Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[sfrench/cifs-2.6.git] / arch / powerpc / include / asm / kvm_book3s_64.h
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright SUSE Linux Products GmbH 2010
16  *
17  * Authors: Alexander Graf <agraf@suse.de>
18  */
19
20 #ifndef __ASM_KVM_BOOK3S_64_H__
21 #define __ASM_KVM_BOOK3S_64_H__
22
23 #include <linux/string.h>
24 #include <asm/bitops.h>
25 #include <asm/book3s/64/mmu-hash.h>
26
27 /* Power architecture requires HPT is at least 256kiB, at most 64TiB */
28 #define PPC_MIN_HPT_ORDER       18
29 #define PPC_MAX_HPT_ORDER       46
30
31 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
32 static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
33 {
34         preempt_disable();
35         return &get_paca()->shadow_vcpu;
36 }
37
38 static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
39 {
40         preempt_enable();
41 }
42 #endif
43
44 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
45
46 static inline bool kvm_is_radix(struct kvm *kvm)
47 {
48         return kvm->arch.radix;
49 }
50
51 #define KVM_DEFAULT_HPT_ORDER   24      /* 16MB HPT by default */
52 #endif
53
54 /*
55  * We use a lock bit in HPTE dword 0 to synchronize updates and
56  * accesses to each HPTE, and another bit to indicate non-present
57  * HPTEs.
58  */
59 #define HPTE_V_HVLOCK   0x40UL
60 #define HPTE_V_ABSENT   0x20UL
61
62 /*
63  * We use this bit in the guest_rpte field of the revmap entry
64  * to indicate a modified HPTE.
65  */
66 #define HPTE_GR_MODIFIED        (1ul << 62)
67
68 /* These bits are reserved in the guest view of the HPTE */
69 #define HPTE_GR_RESERVED        HPTE_GR_MODIFIED
70
71 static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
72 {
73         unsigned long tmp, old;
74         __be64 be_lockbit, be_bits;
75
76         /*
77          * We load/store in native endian, but the HTAB is in big endian. If
78          * we byte swap all data we apply on the PTE we're implicitly correct
79          * again.
80          */
81         be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
82         be_bits = cpu_to_be64(bits);
83
84         asm volatile("  ldarx   %0,0,%2\n"
85                      "  and.    %1,%0,%3\n"
86                      "  bne     2f\n"
87                      "  or      %0,%0,%4\n"
88                      "  stdcx.  %0,0,%2\n"
89                      "  beq+    2f\n"
90                      "  mr      %1,%3\n"
91                      "2:        isync"
92                      : "=&r" (tmp), "=&r" (old)
93                      : "r" (hpte), "r" (be_bits), "r" (be_lockbit)
94                      : "cc", "memory");
95         return old == 0;
96 }
97
98 static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
99 {
100         hpte_v &= ~HPTE_V_HVLOCK;
101         asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
102         hpte[0] = cpu_to_be64(hpte_v);
103 }
104
105 /* Without barrier */
106 static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
107 {
108         hpte_v &= ~HPTE_V_HVLOCK;
109         hpte[0] = cpu_to_be64(hpte_v);
110 }
111
112 /*
113  * These functions encode knowledge of the POWER7/8/9 hardware
114  * interpretations of the HPTE LP (large page size) field.
115  */
116 static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l)
117 {
118         unsigned int lphi;
119
120         if (!(h & HPTE_V_LARGE))
121                 return 12;      /* 4kB */
122         lphi = (l >> 16) & 0xf;
123         switch ((l >> 12) & 0xf) {
124         case 0:
125                 return !lphi ? 24 : 0;          /* 16MB */
126                 break;
127         case 1:
128                 return 16;                      /* 64kB */
129                 break;
130         case 3:
131                 return !lphi ? 34 : 0;          /* 16GB */
132                 break;
133         case 7:
134                 return (16 << 8) + 12;          /* 64kB in 4kB */
135                 break;
136         case 8:
137                 if (!lphi)
138                         return (24 << 8) + 16;  /* 16MB in 64kkB */
139                 if (lphi == 3)
140                         return (24 << 8) + 12;  /* 16MB in 4kB */
141                 break;
142         }
143         return 0;
144 }
145
146 static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l)
147 {
148         return kvmppc_hpte_page_shifts(h, l) & 0xff;
149 }
150
151 static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l)
152 {
153         int tmp = kvmppc_hpte_page_shifts(h, l);
154
155         if (tmp >= 0x100)
156                 tmp >>= 8;
157         return tmp;
158 }
159
160 static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r)
161 {
162         int shift = kvmppc_hpte_actual_page_shift(v, r);
163
164         if (shift)
165                 return 1ul << shift;
166         return 0;
167 }
168
169 static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift)
170 {
171         switch (base_shift) {
172         case 12:
173                 switch (actual_shift) {
174                 case 12:
175                         return 0;
176                 case 16:
177                         return 7;
178                 case 24:
179                         return 0x38;
180                 }
181                 break;
182         case 16:
183                 switch (actual_shift) {
184                 case 16:
185                         return 1;
186                 case 24:
187                         return 8;
188                 }
189                 break;
190         case 24:
191                 return 0;
192         }
193         return -1;
194 }
195
196 static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
197                                              unsigned long pte_index)
198 {
199         int a_pgshift, b_pgshift;
200         unsigned long rb = 0, va_low, sllp;
201
202         b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r);
203         if (a_pgshift >= 0x100) {
204                 b_pgshift &= 0xff;
205                 a_pgshift >>= 8;
206         }
207
208         /*
209          * Ignore the top 14 bits of va
210          * v have top two bits covering segment size, hence move
211          * by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
212          * AVA field in v also have the lower 23 bits ignored.
213          * For base page size 4K we need 14 .. 65 bits (so need to
214          * collect extra 11 bits)
215          * For others we need 14..14+i
216          */
217         /* This covers 14..54 bits of va*/
218         rb = (v & ~0x7fUL) << 16;               /* AVA field */
219
220         /*
221          * AVA in v had cleared lower 23 bits. We need to derive
222          * that from pteg index
223          */
224         va_low = pte_index >> 3;
225         if (v & HPTE_V_SECONDARY)
226                 va_low = ~va_low;
227         /*
228          * get the vpn bits from va_low using reverse of hashing.
229          * In v we have va with 23 bits dropped and then left shifted
230          * HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
231          * right shift it with (SID_SHIFT - (23 - 7))
232          */
233         if (!(v & HPTE_V_1TB_SEG))
234                 va_low ^= v >> (SID_SHIFT - 16);
235         else
236                 va_low ^= v >> (SID_SHIFT_1T - 16);
237         va_low &= 0x7ff;
238
239         if (b_pgshift <= 12) {
240                 if (a_pgshift > 12) {
241                         sllp = (a_pgshift == 16) ? 5 : 4;
242                         rb |= sllp << 5;        /*  AP field */
243                 }
244                 rb |= (va_low & 0x7ff) << 12;   /* remaining 11 bits of AVA */
245         } else {
246                 int aval_shift;
247                 /*
248                  * remaining bits of AVA/LP fields
249                  * Also contain the rr bits of LP
250                  */
251                 rb |= (va_low << b_pgshift) & 0x7ff000;
252                 /*
253                  * Now clear not needed LP bits based on actual psize
254                  */
255                 rb &= ~((1ul << a_pgshift) - 1);
256                 /*
257                  * AVAL field 58..77 - base_page_shift bits of va
258                  * we have space for 58..64 bits, Missing bits should
259                  * be zero filled. +1 is to take care of L bit shift
260                  */
261                 aval_shift = 64 - (77 - b_pgshift) + 1;
262                 rb |= ((va_low << aval_shift) & 0xfe);
263
264                 rb |= 1;                /* L field */
265                 rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */
266         }
267         rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8;   /* B field */
268         return rb;
269 }
270
271 static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
272 {
273         return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
274 }
275
276 static inline int hpte_is_writable(unsigned long ptel)
277 {
278         unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
279
280         return pp != PP_RXRX && pp != PP_RXXX;
281 }
282
283 static inline unsigned long hpte_make_readonly(unsigned long ptel)
284 {
285         if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
286                 ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
287         else
288                 ptel |= PP_RXRX;
289         return ptel;
290 }
291
292 static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci)
293 {
294         unsigned int wimg = hptel & HPTE_R_WIMG;
295
296         /* Handle SAO */
297         if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
298             cpu_has_feature(CPU_FTR_ARCH_206))
299                 wimg = HPTE_R_M;
300
301         if (!is_ci)
302                 return wimg == HPTE_R_M;
303         /*
304          * if host is mapped cache inhibited, make sure hptel also have
305          * cache inhibited.
306          */
307         if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */
308                 return false;
309         return !!(wimg & HPTE_R_I);
310 }
311
312 /*
313  * If it's present and writable, atomically set dirty and referenced bits and
314  * return the PTE, otherwise return 0.
315  */
316 static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
317 {
318         pte_t old_pte, new_pte = __pte(0);
319
320         while (1) {
321                 /*
322                  * Make sure we don't reload from ptep
323                  */
324                 old_pte = READ_ONCE(*ptep);
325                 /*
326                  * wait until H_PAGE_BUSY is clear then set it atomically
327                  */
328                 if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) {
329                         cpu_relax();
330                         continue;
331                 }
332                 /* If pte is not present return None */
333                 if (unlikely(!(pte_val(old_pte) & _PAGE_PRESENT)))
334                         return __pte(0);
335
336                 new_pte = pte_mkyoung(old_pte);
337                 if (writing && pte_write(old_pte))
338                         new_pte = pte_mkdirty(new_pte);
339
340                 if (pte_xchg(ptep, old_pte, new_pte))
341                         break;
342         }
343         return new_pte;
344 }
345
346 static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
347 {
348         if (key)
349                 return PP_RWRX <= pp && pp <= PP_RXRX;
350         return true;
351 }
352
353 static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
354 {
355         if (key)
356                 return pp == PP_RWRW;
357         return pp <= PP_RWRW;
358 }
359
360 static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
361 {
362         unsigned long skey;
363
364         skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
365                 ((hpte_r & HPTE_R_KEY_LO) >> 9);
366         return (amr >> (62 - 2 * skey)) & 3;
367 }
368
369 static inline void lock_rmap(unsigned long *rmap)
370 {
371         do {
372                 while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
373                         cpu_relax();
374         } while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
375 }
376
377 static inline void unlock_rmap(unsigned long *rmap)
378 {
379         __clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
380 }
381
382 static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
383                                    unsigned long pagesize)
384 {
385         unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
386
387         if (pagesize <= PAGE_SIZE)
388                 return true;
389         return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
390 }
391
392 /*
393  * This works for 4k, 64k and 16M pages on POWER7,
394  * and 4k and 16M pages on PPC970.
395  */
396 static inline unsigned long slb_pgsize_encoding(unsigned long psize)
397 {
398         unsigned long senc = 0;
399
400         if (psize > 0x1000) {
401                 senc = SLB_VSID_L;
402                 if (psize == 0x10000)
403                         senc |= SLB_VSID_LP_01;
404         }
405         return senc;
406 }
407
408 static inline int is_vrma_hpte(unsigned long hpte_v)
409 {
410         return (hpte_v & ~0xffffffUL) ==
411                 (HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
412 }
413
414 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
415 /*
416  * Note modification of an HPTE; set the HPTE modified bit
417  * if anyone is interested.
418  */
419 static inline void note_hpte_modification(struct kvm *kvm,
420                                           struct revmap_entry *rev)
421 {
422         if (atomic_read(&kvm->arch.hpte_mod_interest))
423                 rev->guest_rpte |= HPTE_GR_MODIFIED;
424 }
425
426 /*
427  * Like kvm_memslots(), but for use in real mode when we can't do
428  * any RCU stuff (since the secondary threads are offline from the
429  * kernel's point of view), and we can't print anything.
430  * Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
431  */
432 static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
433 {
434         return rcu_dereference_raw_notrace(kvm->memslots[0]);
435 }
436
437 extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
438
439 extern void kvmhv_rm_send_ipi(int cpu);
440
441 static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt)
442 {
443         /* HPTEs are 2**4 bytes long */
444         return 1UL << (hpt->order - 4);
445 }
446
447 static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt)
448 {
449         /* 128 (2**7) bytes in each HPTEG */
450         return (1UL << (hpt->order - 7)) - 1;
451 }
452
453 /* Set bits in a dirty bitmap, which is in LE format */
454 static inline void set_dirty_bits(unsigned long *map, unsigned long i,
455                                   unsigned long npages)
456 {
457
458         if (npages >= 8)
459                 memset((char *)map + i / 8, 0xff, npages / 8);
460         else
461                 for (; npages; ++i, --npages)
462                         __set_bit_le(i, map);
463 }
464
465 static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i,
466                                          unsigned long npages)
467 {
468         if (npages >= 8)
469                 memset((char *)map + i / 8, 0xff, npages / 8);
470         else
471                 for (; npages; ++i, --npages)
472                         set_bit_le(i, map);
473 }
474
475 static inline u64 sanitize_msr(u64 msr)
476 {
477         msr &= ~MSR_HV;
478         msr |= MSR_ME;
479         return msr;
480 }
481
482 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
483 static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
484 {
485         vcpu->arch.cr  = vcpu->arch.cr_tm;
486         vcpu->arch.xer = vcpu->arch.xer_tm;
487         vcpu->arch.lr  = vcpu->arch.lr_tm;
488         vcpu->arch.ctr = vcpu->arch.ctr_tm;
489         vcpu->arch.amr = vcpu->arch.amr_tm;
490         vcpu->arch.ppr = vcpu->arch.ppr_tm;
491         vcpu->arch.dscr = vcpu->arch.dscr_tm;
492         vcpu->arch.tar = vcpu->arch.tar_tm;
493         memcpy(vcpu->arch.gpr, vcpu->arch.gpr_tm,
494                sizeof(vcpu->arch.gpr));
495         vcpu->arch.fp  = vcpu->arch.fp_tm;
496         vcpu->arch.vr  = vcpu->arch.vr_tm;
497         vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
498 }
499
500 static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
501 {
502         vcpu->arch.cr_tm  = vcpu->arch.cr;
503         vcpu->arch.xer_tm = vcpu->arch.xer;
504         vcpu->arch.lr_tm  = vcpu->arch.lr;
505         vcpu->arch.ctr_tm = vcpu->arch.ctr;
506         vcpu->arch.amr_tm = vcpu->arch.amr;
507         vcpu->arch.ppr_tm = vcpu->arch.ppr;
508         vcpu->arch.dscr_tm = vcpu->arch.dscr;
509         vcpu->arch.tar_tm = vcpu->arch.tar;
510         memcpy(vcpu->arch.gpr_tm, vcpu->arch.gpr,
511                sizeof(vcpu->arch.gpr));
512         vcpu->arch.fp_tm  = vcpu->arch.fp;
513         vcpu->arch.vr_tm  = vcpu->arch.vr;
514         vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
515 }
516 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
517
518 #endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
519
520 #endif /* __ASM_KVM_BOOK3S_64_H__ */