bf44ae962ab82206bb148c674dd2dbb7f093d1fd
[sfrench/cifs-2.6.git] / arch / powerpc / kernel / process.c
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40
41 #include <asm/pgtable.h>
42 #include <asm/uaccess.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <linux/kprobes.h>
59 #include <linux/kdebug.h>
60
61 /* Transactional Memory debug */
62 #ifdef TM_DEBUG_SW
63 #define TM_DEBUG(x...) printk(KERN_INFO x)
64 #else
65 #define TM_DEBUG(x...) do { } while(0)
66 #endif
67
68 extern unsigned long _get_SP(void);
69
70 #ifndef CONFIG_SMP
71 struct task_struct *last_task_used_math = NULL;
72 struct task_struct *last_task_used_altivec = NULL;
73 struct task_struct *last_task_used_vsx = NULL;
74 struct task_struct *last_task_used_spe = NULL;
75 #endif
76
77 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
78 void giveup_fpu_maybe_transactional(struct task_struct *tsk)
79 {
80         /*
81          * If we are saving the current thread's registers, and the
82          * thread is in a transactional state, set the TIF_RESTORE_TM
83          * bit so that we know to restore the registers before
84          * returning to userspace.
85          */
86         if (tsk == current && tsk->thread.regs &&
87             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
88             !test_thread_flag(TIF_RESTORE_TM)) {
89                 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
90                 set_thread_flag(TIF_RESTORE_TM);
91         }
92
93         giveup_fpu(tsk);
94 }
95
96 void giveup_altivec_maybe_transactional(struct task_struct *tsk)
97 {
98         /*
99          * If we are saving the current thread's registers, and the
100          * thread is in a transactional state, set the TIF_RESTORE_TM
101          * bit so that we know to restore the registers before
102          * returning to userspace.
103          */
104         if (tsk == current && tsk->thread.regs &&
105             MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
106             !test_thread_flag(TIF_RESTORE_TM)) {
107                 tsk->thread.tm_orig_msr = tsk->thread.regs->msr;
108                 set_thread_flag(TIF_RESTORE_TM);
109         }
110
111         giveup_altivec(tsk);
112 }
113
114 #else
115 #define giveup_fpu_maybe_transactional(tsk)     giveup_fpu(tsk)
116 #define giveup_altivec_maybe_transactional(tsk) giveup_altivec(tsk)
117 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
118
119 #ifdef CONFIG_PPC_FPU
120 /*
121  * Make sure the floating-point register state in the
122  * the thread_struct is up to date for task tsk.
123  */
124 void flush_fp_to_thread(struct task_struct *tsk)
125 {
126         if (tsk->thread.regs) {
127                 /*
128                  * We need to disable preemption here because if we didn't,
129                  * another process could get scheduled after the regs->msr
130                  * test but before we have finished saving the FP registers
131                  * to the thread_struct.  That process could take over the
132                  * FPU, and then when we get scheduled again we would store
133                  * bogus values for the remaining FP registers.
134                  */
135                 preempt_disable();
136                 if (tsk->thread.regs->msr & MSR_FP) {
137 #ifdef CONFIG_SMP
138                         /*
139                          * This should only ever be called for current or
140                          * for a stopped child process.  Since we save away
141                          * the FP register state on context switch on SMP,
142                          * there is something wrong if a stopped child appears
143                          * to still have its FP state in the CPU registers.
144                          */
145                         BUG_ON(tsk != current);
146 #endif
147                         giveup_fpu_maybe_transactional(tsk);
148                 }
149                 preempt_enable();
150         }
151 }
152 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
153 #endif /* CONFIG_PPC_FPU */
154
155 void enable_kernel_fp(void)
156 {
157         WARN_ON(preemptible());
158
159 #ifdef CONFIG_SMP
160         if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
161                 giveup_fpu_maybe_transactional(current);
162         else
163                 giveup_fpu(NULL);       /* just enables FP for kernel */
164 #else
165         giveup_fpu_maybe_transactional(last_task_used_math);
166 #endif /* CONFIG_SMP */
167 }
168 EXPORT_SYMBOL(enable_kernel_fp);
169
170 #ifdef CONFIG_ALTIVEC
171 void enable_kernel_altivec(void)
172 {
173         WARN_ON(preemptible());
174
175 #ifdef CONFIG_SMP
176         if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
177                 giveup_altivec_maybe_transactional(current);
178         else
179                 giveup_altivec_notask();
180 #else
181         giveup_altivec_maybe_transactional(last_task_used_altivec);
182 #endif /* CONFIG_SMP */
183 }
184 EXPORT_SYMBOL(enable_kernel_altivec);
185
186 /*
187  * Make sure the VMX/Altivec register state in the
188  * the thread_struct is up to date for task tsk.
189  */
190 void flush_altivec_to_thread(struct task_struct *tsk)
191 {
192         if (tsk->thread.regs) {
193                 preempt_disable();
194                 if (tsk->thread.regs->msr & MSR_VEC) {
195 #ifdef CONFIG_SMP
196                         BUG_ON(tsk != current);
197 #endif
198                         giveup_altivec_maybe_transactional(tsk);
199                 }
200                 preempt_enable();
201         }
202 }
203 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
204 #endif /* CONFIG_ALTIVEC */
205
206 #ifdef CONFIG_VSX
207 #if 0
208 /* not currently used, but some crazy RAID module might want to later */
209 void enable_kernel_vsx(void)
210 {
211         WARN_ON(preemptible());
212
213 #ifdef CONFIG_SMP
214         if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
215                 giveup_vsx(current);
216         else
217                 giveup_vsx(NULL);       /* just enable vsx for kernel - force */
218 #else
219         giveup_vsx(last_task_used_vsx);
220 #endif /* CONFIG_SMP */
221 }
222 EXPORT_SYMBOL(enable_kernel_vsx);
223 #endif
224
225 void giveup_vsx(struct task_struct *tsk)
226 {
227         giveup_fpu_maybe_transactional(tsk);
228         giveup_altivec_maybe_transactional(tsk);
229         __giveup_vsx(tsk);
230 }
231
232 void flush_vsx_to_thread(struct task_struct *tsk)
233 {
234         if (tsk->thread.regs) {
235                 preempt_disable();
236                 if (tsk->thread.regs->msr & MSR_VSX) {
237 #ifdef CONFIG_SMP
238                         BUG_ON(tsk != current);
239 #endif
240                         giveup_vsx(tsk);
241                 }
242                 preempt_enable();
243         }
244 }
245 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
246 #endif /* CONFIG_VSX */
247
248 #ifdef CONFIG_SPE
249
250 void enable_kernel_spe(void)
251 {
252         WARN_ON(preemptible());
253
254 #ifdef CONFIG_SMP
255         if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
256                 giveup_spe(current);
257         else
258                 giveup_spe(NULL);       /* just enable SPE for kernel - force */
259 #else
260         giveup_spe(last_task_used_spe);
261 #endif /* __SMP __ */
262 }
263 EXPORT_SYMBOL(enable_kernel_spe);
264
265 void flush_spe_to_thread(struct task_struct *tsk)
266 {
267         if (tsk->thread.regs) {
268                 preempt_disable();
269                 if (tsk->thread.regs->msr & MSR_SPE) {
270 #ifdef CONFIG_SMP
271                         BUG_ON(tsk != current);
272 #endif
273                         tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
274                         giveup_spe(tsk);
275                 }
276                 preempt_enable();
277         }
278 }
279 #endif /* CONFIG_SPE */
280
281 #ifndef CONFIG_SMP
282 /*
283  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
284  * and the current task has some state, discard it.
285  */
286 void discard_lazy_cpu_state(void)
287 {
288         preempt_disable();
289         if (last_task_used_math == current)
290                 last_task_used_math = NULL;
291 #ifdef CONFIG_ALTIVEC
292         if (last_task_used_altivec == current)
293                 last_task_used_altivec = NULL;
294 #endif /* CONFIG_ALTIVEC */
295 #ifdef CONFIG_VSX
296         if (last_task_used_vsx == current)
297                 last_task_used_vsx = NULL;
298 #endif /* CONFIG_VSX */
299 #ifdef CONFIG_SPE
300         if (last_task_used_spe == current)
301                 last_task_used_spe = NULL;
302 #endif
303         preempt_enable();
304 }
305 #endif /* CONFIG_SMP */
306
307 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
308 void do_send_trap(struct pt_regs *regs, unsigned long address,
309                   unsigned long error_code, int signal_code, int breakpt)
310 {
311         siginfo_t info;
312
313         current->thread.trap_nr = signal_code;
314         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
315                         11, SIGSEGV) == NOTIFY_STOP)
316                 return;
317
318         /* Deliver the signal to userspace */
319         info.si_signo = SIGTRAP;
320         info.si_errno = breakpt;        /* breakpoint or watchpoint id */
321         info.si_code = signal_code;
322         info.si_addr = (void __user *)address;
323         force_sig_info(SIGTRAP, &info, current);
324 }
325 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
326 void do_break (struct pt_regs *regs, unsigned long address,
327                     unsigned long error_code)
328 {
329         siginfo_t info;
330
331         current->thread.trap_nr = TRAP_HWBKPT;
332         if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
333                         11, SIGSEGV) == NOTIFY_STOP)
334                 return;
335
336         if (debugger_break_match(regs))
337                 return;
338
339         /* Clear the breakpoint */
340         hw_breakpoint_disable();
341
342         /* Deliver the signal to userspace */
343         info.si_signo = SIGTRAP;
344         info.si_errno = 0;
345         info.si_code = TRAP_HWBKPT;
346         info.si_addr = (void __user *)address;
347         force_sig_info(SIGTRAP, &info, current);
348 }
349 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
350
351 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
352
353 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
354 /*
355  * Set the debug registers back to their default "safe" values.
356  */
357 static void set_debug_reg_defaults(struct thread_struct *thread)
358 {
359         thread->debug.iac1 = thread->debug.iac2 = 0;
360 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
361         thread->debug.iac3 = thread->debug.iac4 = 0;
362 #endif
363         thread->debug.dac1 = thread->debug.dac2 = 0;
364 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
365         thread->debug.dvc1 = thread->debug.dvc2 = 0;
366 #endif
367         thread->debug.dbcr0 = 0;
368 #ifdef CONFIG_BOOKE
369         /*
370          * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
371          */
372         thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
373                         DBCR1_IAC3US | DBCR1_IAC4US;
374         /*
375          * Force Data Address Compare User/Supervisor bits to be User-only
376          * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
377          */
378         thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
379 #else
380         thread->debug.dbcr1 = 0;
381 #endif
382 }
383
384 static void prime_debug_regs(struct debug_reg *debug)
385 {
386         /*
387          * We could have inherited MSR_DE from userspace, since
388          * it doesn't get cleared on exception entry.  Make sure
389          * MSR_DE is clear before we enable any debug events.
390          */
391         mtmsr(mfmsr() & ~MSR_DE);
392
393         mtspr(SPRN_IAC1, debug->iac1);
394         mtspr(SPRN_IAC2, debug->iac2);
395 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
396         mtspr(SPRN_IAC3, debug->iac3);
397         mtspr(SPRN_IAC4, debug->iac4);
398 #endif
399         mtspr(SPRN_DAC1, debug->dac1);
400         mtspr(SPRN_DAC2, debug->dac2);
401 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
402         mtspr(SPRN_DVC1, debug->dvc1);
403         mtspr(SPRN_DVC2, debug->dvc2);
404 #endif
405         mtspr(SPRN_DBCR0, debug->dbcr0);
406         mtspr(SPRN_DBCR1, debug->dbcr1);
407 #ifdef CONFIG_BOOKE
408         mtspr(SPRN_DBCR2, debug->dbcr2);
409 #endif
410 }
411 /*
412  * Unless neither the old or new thread are making use of the
413  * debug registers, set the debug registers from the values
414  * stored in the new thread.
415  */
416 void switch_booke_debug_regs(struct debug_reg *new_debug)
417 {
418         if ((current->thread.debug.dbcr0 & DBCR0_IDM)
419                 || (new_debug->dbcr0 & DBCR0_IDM))
420                         prime_debug_regs(new_debug);
421 }
422 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
423 #else   /* !CONFIG_PPC_ADV_DEBUG_REGS */
424 #ifndef CONFIG_HAVE_HW_BREAKPOINT
425 static void set_debug_reg_defaults(struct thread_struct *thread)
426 {
427         thread->hw_brk.address = 0;
428         thread->hw_brk.type = 0;
429         set_breakpoint(&thread->hw_brk);
430 }
431 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
432 #endif  /* CONFIG_PPC_ADV_DEBUG_REGS */
433
434 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
435 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
436 {
437         mtspr(SPRN_DAC1, dabr);
438 #ifdef CONFIG_PPC_47x
439         isync();
440 #endif
441         return 0;
442 }
443 #elif defined(CONFIG_PPC_BOOK3S)
444 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
445 {
446         mtspr(SPRN_DABR, dabr);
447         if (cpu_has_feature(CPU_FTR_DABRX))
448                 mtspr(SPRN_DABRX, dabrx);
449         return 0;
450 }
451 #else
452 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
453 {
454         return -EINVAL;
455 }
456 #endif
457
458 static inline int set_dabr(struct arch_hw_breakpoint *brk)
459 {
460         unsigned long dabr, dabrx;
461
462         dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
463         dabrx = ((brk->type >> 3) & 0x7);
464
465         if (ppc_md.set_dabr)
466                 return ppc_md.set_dabr(dabr, dabrx);
467
468         return __set_dabr(dabr, dabrx);
469 }
470
471 static inline int set_dawr(struct arch_hw_breakpoint *brk)
472 {
473         unsigned long dawr, dawrx, mrd;
474
475         dawr = brk->address;
476
477         dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
478                                    << (63 - 58); //* read/write bits */
479         dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
480                                    << (63 - 59); //* translate */
481         dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
482                                    >> 3; //* PRIM bits */
483         /* dawr length is stored in field MDR bits 48:53.  Matches range in
484            doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
485            0b111111=64DW.
486            brk->len is in bytes.
487            This aligns up to double word size, shifts and does the bias.
488         */
489         mrd = ((brk->len + 7) >> 3) - 1;
490         dawrx |= (mrd & 0x3f) << (63 - 53);
491
492         if (ppc_md.set_dawr)
493                 return ppc_md.set_dawr(dawr, dawrx);
494         mtspr(SPRN_DAWR, dawr);
495         mtspr(SPRN_DAWRX, dawrx);
496         return 0;
497 }
498
499 void __set_breakpoint(struct arch_hw_breakpoint *brk)
500 {
501         __get_cpu_var(current_brk) = *brk;
502
503         if (cpu_has_feature(CPU_FTR_DAWR))
504                 set_dawr(brk);
505         else
506                 set_dabr(brk);
507 }
508
509 void set_breakpoint(struct arch_hw_breakpoint *brk)
510 {
511         preempt_disable();
512         __set_breakpoint(brk);
513         preempt_enable();
514 }
515
516 #ifdef CONFIG_PPC64
517 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
518 #endif
519
520 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
521                               struct arch_hw_breakpoint *b)
522 {
523         if (a->address != b->address)
524                 return false;
525         if (a->type != b->type)
526                 return false;
527         if (a->len != b->len)
528                 return false;
529         return true;
530 }
531
532 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
533 static void tm_reclaim_thread(struct thread_struct *thr,
534                               struct thread_info *ti, uint8_t cause)
535 {
536         unsigned long msr_diff = 0;
537
538         /*
539          * If FP/VSX registers have been already saved to the
540          * thread_struct, move them to the transact_fp array.
541          * We clear the TIF_RESTORE_TM bit since after the reclaim
542          * the thread will no longer be transactional.
543          */
544         if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
545                 msr_diff = thr->tm_orig_msr & ~thr->regs->msr;
546                 if (msr_diff & MSR_FP)
547                         memcpy(&thr->transact_fp, &thr->fp_state,
548                                sizeof(struct thread_fp_state));
549                 if (msr_diff & MSR_VEC)
550                         memcpy(&thr->transact_vr, &thr->vr_state,
551                                sizeof(struct thread_vr_state));
552                 clear_ti_thread_flag(ti, TIF_RESTORE_TM);
553                 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
554         }
555
556         tm_reclaim(thr, thr->regs->msr, cause);
557
558         /* Having done the reclaim, we now have the checkpointed
559          * FP/VSX values in the registers.  These might be valid
560          * even if we have previously called enable_kernel_fp() or
561          * flush_fp_to_thread(), so update thr->regs->msr to
562          * indicate their current validity.
563          */
564         thr->regs->msr |= msr_diff;
565 }
566
567 void tm_reclaim_current(uint8_t cause)
568 {
569         tm_enable();
570         tm_reclaim_thread(&current->thread, current_thread_info(), cause);
571 }
572
573 static inline void tm_reclaim_task(struct task_struct *tsk)
574 {
575         /* We have to work out if we're switching from/to a task that's in the
576          * middle of a transaction.
577          *
578          * In switching we need to maintain a 2nd register state as
579          * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
580          * checkpointed (tbegin) state in ckpt_regs and saves the transactional
581          * (current) FPRs into oldtask->thread.transact_fpr[].
582          *
583          * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
584          */
585         struct thread_struct *thr = &tsk->thread;
586
587         if (!thr->regs)
588                 return;
589
590         if (!MSR_TM_ACTIVE(thr->regs->msr))
591                 goto out_and_saveregs;
592
593         /* Stash the original thread MSR, as giveup_fpu et al will
594          * modify it.  We hold onto it to see whether the task used
595          * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
596          * tm_orig_msr is already set.
597          */
598         if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
599                 thr->tm_orig_msr = thr->regs->msr;
600
601         TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
602                  "ccr=%lx, msr=%lx, trap=%lx)\n",
603                  tsk->pid, thr->regs->nip,
604                  thr->regs->ccr, thr->regs->msr,
605                  thr->regs->trap);
606
607         tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
608
609         TM_DEBUG("--- tm_reclaim on pid %d complete\n",
610                  tsk->pid);
611
612 out_and_saveregs:
613         /* Always save the regs here, even if a transaction's not active.
614          * This context-switches a thread's TM info SPRs.  We do it here to
615          * be consistent with the restore path (in recheckpoint) which
616          * cannot happen later in _switch().
617          */
618         tm_save_sprs(thr);
619 }
620
621 extern void __tm_recheckpoint(struct thread_struct *thread,
622                               unsigned long orig_msr);
623
624 void tm_recheckpoint(struct thread_struct *thread,
625                      unsigned long orig_msr)
626 {
627         unsigned long flags;
628
629         /* We really can't be interrupted here as the TEXASR registers can't
630          * change and later in the trecheckpoint code, we have a userspace R1.
631          * So let's hard disable over this region.
632          */
633         local_irq_save(flags);
634         hard_irq_disable();
635
636         /* The TM SPRs are restored here, so that TEXASR.FS can be set
637          * before the trecheckpoint and no explosion occurs.
638          */
639         tm_restore_sprs(thread);
640
641         __tm_recheckpoint(thread, orig_msr);
642
643         local_irq_restore(flags);
644 }
645
646 static inline void tm_recheckpoint_new_task(struct task_struct *new)
647 {
648         unsigned long msr;
649
650         if (!cpu_has_feature(CPU_FTR_TM))
651                 return;
652
653         /* Recheckpoint the registers of the thread we're about to switch to.
654          *
655          * If the task was using FP, we non-lazily reload both the original and
656          * the speculative FP register states.  This is because the kernel
657          * doesn't see if/when a TM rollback occurs, so if we take an FP
658          * unavoidable later, we are unable to determine which set of FP regs
659          * need to be restored.
660          */
661         if (!new->thread.regs)
662                 return;
663
664         if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
665                 tm_restore_sprs(&new->thread);
666                 return;
667         }
668         msr = new->thread.tm_orig_msr;
669         /* Recheckpoint to restore original checkpointed register state. */
670         TM_DEBUG("*** tm_recheckpoint of pid %d "
671                  "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
672                  new->pid, new->thread.regs->msr, msr);
673
674         /* This loads the checkpointed FP/VEC state, if used */
675         tm_recheckpoint(&new->thread, msr);
676
677         /* This loads the speculative FP/VEC state, if used */
678         if (msr & MSR_FP) {
679                 do_load_up_transact_fpu(&new->thread);
680                 new->thread.regs->msr |=
681                         (MSR_FP | new->thread.fpexc_mode);
682         }
683 #ifdef CONFIG_ALTIVEC
684         if (msr & MSR_VEC) {
685                 do_load_up_transact_altivec(&new->thread);
686                 new->thread.regs->msr |= MSR_VEC;
687         }
688 #endif
689         /* We may as well turn on VSX too since all the state is restored now */
690         if (msr & MSR_VSX)
691                 new->thread.regs->msr |= MSR_VSX;
692
693         TM_DEBUG("*** tm_recheckpoint of pid %d complete "
694                  "(kernel msr 0x%lx)\n",
695                  new->pid, mfmsr());
696 }
697
698 static inline void __switch_to_tm(struct task_struct *prev)
699 {
700         if (cpu_has_feature(CPU_FTR_TM)) {
701                 tm_enable();
702                 tm_reclaim_task(prev);
703         }
704 }
705
706 /*
707  * This is called if we are on the way out to userspace and the
708  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
709  * FP and/or vector state and does so if necessary.
710  * If userspace is inside a transaction (whether active or
711  * suspended) and FP/VMX/VSX instructions have ever been enabled
712  * inside that transaction, then we have to keep them enabled
713  * and keep the FP/VMX/VSX state loaded while ever the transaction
714  * continues.  The reason is that if we didn't, and subsequently
715  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
716  * we don't know whether it's the same transaction, and thus we
717  * don't know which of the checkpointed state and the transactional
718  * state to use.
719  */
720 void restore_tm_state(struct pt_regs *regs)
721 {
722         unsigned long msr_diff;
723
724         clear_thread_flag(TIF_RESTORE_TM);
725         if (!MSR_TM_ACTIVE(regs->msr))
726                 return;
727
728         msr_diff = current->thread.tm_orig_msr & ~regs->msr;
729         msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
730         if (msr_diff & MSR_FP) {
731                 fp_enable();
732                 load_fp_state(&current->thread.fp_state);
733                 regs->msr |= current->thread.fpexc_mode;
734         }
735         if (msr_diff & MSR_VEC) {
736                 vec_enable();
737                 load_vr_state(&current->thread.vr_state);
738         }
739         regs->msr |= msr_diff;
740 }
741
742 #else
743 #define tm_recheckpoint_new_task(new)
744 #define __switch_to_tm(prev)
745 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
746
747 struct task_struct *__switch_to(struct task_struct *prev,
748         struct task_struct *new)
749 {
750         struct thread_struct *new_thread, *old_thread;
751         struct task_struct *last;
752 #ifdef CONFIG_PPC_BOOK3S_64
753         struct ppc64_tlb_batch *batch;
754 #endif
755
756         WARN_ON(!irqs_disabled());
757
758         /* Back up the TAR and DSCR across context switches.
759          * Note that the TAR is not available for use in the kernel.  (To
760          * provide this, the TAR should be backed up/restored on exception
761          * entry/exit instead, and be in pt_regs.  FIXME, this should be in
762          * pt_regs anyway (for debug).)
763          * Save the TAR and DSCR here before we do treclaim/trecheckpoint as
764          * these will change them.
765          */
766         save_early_sprs(&prev->thread);
767
768         __switch_to_tm(prev);
769
770 #ifdef CONFIG_SMP
771         /* avoid complexity of lazy save/restore of fpu
772          * by just saving it every time we switch out if
773          * this task used the fpu during the last quantum.
774          *
775          * If it tries to use the fpu again, it'll trap and
776          * reload its fp regs.  So we don't have to do a restore
777          * every switch, just a save.
778          *  -- Cort
779          */
780         if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
781                 giveup_fpu(prev);
782 #ifdef CONFIG_ALTIVEC
783         /*
784          * If the previous thread used altivec in the last quantum
785          * (thus changing altivec regs) then save them.
786          * We used to check the VRSAVE register but not all apps
787          * set it, so we don't rely on it now (and in fact we need
788          * to save & restore VSCR even if VRSAVE == 0).  -- paulus
789          *
790          * On SMP we always save/restore altivec regs just to avoid the
791          * complexity of changing processors.
792          *  -- Cort
793          */
794         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
795                 giveup_altivec(prev);
796 #endif /* CONFIG_ALTIVEC */
797 #ifdef CONFIG_VSX
798         if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
799                 /* VMX and FPU registers are already save here */
800                 __giveup_vsx(prev);
801 #endif /* CONFIG_VSX */
802 #ifdef CONFIG_SPE
803         /*
804          * If the previous thread used spe in the last quantum
805          * (thus changing spe regs) then save them.
806          *
807          * On SMP we always save/restore spe regs just to avoid the
808          * complexity of changing processors.
809          */
810         if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
811                 giveup_spe(prev);
812 #endif /* CONFIG_SPE */
813
814 #else  /* CONFIG_SMP */
815 #ifdef CONFIG_ALTIVEC
816         /* Avoid the trap.  On smp this this never happens since
817          * we don't set last_task_used_altivec -- Cort
818          */
819         if (new->thread.regs && last_task_used_altivec == new)
820                 new->thread.regs->msr |= MSR_VEC;
821 #endif /* CONFIG_ALTIVEC */
822 #ifdef CONFIG_VSX
823         if (new->thread.regs && last_task_used_vsx == new)
824                 new->thread.regs->msr |= MSR_VSX;
825 #endif /* CONFIG_VSX */
826 #ifdef CONFIG_SPE
827         /* Avoid the trap.  On smp this this never happens since
828          * we don't set last_task_used_spe
829          */
830         if (new->thread.regs && last_task_used_spe == new)
831                 new->thread.regs->msr |= MSR_SPE;
832 #endif /* CONFIG_SPE */
833
834 #endif /* CONFIG_SMP */
835
836 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
837         switch_booke_debug_regs(&new->thread.debug);
838 #else
839 /*
840  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
841  * schedule DABR
842  */
843 #ifndef CONFIG_HAVE_HW_BREAKPOINT
844         if (unlikely(!hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk)))
845                 __set_breakpoint(&new->thread.hw_brk);
846 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
847 #endif
848
849
850         new_thread = &new->thread;
851         old_thread = &current->thread;
852
853 #ifdef CONFIG_PPC64
854         /*
855          * Collect processor utilization data per process
856          */
857         if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
858                 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
859                 long unsigned start_tb, current_tb;
860                 start_tb = old_thread->start_tb;
861                 cu->current_tb = current_tb = mfspr(SPRN_PURR);
862                 old_thread->accum_tb += (current_tb - start_tb);
863                 new_thread->start_tb = current_tb;
864         }
865 #endif /* CONFIG_PPC64 */
866
867 #ifdef CONFIG_PPC_BOOK3S_64
868         batch = &__get_cpu_var(ppc64_tlb_batch);
869         if (batch->active) {
870                 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
871                 if (batch->index)
872                         __flush_tlb_pending(batch);
873                 batch->active = 0;
874         }
875 #endif /* CONFIG_PPC_BOOK3S_64 */
876
877         /*
878          * We can't take a PMU exception inside _switch() since there is a
879          * window where the kernel stack SLB and the kernel stack are out
880          * of sync. Hard disable here.
881          */
882         hard_irq_disable();
883
884         tm_recheckpoint_new_task(new);
885
886         last = _switch(old_thread, new_thread);
887
888 #ifdef CONFIG_PPC_BOOK3S_64
889         if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
890                 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
891                 batch = &__get_cpu_var(ppc64_tlb_batch);
892                 batch->active = 1;
893         }
894 #endif /* CONFIG_PPC_BOOK3S_64 */
895
896         return last;
897 }
898
899 static int instructions_to_print = 16;
900
901 static void show_instructions(struct pt_regs *regs)
902 {
903         int i;
904         unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
905                         sizeof(int));
906
907         printk("Instruction dump:");
908
909         for (i = 0; i < instructions_to_print; i++) {
910                 int instr;
911
912                 if (!(i % 8))
913                         printk("\n");
914
915 #if !defined(CONFIG_BOOKE)
916                 /* If executing with the IMMU off, adjust pc rather
917                  * than print XXXXXXXX.
918                  */
919                 if (!(regs->msr & MSR_IR))
920                         pc = (unsigned long)phys_to_virt(pc);
921 #endif
922
923                 /* We use __get_user here *only* to avoid an OOPS on a
924                  * bad address because the pc *should* only be a
925                  * kernel address.
926                  */
927                 if (!__kernel_text_address(pc) ||
928                      __get_user(instr, (unsigned int __user *)pc)) {
929                         printk(KERN_CONT "XXXXXXXX ");
930                 } else {
931                         if (regs->nip == pc)
932                                 printk(KERN_CONT "<%08x> ", instr);
933                         else
934                                 printk(KERN_CONT "%08x ", instr);
935                 }
936
937                 pc += sizeof(int);
938         }
939
940         printk("\n");
941 }
942
943 static struct regbit {
944         unsigned long bit;
945         const char *name;
946 } msr_bits[] = {
947 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
948         {MSR_SF,        "SF"},
949         {MSR_HV,        "HV"},
950 #endif
951         {MSR_VEC,       "VEC"},
952         {MSR_VSX,       "VSX"},
953 #ifdef CONFIG_BOOKE
954         {MSR_CE,        "CE"},
955 #endif
956         {MSR_EE,        "EE"},
957         {MSR_PR,        "PR"},
958         {MSR_FP,        "FP"},
959         {MSR_ME,        "ME"},
960 #ifdef CONFIG_BOOKE
961         {MSR_DE,        "DE"},
962 #else
963         {MSR_SE,        "SE"},
964         {MSR_BE,        "BE"},
965 #endif
966         {MSR_IR,        "IR"},
967         {MSR_DR,        "DR"},
968         {MSR_PMM,       "PMM"},
969 #ifndef CONFIG_BOOKE
970         {MSR_RI,        "RI"},
971         {MSR_LE,        "LE"},
972 #endif
973         {0,             NULL}
974 };
975
976 static void printbits(unsigned long val, struct regbit *bits)
977 {
978         const char *sep = "";
979
980         printk("<");
981         for (; bits->bit; ++bits)
982                 if (val & bits->bit) {
983                         printk("%s%s", sep, bits->name);
984                         sep = ",";
985                 }
986         printk(">");
987 }
988
989 #ifdef CONFIG_PPC64
990 #define REG             "%016lx"
991 #define REGS_PER_LINE   4
992 #define LAST_VOLATILE   13
993 #else
994 #define REG             "%08lx"
995 #define REGS_PER_LINE   8
996 #define LAST_VOLATILE   12
997 #endif
998
999 void show_regs(struct pt_regs * regs)
1000 {
1001         int i, trap;
1002
1003         show_regs_print_info(KERN_DEFAULT);
1004
1005         printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1006                regs->nip, regs->link, regs->ctr);
1007         printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1008                regs, regs->trap, print_tainted(), init_utsname()->release);
1009         printk("MSR: "REG" ", regs->msr);
1010         printbits(regs->msr, msr_bits);
1011         printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1012         trap = TRAP(regs);
1013         if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1014                 printk("CFAR: "REG" ", regs->orig_gpr3);
1015         if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1016 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1017                 printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1018 #else
1019                 printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1020 #endif
1021 #ifdef CONFIG_PPC64
1022         printk("SOFTE: %ld ", regs->softe);
1023 #endif
1024 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1025         if (MSR_TM_ACTIVE(regs->msr))
1026                 printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1027 #endif
1028
1029         for (i = 0;  i < 32;  i++) {
1030                 if ((i % REGS_PER_LINE) == 0)
1031                         printk("\nGPR%02d: ", i);
1032                 printk(REG " ", regs->gpr[i]);
1033                 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1034                         break;
1035         }
1036         printk("\n");
1037 #ifdef CONFIG_KALLSYMS
1038         /*
1039          * Lookup NIP late so we have the best change of getting the
1040          * above info out without failing
1041          */
1042         printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1043         printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1044 #endif
1045         show_stack(current, (unsigned long *) regs->gpr[1]);
1046         if (!user_mode(regs))
1047                 show_instructions(regs);
1048 }
1049
1050 void exit_thread(void)
1051 {
1052         discard_lazy_cpu_state();
1053 }
1054
1055 void flush_thread(void)
1056 {
1057         discard_lazy_cpu_state();
1058
1059 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1060         flush_ptrace_hw_breakpoint(current);
1061 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1062         set_debug_reg_defaults(&current->thread);
1063 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1064 }
1065
1066 void
1067 release_thread(struct task_struct *t)
1068 {
1069 }
1070
1071 /*
1072  * this gets called so that we can store coprocessor state into memory and
1073  * copy the current task into the new thread.
1074  */
1075 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1076 {
1077         flush_fp_to_thread(src);
1078         flush_altivec_to_thread(src);
1079         flush_vsx_to_thread(src);
1080         flush_spe_to_thread(src);
1081         /*
1082          * Flush TM state out so we can copy it.  __switch_to_tm() does this
1083          * flush but it removes the checkpointed state from the current CPU and
1084          * transitions the CPU out of TM mode.  Hence we need to call
1085          * tm_recheckpoint_new_task() (on the same task) to restore the
1086          * checkpointed state back and the TM mode.
1087          */
1088         __switch_to_tm(src);
1089         tm_recheckpoint_new_task(src);
1090
1091         *dst = *src;
1092
1093         clear_task_ebb(dst);
1094
1095         return 0;
1096 }
1097
1098 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1099 {
1100 #ifdef CONFIG_PPC_STD_MMU_64
1101         unsigned long sp_vsid;
1102         unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1103
1104         if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1105                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1106                         << SLB_VSID_SHIFT_1T;
1107         else
1108                 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1109                         << SLB_VSID_SHIFT;
1110         sp_vsid |= SLB_VSID_KERNEL | llp;
1111         p->thread.ksp_vsid = sp_vsid;
1112 #endif
1113 }
1114
1115 /*
1116  * Copy a thread..
1117  */
1118 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
1119
1120 int copy_thread(unsigned long clone_flags, unsigned long usp,
1121                 unsigned long arg, struct task_struct *p)
1122 {
1123         struct pt_regs *childregs, *kregs;
1124         extern void ret_from_fork(void);
1125         extern void ret_from_kernel_thread(void);
1126         void (*f)(void);
1127         unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1128
1129         /* Copy registers */
1130         sp -= sizeof(struct pt_regs);
1131         childregs = (struct pt_regs *) sp;
1132         if (unlikely(p->flags & PF_KTHREAD)) {
1133                 struct thread_info *ti = (void *)task_stack_page(p);
1134                 memset(childregs, 0, sizeof(struct pt_regs));
1135                 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1136                 /* function */
1137                 if (usp)
1138                         childregs->gpr[14] = ppc_function_entry((void *)usp);
1139 #ifdef CONFIG_PPC64
1140                 clear_tsk_thread_flag(p, TIF_32BIT);
1141                 childregs->softe = 1;
1142 #endif
1143                 childregs->gpr[15] = arg;
1144                 p->thread.regs = NULL;  /* no user register state */
1145                 ti->flags |= _TIF_RESTOREALL;
1146                 f = ret_from_kernel_thread;
1147         } else {
1148                 struct pt_regs *regs = current_pt_regs();
1149                 CHECK_FULL_REGS(regs);
1150                 *childregs = *regs;
1151                 if (usp)
1152                         childregs->gpr[1] = usp;
1153                 p->thread.regs = childregs;
1154                 childregs->gpr[3] = 0;  /* Result from fork() */
1155                 if (clone_flags & CLONE_SETTLS) {
1156 #ifdef CONFIG_PPC64
1157                         if (!is_32bit_task())
1158                                 childregs->gpr[13] = childregs->gpr[6];
1159                         else
1160 #endif
1161                                 childregs->gpr[2] = childregs->gpr[6];
1162                 }
1163
1164                 f = ret_from_fork;
1165         }
1166         sp -= STACK_FRAME_OVERHEAD;
1167
1168         /*
1169          * The way this works is that at some point in the future
1170          * some task will call _switch to switch to the new task.
1171          * That will pop off the stack frame created below and start
1172          * the new task running at ret_from_fork.  The new task will
1173          * do some house keeping and then return from the fork or clone
1174          * system call, using the stack frame created above.
1175          */
1176         ((unsigned long *)sp)[0] = 0;
1177         sp -= sizeof(struct pt_regs);
1178         kregs = (struct pt_regs *) sp;
1179         sp -= STACK_FRAME_OVERHEAD;
1180         p->thread.ksp = sp;
1181 #ifdef CONFIG_PPC32
1182         p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1183                                 _ALIGN_UP(sizeof(struct thread_info), 16);
1184 #endif
1185 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1186         p->thread.ptrace_bps[0] = NULL;
1187 #endif
1188
1189         p->thread.fp_save_area = NULL;
1190 #ifdef CONFIG_ALTIVEC
1191         p->thread.vr_save_area = NULL;
1192 #endif
1193
1194         setup_ksp_vsid(p, sp);
1195
1196 #ifdef CONFIG_PPC64 
1197         if (cpu_has_feature(CPU_FTR_DSCR)) {
1198                 p->thread.dscr_inherit = current->thread.dscr_inherit;
1199                 p->thread.dscr = current->thread.dscr;
1200         }
1201         if (cpu_has_feature(CPU_FTR_HAS_PPR))
1202                 p->thread.ppr = INIT_PPR;
1203 #endif
1204         kregs->nip = ppc_function_entry(f);
1205         return 0;
1206 }
1207
1208 /*
1209  * Set up a thread for executing a new program
1210  */
1211 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1212 {
1213 #ifdef CONFIG_PPC64
1214         unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1215 #endif
1216
1217         /*
1218          * If we exec out of a kernel thread then thread.regs will not be
1219          * set.  Do it now.
1220          */
1221         if (!current->thread.regs) {
1222                 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1223                 current->thread.regs = regs - 1;
1224         }
1225
1226         memset(regs->gpr, 0, sizeof(regs->gpr));
1227         regs->ctr = 0;
1228         regs->link = 0;
1229         regs->xer = 0;
1230         regs->ccr = 0;
1231         regs->gpr[1] = sp;
1232
1233         /*
1234          * We have just cleared all the nonvolatile GPRs, so make
1235          * FULL_REGS(regs) return true.  This is necessary to allow
1236          * ptrace to examine the thread immediately after exec.
1237          */
1238         regs->trap &= ~1UL;
1239
1240 #ifdef CONFIG_PPC32
1241         regs->mq = 0;
1242         regs->nip = start;
1243         regs->msr = MSR_USER;
1244 #else
1245         if (!is_32bit_task()) {
1246                 unsigned long entry;
1247
1248                 if (is_elf2_task()) {
1249                         /* Look ma, no function descriptors! */
1250                         entry = start;
1251
1252                         /*
1253                          * Ulrich says:
1254                          *   The latest iteration of the ABI requires that when
1255                          *   calling a function (at its global entry point),
1256                          *   the caller must ensure r12 holds the entry point
1257                          *   address (so that the function can quickly
1258                          *   establish addressability).
1259                          */
1260                         regs->gpr[12] = start;
1261                         /* Make sure that's restored on entry to userspace. */
1262                         set_thread_flag(TIF_RESTOREALL);
1263                 } else {
1264                         unsigned long toc;
1265
1266                         /* start is a relocated pointer to the function
1267                          * descriptor for the elf _start routine.  The first
1268                          * entry in the function descriptor is the entry
1269                          * address of _start and the second entry is the TOC
1270                          * value we need to use.
1271                          */
1272                         __get_user(entry, (unsigned long __user *)start);
1273                         __get_user(toc, (unsigned long __user *)start+1);
1274
1275                         /* Check whether the e_entry function descriptor entries
1276                          * need to be relocated before we can use them.
1277                          */
1278                         if (load_addr != 0) {
1279                                 entry += load_addr;
1280                                 toc   += load_addr;
1281                         }
1282                         regs->gpr[2] = toc;
1283                 }
1284                 regs->nip = entry;
1285                 regs->msr = MSR_USER64;
1286         } else {
1287                 regs->nip = start;
1288                 regs->gpr[2] = 0;
1289                 regs->msr = MSR_USER32;
1290         }
1291 #endif
1292         discard_lazy_cpu_state();
1293 #ifdef CONFIG_VSX
1294         current->thread.used_vsr = 0;
1295 #endif
1296         memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1297         current->thread.fp_save_area = NULL;
1298 #ifdef CONFIG_ALTIVEC
1299         memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1300         current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1301         current->thread.vr_save_area = NULL;
1302         current->thread.vrsave = 0;
1303         current->thread.used_vr = 0;
1304 #endif /* CONFIG_ALTIVEC */
1305 #ifdef CONFIG_SPE
1306         memset(current->thread.evr, 0, sizeof(current->thread.evr));
1307         current->thread.acc = 0;
1308         current->thread.spefscr = 0;
1309         current->thread.used_spe = 0;
1310 #endif /* CONFIG_SPE */
1311 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1312         if (cpu_has_feature(CPU_FTR_TM))
1313                 regs->msr |= MSR_TM;
1314         current->thread.tm_tfhar = 0;
1315         current->thread.tm_texasr = 0;
1316         current->thread.tm_tfiar = 0;
1317 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1318 }
1319
1320 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1321                 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1322
1323 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1324 {
1325         struct pt_regs *regs = tsk->thread.regs;
1326
1327         /* This is a bit hairy.  If we are an SPE enabled  processor
1328          * (have embedded fp) we store the IEEE exception enable flags in
1329          * fpexc_mode.  fpexc_mode is also used for setting FP exception
1330          * mode (asyn, precise, disabled) for 'Classic' FP. */
1331         if (val & PR_FP_EXC_SW_ENABLE) {
1332 #ifdef CONFIG_SPE
1333                 if (cpu_has_feature(CPU_FTR_SPE)) {
1334                         /*
1335                          * When the sticky exception bits are set
1336                          * directly by userspace, it must call prctl
1337                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1338                          * in the existing prctl settings) or
1339                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1340                          * the bits being set).  <fenv.h> functions
1341                          * saving and restoring the whole
1342                          * floating-point environment need to do so
1343                          * anyway to restore the prctl settings from
1344                          * the saved environment.
1345                          */
1346                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1347                         tsk->thread.fpexc_mode = val &
1348                                 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1349                         return 0;
1350                 } else {
1351                         return -EINVAL;
1352                 }
1353 #else
1354                 return -EINVAL;
1355 #endif
1356         }
1357
1358         /* on a CONFIG_SPE this does not hurt us.  The bits that
1359          * __pack_fe01 use do not overlap with bits used for
1360          * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1361          * on CONFIG_SPE implementations are reserved so writing to
1362          * them does not change anything */
1363         if (val > PR_FP_EXC_PRECISE)
1364                 return -EINVAL;
1365         tsk->thread.fpexc_mode = __pack_fe01(val);
1366         if (regs != NULL && (regs->msr & MSR_FP) != 0)
1367                 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1368                         | tsk->thread.fpexc_mode;
1369         return 0;
1370 }
1371
1372 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1373 {
1374         unsigned int val;
1375
1376         if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1377 #ifdef CONFIG_SPE
1378                 if (cpu_has_feature(CPU_FTR_SPE)) {
1379                         /*
1380                          * When the sticky exception bits are set
1381                          * directly by userspace, it must call prctl
1382                          * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1383                          * in the existing prctl settings) or
1384                          * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1385                          * the bits being set).  <fenv.h> functions
1386                          * saving and restoring the whole
1387                          * floating-point environment need to do so
1388                          * anyway to restore the prctl settings from
1389                          * the saved environment.
1390                          */
1391                         tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1392                         val = tsk->thread.fpexc_mode;
1393                 } else
1394                         return -EINVAL;
1395 #else
1396                 return -EINVAL;
1397 #endif
1398         else
1399                 val = __unpack_fe01(tsk->thread.fpexc_mode);
1400         return put_user(val, (unsigned int __user *) adr);
1401 }
1402
1403 int set_endian(struct task_struct *tsk, unsigned int val)
1404 {
1405         struct pt_regs *regs = tsk->thread.regs;
1406
1407         if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1408             (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1409                 return -EINVAL;
1410
1411         if (regs == NULL)
1412                 return -EINVAL;
1413
1414         if (val == PR_ENDIAN_BIG)
1415                 regs->msr &= ~MSR_LE;
1416         else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1417                 regs->msr |= MSR_LE;
1418         else
1419                 return -EINVAL;
1420
1421         return 0;
1422 }
1423
1424 int get_endian(struct task_struct *tsk, unsigned long adr)
1425 {
1426         struct pt_regs *regs = tsk->thread.regs;
1427         unsigned int val;
1428
1429         if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1430             !cpu_has_feature(CPU_FTR_REAL_LE))
1431                 return -EINVAL;
1432
1433         if (regs == NULL)
1434                 return -EINVAL;
1435
1436         if (regs->msr & MSR_LE) {
1437                 if (cpu_has_feature(CPU_FTR_REAL_LE))
1438                         val = PR_ENDIAN_LITTLE;
1439                 else
1440                         val = PR_ENDIAN_PPC_LITTLE;
1441         } else
1442                 val = PR_ENDIAN_BIG;
1443
1444         return put_user(val, (unsigned int __user *)adr);
1445 }
1446
1447 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1448 {
1449         tsk->thread.align_ctl = val;
1450         return 0;
1451 }
1452
1453 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1454 {
1455         return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1456 }
1457
1458 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1459                                   unsigned long nbytes)
1460 {
1461         unsigned long stack_page;
1462         unsigned long cpu = task_cpu(p);
1463
1464         /*
1465          * Avoid crashing if the stack has overflowed and corrupted
1466          * task_cpu(p), which is in the thread_info struct.
1467          */
1468         if (cpu < NR_CPUS && cpu_possible(cpu)) {
1469                 stack_page = (unsigned long) hardirq_ctx[cpu];
1470                 if (sp >= stack_page + sizeof(struct thread_struct)
1471                     && sp <= stack_page + THREAD_SIZE - nbytes)
1472                         return 1;
1473
1474                 stack_page = (unsigned long) softirq_ctx[cpu];
1475                 if (sp >= stack_page + sizeof(struct thread_struct)
1476                     && sp <= stack_page + THREAD_SIZE - nbytes)
1477                         return 1;
1478         }
1479         return 0;
1480 }
1481
1482 int validate_sp(unsigned long sp, struct task_struct *p,
1483                        unsigned long nbytes)
1484 {
1485         unsigned long stack_page = (unsigned long)task_stack_page(p);
1486
1487         if (sp >= stack_page + sizeof(struct thread_struct)
1488             && sp <= stack_page + THREAD_SIZE - nbytes)
1489                 return 1;
1490
1491         return valid_irq_stack(sp, p, nbytes);
1492 }
1493
1494 EXPORT_SYMBOL(validate_sp);
1495
1496 unsigned long get_wchan(struct task_struct *p)
1497 {
1498         unsigned long ip, sp;
1499         int count = 0;
1500
1501         if (!p || p == current || p->state == TASK_RUNNING)
1502                 return 0;
1503
1504         sp = p->thread.ksp;
1505         if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1506                 return 0;
1507
1508         do {
1509                 sp = *(unsigned long *)sp;
1510                 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1511                         return 0;
1512                 if (count > 0) {
1513                         ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1514                         if (!in_sched_functions(ip))
1515                                 return ip;
1516                 }
1517         } while (count++ < 16);
1518         return 0;
1519 }
1520
1521 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1522
1523 void show_stack(struct task_struct *tsk, unsigned long *stack)
1524 {
1525         unsigned long sp, ip, lr, newsp;
1526         int count = 0;
1527         int firstframe = 1;
1528 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1529         int curr_frame = current->curr_ret_stack;
1530         extern void return_to_handler(void);
1531         unsigned long rth = (unsigned long)return_to_handler;
1532         unsigned long mrth = -1;
1533 #ifdef CONFIG_PPC64
1534         extern void mod_return_to_handler(void);
1535         rth = *(unsigned long *)rth;
1536         mrth = (unsigned long)mod_return_to_handler;
1537         mrth = *(unsigned long *)mrth;
1538 #endif
1539 #endif
1540
1541         sp = (unsigned long) stack;
1542         if (tsk == NULL)
1543                 tsk = current;
1544         if (sp == 0) {
1545                 if (tsk == current)
1546                         asm("mr %0,1" : "=r" (sp));
1547                 else
1548                         sp = tsk->thread.ksp;
1549         }
1550
1551         lr = 0;
1552         printk("Call Trace:\n");
1553         do {
1554                 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1555                         return;
1556
1557                 stack = (unsigned long *) sp;
1558                 newsp = stack[0];
1559                 ip = stack[STACK_FRAME_LR_SAVE];
1560                 if (!firstframe || ip != lr) {
1561                         printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1562 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1563                         if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1564                                 printk(" (%pS)",
1565                                        (void *)current->ret_stack[curr_frame].ret);
1566                                 curr_frame--;
1567                         }
1568 #endif
1569                         if (firstframe)
1570                                 printk(" (unreliable)");
1571                         printk("\n");
1572                 }
1573                 firstframe = 0;
1574
1575                 /*
1576                  * See if this is an exception frame.
1577                  * We look for the "regshere" marker in the current frame.
1578                  */
1579                 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1580                     && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1581                         struct pt_regs *regs = (struct pt_regs *)
1582                                 (sp + STACK_FRAME_OVERHEAD);
1583                         lr = regs->link;
1584                         printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1585                                regs->trap, (void *)regs->nip, (void *)lr);
1586                         firstframe = 1;
1587                 }
1588
1589                 sp = newsp;
1590         } while (count++ < kstack_depth_to_print);
1591 }
1592
1593 #ifdef CONFIG_PPC64
1594 /* Called with hard IRQs off */
1595 void notrace __ppc64_runlatch_on(void)
1596 {
1597         struct thread_info *ti = current_thread_info();
1598         unsigned long ctrl;
1599
1600         ctrl = mfspr(SPRN_CTRLF);
1601         ctrl |= CTRL_RUNLATCH;
1602         mtspr(SPRN_CTRLT, ctrl);
1603
1604         ti->local_flags |= _TLF_RUNLATCH;
1605 }
1606
1607 /* Called with hard IRQs off */
1608 void notrace __ppc64_runlatch_off(void)
1609 {
1610         struct thread_info *ti = current_thread_info();
1611         unsigned long ctrl;
1612
1613         ti->local_flags &= ~_TLF_RUNLATCH;
1614
1615         ctrl = mfspr(SPRN_CTRLF);
1616         ctrl &= ~CTRL_RUNLATCH;
1617         mtspr(SPRN_CTRLT, ctrl);
1618 }
1619 #endif /* CONFIG_PPC64 */
1620
1621 unsigned long arch_align_stack(unsigned long sp)
1622 {
1623         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1624                 sp -= get_random_int() & ~PAGE_MASK;
1625         return sp & ~0xf;
1626 }
1627
1628 static inline unsigned long brk_rnd(void)
1629 {
1630         unsigned long rnd = 0;
1631
1632         /* 8MB for 32bit, 1GB for 64bit */
1633         if (is_32bit_task())
1634                 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1635         else
1636                 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1637
1638         return rnd << PAGE_SHIFT;
1639 }
1640
1641 unsigned long arch_randomize_brk(struct mm_struct *mm)
1642 {
1643         unsigned long base = mm->brk;
1644         unsigned long ret;
1645
1646 #ifdef CONFIG_PPC_STD_MMU_64
1647         /*
1648          * If we are using 1TB segments and we are allowed to randomise
1649          * the heap, we can put it above 1TB so it is backed by a 1TB
1650          * segment. Otherwise the heap will be in the bottom 1TB
1651          * which always uses 256MB segments and this may result in a
1652          * performance penalty.
1653          */
1654         if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1655                 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1656 #endif
1657
1658         ret = PAGE_ALIGN(base + brk_rnd());
1659
1660         if (ret < mm->brk)
1661                 return mm->brk;
1662
1663         return ret;
1664 }
1665
1666 unsigned long randomize_et_dyn(unsigned long base)
1667 {
1668         unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1669
1670         if (ret < base)
1671                 return base;
1672
1673         return ret;
1674 }