread for executing a new program
1574  */
1575 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1576 {
1577 #ifdef CONFIG_PPC64
1578         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1579 #endif
1580
1581         /*
1582          * If we exec out of a kernel thread then thread.regs will not be
1583          * set.  Do it now.
1584          */
1585         if (!current->thread.regs) {
1586                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1587                 current->thread.regs = regs - 1;
1588         }
1589
1590 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1591         /*
1592          * Clear any transactional state, we're exec()ing. The cause is
1593          * not important as there will never be a recheckpoint so it's not
1594          * user visible.
1595          */
1596         if (MSR_TM_SUSPENDED(mfmsr()))
1597                 tm_reclaim_current(0);
1598 #endif
1599
1600         memset(regs->gpr, 0, sizeof(regs->gpr));
1601         regs->ctr = 0;
1602         regs->link = 0;
1603         regs->xer = 0;
1604         regs->ccr = 0;
1605         regs->gpr[1] = sp;
1606
1607         /*
1608          * We have just cleared all the nonvolatile GPRs, so make
1609          * FULL_REGS(regs) return true.  This is necessary to allow
1610          * ptrace to examine the thread immediately after exec.
1611          */
1612         regs->trap &= ~1UL;
1613
1614 #ifdef CONFIG_PPC32
1615         regs->mq = 0;
1616         regs->nip = start;
1617         regs->msr = MSR_USER;
1618 #else
1619         if (!is_32bit_task()) {
1620                 unsigned long entry;
1621
1622                 if (is_elf2_task()) {
1623                         /* Look ma, no function descriptors! */
1624                         entry = start;
1625
1626                         /*
1627                          * Ulrich says:
1628                          *   The latest iteration of the ABI requires that when
1629                          *   calling a function (at its global entry point),
1630                          *   the caller must ensure r12 holds the entry point
1631                          *   address (so that the function can quickly
1632                          *   establish addressability).
1633                          */
1634                         regs->gpr[12] = start;
1635                         /* Make sure that's restored on entry to userspace. */
1636                         set_thread_flag(TIF_RESTOREALL);
1637                 } else {
1638                         unsigned long toc;
1639
1640                         /* start is a relocated pointer to the function
1641                          * descriptor for the elf _start routine.  The first
1642                          * entry in the function descriptor is the entry
1643                          * address of _start and the second entry is the TOC
1644                          * value we need to use.
1645                          */
1646                         __get_user(entry, (unsigned long __user *)start);
1647                         __get_user(toc, (unsigned long __user *)start+1);
1648
1649                         /* Check whether the e_entry function descriptor entries
1650                          * need to be relocated before we can use them.
1651                          */
1652                         if (load_addr != 0) {
1653                                 entry += load_addr;
1654                                 toc   += load_addr;
1655                         }
1656                         regs->gpr[2] = toc;
1657                 }
1658                 regs->nip = entry;
1659                 regs->msr = MSR_USER64;
1660         } else {
1661                 regs->nip = start;
1662                 regs->gpr[2] = 0;
1663                 regs->msr = MSR_USER32;
1664         }
1665 #endif
1666 #ifdef CONFIG_VSX
1667         current->thread.used_vsr = 0;
1668 #endif
1669         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1670         current->thread.fp_save_area = NULL;
1671 #ifdef CONFIG_ALTIVEC
1672         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1673         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1674         current->thread.vr_save_area = NULL;
1675         current->thread.vrsave = 0;
1676         current->thread.used_vr = 0;
1677 #endif /* CONFIG_ALTIVEC */
1678 #ifdef CONFIG_SPE
1679         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1680         current->thread.acc = 0;
1681         current->thread.spefscr = 0;
1682         current->thread.used_spe = 0;
1683 #endif /* CONFIG_SPE */
1684 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1685         current->thread.tm_tfhar = 0;
1686         current->thread.tm_texasr = 0;
1687         current->thread.tm_tfiar = 0;
1688 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1689 }
1690 EXPORT_SYMBOL(start_thread);
1691
1692 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1693                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1694
1695 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1696 {
1697         struct pt_regs *regs = tsk->thread.regs;
1698
1699         /* This is a bit hairy.  If we are an SPE enabled  processor
1700          * (have embedded fp) we store the IEEE exception enable flags in
1701          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1702          * mode (asyn, precise, disabled) for 'Classic' FP. */
1703         if (val & PR_FP_EXC_SW_ENABLE) {
1704 #ifdef CONFIG_SPE
1705                 if (cpu_has_feature(CPU_FTR_SPE)) {
1706                         /*
1707                          * When the sticky exception bits are set
1708                          * directly by userspace, it must call prctl
1709                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1710                          * in the existing prctl settings) or
1711                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1712                          * the bits being set).  <fenv.h> functions
1713                          * saving and restoring the whole
1714                          * floating-point environment need to do so
1715                          * anyway to restore the prctl settings from
1716                          * the saved environment.
1717                          */
1718                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1719                         tsk->thread.fpexc_mode = val &
1720                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1721                         return 0;
1722                 } else {
1723                         return -EINVAL;
1724                 }
1725 #else
1726                 return -EINVAL;
1727 #endif
1728         }
1729
1730         /* on a CONFIG_SPE this does not hurt us.  The bits that
1731          * __pack_fe01 use do not overlap with bits used for
1732          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1733          * on CONFIG_SPE implementations are reserved so writing to
1734          * them does not change anything */
1735         if (val > PR_FP_EXC_PRECISE)
1736                 return -EINVAL;
1737         tsk->thread.fpexc_mode = __pack_fe01(val);
1738         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1739                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1740                         | tsk->thread.fpexc_mode;
1741         return 0;
1742 }
1743
1744 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1745 {
1746         unsigned int val;
1747
1748         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1749 #ifdef CONFIG_SPE
1750                 if (cpu_has_feature(CPU_FTR_SPE)) {
1751                         /*
1752                          * When the sticky exception bits are set
1753                          * directly by userspace, it must call prctl
1754                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1755                          * in the existing prctl settings) or
1756                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1757                          * the bits being set).  <fenv.h> functions
1758                          * saving and restoring the whole
1759                          * floating-point environment need to do so
1760                          * anyway to restore the prctl settings from
1761                          * the saved environment.
1762                          */
1763                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1764                         val = tsk->thread.fpexc_mode;
1765                 } else
1766                         return -EINVAL;
1767 #else
1768                 return -EINVAL;
1769 #endif
1770         else
1771                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1772         return put_user(val, (unsigned int __user *) adr);
1773 }
1774
1775 int set_endian(struct task_struct *tsk, unsigned int val)
1776 {
1777         struct pt_regs *regs = tsk->thread.regs;
1778
1779         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1780             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1781                 return -EINVAL;
1782
1783         if (regs == NULL)
1784                 return -EINVAL;
1785
1786         if (val == PR_ENDIAN_BIG)
1787                 regs->msr &= ~MSR_LE;
1788         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1789                 regs->msr |= MSR_LE;
1790         else
1791                 return -EINVAL;
1792
1793         return 0;
1794 }
1795
1796 int get_endian(struct task_struct *tsk, unsigned long adr)
1797 {
1798         struct pt_regs *regs = tsk->thread.regs;
1799         unsigned int val;
1800
1801         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1802             !cpu_has_feature(CPU_FTR_REAL_LE))
1803                 return -EINVAL;
1804
1805         if (regs == NULL)
1806                 return -EINVAL;
1807
1808         if (regs->msr & MSR_LE) {
1809                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1810                         val = PR_ENDIAN_LITTLE;
1811                 else
1812                         val = PR_ENDIAN_PPC_LITTLE;
1813         } else
1814                 val = PR_ENDIAN_BIG;
1815
1816         return put_user(val, (unsigned int __user *)adr);
1817 }
1818
1819 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1820 {
1821         tsk->thread.align_ctl = val;
1822         return 0;
1823 }
1824
1825 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1826 {
1827         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1828 }
1829
1830 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1831                                   unsigned long nbytes)
1832 {
1833         unsigned long stack_page;
1834         unsigned long cpu = task_cpu(p);
1835
1836         /*
1837          * Avoid crashing if the stack has overflowed and corrupted
1838          * task_cpu(p), which is in the thread_info struct.
1839          */
1840         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1841                 stack_page = (unsigned long) hardirq_ctx[cpu];
1842                 if (sp >= stack_page + sizeof(struct thread_struct)
1843                     && sp <= stack_page + THREAD_SIZE - nbytes)
1844                         return 1;
1845
1846                 stack_page = (unsigned long) softirq_ctx[cpu];
1847                 if (sp >= stack_page + sizeof(struct thread_struct)
1848                     && sp <= stack_page + THREAD_SIZE - nbytes)
1849                         return 1;
1850         }
1851         return 0;
1852 }
1853
1854 int validate_sp(unsigned long sp, struct task_struct *p,
1855                        unsigned long nbytes)
1856 {
1857         unsigned long stack_page = (unsigned long)task_stack_page(p);
1858
1859         if (sp >= stack_page + sizeof(struct thread_struct)
1860             && sp <= stack_page + THREAD_SIZE - nbytes)
1861                 return 1;
1862
1863         return valid_irq_stack(sp, p, nbytes);
1864 }
1865
1866 EXPORT_SYMBOL(validate_sp);
1867
1868 unsigned long get_wchan(struct task_struct *p)
1869 {
1870         unsigned long ip, sp;
1871         int count = 0;
1872
1873         if (!p || p == current || p->state == TASK_RUNNING)
1874                 return 0;
1875
1876         sp = p->thread.ksp;
1877         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1878                 return 0;
1879
1880         do {
1881                 sp = *(unsigned long *)sp;
1882                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1883                         return 0;
1884                 if (count > 0) {
1885                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1886                         if (!in_sched_functions(ip))
1887                                 return ip;
1888                 }
1889         } while (count++ < 16);
1890         return 0;
1891 }
1892
1893 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1894
1895 void show_stack(struct task_struct *tsk, unsigned long *stack)
1896 {
1897         unsigned long sp, ip, lr, newsp;
1898         int count = 0;
1899         int firstframe = 1;
1900 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1901         int curr_frame = current->curr_ret_stack;
1902         extern void return_to_handler(void);
1903         unsigned long rth = (unsigned long)return_to_handler;
1904 #endif
1905
1906         sp = (unsigned long) stack;
1907         if (tsk == NULL)
1908                 tsk = current;
1909         if (sp == 0) {
1910                 if (tsk == current)
1911                         sp = current_stack_pointer();
1912                 else
1913                         sp = tsk->thread.ksp;
1914         }
1915
1916         lr = 0;
1917         printk("Call Trace:\n");
1918         do {
1919                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1920                         return;
1921
1922                 stack = (unsigned long *) sp;
1923                 newsp = stack[0];
1924                 ip = stack[STACK_FRAME_LR_SAVE];
1925                 if (!firstframe || ip != lr) {
1926                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1927 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1928                         if ((ip == rth) && curr_frame >= 0) {
1929                                 pr_cont(" (%pS)",
1930                                        (void *)current->ret_stack[curr_frame].ret);
1931                                 curr_frame--;
1932                         }
1933 #endif
1934                         if (firstframe)
1935                                 pr_cont(" (unreliable)");
1936                         pr_cont("\n");
1937                 }
1938                 firstframe = 0;
1939
1940                 /*
1941                  * See if this is an exception frame.
1942                  * We look for the "regshere" marker in the current frame.
1943                  */
1944                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1945                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1946                         struct pt_regs *regs = (struct pt_regs *)
1947                                 (sp + STACK_FRAME_OVERHEAD);
1948                         lr = regs->link;
1949                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1950                                regs->trap, (void *)regs->nip, (void *)lr);
1951                         firstframe = 1;
1952                 }
1953
1954                 sp = newsp;
1955         } while (count++ < kstack_depth_to_print);
1956 }
1957
1958 #ifdef CONFIG_PPC64
1959 /* Called with hard IRQs off */
1960 void notrace __ppc64_runlatch_on(void)
1961 {
1962         struct thread_info *ti = current_thread_info();
1963         unsigned long ctrl;
1964
1965         ctrl = mfspr(SPRN_CTRLF);
1966         ctrl |= CTRL_RUNLATCH;
1967         mtspr(SPRN_CTRLT, ctrl);
1968
1969         ti->local_flags |= _TLF_RUNLATCH;
1970 }
1971
1972 /* Called with hard IRQs off */
1973 void notrace __ppc64_runlatch_off(void)
1974 {
1975         struct thread_info *ti = current_thread_info();
1976         unsigned long ctrl;
1977
1978         ti->local_flags &= ~_TLF_RUNLATCH;
1979
1980         ctrl = mfspr(SPRN_CTRLF);
1981         ctrl &= ~CTRL_RUNLATCH;
1982         mtspr(SPRN_CTRLT, ctrl);
1983 }
1984 #endif /* CONFIG_PPC64 */
1985
1986 unsigned long arch_align_stack(unsigned long sp)
1987 {
1988         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1989                 sp -= get_random_int() & ~PAGE_MASK;
1990         return sp & ~0xf;
1991 }
1992
1993 static inline unsigned long brk_rnd(void)
1994 {
1995         unsigned long rnd = 0;
1996
1997         /* 8MB for 32bit, 1GB for 64bit */
1998         if (is_32bit_task())
1999                 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2000         else
2001                 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2002
2003         return rnd << PAGE_SHIFT;
2004 }
2005
2006 unsigned long arch_randomize_brk(struct mm_struct *mm)
2007 {
2008         unsigned long base = mm->brk;
2009         unsigned long ret;
2010
2011 #ifdef CONFIG_PPC_STD_MMU_64
2012         /*
2013          * If we are using 1TB segments and we are allowed to randomise
2014          * the heap, we can put it above 1TB so it is backed by a 1TB
2015          * segment. Otherwise the heap will be in the bottom 1TB
2016          * which always uses 256MB segments and this may result in a
2017          * performance penalty. We don't need to worry about radix. For
2018          * radix, mmu_highuser_ssize remains unchanged from 256MB.
2019          */
2020         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2021                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2022 #endif
2023
2024         ret = PAGE_ALIGN(base + brk_rnd());
2025
2026         if (ret < mm->brk)
2027                 return mm->brk;
2028
2029         return ret;
2030 }
2031