Merge branches 'work.misc' and 'work.dcache' of git://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / arch / mips / pci / pci-octeon.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2005-2009 Cavium Networks
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/pci.h>
11 #include <linux/interrupt.h>
12 #include <linux/time.h>
13 #include <linux/delay.h>
14 #include <linux/platform_device.h>
15 #include <linux/swiotlb.h>
16
17 #include <asm/time.h>
18
19 #include <asm/octeon/octeon.h>
20 #include <asm/octeon/cvmx-npi-defs.h>
21 #include <asm/octeon/cvmx-pci-defs.h>
22 #include <asm/octeon/pci-octeon.h>
23
24 #define USE_OCTEON_INTERNAL_ARBITER
25
26 /*
27  * Octeon's PCI controller uses did=3, subdid=2 for PCI IO
28  * addresses. Use PCI endian swapping 1 so no address swapping is
29  * necessary. The Linux io routines will endian swap the data.
30  */
31 #define OCTEON_PCI_IOSPACE_BASE     0x80011a0400000000ull
32 #define OCTEON_PCI_IOSPACE_SIZE     (1ull<<32)
33
34 /* Octeon't PCI controller uses did=3, subdid=3 for PCI memory. */
35 #define OCTEON_PCI_MEMSPACE_OFFSET  (0x00011b0000000000ull)
36
37 u64 octeon_bar1_pci_phys;
38
39 /**
40  * This is the bit decoding used for the Octeon PCI controller addresses
41  */
42 union octeon_pci_address {
43         uint64_t u64;
44         struct {
45                 uint64_t upper:2;
46                 uint64_t reserved:13;
47                 uint64_t io:1;
48                 uint64_t did:5;
49                 uint64_t subdid:3;
50                 uint64_t reserved2:4;
51                 uint64_t endian_swap:2;
52                 uint64_t reserved3:10;
53                 uint64_t bus:8;
54                 uint64_t dev:5;
55                 uint64_t func:3;
56                 uint64_t reg:8;
57         } s;
58 };
59
60 int (*octeon_pcibios_map_irq)(const struct pci_dev *dev, u8 slot, u8 pin);
61 enum octeon_dma_bar_type octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_INVALID;
62
63 /**
64  * Map a PCI device to the appropriate interrupt line
65  *
66  * @dev:    The Linux PCI device structure for the device to map
67  * @slot:   The slot number for this device on __BUS 0__. Linux
68  *               enumerates through all the bridges and figures out the
69  *               slot on Bus 0 where this device eventually hooks to.
70  * @pin:    The PCI interrupt pin read from the device, then swizzled
71  *               as it goes through each bridge.
72  * Returns Interrupt number for the device
73  */
74 int pcibios_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
75 {
76         if (octeon_pcibios_map_irq)
77                 return octeon_pcibios_map_irq(dev, slot, pin);
78         else
79                 panic("octeon_pcibios_map_irq not set.");
80 }
81
82
83 /*
84  * Called to perform platform specific PCI setup
85  */
86 int pcibios_plat_dev_init(struct pci_dev *dev)
87 {
88         uint16_t config;
89         uint32_t dconfig;
90         int pos;
91         /*
92          * Force the Cache line setting to 64 bytes. The standard
93          * Linux bus scan doesn't seem to set it. Octeon really has
94          * 128 byte lines, but Intel bridges get really upset if you
95          * try and set values above 64 bytes. Value is specified in
96          * 32bit words.
97          */
98         pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, 64 / 4);
99         /* Set latency timers for all devices */
100         pci_write_config_byte(dev, PCI_LATENCY_TIMER, 64);
101
102         /* Enable reporting System errors and parity errors on all devices */
103         /* Enable parity checking and error reporting */
104         pci_read_config_word(dev, PCI_COMMAND, &config);
105         config |= PCI_COMMAND_PARITY | PCI_COMMAND_SERR;
106         pci_write_config_word(dev, PCI_COMMAND, config);
107
108         if (dev->subordinate) {
109                 /* Set latency timers on sub bridges */
110                 pci_write_config_byte(dev, PCI_SEC_LATENCY_TIMER, 64);
111                 /* More bridge error detection */
112                 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &config);
113                 config |= PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR;
114                 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, config);
115         }
116
117         /* Enable the PCIe normal error reporting */
118         config = PCI_EXP_DEVCTL_CERE; /* Correctable Error Reporting */
119         config |= PCI_EXP_DEVCTL_NFERE; /* Non-Fatal Error Reporting */
120         config |= PCI_EXP_DEVCTL_FERE;  /* Fatal Error Reporting */
121         config |= PCI_EXP_DEVCTL_URRE;  /* Unsupported Request */
122         pcie_capability_set_word(dev, PCI_EXP_DEVCTL, config);
123
124         /* Find the Advanced Error Reporting capability */
125         pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR);
126         if (pos) {
127                 /* Clear Uncorrectable Error Status */
128                 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
129                                       &dconfig);
130                 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS,
131                                        dconfig);
132                 /* Enable reporting of all uncorrectable errors */
133                 /* Uncorrectable Error Mask - turned on bits disable errors */
134                 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_MASK, 0);
135                 /*
136                  * Leave severity at HW default. This only controls if
137                  * errors are reported as uncorrectable or
138                  * correctable, not if the error is reported.
139                  */
140                 /* PCI_ERR_UNCOR_SEVER - Uncorrectable Error Severity */
141                 /* Clear Correctable Error Status */
142                 pci_read_config_dword(dev, pos + PCI_ERR_COR_STATUS, &dconfig);
143                 pci_write_config_dword(dev, pos + PCI_ERR_COR_STATUS, dconfig);
144                 /* Enable reporting of all correctable errors */
145                 /* Correctable Error Mask - turned on bits disable errors */
146                 pci_write_config_dword(dev, pos + PCI_ERR_COR_MASK, 0);
147                 /* Advanced Error Capabilities */
148                 pci_read_config_dword(dev, pos + PCI_ERR_CAP, &dconfig);
149                 /* ECRC Generation Enable */
150                 if (config & PCI_ERR_CAP_ECRC_GENC)
151                         config |= PCI_ERR_CAP_ECRC_GENE;
152                 /* ECRC Check Enable */
153                 if (config & PCI_ERR_CAP_ECRC_CHKC)
154                         config |= PCI_ERR_CAP_ECRC_CHKE;
155                 pci_write_config_dword(dev, pos + PCI_ERR_CAP, dconfig);
156                 /* PCI_ERR_HEADER_LOG - Header Log Register (16 bytes) */
157                 /* Report all errors to the root complex */
158                 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_COMMAND,
159                                        PCI_ERR_ROOT_CMD_COR_EN |
160                                        PCI_ERR_ROOT_CMD_NONFATAL_EN |
161                                        PCI_ERR_ROOT_CMD_FATAL_EN);
162                 /* Clear the Root status register */
163                 pci_read_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, &dconfig);
164                 pci_write_config_dword(dev, pos + PCI_ERR_ROOT_STATUS, dconfig);
165         }
166
167         return 0;
168 }
169
170 /**
171  * Return the mapping of PCI device number to IRQ line. Each
172  * character in the return string represents the interrupt
173  * line for the device at that position. Device 1 maps to the
174  * first character, etc. The characters A-D are used for PCI
175  * interrupts.
176  *
177  * Returns PCI interrupt mapping
178  */
179 const char *octeon_get_pci_interrupts(void)
180 {
181         /*
182          * Returning an empty string causes the interrupts to be
183          * routed based on the PCI specification. From the PCI spec:
184          *
185          * INTA# of Device Number 0 is connected to IRQW on the system
186          * board.  (Device Number has no significance regarding being
187          * located on the system board or in a connector.) INTA# of
188          * Device Number 1 is connected to IRQX on the system
189          * board. INTA# of Device Number 2 is connected to IRQY on the
190          * system board. INTA# of Device Number 3 is connected to IRQZ
191          * on the system board. The table below describes how each
192          * agent's INTx# lines are connected to the system board
193          * interrupt lines. The following equation can be used to
194          * determine to which INTx# signal on the system board a given
195          * device's INTx# line(s) is connected.
196          *
197          * MB = (D + I) MOD 4 MB = System board Interrupt (IRQW = 0,
198          * IRQX = 1, IRQY = 2, and IRQZ = 3) D = Device Number I =
199          * Interrupt Number (INTA# = 0, INTB# = 1, INTC# = 2, and
200          * INTD# = 3)
201          */
202         if (of_machine_is_compatible("dlink,dsr-500n"))
203                 return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
204         switch (octeon_bootinfo->board_type) {
205         case CVMX_BOARD_TYPE_NAO38:
206                 /* This is really the NAC38 */
207                 return "AAAAADABAAAAAAAAAAAAAAAAAAAAAAAA";
208         case CVMX_BOARD_TYPE_EBH3100:
209         case CVMX_BOARD_TYPE_CN3010_EVB_HS5:
210         case CVMX_BOARD_TYPE_CN3005_EVB_HS5:
211                 return "AAABAAAAAAAAAAAAAAAAAAAAAAAAAAAA";
212         case CVMX_BOARD_TYPE_BBGW_REF:
213                 return "AABCD";
214         case CVMX_BOARD_TYPE_CUST_DSR1000N:
215                 return "CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC";
216         case CVMX_BOARD_TYPE_THUNDER:
217         case CVMX_BOARD_TYPE_EBH3000:
218         default:
219                 return "";
220         }
221 }
222
223 /**
224  * Map a PCI device to the appropriate interrupt line
225  *
226  * @dev:    The Linux PCI device structure for the device to map
227  * @slot:   The slot number for this device on __BUS 0__. Linux
228  *               enumerates through all the bridges and figures out the
229  *               slot on Bus 0 where this device eventually hooks to.
230  * @pin:    The PCI interrupt pin read from the device, then swizzled
231  *               as it goes through each bridge.
232  * Returns Interrupt number for the device
233  */
234 int __init octeon_pci_pcibios_map_irq(const struct pci_dev *dev,
235                                       u8 slot, u8 pin)
236 {
237         int irq_num;
238         const char *interrupts;
239         int dev_num;
240
241         /* Get the board specific interrupt mapping */
242         interrupts = octeon_get_pci_interrupts();
243
244         dev_num = dev->devfn >> 3;
245         if (dev_num < strlen(interrupts))
246                 irq_num = ((interrupts[dev_num] - 'A' + pin - 1) & 3) +
247                         OCTEON_IRQ_PCI_INT0;
248         else
249                 irq_num = ((slot + pin - 3) & 3) + OCTEON_IRQ_PCI_INT0;
250         return irq_num;
251 }
252
253
254 /*
255  * Read a value from configuration space
256  */
257 static int octeon_read_config(struct pci_bus *bus, unsigned int devfn,
258                               int reg, int size, u32 *val)
259 {
260         union octeon_pci_address pci_addr;
261
262         pci_addr.u64 = 0;
263         pci_addr.s.upper = 2;
264         pci_addr.s.io = 1;
265         pci_addr.s.did = 3;
266         pci_addr.s.subdid = 1;
267         pci_addr.s.endian_swap = 1;
268         pci_addr.s.bus = bus->number;
269         pci_addr.s.dev = devfn >> 3;
270         pci_addr.s.func = devfn & 0x7;
271         pci_addr.s.reg = reg;
272
273         switch (size) {
274         case 4:
275                 *val = le32_to_cpu(cvmx_read64_uint32(pci_addr.u64));
276                 return PCIBIOS_SUCCESSFUL;
277         case 2:
278                 *val = le16_to_cpu(cvmx_read64_uint16(pci_addr.u64));
279                 return PCIBIOS_SUCCESSFUL;
280         case 1:
281                 *val = cvmx_read64_uint8(pci_addr.u64);
282                 return PCIBIOS_SUCCESSFUL;
283         }
284         return PCIBIOS_FUNC_NOT_SUPPORTED;
285 }
286
287
288 /*
289  * Write a value to PCI configuration space
290  */
291 static int octeon_write_config(struct pci_bus *bus, unsigned int devfn,
292                                int reg, int size, u32 val)
293 {
294         union octeon_pci_address pci_addr;
295
296         pci_addr.u64 = 0;
297         pci_addr.s.upper = 2;
298         pci_addr.s.io = 1;
299         pci_addr.s.did = 3;
300         pci_addr.s.subdid = 1;
301         pci_addr.s.endian_swap = 1;
302         pci_addr.s.bus = bus->number;
303         pci_addr.s.dev = devfn >> 3;
304         pci_addr.s.func = devfn & 0x7;
305         pci_addr.s.reg = reg;
306
307         switch (size) {
308         case 4:
309                 cvmx_write64_uint32(pci_addr.u64, cpu_to_le32(val));
310                 return PCIBIOS_SUCCESSFUL;
311         case 2:
312                 cvmx_write64_uint16(pci_addr.u64, cpu_to_le16(val));
313                 return PCIBIOS_SUCCESSFUL;
314         case 1:
315                 cvmx_write64_uint8(pci_addr.u64, val);
316                 return PCIBIOS_SUCCESSFUL;
317         }
318         return PCIBIOS_FUNC_NOT_SUPPORTED;
319 }
320
321
322 static struct pci_ops octeon_pci_ops = {
323         .read   = octeon_read_config,
324         .write  = octeon_write_config,
325 };
326
327 static struct resource octeon_pci_mem_resource = {
328         .start = 0,
329         .end = 0,
330         .name = "Octeon PCI MEM",
331         .flags = IORESOURCE_MEM,
332 };
333
334 /*
335  * PCI ports must be above 16KB so the ISA bus filtering in the PCI-X to PCI
336  * bridge
337  */
338 static struct resource octeon_pci_io_resource = {
339         .start = 0x4000,
340         .end = OCTEON_PCI_IOSPACE_SIZE - 1,
341         .name = "Octeon PCI IO",
342         .flags = IORESOURCE_IO,
343 };
344
345 static struct pci_controller octeon_pci_controller = {
346         .pci_ops = &octeon_pci_ops,
347         .mem_resource = &octeon_pci_mem_resource,
348         .mem_offset = OCTEON_PCI_MEMSPACE_OFFSET,
349         .io_resource = &octeon_pci_io_resource,
350         .io_offset = 0,
351         .io_map_base = OCTEON_PCI_IOSPACE_BASE,
352 };
353
354
355 /*
356  * Low level initialize the Octeon PCI controller
357  */
358 static void octeon_pci_initialize(void)
359 {
360         union cvmx_pci_cfg01 cfg01;
361         union cvmx_npi_ctl_status ctl_status;
362         union cvmx_pci_ctl_status_2 ctl_status_2;
363         union cvmx_pci_cfg19 cfg19;
364         union cvmx_pci_cfg16 cfg16;
365         union cvmx_pci_cfg22 cfg22;
366         union cvmx_pci_cfg56 cfg56;
367
368         /* Reset the PCI Bus */
369         cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x1);
370         cvmx_read_csr(CVMX_CIU_SOFT_PRST);
371
372         udelay(2000);           /* Hold PCI reset for 2 ms */
373
374         ctl_status.u64 = 0;     /* cvmx_read_csr(CVMX_NPI_CTL_STATUS); */
375         ctl_status.s.max_word = 1;
376         ctl_status.s.timer = 1;
377         cvmx_write_csr(CVMX_NPI_CTL_STATUS, ctl_status.u64);
378
379         /* Deassert PCI reset and advertize PCX Host Mode Device Capability
380            (64b) */
381         cvmx_write_csr(CVMX_CIU_SOFT_PRST, 0x4);
382         cvmx_read_csr(CVMX_CIU_SOFT_PRST);
383
384         udelay(2000);           /* Wait 2 ms after deasserting PCI reset */
385
386         ctl_status_2.u32 = 0;
387         ctl_status_2.s.tsr_hwm = 1;     /* Initializes to 0.  Must be set
388                                            before any PCI reads. */
389         ctl_status_2.s.bar2pres = 1;    /* Enable BAR2 */
390         ctl_status_2.s.bar2_enb = 1;
391         ctl_status_2.s.bar2_cax = 1;    /* Don't use L2 */
392         ctl_status_2.s.bar2_esx = 1;
393         ctl_status_2.s.pmo_amod = 1;    /* Round robin priority */
394         if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
395                 /* BAR1 hole */
396                 ctl_status_2.s.bb1_hole = OCTEON_PCI_BAR1_HOLE_BITS;
397                 ctl_status_2.s.bb1_siz = 1;  /* BAR1 is 2GB */
398                 ctl_status_2.s.bb_ca = 1;    /* Don't use L2 with big bars */
399                 ctl_status_2.s.bb_es = 1;    /* Big bar in byte swap mode */
400                 ctl_status_2.s.bb1 = 1;      /* BAR1 is big */
401                 ctl_status_2.s.bb0 = 1;      /* BAR0 is big */
402         }
403
404         octeon_npi_write32(CVMX_NPI_PCI_CTL_STATUS_2, ctl_status_2.u32);
405         udelay(2000);           /* Wait 2 ms before doing PCI reads */
406
407         ctl_status_2.u32 = octeon_npi_read32(CVMX_NPI_PCI_CTL_STATUS_2);
408         pr_notice("PCI Status: %s %s-bit\n",
409                   ctl_status_2.s.ap_pcix ? "PCI-X" : "PCI",
410                   ctl_status_2.s.ap_64ad ? "64" : "32");
411
412         if (OCTEON_IS_MODEL(OCTEON_CN58XX) || OCTEON_IS_MODEL(OCTEON_CN50XX)) {
413                 union cvmx_pci_cnt_reg cnt_reg_start;
414                 union cvmx_pci_cnt_reg cnt_reg_end;
415                 unsigned long cycles, pci_clock;
416
417                 cnt_reg_start.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
418                 cycles = read_c0_cvmcount();
419                 udelay(1000);
420                 cnt_reg_end.u64 = cvmx_read_csr(CVMX_NPI_PCI_CNT_REG);
421                 cycles = read_c0_cvmcount() - cycles;
422                 pci_clock = (cnt_reg_end.s.pcicnt - cnt_reg_start.s.pcicnt) /
423                             (cycles / (mips_hpt_frequency / 1000000));
424                 pr_notice("PCI Clock: %lu MHz\n", pci_clock);
425         }
426
427         /*
428          * TDOMC must be set to one in PCI mode. TDOMC should be set to 4
429          * in PCI-X mode to allow four outstanding splits. Otherwise,
430          * should not change from its reset value. Don't write PCI_CFG19
431          * in PCI mode (0x82000001 reset value), write it to 0x82000004
432          * after PCI-X mode is known. MRBCI,MDWE,MDRE -> must be zero.
433          * MRBCM -> must be one.
434          */
435         if (ctl_status_2.s.ap_pcix) {
436                 cfg19.u32 = 0;
437                 /*
438                  * Target Delayed/Split request outstanding maximum
439                  * count. [1..31] and 0=32.  NOTE: If the user
440                  * programs these bits beyond the Designed Maximum
441                  * outstanding count, then the designed maximum table
442                  * depth will be used instead.  No additional
443                  * Deferred/Split transactions will be accepted if
444                  * this outstanding maximum count is
445                  * reached. Furthermore, no additional deferred/split
446                  * transactions will be accepted if the I/O delay/ I/O
447                  * Split Request outstanding maximum is reached.
448                  */
449                 cfg19.s.tdomc = 4;
450                 /*
451                  * Master Deferred Read Request Outstanding Max Count
452                  * (PCI only).  CR4C[26:24] Max SAC cycles MAX DAC
453                  * cycles 000 8 4 001 1 0 010 2 1 011 3 1 100 4 2 101
454                  * 5 2 110 6 3 111 7 3 For example, if these bits are
455                  * programmed to 100, the core can support 2 DAC
456                  * cycles, 4 SAC cycles or a combination of 1 DAC and
457                  * 2 SAC cycles. NOTE: For the PCI-X maximum
458                  * outstanding split transactions, refer to
459                  * CRE0[22:20].
460                  */
461                 cfg19.s.mdrrmc = 2;
462                 /*
463                  * Master Request (Memory Read) Byte Count/Byte Enable
464                  * select. 0 = Byte Enables valid. In PCI mode, a
465                  * burst transaction cannot be performed using Memory
466                  * Read command=4?h6. 1 = DWORD Byte Count valid
467                  * (default). In PCI Mode, the memory read byte
468                  * enables are automatically generated by the
469                  * core. Note: N3 Master Request transaction sizes are
470                  * always determined through the
471                  * am_attr[<35:32>|<7:0>] field.
472                  */
473                 cfg19.s.mrbcm = 1;
474                 octeon_npi_write32(CVMX_NPI_PCI_CFG19, cfg19.u32);
475         }
476
477
478         cfg01.u32 = 0;
479         cfg01.s.msae = 1;       /* Memory Space Access Enable */
480         cfg01.s.me = 1;         /* Master Enable */
481         cfg01.s.pee = 1;        /* PERR# Enable */
482         cfg01.s.see = 1;        /* System Error Enable */
483         cfg01.s.fbbe = 1;       /* Fast Back to Back Transaction Enable */
484
485         octeon_npi_write32(CVMX_NPI_PCI_CFG01, cfg01.u32);
486
487 #ifdef USE_OCTEON_INTERNAL_ARBITER
488         /*
489          * When OCTEON is a PCI host, most systems will use OCTEON's
490          * internal arbiter, so must enable it before any PCI/PCI-X
491          * traffic can occur.
492          */
493         {
494                 union cvmx_npi_pci_int_arb_cfg pci_int_arb_cfg;
495
496                 pci_int_arb_cfg.u64 = 0;
497                 pci_int_arb_cfg.s.en = 1;       /* Internal arbiter enable */
498                 cvmx_write_csr(CVMX_NPI_PCI_INT_ARB_CFG, pci_int_arb_cfg.u64);
499         }
500 #endif  /* USE_OCTEON_INTERNAL_ARBITER */
501
502         /*
503          * Preferably written to 1 to set MLTD. [RDSATI,TRTAE,
504          * TWTAE,TMAE,DPPMR -> must be zero. TILT -> must not be set to
505          * 1..7.
506          */
507         cfg16.u32 = 0;
508         cfg16.s.mltd = 1;       /* Master Latency Timer Disable */
509         octeon_npi_write32(CVMX_NPI_PCI_CFG16, cfg16.u32);
510
511         /*
512          * Should be written to 0x4ff00. MTTV -> must be zero.
513          * FLUSH -> must be 1. MRV -> should be 0xFF.
514          */
515         cfg22.u32 = 0;
516         /* Master Retry Value [1..255] and 0=infinite */
517         cfg22.s.mrv = 0xff;
518         /*
519          * AM_DO_FLUSH_I control NOTE: This bit MUST BE ONE for proper
520          * N3K operation.
521          */
522         cfg22.s.flush = 1;
523         octeon_npi_write32(CVMX_NPI_PCI_CFG22, cfg22.u32);
524
525         /*
526          * MOST Indicates the maximum number of outstanding splits (in -1
527          * notation) when OCTEON is in PCI-X mode.  PCI-X performance is
528          * affected by the MOST selection.  Should generally be written
529          * with one of 0x3be807, 0x2be807, 0x1be807, or 0x0be807,
530          * depending on the desired MOST of 3, 2, 1, or 0, respectively.
531          */
532         cfg56.u32 = 0;
533         cfg56.s.pxcid = 7;      /* RO - PCI-X Capability ID */
534         cfg56.s.ncp = 0xe8;     /* RO - Next Capability Pointer */
535         cfg56.s.dpere = 1;      /* Data Parity Error Recovery Enable */
536         cfg56.s.roe = 1;        /* Relaxed Ordering Enable */
537         cfg56.s.mmbc = 1;       /* Maximum Memory Byte Count
538                                    [0=512B,1=1024B,2=2048B,3=4096B] */
539         cfg56.s.most = 3;       /* Maximum outstanding Split transactions [0=1
540                                    .. 7=32] */
541
542         octeon_npi_write32(CVMX_NPI_PCI_CFG56, cfg56.u32);
543
544         /*
545          * Affects PCI performance when OCTEON services reads to its
546          * BAR1/BAR2. Refer to Section 10.6.1.  The recommended values are
547          * 0x22, 0x33, and 0x33 for PCI_READ_CMD_6, PCI_READ_CMD_C, and
548          * PCI_READ_CMD_E, respectively. Unfortunately due to errata DDR-700,
549          * these values need to be changed so they won't possibly prefetch off
550          * of the end of memory if PCI is DMAing a buffer at the end of
551          * memory. Note that these values differ from their reset values.
552          */
553         octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_6, 0x21);
554         octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_C, 0x31);
555         octeon_npi_write32(CVMX_NPI_PCI_READ_CMD_E, 0x31);
556 }
557
558
559 /*
560  * Initialize the Octeon PCI controller
561  */
562 static int __init octeon_pci_setup(void)
563 {
564         union cvmx_npi_mem_access_subidx mem_access;
565         int index;
566
567         /* Only these chips have PCI */
568         if (octeon_has_feature(OCTEON_FEATURE_PCIE))
569                 return 0;
570
571         /* Point pcibios_map_irq() to the PCI version of it */
572         octeon_pcibios_map_irq = octeon_pci_pcibios_map_irq;
573
574         /* Only use the big bars on chips that support it */
575         if (OCTEON_IS_MODEL(OCTEON_CN31XX) ||
576             OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
577             OCTEON_IS_MODEL(OCTEON_CN38XX_PASS1))
578                 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_SMALL;
579         else
580                 octeon_dma_bar_type = OCTEON_DMA_BAR_TYPE_BIG;
581
582         if (!octeon_is_pci_host()) {
583                 pr_notice("Not in host mode, PCI Controller not initialized\n");
584                 return 0;
585         }
586
587         /* PCI I/O and PCI MEM values */
588         set_io_port_base(OCTEON_PCI_IOSPACE_BASE);
589         ioport_resource.start = 0;
590         ioport_resource.end = OCTEON_PCI_IOSPACE_SIZE - 1;
591
592         pr_notice("%s Octeon big bar support\n",
593                   (octeon_dma_bar_type ==
594                   OCTEON_DMA_BAR_TYPE_BIG) ? "Enabling" : "Disabling");
595
596         octeon_pci_initialize();
597
598         mem_access.u64 = 0;
599         mem_access.s.esr = 1;   /* Endian-Swap on read. */
600         mem_access.s.esw = 1;   /* Endian-Swap on write. */
601         mem_access.s.nsr = 0;   /* No-Snoop on read. */
602         mem_access.s.nsw = 0;   /* No-Snoop on write. */
603         mem_access.s.ror = 0;   /* Relax Read on read. */
604         mem_access.s.row = 0;   /* Relax Order on write. */
605         mem_access.s.ba = 0;    /* PCI Address bits [63:36]. */
606         cvmx_write_csr(CVMX_NPI_MEM_ACCESS_SUBID3, mem_access.u64);
607
608         /*
609          * Remap the Octeon BAR 2 above all 32 bit devices
610          * (0x8000000000ul).  This is done here so it is remapped
611          * before the readl()'s below. We don't want BAR2 overlapping
612          * with BAR0/BAR1 during these reads.
613          */
614         octeon_npi_write32(CVMX_NPI_PCI_CFG08,
615                            (u32)(OCTEON_BAR2_PCI_ADDRESS & 0xffffffffull));
616         octeon_npi_write32(CVMX_NPI_PCI_CFG09,
617                            (u32)(OCTEON_BAR2_PCI_ADDRESS >> 32));
618
619         if (octeon_dma_bar_type == OCTEON_DMA_BAR_TYPE_BIG) {
620                 /* Remap the Octeon BAR 0 to 0-2GB */
621                 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 0);
622                 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
623
624                 /*
625                  * Remap the Octeon BAR 1 to map 2GB-4GB (minus the
626                  * BAR 1 hole).
627                  */
628                 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 2ul << 30);
629                 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
630
631                 /* BAR1 movable mappings set for identity mapping */
632                 octeon_bar1_pci_phys = 0x80000000ull;
633                 for (index = 0; index < 32; index++) {
634                         union cvmx_pci_bar1_indexx bar1_index;
635
636                         bar1_index.u32 = 0;
637                         /* Address bits[35:22] sent to L2C */
638                         bar1_index.s.addr_idx =
639                                 (octeon_bar1_pci_phys >> 22) + index;
640                         /* Don't put PCI accesses in L2. */
641                         bar1_index.s.ca = 1;
642                         /* Endian Swap Mode */
643                         bar1_index.s.end_swp = 1;
644                         /* Set '1' when the selected address range is valid. */
645                         bar1_index.s.addr_v = 1;
646                         octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
647                                            bar1_index.u32);
648                 }
649
650                 /* Devices go after BAR1 */
651                 octeon_pci_mem_resource.start =
652                         OCTEON_PCI_MEMSPACE_OFFSET + (4ul << 30) -
653                         (OCTEON_PCI_BAR1_HOLE_SIZE << 20);
654                 octeon_pci_mem_resource.end =
655                         octeon_pci_mem_resource.start + (1ul << 30);
656         } else {
657                 /* Remap the Octeon BAR 0 to map 128MB-(128MB+4KB) */
658                 octeon_npi_write32(CVMX_NPI_PCI_CFG04, 128ul << 20);
659                 octeon_npi_write32(CVMX_NPI_PCI_CFG05, 0);
660
661                 /* Remap the Octeon BAR 1 to map 0-128MB */
662                 octeon_npi_write32(CVMX_NPI_PCI_CFG06, 0);
663                 octeon_npi_write32(CVMX_NPI_PCI_CFG07, 0);
664
665                 /* BAR1 movable regions contiguous to cover the swiotlb */
666                 octeon_bar1_pci_phys =
667                         virt_to_phys(octeon_swiotlb) & ~((1ull << 22) - 1);
668
669                 for (index = 0; index < 32; index++) {
670                         union cvmx_pci_bar1_indexx bar1_index;
671
672                         bar1_index.u32 = 0;
673                         /* Address bits[35:22] sent to L2C */
674                         bar1_index.s.addr_idx =
675                                 (octeon_bar1_pci_phys >> 22) + index;
676                         /* Don't put PCI accesses in L2. */
677                         bar1_index.s.ca = 1;
678                         /* Endian Swap Mode */
679                         bar1_index.s.end_swp = 1;
680                         /* Set '1' when the selected address range is valid. */
681                         bar1_index.s.addr_v = 1;
682                         octeon_npi_write32(CVMX_NPI_PCI_BAR1_INDEXX(index),
683                                            bar1_index.u32);
684                 }
685
686                 /* Devices go after BAR0 */
687                 octeon_pci_mem_resource.start =
688                         OCTEON_PCI_MEMSPACE_OFFSET + (128ul << 20) +
689                         (4ul << 10);
690                 octeon_pci_mem_resource.end =
691                         octeon_pci_mem_resource.start + (1ul << 30);
692         }
693
694         register_pci_controller(&octeon_pci_controller);
695
696         /*
697          * Clear any errors that might be pending from before the bus
698          * was setup properly.
699          */
700         cvmx_write_csr(CVMX_NPI_PCI_INT_SUM2, -1);
701
702         if (IS_ERR(platform_device_register_simple("octeon_pci_edac",
703                                                    -1, NULL, 0)))
704                 pr_err("Registration of co_pci_edac failed!\n");
705
706         octeon_pci_dma_init();
707
708         return 0;
709 }
710
711 arch_initcall(octeon_pci_setup);