Merge branch 'for-4.15-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[sfrench/cifs-2.6.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/bitops.h>
13 #include <linux/errno.h>
14 #include <linux/err.h>
15 #include <linux/kdebug.h>
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sched/signal.h>
20 #include <linux/fs.h>
21 #include <linux/bootmem.h>
22
23 #include <asm/fpu.h>
24 #include <asm/page.h>
25 #include <asm/cacheflush.h>
26 #include <asm/mmu_context.h>
27 #include <asm/pgalloc.h>
28 #include <asm/pgtable.h>
29
30 #include <linux/kvm_host.h>
31
32 #include "interrupt.h"
33 #include "commpage.h"
34
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37
38 #ifndef VECTORSPACING
39 #define VECTORSPACING 0x100     /* for EI/VI mode */
40 #endif
41
42 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
43 struct kvm_stats_debugfs_item debugfs_entries[] = {
44         { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
45         { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
46         { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
47         { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
48         { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
49         { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
50         { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
51         { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
52         { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
53         { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
54         { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
55         { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
56         { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
57         { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
58         { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
59         { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
60         { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
61         { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
62 #ifdef CONFIG_KVM_MIPS_VZ
63         { "vz_gpsi",      VCPU_STAT(vz_gpsi_exits),      KVM_STAT_VCPU },
64         { "vz_gsfc",      VCPU_STAT(vz_gsfc_exits),      KVM_STAT_VCPU },
65         { "vz_hc",        VCPU_STAT(vz_hc_exits),        KVM_STAT_VCPU },
66         { "vz_grr",       VCPU_STAT(vz_grr_exits),       KVM_STAT_VCPU },
67         { "vz_gva",       VCPU_STAT(vz_gva_exits),       KVM_STAT_VCPU },
68         { "vz_ghfc",      VCPU_STAT(vz_ghfc_exits),      KVM_STAT_VCPU },
69         { "vz_gpa",       VCPU_STAT(vz_gpa_exits),       KVM_STAT_VCPU },
70         { "vz_resvd",     VCPU_STAT(vz_resvd_exits),     KVM_STAT_VCPU },
71 #endif
72         { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
73         { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
74         { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
75         { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
76         {NULL}
77 };
78
79 bool kvm_trace_guest_mode_change;
80
81 int kvm_guest_mode_change_trace_reg(void)
82 {
83         kvm_trace_guest_mode_change = 1;
84         return 0;
85 }
86
87 void kvm_guest_mode_change_trace_unreg(void)
88 {
89         kvm_trace_guest_mode_change = 0;
90 }
91
92 /*
93  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
94  * Config7, so we are "runnable" if interrupts are pending
95  */
96 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
97 {
98         return !!(vcpu->arch.pending_exceptions);
99 }
100
101 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
102 {
103         return false;
104 }
105
106 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
107 {
108         return 1;
109 }
110
111 int kvm_arch_hardware_enable(void)
112 {
113         return kvm_mips_callbacks->hardware_enable();
114 }
115
116 void kvm_arch_hardware_disable(void)
117 {
118         kvm_mips_callbacks->hardware_disable();
119 }
120
121 int kvm_arch_hardware_setup(void)
122 {
123         return 0;
124 }
125
126 void kvm_arch_check_processor_compat(void *rtn)
127 {
128         *(int *)rtn = 0;
129 }
130
131 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
132 {
133         switch (type) {
134 #ifdef CONFIG_KVM_MIPS_VZ
135         case KVM_VM_MIPS_VZ:
136 #else
137         case KVM_VM_MIPS_TE:
138 #endif
139                 break;
140         default:
141                 /* Unsupported KVM type */
142                 return -EINVAL;
143         };
144
145         /* Allocate page table to map GPA -> RPA */
146         kvm->arch.gpa_mm.pgd = kvm_pgd_alloc();
147         if (!kvm->arch.gpa_mm.pgd)
148                 return -ENOMEM;
149
150         return 0;
151 }
152
153 bool kvm_arch_has_vcpu_debugfs(void)
154 {
155         return false;
156 }
157
158 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
159 {
160         return 0;
161 }
162
163 void kvm_mips_free_vcpus(struct kvm *kvm)
164 {
165         unsigned int i;
166         struct kvm_vcpu *vcpu;
167
168         kvm_for_each_vcpu(i, vcpu, kvm) {
169                 kvm_arch_vcpu_free(vcpu);
170         }
171
172         mutex_lock(&kvm->lock);
173
174         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
175                 kvm->vcpus[i] = NULL;
176
177         atomic_set(&kvm->online_vcpus, 0);
178
179         mutex_unlock(&kvm->lock);
180 }
181
182 static void kvm_mips_free_gpa_pt(struct kvm *kvm)
183 {
184         /* It should always be safe to remove after flushing the whole range */
185         WARN_ON(!kvm_mips_flush_gpa_pt(kvm, 0, ~0));
186         pgd_free(NULL, kvm->arch.gpa_mm.pgd);
187 }
188
189 void kvm_arch_destroy_vm(struct kvm *kvm)
190 {
191         kvm_mips_free_vcpus(kvm);
192         kvm_mips_free_gpa_pt(kvm);
193 }
194
195 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
196                         unsigned long arg)
197 {
198         return -ENOIOCTLCMD;
199 }
200
201 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
202                             unsigned long npages)
203 {
204         return 0;
205 }
206
207 void kvm_arch_flush_shadow_all(struct kvm *kvm)
208 {
209         /* Flush whole GPA */
210         kvm_mips_flush_gpa_pt(kvm, 0, ~0);
211
212         /* Let implementation do the rest */
213         kvm_mips_callbacks->flush_shadow_all(kvm);
214 }
215
216 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
217                                    struct kvm_memory_slot *slot)
218 {
219         /*
220          * The slot has been made invalid (ready for moving or deletion), so we
221          * need to ensure that it can no longer be accessed by any guest VCPUs.
222          */
223
224         spin_lock(&kvm->mmu_lock);
225         /* Flush slot from GPA */
226         kvm_mips_flush_gpa_pt(kvm, slot->base_gfn,
227                               slot->base_gfn + slot->npages - 1);
228         /* Let implementation do the rest */
229         kvm_mips_callbacks->flush_shadow_memslot(kvm, slot);
230         spin_unlock(&kvm->mmu_lock);
231 }
232
233 int kvm_arch_prepare_memory_region(struct kvm *kvm,
234                                    struct kvm_memory_slot *memslot,
235                                    const struct kvm_userspace_memory_region *mem,
236                                    enum kvm_mr_change change)
237 {
238         return 0;
239 }
240
241 void kvm_arch_commit_memory_region(struct kvm *kvm,
242                                    const struct kvm_userspace_memory_region *mem,
243                                    const struct kvm_memory_slot *old,
244                                    const struct kvm_memory_slot *new,
245                                    enum kvm_mr_change change)
246 {
247         int needs_flush;
248
249         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
250                   __func__, kvm, mem->slot, mem->guest_phys_addr,
251                   mem->memory_size, mem->userspace_addr);
252
253         /*
254          * If dirty page logging is enabled, write protect all pages in the slot
255          * ready for dirty logging.
256          *
257          * There is no need to do this in any of the following cases:
258          * CREATE:      No dirty mappings will already exist.
259          * MOVE/DELETE: The old mappings will already have been cleaned up by
260          *              kvm_arch_flush_shadow_memslot()
261          */
262         if (change == KVM_MR_FLAGS_ONLY &&
263             (!(old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
264              new->flags & KVM_MEM_LOG_DIRTY_PAGES)) {
265                 spin_lock(&kvm->mmu_lock);
266                 /* Write protect GPA page table entries */
267                 needs_flush = kvm_mips_mkclean_gpa_pt(kvm, new->base_gfn,
268                                         new->base_gfn + new->npages - 1);
269                 /* Let implementation do the rest */
270                 if (needs_flush)
271                         kvm_mips_callbacks->flush_shadow_memslot(kvm, new);
272                 spin_unlock(&kvm->mmu_lock);
273         }
274 }
275
276 static inline void dump_handler(const char *symbol, void *start, void *end)
277 {
278         u32 *p;
279
280         pr_debug("LEAF(%s)\n", symbol);
281
282         pr_debug("\t.set push\n");
283         pr_debug("\t.set noreorder\n");
284
285         for (p = start; p < (u32 *)end; ++p)
286                 pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
287
288         pr_debug("\t.set\tpop\n");
289
290         pr_debug("\tEND(%s)\n", symbol);
291 }
292
293 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
294 {
295         int err, size;
296         void *gebase, *p, *handler, *refill_start, *refill_end;
297         int i;
298
299         struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
300
301         if (!vcpu) {
302                 err = -ENOMEM;
303                 goto out;
304         }
305
306         err = kvm_vcpu_init(vcpu, kvm, id);
307
308         if (err)
309                 goto out_free_cpu;
310
311         kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
312
313         /*
314          * Allocate space for host mode exception handlers that handle
315          * guest mode exits
316          */
317         if (cpu_has_veic || cpu_has_vint)
318                 size = 0x200 + VECTORSPACING * 64;
319         else
320                 size = 0x4000;
321
322         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
323
324         if (!gebase) {
325                 err = -ENOMEM;
326                 goto out_uninit_cpu;
327         }
328         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
329                   ALIGN(size, PAGE_SIZE), gebase);
330
331         /*
332          * Check new ebase actually fits in CP0_EBase. The lack of a write gate
333          * limits us to the low 512MB of physical address space. If the memory
334          * we allocate is out of range, just give up now.
335          */
336         if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
337                 kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
338                         gebase);
339                 err = -ENOMEM;
340                 goto out_free_gebase;
341         }
342
343         /* Save new ebase */
344         vcpu->arch.guest_ebase = gebase;
345
346         /* Build guest exception vectors dynamically in unmapped memory */
347         handler = gebase + 0x2000;
348
349         /* TLB refill (or XTLB refill on 64-bit VZ where KX=1) */
350         refill_start = gebase;
351         if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && IS_ENABLED(CONFIG_64BIT))
352                 refill_start += 0x080;
353         refill_end = kvm_mips_build_tlb_refill_exception(refill_start, handler);
354
355         /* General Exception Entry point */
356         kvm_mips_build_exception(gebase + 0x180, handler);
357
358         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
359         for (i = 0; i < 8; i++) {
360                 kvm_debug("L1 Vectored handler @ %p\n",
361                           gebase + 0x200 + (i * VECTORSPACING));
362                 kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
363                                          handler);
364         }
365
366         /* General exit handler */
367         p = handler;
368         p = kvm_mips_build_exit(p);
369
370         /* Guest entry routine */
371         vcpu->arch.vcpu_run = p;
372         p = kvm_mips_build_vcpu_run(p);
373
374         /* Dump the generated code */
375         pr_debug("#include <asm/asm.h>\n");
376         pr_debug("#include <asm/regdef.h>\n");
377         pr_debug("\n");
378         dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
379         dump_handler("kvm_tlb_refill", refill_start, refill_end);
380         dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
381         dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
382
383         /* Invalidate the icache for these ranges */
384         flush_icache_range((unsigned long)gebase,
385                            (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
386
387         /*
388          * Allocate comm page for guest kernel, a TLB will be reserved for
389          * mapping GVA @ 0xFFFF8000 to this page
390          */
391         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
392
393         if (!vcpu->arch.kseg0_commpage) {
394                 err = -ENOMEM;
395                 goto out_free_gebase;
396         }
397
398         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
399         kvm_mips_commpage_init(vcpu);
400
401         /* Init */
402         vcpu->arch.last_sched_cpu = -1;
403         vcpu->arch.last_exec_cpu = -1;
404
405         return vcpu;
406
407 out_free_gebase:
408         kfree(gebase);
409
410 out_uninit_cpu:
411         kvm_vcpu_uninit(vcpu);
412
413 out_free_cpu:
414         kfree(vcpu);
415
416 out:
417         return ERR_PTR(err);
418 }
419
420 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
421 {
422         hrtimer_cancel(&vcpu->arch.comparecount_timer);
423
424         kvm_vcpu_uninit(vcpu);
425
426         kvm_mips_dump_stats(vcpu);
427
428         kvm_mmu_free_memory_caches(vcpu);
429         kfree(vcpu->arch.guest_ebase);
430         kfree(vcpu->arch.kseg0_commpage);
431         kfree(vcpu);
432 }
433
434 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
435 {
436         kvm_arch_vcpu_free(vcpu);
437 }
438
439 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
440                                         struct kvm_guest_debug *dbg)
441 {
442         return -ENOIOCTLCMD;
443 }
444
445 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
446 {
447         int r = -EINTR;
448
449         kvm_sigset_activate(vcpu);
450
451         if (vcpu->mmio_needed) {
452                 if (!vcpu->mmio_is_write)
453                         kvm_mips_complete_mmio_load(vcpu, run);
454                 vcpu->mmio_needed = 0;
455         }
456
457         if (run->immediate_exit)
458                 goto out;
459
460         lose_fpu(1);
461
462         local_irq_disable();
463         guest_enter_irqoff();
464         trace_kvm_enter(vcpu);
465
466         /*
467          * Make sure the read of VCPU requests in vcpu_run() callback is not
468          * reordered ahead of the write to vcpu->mode, or we could miss a TLB
469          * flush request while the requester sees the VCPU as outside of guest
470          * mode and not needing an IPI.
471          */
472         smp_store_mb(vcpu->mode, IN_GUEST_MODE);
473
474         r = kvm_mips_callbacks->vcpu_run(run, vcpu);
475
476         trace_kvm_out(vcpu);
477         guest_exit_irqoff();
478         local_irq_enable();
479
480 out:
481         kvm_sigset_deactivate(vcpu);
482
483         return r;
484 }
485
486 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
487                              struct kvm_mips_interrupt *irq)
488 {
489         int intr = (int)irq->irq;
490         struct kvm_vcpu *dvcpu = NULL;
491
492         if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
493                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
494                           (int)intr);
495
496         if (irq->cpu == -1)
497                 dvcpu = vcpu;
498         else
499                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
500
501         if (intr == 2 || intr == 3 || intr == 4) {
502                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
503
504         } else if (intr == -2 || intr == -3 || intr == -4) {
505                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
506         } else {
507                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
508                         irq->cpu, irq->irq);
509                 return -EINVAL;
510         }
511
512         dvcpu->arch.wait = 0;
513
514         if (swq_has_sleeper(&dvcpu->wq))
515                 swake_up(&dvcpu->wq);
516
517         return 0;
518 }
519
520 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
521                                     struct kvm_mp_state *mp_state)
522 {
523         return -ENOIOCTLCMD;
524 }
525
526 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
527                                     struct kvm_mp_state *mp_state)
528 {
529         return -ENOIOCTLCMD;
530 }
531
532 static u64 kvm_mips_get_one_regs[] = {
533         KVM_REG_MIPS_R0,
534         KVM_REG_MIPS_R1,
535         KVM_REG_MIPS_R2,
536         KVM_REG_MIPS_R3,
537         KVM_REG_MIPS_R4,
538         KVM_REG_MIPS_R5,
539         KVM_REG_MIPS_R6,
540         KVM_REG_MIPS_R7,
541         KVM_REG_MIPS_R8,
542         KVM_REG_MIPS_R9,
543         KVM_REG_MIPS_R10,
544         KVM_REG_MIPS_R11,
545         KVM_REG_MIPS_R12,
546         KVM_REG_MIPS_R13,
547         KVM_REG_MIPS_R14,
548         KVM_REG_MIPS_R15,
549         KVM_REG_MIPS_R16,
550         KVM_REG_MIPS_R17,
551         KVM_REG_MIPS_R18,
552         KVM_REG_MIPS_R19,
553         KVM_REG_MIPS_R20,
554         KVM_REG_MIPS_R21,
555         KVM_REG_MIPS_R22,
556         KVM_REG_MIPS_R23,
557         KVM_REG_MIPS_R24,
558         KVM_REG_MIPS_R25,
559         KVM_REG_MIPS_R26,
560         KVM_REG_MIPS_R27,
561         KVM_REG_MIPS_R28,
562         KVM_REG_MIPS_R29,
563         KVM_REG_MIPS_R30,
564         KVM_REG_MIPS_R31,
565
566 #ifndef CONFIG_CPU_MIPSR6
567         KVM_REG_MIPS_HI,
568         KVM_REG_MIPS_LO,
569 #endif
570         KVM_REG_MIPS_PC,
571 };
572
573 static u64 kvm_mips_get_one_regs_fpu[] = {
574         KVM_REG_MIPS_FCR_IR,
575         KVM_REG_MIPS_FCR_CSR,
576 };
577
578 static u64 kvm_mips_get_one_regs_msa[] = {
579         KVM_REG_MIPS_MSA_IR,
580         KVM_REG_MIPS_MSA_CSR,
581 };
582
583 static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
584 {
585         unsigned long ret;
586
587         ret = ARRAY_SIZE(kvm_mips_get_one_regs);
588         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
589                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
590                 /* odd doubles */
591                 if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
592                         ret += 16;
593         }
594         if (kvm_mips_guest_can_have_msa(&vcpu->arch))
595                 ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
596         ret += kvm_mips_callbacks->num_regs(vcpu);
597
598         return ret;
599 }
600
601 static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
602 {
603         u64 index;
604         unsigned int i;
605
606         if (copy_to_user(indices, kvm_mips_get_one_regs,
607                          sizeof(kvm_mips_get_one_regs)))
608                 return -EFAULT;
609         indices += ARRAY_SIZE(kvm_mips_get_one_regs);
610
611         if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
612                 if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
613                                  sizeof(kvm_mips_get_one_regs_fpu)))
614                         return -EFAULT;
615                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
616
617                 for (i = 0; i < 32; ++i) {
618                         index = KVM_REG_MIPS_FPR_32(i);
619                         if (copy_to_user(indices, &index, sizeof(index)))
620                                 return -EFAULT;
621                         ++indices;
622
623                         /* skip odd doubles if no F64 */
624                         if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
625                                 continue;
626
627                         index = KVM_REG_MIPS_FPR_64(i);
628                         if (copy_to_user(indices, &index, sizeof(index)))
629                                 return -EFAULT;
630                         ++indices;
631                 }
632         }
633
634         if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
635                 if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
636                                  sizeof(kvm_mips_get_one_regs_msa)))
637                         return -EFAULT;
638                 indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
639
640                 for (i = 0; i < 32; ++i) {
641                         index = KVM_REG_MIPS_VEC_128(i);
642                         if (copy_to_user(indices, &index, sizeof(index)))
643                                 return -EFAULT;
644                         ++indices;
645                 }
646         }
647
648         return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
649 }
650
651 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
652                             const struct kvm_one_reg *reg)
653 {
654         struct mips_coproc *cop0 = vcpu->arch.cop0;
655         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
656         int ret;
657         s64 v;
658         s64 vs[2];
659         unsigned int idx;
660
661         switch (reg->id) {
662         /* General purpose registers */
663         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
664                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
665                 break;
666 #ifndef CONFIG_CPU_MIPSR6
667         case KVM_REG_MIPS_HI:
668                 v = (long)vcpu->arch.hi;
669                 break;
670         case KVM_REG_MIPS_LO:
671                 v = (long)vcpu->arch.lo;
672                 break;
673 #endif
674         case KVM_REG_MIPS_PC:
675                 v = (long)vcpu->arch.pc;
676                 break;
677
678         /* Floating point registers */
679         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
680                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
681                         return -EINVAL;
682                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
683                 /* Odd singles in top of even double when FR=0 */
684                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
685                         v = get_fpr32(&fpu->fpr[idx], 0);
686                 else
687                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
688                 break;
689         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
690                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
691                         return -EINVAL;
692                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
693                 /* Can't access odd doubles in FR=0 mode */
694                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
695                         return -EINVAL;
696                 v = get_fpr64(&fpu->fpr[idx], 0);
697                 break;
698         case KVM_REG_MIPS_FCR_IR:
699                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
700                         return -EINVAL;
701                 v = boot_cpu_data.fpu_id;
702                 break;
703         case KVM_REG_MIPS_FCR_CSR:
704                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
705                         return -EINVAL;
706                 v = fpu->fcr31;
707                 break;
708
709         /* MIPS SIMD Architecture (MSA) registers */
710         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
711                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
712                         return -EINVAL;
713                 /* Can't access MSA registers in FR=0 mode */
714                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
715                         return -EINVAL;
716                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
717 #ifdef CONFIG_CPU_LITTLE_ENDIAN
718                 /* least significant byte first */
719                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
720                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
721 #else
722                 /* most significant byte first */
723                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
724                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
725 #endif
726                 break;
727         case KVM_REG_MIPS_MSA_IR:
728                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
729                         return -EINVAL;
730                 v = boot_cpu_data.msa_id;
731                 break;
732         case KVM_REG_MIPS_MSA_CSR:
733                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
734                         return -EINVAL;
735                 v = fpu->msacsr;
736                 break;
737
738         /* registers to be handled specially */
739         default:
740                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
741                 if (ret)
742                         return ret;
743                 break;
744         }
745         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
746                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
747
748                 return put_user(v, uaddr64);
749         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
750                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
751                 u32 v32 = (u32)v;
752
753                 return put_user(v32, uaddr32);
754         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
755                 void __user *uaddr = (void __user *)(long)reg->addr;
756
757                 return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
758         } else {
759                 return -EINVAL;
760         }
761 }
762
763 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
764                             const struct kvm_one_reg *reg)
765 {
766         struct mips_coproc *cop0 = vcpu->arch.cop0;
767         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
768         s64 v;
769         s64 vs[2];
770         unsigned int idx;
771
772         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
773                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
774
775                 if (get_user(v, uaddr64) != 0)
776                         return -EFAULT;
777         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
778                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
779                 s32 v32;
780
781                 if (get_user(v32, uaddr32) != 0)
782                         return -EFAULT;
783                 v = (s64)v32;
784         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
785                 void __user *uaddr = (void __user *)(long)reg->addr;
786
787                 return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
788         } else {
789                 return -EINVAL;
790         }
791
792         switch (reg->id) {
793         /* General purpose registers */
794         case KVM_REG_MIPS_R0:
795                 /* Silently ignore requests to set $0 */
796                 break;
797         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
798                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
799                 break;
800 #ifndef CONFIG_CPU_MIPSR6
801         case KVM_REG_MIPS_HI:
802                 vcpu->arch.hi = v;
803                 break;
804         case KVM_REG_MIPS_LO:
805                 vcpu->arch.lo = v;
806                 break;
807 #endif
808         case KVM_REG_MIPS_PC:
809                 vcpu->arch.pc = v;
810                 break;
811
812         /* Floating point registers */
813         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
814                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
815                         return -EINVAL;
816                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
817                 /* Odd singles in top of even double when FR=0 */
818                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
819                         set_fpr32(&fpu->fpr[idx], 0, v);
820                 else
821                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
822                 break;
823         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
824                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
825                         return -EINVAL;
826                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
827                 /* Can't access odd doubles in FR=0 mode */
828                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
829                         return -EINVAL;
830                 set_fpr64(&fpu->fpr[idx], 0, v);
831                 break;
832         case KVM_REG_MIPS_FCR_IR:
833                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
834                         return -EINVAL;
835                 /* Read-only */
836                 break;
837         case KVM_REG_MIPS_FCR_CSR:
838                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
839                         return -EINVAL;
840                 fpu->fcr31 = v;
841                 break;
842
843         /* MIPS SIMD Architecture (MSA) registers */
844         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
845                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
846                         return -EINVAL;
847                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
848 #ifdef CONFIG_CPU_LITTLE_ENDIAN
849                 /* least significant byte first */
850                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
851                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
852 #else
853                 /* most significant byte first */
854                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
855                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
856 #endif
857                 break;
858         case KVM_REG_MIPS_MSA_IR:
859                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
860                         return -EINVAL;
861                 /* Read-only */
862                 break;
863         case KVM_REG_MIPS_MSA_CSR:
864                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
865                         return -EINVAL;
866                 fpu->msacsr = v;
867                 break;
868
869         /* registers to be handled specially */
870         default:
871                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
872         }
873         return 0;
874 }
875
876 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
877                                      struct kvm_enable_cap *cap)
878 {
879         int r = 0;
880
881         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
882                 return -EINVAL;
883         if (cap->flags)
884                 return -EINVAL;
885         if (cap->args[0])
886                 return -EINVAL;
887
888         switch (cap->cap) {
889         case KVM_CAP_MIPS_FPU:
890                 vcpu->arch.fpu_enabled = true;
891                 break;
892         case KVM_CAP_MIPS_MSA:
893                 vcpu->arch.msa_enabled = true;
894                 break;
895         default:
896                 r = -EINVAL;
897                 break;
898         }
899
900         return r;
901 }
902
903 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
904                          unsigned long arg)
905 {
906         struct kvm_vcpu *vcpu = filp->private_data;
907         void __user *argp = (void __user *)arg;
908         long r;
909
910         switch (ioctl) {
911         case KVM_SET_ONE_REG:
912         case KVM_GET_ONE_REG: {
913                 struct kvm_one_reg reg;
914
915                 if (copy_from_user(&reg, argp, sizeof(reg)))
916                         return -EFAULT;
917                 if (ioctl == KVM_SET_ONE_REG)
918                         return kvm_mips_set_reg(vcpu, &reg);
919                 else
920                         return kvm_mips_get_reg(vcpu, &reg);
921         }
922         case KVM_GET_REG_LIST: {
923                 struct kvm_reg_list __user *user_list = argp;
924                 struct kvm_reg_list reg_list;
925                 unsigned n;
926
927                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
928                         return -EFAULT;
929                 n = reg_list.n;
930                 reg_list.n = kvm_mips_num_regs(vcpu);
931                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
932                         return -EFAULT;
933                 if (n < reg_list.n)
934                         return -E2BIG;
935                 return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
936         }
937         case KVM_INTERRUPT:
938                 {
939                         struct kvm_mips_interrupt irq;
940
941                         if (copy_from_user(&irq, argp, sizeof(irq)))
942                                 return -EFAULT;
943                         kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
944                                   irq.irq);
945
946                         r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
947                         break;
948                 }
949         case KVM_ENABLE_CAP: {
950                 struct kvm_enable_cap cap;
951
952                 if (copy_from_user(&cap, argp, sizeof(cap)))
953                         return -EFAULT;
954                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
955                 break;
956         }
957         default:
958                 r = -ENOIOCTLCMD;
959         }
960         return r;
961 }
962
963 /**
964  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
965  * @kvm: kvm instance
966  * @log: slot id and address to which we copy the log
967  *
968  * Steps 1-4 below provide general overview of dirty page logging. See
969  * kvm_get_dirty_log_protect() function description for additional details.
970  *
971  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
972  * always flush the TLB (step 4) even if previous step failed  and the dirty
973  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
974  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
975  * writes will be marked dirty for next log read.
976  *
977  *   1. Take a snapshot of the bit and clear it if needed.
978  *   2. Write protect the corresponding page.
979  *   3. Copy the snapshot to the userspace.
980  *   4. Flush TLB's if needed.
981  */
982 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
983 {
984         struct kvm_memslots *slots;
985         struct kvm_memory_slot *memslot;
986         bool is_dirty = false;
987         int r;
988
989         mutex_lock(&kvm->slots_lock);
990
991         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
992
993         if (is_dirty) {
994                 slots = kvm_memslots(kvm);
995                 memslot = id_to_memslot(slots, log->slot);
996
997                 /* Let implementation handle TLB/GVA invalidation */
998                 kvm_mips_callbacks->flush_shadow_memslot(kvm, memslot);
999         }
1000
1001         mutex_unlock(&kvm->slots_lock);
1002         return r;
1003 }
1004
1005 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1006 {
1007         long r;
1008
1009         switch (ioctl) {
1010         default:
1011                 r = -ENOIOCTLCMD;
1012         }
1013
1014         return r;
1015 }
1016
1017 int kvm_arch_init(void *opaque)
1018 {
1019         if (kvm_mips_callbacks) {
1020                 kvm_err("kvm: module already exists\n");
1021                 return -EEXIST;
1022         }
1023
1024         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1025 }
1026
1027 void kvm_arch_exit(void)
1028 {
1029         kvm_mips_callbacks = NULL;
1030 }
1031
1032 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1033                                   struct kvm_sregs *sregs)
1034 {
1035         return -ENOIOCTLCMD;
1036 }
1037
1038 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1039                                   struct kvm_sregs *sregs)
1040 {
1041         return -ENOIOCTLCMD;
1042 }
1043
1044 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1045 {
1046 }
1047
1048 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1049 {
1050         return -ENOIOCTLCMD;
1051 }
1052
1053 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1054 {
1055         return -ENOIOCTLCMD;
1056 }
1057
1058 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1059 {
1060         return VM_FAULT_SIGBUS;
1061 }
1062
1063 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1064 {
1065         int r;
1066
1067         switch (ext) {
1068         case KVM_CAP_ONE_REG:
1069         case KVM_CAP_ENABLE_CAP:
1070         case KVM_CAP_READONLY_MEM:
1071         case KVM_CAP_SYNC_MMU:
1072         case KVM_CAP_IMMEDIATE_EXIT:
1073                 r = 1;
1074                 break;
1075         case KVM_CAP_NR_VCPUS:
1076                 r = num_online_cpus();
1077                 break;
1078         case KVM_CAP_MAX_VCPUS:
1079                 r = KVM_MAX_VCPUS;
1080                 break;
1081         case KVM_CAP_MIPS_FPU:
1082                 /* We don't handle systems with inconsistent cpu_has_fpu */
1083                 r = !!raw_cpu_has_fpu;
1084                 break;
1085         case KVM_CAP_MIPS_MSA:
1086                 /*
1087                  * We don't support MSA vector partitioning yet:
1088                  * 1) It would require explicit support which can't be tested
1089                  *    yet due to lack of support in current hardware.
1090                  * 2) It extends the state that would need to be saved/restored
1091                  *    by e.g. QEMU for migration.
1092                  *
1093                  * When vector partitioning hardware becomes available, support
1094                  * could be added by requiring a flag when enabling
1095                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1096                  * to save/restore the appropriate extra state.
1097                  */
1098                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1099                 break;
1100         default:
1101                 r = kvm_mips_callbacks->check_extension(kvm, ext);
1102                 break;
1103         }
1104         return r;
1105 }
1106
1107 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1108 {
1109         return kvm_mips_pending_timer(vcpu) ||
1110                 kvm_read_c0_guest_cause(vcpu->arch.cop0) & C_TI;
1111 }
1112
1113 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1114 {
1115         int i;
1116         struct mips_coproc *cop0;
1117
1118         if (!vcpu)
1119                 return -1;
1120
1121         kvm_debug("VCPU Register Dump:\n");
1122         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1123         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1124
1125         for (i = 0; i < 32; i += 4) {
1126                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1127                        vcpu->arch.gprs[i],
1128                        vcpu->arch.gprs[i + 1],
1129                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1130         }
1131         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1132         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1133
1134         cop0 = vcpu->arch.cop0;
1135         kvm_debug("\tStatus: 0x%08x, Cause: 0x%08x\n",
1136                   kvm_read_c0_guest_status(cop0),
1137                   kvm_read_c0_guest_cause(cop0));
1138
1139         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1140
1141         return 0;
1142 }
1143
1144 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1145 {
1146         int i;
1147
1148         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1149                 vcpu->arch.gprs[i] = regs->gpr[i];
1150         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1151         vcpu->arch.hi = regs->hi;
1152         vcpu->arch.lo = regs->lo;
1153         vcpu->arch.pc = regs->pc;
1154
1155         return 0;
1156 }
1157
1158 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1159 {
1160         int i;
1161
1162         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1163                 regs->gpr[i] = vcpu->arch.gprs[i];
1164
1165         regs->hi = vcpu->arch.hi;
1166         regs->lo = vcpu->arch.lo;
1167         regs->pc = vcpu->arch.pc;
1168
1169         return 0;
1170 }
1171
1172 static void kvm_mips_comparecount_func(unsigned long data)
1173 {
1174         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1175
1176         kvm_mips_callbacks->queue_timer_int(vcpu);
1177
1178         vcpu->arch.wait = 0;
1179         if (swq_has_sleeper(&vcpu->wq))
1180                 swake_up(&vcpu->wq);
1181 }
1182
1183 /* low level hrtimer wake routine */
1184 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1185 {
1186         struct kvm_vcpu *vcpu;
1187
1188         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1189         kvm_mips_comparecount_func((unsigned long) vcpu);
1190         return kvm_mips_count_timeout(vcpu);
1191 }
1192
1193 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1194 {
1195         int err;
1196
1197         err = kvm_mips_callbacks->vcpu_init(vcpu);
1198         if (err)
1199                 return err;
1200
1201         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1202                      HRTIMER_MODE_REL);
1203         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1204         return 0;
1205 }
1206
1207 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1208 {
1209         kvm_mips_callbacks->vcpu_uninit(vcpu);
1210 }
1211
1212 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1213                                   struct kvm_translation *tr)
1214 {
1215         return 0;
1216 }
1217
1218 /* Initial guest state */
1219 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1220 {
1221         return kvm_mips_callbacks->vcpu_setup(vcpu);
1222 }
1223
1224 static void kvm_mips_set_c0_status(void)
1225 {
1226         u32 status = read_c0_status();
1227
1228         if (cpu_has_dsp)
1229                 status |= (ST0_MX);
1230
1231         write_c0_status(status);
1232         ehb();
1233 }
1234
1235 /*
1236  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1237  */
1238 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1239 {
1240         u32 cause = vcpu->arch.host_cp0_cause;
1241         u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1242         u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1243         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1244         enum emulation_result er = EMULATE_DONE;
1245         u32 inst;
1246         int ret = RESUME_GUEST;
1247
1248         vcpu->mode = OUTSIDE_GUEST_MODE;
1249
1250         /* re-enable HTW before enabling interrupts */
1251         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1252                 htw_start();
1253
1254         /* Set a default exit reason */
1255         run->exit_reason = KVM_EXIT_UNKNOWN;
1256         run->ready_for_interrupt_injection = 1;
1257
1258         /*
1259          * Set the appropriate status bits based on host CPU features,
1260          * before we hit the scheduler
1261          */
1262         kvm_mips_set_c0_status();
1263
1264         local_irq_enable();
1265
1266         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1267                         cause, opc, run, vcpu);
1268         trace_kvm_exit(vcpu, exccode);
1269
1270         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1271                 /*
1272                  * Do a privilege check, if in UM most of these exit conditions
1273                  * end up causing an exception to be delivered to the Guest
1274                  * Kernel
1275                  */
1276                 er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1277                 if (er == EMULATE_PRIV_FAIL) {
1278                         goto skip_emul;
1279                 } else if (er == EMULATE_FAIL) {
1280                         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1281                         ret = RESUME_HOST;
1282                         goto skip_emul;
1283                 }
1284         }
1285
1286         switch (exccode) {
1287         case EXCCODE_INT:
1288                 kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1289
1290                 ++vcpu->stat.int_exits;
1291
1292                 if (need_resched())
1293                         cond_resched();
1294
1295                 ret = RESUME_GUEST;
1296                 break;
1297
1298         case EXCCODE_CPU:
1299                 kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1300
1301                 ++vcpu->stat.cop_unusable_exits;
1302                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1303                 /* XXXKYMA: Might need to return to user space */
1304                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1305                         ret = RESUME_HOST;
1306                 break;
1307
1308         case EXCCODE_MOD:
1309                 ++vcpu->stat.tlbmod_exits;
1310                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1311                 break;
1312
1313         case EXCCODE_TLBS:
1314                 kvm_debug("TLB ST fault:  cause %#x, status %#x, PC: %p, BadVaddr: %#lx\n",
1315                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1316                           badvaddr);
1317
1318                 ++vcpu->stat.tlbmiss_st_exits;
1319                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1320                 break;
1321
1322         case EXCCODE_TLBL:
1323                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1324                           cause, opc, badvaddr);
1325
1326                 ++vcpu->stat.tlbmiss_ld_exits;
1327                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1328                 break;
1329
1330         case EXCCODE_ADES:
1331                 ++vcpu->stat.addrerr_st_exits;
1332                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1333                 break;
1334
1335         case EXCCODE_ADEL:
1336                 ++vcpu->stat.addrerr_ld_exits;
1337                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1338                 break;
1339
1340         case EXCCODE_SYS:
1341                 ++vcpu->stat.syscall_exits;
1342                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1343                 break;
1344
1345         case EXCCODE_RI:
1346                 ++vcpu->stat.resvd_inst_exits;
1347                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1348                 break;
1349
1350         case EXCCODE_BP:
1351                 ++vcpu->stat.break_inst_exits;
1352                 ret = kvm_mips_callbacks->handle_break(vcpu);
1353                 break;
1354
1355         case EXCCODE_TR:
1356                 ++vcpu->stat.trap_inst_exits;
1357                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1358                 break;
1359
1360         case EXCCODE_MSAFPE:
1361                 ++vcpu->stat.msa_fpe_exits;
1362                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1363                 break;
1364
1365         case EXCCODE_FPE:
1366                 ++vcpu->stat.fpe_exits;
1367                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1368                 break;
1369
1370         case EXCCODE_MSADIS:
1371                 ++vcpu->stat.msa_disabled_exits;
1372                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1373                 break;
1374
1375         case EXCCODE_GE:
1376                 /* defer exit accounting to handler */
1377                 ret = kvm_mips_callbacks->handle_guest_exit(vcpu);
1378                 break;
1379
1380         default:
1381                 if (cause & CAUSEF_BD)
1382                         opc += 1;
1383                 inst = 0;
1384                 kvm_get_badinstr(opc, vcpu, &inst);
1385                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#x\n",
1386                         exccode, opc, inst, badvaddr,
1387                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1388                 kvm_arch_vcpu_dump_regs(vcpu);
1389                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1390                 ret = RESUME_HOST;
1391                 break;
1392
1393         }
1394
1395 skip_emul:
1396         local_irq_disable();
1397
1398         if (ret == RESUME_GUEST)
1399                 kvm_vz_acquire_htimer(vcpu);
1400
1401         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1402                 kvm_mips_deliver_interrupts(vcpu, cause);
1403
1404         if (!(ret & RESUME_HOST)) {
1405                 /* Only check for signals if not already exiting to userspace */
1406                 if (signal_pending(current)) {
1407                         run->exit_reason = KVM_EXIT_INTR;
1408                         ret = (-EINTR << 2) | RESUME_HOST;
1409                         ++vcpu->stat.signal_exits;
1410                         trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1411                 }
1412         }
1413
1414         if (ret == RESUME_GUEST) {
1415                 trace_kvm_reenter(vcpu);
1416
1417                 /*
1418                  * Make sure the read of VCPU requests in vcpu_reenter()
1419                  * callback is not reordered ahead of the write to vcpu->mode,
1420                  * or we could miss a TLB flush request while the requester sees
1421                  * the VCPU as outside of guest mode and not needing an IPI.
1422                  */
1423                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1424
1425                 kvm_mips_callbacks->vcpu_reenter(run, vcpu);
1426
1427                 /*
1428                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1429                  * is live), restore FCR31 / MSACSR.
1430                  *
1431                  * This should be before returning to the guest exception
1432                  * vector, as it may well cause an [MSA] FP exception if there
1433                  * are pending exception bits unmasked. (see
1434                  * kvm_mips_csr_die_notifier() for how that is handled).
1435                  */
1436                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1437                     read_c0_status() & ST0_CU1)
1438                         __kvm_restore_fcsr(&vcpu->arch);
1439
1440                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1441                     read_c0_config5() & MIPS_CONF5_MSAEN)
1442                         __kvm_restore_msacsr(&vcpu->arch);
1443         }
1444
1445         /* Disable HTW before returning to guest or host */
1446         if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ))
1447                 htw_stop();
1448
1449         return ret;
1450 }
1451
1452 /* Enable FPU for guest and restore context */
1453 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1454 {
1455         struct mips_coproc *cop0 = vcpu->arch.cop0;
1456         unsigned int sr, cfg5;
1457
1458         preempt_disable();
1459
1460         sr = kvm_read_c0_guest_status(cop0);
1461
1462         /*
1463          * If MSA state is already live, it is undefined how it interacts with
1464          * FR=0 FPU state, and we don't want to hit reserved instruction
1465          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1466          * play it safe and save it first.
1467          *
1468          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1469          * get called when guest CU1 is set, however we can't trust the guest
1470          * not to clobber the status register directly via the commpage.
1471          */
1472         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1473             vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1474                 kvm_lose_fpu(vcpu);
1475
1476         /*
1477          * Enable FPU for guest
1478          * We set FR and FRE according to guest context
1479          */
1480         change_c0_status(ST0_CU1 | ST0_FR, sr);
1481         if (cpu_has_fre) {
1482                 cfg5 = kvm_read_c0_guest_config5(cop0);
1483                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1484         }
1485         enable_fpu_hazard();
1486
1487         /* If guest FPU state not active, restore it now */
1488         if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1489                 __kvm_restore_fpu(&vcpu->arch);
1490                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1491                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1492         } else {
1493                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1494         }
1495
1496         preempt_enable();
1497 }
1498
1499 #ifdef CONFIG_CPU_HAS_MSA
1500 /* Enable MSA for guest and restore context */
1501 void kvm_own_msa(struct kvm_vcpu *vcpu)
1502 {
1503         struct mips_coproc *cop0 = vcpu->arch.cop0;
1504         unsigned int sr, cfg5;
1505
1506         preempt_disable();
1507
1508         /*
1509          * Enable FPU if enabled in guest, since we're restoring FPU context
1510          * anyway. We set FR and FRE according to guest context.
1511          */
1512         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1513                 sr = kvm_read_c0_guest_status(cop0);
1514
1515                 /*
1516                  * If FR=0 FPU state is already live, it is undefined how it
1517                  * interacts with MSA state, so play it safe and save it first.
1518                  */
1519                 if (!(sr & ST0_FR) &&
1520                     (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1521                                 KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1522                         kvm_lose_fpu(vcpu);
1523
1524                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1525                 if (sr & ST0_CU1 && cpu_has_fre) {
1526                         cfg5 = kvm_read_c0_guest_config5(cop0);
1527                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1528                 }
1529         }
1530
1531         /* Enable MSA for guest */
1532         set_c0_config5(MIPS_CONF5_MSAEN);
1533         enable_fpu_hazard();
1534
1535         switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1536         case KVM_MIPS_AUX_FPU:
1537                 /*
1538                  * Guest FPU state already loaded, only restore upper MSA state
1539                  */
1540                 __kvm_restore_msa_upper(&vcpu->arch);
1541                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1542                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1543                 break;
1544         case 0:
1545                 /* Neither FPU or MSA already active, restore full MSA state */
1546                 __kvm_restore_msa(&vcpu->arch);
1547                 vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1548                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1549                         vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1550                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1551                               KVM_TRACE_AUX_FPU_MSA);
1552                 break;
1553         default:
1554                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1555                 break;
1556         }
1557
1558         preempt_enable();
1559 }
1560 #endif
1561
1562 /* Drop FPU & MSA without saving it */
1563 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1564 {
1565         preempt_disable();
1566         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1567                 disable_msa();
1568                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1569                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1570         }
1571         if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1572                 clear_c0_status(ST0_CU1 | ST0_FR);
1573                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1574                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1575         }
1576         preempt_enable();
1577 }
1578
1579 /* Save and disable FPU & MSA */
1580 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1581 {
1582         /*
1583          * With T&E, FPU & MSA get disabled in root context (hardware) when it
1584          * is disabled in guest context (software), but the register state in
1585          * the hardware may still be in use.
1586          * This is why we explicitly re-enable the hardware before saving.
1587          */
1588
1589         preempt_disable();
1590         if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1591                 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1592                         set_c0_config5(MIPS_CONF5_MSAEN);
1593                         enable_fpu_hazard();
1594                 }
1595
1596                 __kvm_save_msa(&vcpu->arch);
1597                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1598
1599                 /* Disable MSA & FPU */
1600                 disable_msa();
1601                 if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1602                         clear_c0_status(ST0_CU1 | ST0_FR);
1603                         disable_fpu_hazard();
1604                 }
1605                 vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1606         } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1607                 if (!IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
1608                         set_c0_status(ST0_CU1);
1609                         enable_fpu_hazard();
1610                 }
1611
1612                 __kvm_save_fpu(&vcpu->arch);
1613                 vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1614                 trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1615
1616                 /* Disable FPU */
1617                 clear_c0_status(ST0_CU1 | ST0_FR);
1618                 disable_fpu_hazard();
1619         }
1620         preempt_enable();
1621 }
1622
1623 /*
1624  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1625  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1626  * exception if cause bits are set in the value being written.
1627  */
1628 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1629                                    unsigned long cmd, void *ptr)
1630 {
1631         struct die_args *args = (struct die_args *)ptr;
1632         struct pt_regs *regs = args->regs;
1633         unsigned long pc;
1634
1635         /* Only interested in FPE and MSAFPE */
1636         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1637                 return NOTIFY_DONE;
1638
1639         /* Return immediately if guest context isn't active */
1640         if (!(current->flags & PF_VCPU))
1641                 return NOTIFY_DONE;
1642
1643         /* Should never get here from user mode */
1644         BUG_ON(user_mode(regs));
1645
1646         pc = instruction_pointer(regs);
1647         switch (cmd) {
1648         case DIE_FP:
1649                 /* match 2nd instruction in __kvm_restore_fcsr */
1650                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1651                         return NOTIFY_DONE;
1652                 break;
1653         case DIE_MSAFP:
1654                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1655                 if (!cpu_has_msa ||
1656                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1657                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1658                         return NOTIFY_DONE;
1659                 break;
1660         }
1661
1662         /* Move PC forward a little and continue executing */
1663         instruction_pointer(regs) += 4;
1664
1665         return NOTIFY_STOP;
1666 }
1667
1668 static struct notifier_block kvm_mips_csr_die_notifier = {
1669         .notifier_call = kvm_mips_csr_die_notify,
1670 };
1671
1672 static int __init kvm_mips_init(void)
1673 {
1674         int ret;
1675
1676         ret = kvm_mips_entry_setup();
1677         if (ret)
1678                 return ret;
1679
1680         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1681
1682         if (ret)
1683                 return ret;
1684
1685         register_die_notifier(&kvm_mips_csr_die_notifier);
1686
1687         return 0;
1688 }
1689
1690 static void __exit kvm_mips_exit(void)
1691 {
1692         kvm_exit();
1693
1694         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1695 }
1696
1697 module_init(kvm_mips_init);
1698 module_exit(kvm_mips_exit);
1699
1700 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);