ASoC: wm8962: remove 64k sample rate support
[sfrench/cifs-2.6.git] / arch / mips / kvm / mips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * KVM/MIPS: MIPS specific KVM APIs
7  *
8  * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9  * Authors: Sanjay Lal <sanjayl@kymasys.com>
10  */
11
12 #include <linux/errno.h>
13 #include <linux/err.h>
14 #include <linux/kdebug.h>
15 #include <linux/module.h>
16 #include <linux/vmalloc.h>
17 #include <linux/fs.h>
18 #include <linux/bootmem.h>
19 #include <asm/fpu.h>
20 #include <asm/page.h>
21 #include <asm/cacheflush.h>
22 #include <asm/mmu_context.h>
23 #include <asm/pgtable.h>
24
25 #include <linux/kvm_host.h>
26
27 #include "interrupt.h"
28 #include "commpage.h"
29
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32
33 #ifndef VECTORSPACING
34 #define VECTORSPACING 0x100     /* for EI/VI mode */
35 #endif
36
37 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
38 struct kvm_stats_debugfs_item debugfs_entries[] = {
39         { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
40         { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
41         { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
42         { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
43         { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
44         { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
45         { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
46         { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
47         { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
48         { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
49         { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
50         { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
51         { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
52         { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
53         { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
54         { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
55         { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
56         { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
57         { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
58         { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
59         {NULL}
60 };
61
62 static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
63 {
64         int i;
65
66         for_each_possible_cpu(i) {
67                 vcpu->arch.guest_kernel_asid[i] = 0;
68                 vcpu->arch.guest_user_asid[i] = 0;
69         }
70
71         return 0;
72 }
73
74 /*
75  * XXXKYMA: We are simulatoring a processor that has the WII bit set in
76  * Config7, so we are "runnable" if interrupts are pending
77  */
78 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
79 {
80         return !!(vcpu->arch.pending_exceptions);
81 }
82
83 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
84 {
85         return 1;
86 }
87
88 int kvm_arch_hardware_enable(void)
89 {
90         return 0;
91 }
92
93 int kvm_arch_hardware_setup(void)
94 {
95         return 0;
96 }
97
98 void kvm_arch_check_processor_compat(void *rtn)
99 {
100         *(int *)rtn = 0;
101 }
102
103 static void kvm_mips_init_tlbs(struct kvm *kvm)
104 {
105         unsigned long wired;
106
107         /*
108          * Add a wired entry to the TLB, it is used to map the commpage to
109          * the Guest kernel
110          */
111         wired = read_c0_wired();
112         write_c0_wired(wired + 1);
113         mtc0_tlbw_hazard();
114         kvm->arch.commpage_tlb = wired;
115
116         kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
117                   kvm->arch.commpage_tlb);
118 }
119
120 static void kvm_mips_init_vm_percpu(void *arg)
121 {
122         struct kvm *kvm = (struct kvm *)arg;
123
124         kvm_mips_init_tlbs(kvm);
125         kvm_mips_callbacks->vm_init(kvm);
126
127 }
128
129 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
130 {
131         if (atomic_inc_return(&kvm_mips_instance) == 1) {
132                 kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
133                           __func__);
134                 on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
135         }
136
137         return 0;
138 }
139
140 void kvm_mips_free_vcpus(struct kvm *kvm)
141 {
142         unsigned int i;
143         struct kvm_vcpu *vcpu;
144
145         /* Put the pages we reserved for the guest pmap */
146         for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
147                 if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
148                         kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
149         }
150         kfree(kvm->arch.guest_pmap);
151
152         kvm_for_each_vcpu(i, vcpu, kvm) {
153                 kvm_arch_vcpu_free(vcpu);
154         }
155
156         mutex_lock(&kvm->lock);
157
158         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
159                 kvm->vcpus[i] = NULL;
160
161         atomic_set(&kvm->online_vcpus, 0);
162
163         mutex_unlock(&kvm->lock);
164 }
165
166 static void kvm_mips_uninit_tlbs(void *arg)
167 {
168         /* Restore wired count */
169         write_c0_wired(0);
170         mtc0_tlbw_hazard();
171         /* Clear out all the TLBs */
172         kvm_local_flush_tlb_all();
173 }
174
175 void kvm_arch_destroy_vm(struct kvm *kvm)
176 {
177         kvm_mips_free_vcpus(kvm);
178
179         /* If this is the last instance, restore wired count */
180         if (atomic_dec_return(&kvm_mips_instance) == 0) {
181                 kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
182                           __func__);
183                 on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
184         }
185 }
186
187 long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
188                         unsigned long arg)
189 {
190         return -ENOIOCTLCMD;
191 }
192
193 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
194                             unsigned long npages)
195 {
196         return 0;
197 }
198
199 int kvm_arch_prepare_memory_region(struct kvm *kvm,
200                                    struct kvm_memory_slot *memslot,
201                                    const struct kvm_userspace_memory_region *mem,
202                                    enum kvm_mr_change change)
203 {
204         return 0;
205 }
206
207 void kvm_arch_commit_memory_region(struct kvm *kvm,
208                                    const struct kvm_userspace_memory_region *mem,
209                                    const struct kvm_memory_slot *old,
210                                    const struct kvm_memory_slot *new,
211                                    enum kvm_mr_change change)
212 {
213         unsigned long npages = 0;
214         int i;
215
216         kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
217                   __func__, kvm, mem->slot, mem->guest_phys_addr,
218                   mem->memory_size, mem->userspace_addr);
219
220         /* Setup Guest PMAP table */
221         if (!kvm->arch.guest_pmap) {
222                 if (mem->slot == 0)
223                         npages = mem->memory_size >> PAGE_SHIFT;
224
225                 if (npages) {
226                         kvm->arch.guest_pmap_npages = npages;
227                         kvm->arch.guest_pmap =
228                             kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
229
230                         if (!kvm->arch.guest_pmap) {
231                                 kvm_err("Failed to allocate guest PMAP");
232                                 return;
233                         }
234
235                         kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
236                                   npages, kvm->arch.guest_pmap);
237
238                         /* Now setup the page table */
239                         for (i = 0; i < npages; i++)
240                                 kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
241                 }
242         }
243 }
244
245 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
246 {
247         int err, size, offset;
248         void *gebase;
249         int i;
250
251         struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
252
253         if (!vcpu) {
254                 err = -ENOMEM;
255                 goto out;
256         }
257
258         err = kvm_vcpu_init(vcpu, kvm, id);
259
260         if (err)
261                 goto out_free_cpu;
262
263         kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
264
265         /*
266          * Allocate space for host mode exception handlers that handle
267          * guest mode exits
268          */
269         if (cpu_has_veic || cpu_has_vint)
270                 size = 0x200 + VECTORSPACING * 64;
271         else
272                 size = 0x4000;
273
274         /* Save Linux EBASE */
275         vcpu->arch.host_ebase = (void *)read_c0_ebase();
276
277         gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
278
279         if (!gebase) {
280                 err = -ENOMEM;
281                 goto out_free_cpu;
282         }
283         kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
284                   ALIGN(size, PAGE_SIZE), gebase);
285
286         /* Save new ebase */
287         vcpu->arch.guest_ebase = gebase;
288
289         /* Copy L1 Guest Exception handler to correct offset */
290
291         /* TLB Refill, EXL = 0 */
292         memcpy(gebase, mips32_exception,
293                mips32_exceptionEnd - mips32_exception);
294
295         /* General Exception Entry point */
296         memcpy(gebase + 0x180, mips32_exception,
297                mips32_exceptionEnd - mips32_exception);
298
299         /* For vectored interrupts poke the exception code @ all offsets 0-7 */
300         for (i = 0; i < 8; i++) {
301                 kvm_debug("L1 Vectored handler @ %p\n",
302                           gebase + 0x200 + (i * VECTORSPACING));
303                 memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
304                        mips32_exceptionEnd - mips32_exception);
305         }
306
307         /* General handler, relocate to unmapped space for sanity's sake */
308         offset = 0x2000;
309         kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
310                   gebase + offset,
311                   mips32_GuestExceptionEnd - mips32_GuestException);
312
313         memcpy(gebase + offset, mips32_GuestException,
314                mips32_GuestExceptionEnd - mips32_GuestException);
315
316         /* Invalidate the icache for these ranges */
317         local_flush_icache_range((unsigned long)gebase,
318                                 (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
319
320         /*
321          * Allocate comm page for guest kernel, a TLB will be reserved for
322          * mapping GVA @ 0xFFFF8000 to this page
323          */
324         vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
325
326         if (!vcpu->arch.kseg0_commpage) {
327                 err = -ENOMEM;
328                 goto out_free_gebase;
329         }
330
331         kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
332         kvm_mips_commpage_init(vcpu);
333
334         /* Init */
335         vcpu->arch.last_sched_cpu = -1;
336
337         /* Start off the timer */
338         kvm_mips_init_count(vcpu);
339
340         return vcpu;
341
342 out_free_gebase:
343         kfree(gebase);
344
345 out_free_cpu:
346         kfree(vcpu);
347
348 out:
349         return ERR_PTR(err);
350 }
351
352 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
353 {
354         hrtimer_cancel(&vcpu->arch.comparecount_timer);
355
356         kvm_vcpu_uninit(vcpu);
357
358         kvm_mips_dump_stats(vcpu);
359
360         kfree(vcpu->arch.guest_ebase);
361         kfree(vcpu->arch.kseg0_commpage);
362         kfree(vcpu);
363 }
364
365 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
366 {
367         kvm_arch_vcpu_free(vcpu);
368 }
369
370 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
371                                         struct kvm_guest_debug *dbg)
372 {
373         return -ENOIOCTLCMD;
374 }
375
376 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
377 {
378         int r = 0;
379         sigset_t sigsaved;
380
381         if (vcpu->sigset_active)
382                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
383
384         if (vcpu->mmio_needed) {
385                 if (!vcpu->mmio_is_write)
386                         kvm_mips_complete_mmio_load(vcpu, run);
387                 vcpu->mmio_needed = 0;
388         }
389
390         lose_fpu(1);
391
392         local_irq_disable();
393         /* Check if we have any exceptions/interrupts pending */
394         kvm_mips_deliver_interrupts(vcpu,
395                                     kvm_read_c0_guest_cause(vcpu->arch.cop0));
396
397         __kvm_guest_enter();
398
399         /* Disable hardware page table walking while in guest */
400         htw_stop();
401
402         r = __kvm_mips_vcpu_run(run, vcpu);
403
404         /* Re-enable HTW before enabling interrupts */
405         htw_start();
406
407         __kvm_guest_exit();
408         local_irq_enable();
409
410         if (vcpu->sigset_active)
411                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
412
413         return r;
414 }
415
416 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
417                              struct kvm_mips_interrupt *irq)
418 {
419         int intr = (int)irq->irq;
420         struct kvm_vcpu *dvcpu = NULL;
421
422         if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
423                 kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
424                           (int)intr);
425
426         if (irq->cpu == -1)
427                 dvcpu = vcpu;
428         else
429                 dvcpu = vcpu->kvm->vcpus[irq->cpu];
430
431         if (intr == 2 || intr == 3 || intr == 4) {
432                 kvm_mips_callbacks->queue_io_int(dvcpu, irq);
433
434         } else if (intr == -2 || intr == -3 || intr == -4) {
435                 kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
436         } else {
437                 kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
438                         irq->cpu, irq->irq);
439                 return -EINVAL;
440         }
441
442         dvcpu->arch.wait = 0;
443
444         if (waitqueue_active(&dvcpu->wq))
445                 wake_up_interruptible(&dvcpu->wq);
446
447         return 0;
448 }
449
450 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
451                                     struct kvm_mp_state *mp_state)
452 {
453         return -ENOIOCTLCMD;
454 }
455
456 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
457                                     struct kvm_mp_state *mp_state)
458 {
459         return -ENOIOCTLCMD;
460 }
461
462 static u64 kvm_mips_get_one_regs[] = {
463         KVM_REG_MIPS_R0,
464         KVM_REG_MIPS_R1,
465         KVM_REG_MIPS_R2,
466         KVM_REG_MIPS_R3,
467         KVM_REG_MIPS_R4,
468         KVM_REG_MIPS_R5,
469         KVM_REG_MIPS_R6,
470         KVM_REG_MIPS_R7,
471         KVM_REG_MIPS_R8,
472         KVM_REG_MIPS_R9,
473         KVM_REG_MIPS_R10,
474         KVM_REG_MIPS_R11,
475         KVM_REG_MIPS_R12,
476         KVM_REG_MIPS_R13,
477         KVM_REG_MIPS_R14,
478         KVM_REG_MIPS_R15,
479         KVM_REG_MIPS_R16,
480         KVM_REG_MIPS_R17,
481         KVM_REG_MIPS_R18,
482         KVM_REG_MIPS_R19,
483         KVM_REG_MIPS_R20,
484         KVM_REG_MIPS_R21,
485         KVM_REG_MIPS_R22,
486         KVM_REG_MIPS_R23,
487         KVM_REG_MIPS_R24,
488         KVM_REG_MIPS_R25,
489         KVM_REG_MIPS_R26,
490         KVM_REG_MIPS_R27,
491         KVM_REG_MIPS_R28,
492         KVM_REG_MIPS_R29,
493         KVM_REG_MIPS_R30,
494         KVM_REG_MIPS_R31,
495
496         KVM_REG_MIPS_HI,
497         KVM_REG_MIPS_LO,
498         KVM_REG_MIPS_PC,
499
500         KVM_REG_MIPS_CP0_INDEX,
501         KVM_REG_MIPS_CP0_CONTEXT,
502         KVM_REG_MIPS_CP0_USERLOCAL,
503         KVM_REG_MIPS_CP0_PAGEMASK,
504         KVM_REG_MIPS_CP0_WIRED,
505         KVM_REG_MIPS_CP0_HWRENA,
506         KVM_REG_MIPS_CP0_BADVADDR,
507         KVM_REG_MIPS_CP0_COUNT,
508         KVM_REG_MIPS_CP0_ENTRYHI,
509         KVM_REG_MIPS_CP0_COMPARE,
510         KVM_REG_MIPS_CP0_STATUS,
511         KVM_REG_MIPS_CP0_CAUSE,
512         KVM_REG_MIPS_CP0_EPC,
513         KVM_REG_MIPS_CP0_PRID,
514         KVM_REG_MIPS_CP0_CONFIG,
515         KVM_REG_MIPS_CP0_CONFIG1,
516         KVM_REG_MIPS_CP0_CONFIG2,
517         KVM_REG_MIPS_CP0_CONFIG3,
518         KVM_REG_MIPS_CP0_CONFIG4,
519         KVM_REG_MIPS_CP0_CONFIG5,
520         KVM_REG_MIPS_CP0_CONFIG7,
521         KVM_REG_MIPS_CP0_ERROREPC,
522
523         KVM_REG_MIPS_COUNT_CTL,
524         KVM_REG_MIPS_COUNT_RESUME,
525         KVM_REG_MIPS_COUNT_HZ,
526 };
527
528 static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
529                             const struct kvm_one_reg *reg)
530 {
531         struct mips_coproc *cop0 = vcpu->arch.cop0;
532         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
533         int ret;
534         s64 v;
535         s64 vs[2];
536         unsigned int idx;
537
538         switch (reg->id) {
539         /* General purpose registers */
540         case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
541                 v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
542                 break;
543         case KVM_REG_MIPS_HI:
544                 v = (long)vcpu->arch.hi;
545                 break;
546         case KVM_REG_MIPS_LO:
547                 v = (long)vcpu->arch.lo;
548                 break;
549         case KVM_REG_MIPS_PC:
550                 v = (long)vcpu->arch.pc;
551                 break;
552
553         /* Floating point registers */
554         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
555                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
556                         return -EINVAL;
557                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
558                 /* Odd singles in top of even double when FR=0 */
559                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
560                         v = get_fpr32(&fpu->fpr[idx], 0);
561                 else
562                         v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
563                 break;
564         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
565                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
566                         return -EINVAL;
567                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
568                 /* Can't access odd doubles in FR=0 mode */
569                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
570                         return -EINVAL;
571                 v = get_fpr64(&fpu->fpr[idx], 0);
572                 break;
573         case KVM_REG_MIPS_FCR_IR:
574                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
575                         return -EINVAL;
576                 v = boot_cpu_data.fpu_id;
577                 break;
578         case KVM_REG_MIPS_FCR_CSR:
579                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
580                         return -EINVAL;
581                 v = fpu->fcr31;
582                 break;
583
584         /* MIPS SIMD Architecture (MSA) registers */
585         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
586                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
587                         return -EINVAL;
588                 /* Can't access MSA registers in FR=0 mode */
589                 if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
590                         return -EINVAL;
591                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
592 #ifdef CONFIG_CPU_LITTLE_ENDIAN
593                 /* least significant byte first */
594                 vs[0] = get_fpr64(&fpu->fpr[idx], 0);
595                 vs[1] = get_fpr64(&fpu->fpr[idx], 1);
596 #else
597                 /* most significant byte first */
598                 vs[0] = get_fpr64(&fpu->fpr[idx], 1);
599                 vs[1] = get_fpr64(&fpu->fpr[idx], 0);
600 #endif
601                 break;
602         case KVM_REG_MIPS_MSA_IR:
603                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
604                         return -EINVAL;
605                 v = boot_cpu_data.msa_id;
606                 break;
607         case KVM_REG_MIPS_MSA_CSR:
608                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
609                         return -EINVAL;
610                 v = fpu->msacsr;
611                 break;
612
613         /* Co-processor 0 registers */
614         case KVM_REG_MIPS_CP0_INDEX:
615                 v = (long)kvm_read_c0_guest_index(cop0);
616                 break;
617         case KVM_REG_MIPS_CP0_CONTEXT:
618                 v = (long)kvm_read_c0_guest_context(cop0);
619                 break;
620         case KVM_REG_MIPS_CP0_USERLOCAL:
621                 v = (long)kvm_read_c0_guest_userlocal(cop0);
622                 break;
623         case KVM_REG_MIPS_CP0_PAGEMASK:
624                 v = (long)kvm_read_c0_guest_pagemask(cop0);
625                 break;
626         case KVM_REG_MIPS_CP0_WIRED:
627                 v = (long)kvm_read_c0_guest_wired(cop0);
628                 break;
629         case KVM_REG_MIPS_CP0_HWRENA:
630                 v = (long)kvm_read_c0_guest_hwrena(cop0);
631                 break;
632         case KVM_REG_MIPS_CP0_BADVADDR:
633                 v = (long)kvm_read_c0_guest_badvaddr(cop0);
634                 break;
635         case KVM_REG_MIPS_CP0_ENTRYHI:
636                 v = (long)kvm_read_c0_guest_entryhi(cop0);
637                 break;
638         case KVM_REG_MIPS_CP0_COMPARE:
639                 v = (long)kvm_read_c0_guest_compare(cop0);
640                 break;
641         case KVM_REG_MIPS_CP0_STATUS:
642                 v = (long)kvm_read_c0_guest_status(cop0);
643                 break;
644         case KVM_REG_MIPS_CP0_CAUSE:
645                 v = (long)kvm_read_c0_guest_cause(cop0);
646                 break;
647         case KVM_REG_MIPS_CP0_EPC:
648                 v = (long)kvm_read_c0_guest_epc(cop0);
649                 break;
650         case KVM_REG_MIPS_CP0_PRID:
651                 v = (long)kvm_read_c0_guest_prid(cop0);
652                 break;
653         case KVM_REG_MIPS_CP0_CONFIG:
654                 v = (long)kvm_read_c0_guest_config(cop0);
655                 break;
656         case KVM_REG_MIPS_CP0_CONFIG1:
657                 v = (long)kvm_read_c0_guest_config1(cop0);
658                 break;
659         case KVM_REG_MIPS_CP0_CONFIG2:
660                 v = (long)kvm_read_c0_guest_config2(cop0);
661                 break;
662         case KVM_REG_MIPS_CP0_CONFIG3:
663                 v = (long)kvm_read_c0_guest_config3(cop0);
664                 break;
665         case KVM_REG_MIPS_CP0_CONFIG4:
666                 v = (long)kvm_read_c0_guest_config4(cop0);
667                 break;
668         case KVM_REG_MIPS_CP0_CONFIG5:
669                 v = (long)kvm_read_c0_guest_config5(cop0);
670                 break;
671         case KVM_REG_MIPS_CP0_CONFIG7:
672                 v = (long)kvm_read_c0_guest_config7(cop0);
673                 break;
674         case KVM_REG_MIPS_CP0_ERROREPC:
675                 v = (long)kvm_read_c0_guest_errorepc(cop0);
676                 break;
677         /* registers to be handled specially */
678         case KVM_REG_MIPS_CP0_COUNT:
679         case KVM_REG_MIPS_COUNT_CTL:
680         case KVM_REG_MIPS_COUNT_RESUME:
681         case KVM_REG_MIPS_COUNT_HZ:
682                 ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
683                 if (ret)
684                         return ret;
685                 break;
686         default:
687                 return -EINVAL;
688         }
689         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
690                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
691
692                 return put_user(v, uaddr64);
693         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
694                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
695                 u32 v32 = (u32)v;
696
697                 return put_user(v32, uaddr32);
698         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
699                 void __user *uaddr = (void __user *)(long)reg->addr;
700
701                 return copy_to_user(uaddr, vs, 16);
702         } else {
703                 return -EINVAL;
704         }
705 }
706
707 static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
708                             const struct kvm_one_reg *reg)
709 {
710         struct mips_coproc *cop0 = vcpu->arch.cop0;
711         struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
712         s64 v;
713         s64 vs[2];
714         unsigned int idx;
715
716         if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
717                 u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
718
719                 if (get_user(v, uaddr64) != 0)
720                         return -EFAULT;
721         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
722                 u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
723                 s32 v32;
724
725                 if (get_user(v32, uaddr32) != 0)
726                         return -EFAULT;
727                 v = (s64)v32;
728         } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
729                 void __user *uaddr = (void __user *)(long)reg->addr;
730
731                 return copy_from_user(vs, uaddr, 16);
732         } else {
733                 return -EINVAL;
734         }
735
736         switch (reg->id) {
737         /* General purpose registers */
738         case KVM_REG_MIPS_R0:
739                 /* Silently ignore requests to set $0 */
740                 break;
741         case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
742                 vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
743                 break;
744         case KVM_REG_MIPS_HI:
745                 vcpu->arch.hi = v;
746                 break;
747         case KVM_REG_MIPS_LO:
748                 vcpu->arch.lo = v;
749                 break;
750         case KVM_REG_MIPS_PC:
751                 vcpu->arch.pc = v;
752                 break;
753
754         /* Floating point registers */
755         case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
756                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
757                         return -EINVAL;
758                 idx = reg->id - KVM_REG_MIPS_FPR_32(0);
759                 /* Odd singles in top of even double when FR=0 */
760                 if (kvm_read_c0_guest_status(cop0) & ST0_FR)
761                         set_fpr32(&fpu->fpr[idx], 0, v);
762                 else
763                         set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
764                 break;
765         case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
766                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
767                         return -EINVAL;
768                 idx = reg->id - KVM_REG_MIPS_FPR_64(0);
769                 /* Can't access odd doubles in FR=0 mode */
770                 if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
771                         return -EINVAL;
772                 set_fpr64(&fpu->fpr[idx], 0, v);
773                 break;
774         case KVM_REG_MIPS_FCR_IR:
775                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
776                         return -EINVAL;
777                 /* Read-only */
778                 break;
779         case KVM_REG_MIPS_FCR_CSR:
780                 if (!kvm_mips_guest_has_fpu(&vcpu->arch))
781                         return -EINVAL;
782                 fpu->fcr31 = v;
783                 break;
784
785         /* MIPS SIMD Architecture (MSA) registers */
786         case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
787                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
788                         return -EINVAL;
789                 idx = reg->id - KVM_REG_MIPS_VEC_128(0);
790 #ifdef CONFIG_CPU_LITTLE_ENDIAN
791                 /* least significant byte first */
792                 set_fpr64(&fpu->fpr[idx], 0, vs[0]);
793                 set_fpr64(&fpu->fpr[idx], 1, vs[1]);
794 #else
795                 /* most significant byte first */
796                 set_fpr64(&fpu->fpr[idx], 1, vs[0]);
797                 set_fpr64(&fpu->fpr[idx], 0, vs[1]);
798 #endif
799                 break;
800         case KVM_REG_MIPS_MSA_IR:
801                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
802                         return -EINVAL;
803                 /* Read-only */
804                 break;
805         case KVM_REG_MIPS_MSA_CSR:
806                 if (!kvm_mips_guest_has_msa(&vcpu->arch))
807                         return -EINVAL;
808                 fpu->msacsr = v;
809                 break;
810
811         /* Co-processor 0 registers */
812         case KVM_REG_MIPS_CP0_INDEX:
813                 kvm_write_c0_guest_index(cop0, v);
814                 break;
815         case KVM_REG_MIPS_CP0_CONTEXT:
816                 kvm_write_c0_guest_context(cop0, v);
817                 break;
818         case KVM_REG_MIPS_CP0_USERLOCAL:
819                 kvm_write_c0_guest_userlocal(cop0, v);
820                 break;
821         case KVM_REG_MIPS_CP0_PAGEMASK:
822                 kvm_write_c0_guest_pagemask(cop0, v);
823                 break;
824         case KVM_REG_MIPS_CP0_WIRED:
825                 kvm_write_c0_guest_wired(cop0, v);
826                 break;
827         case KVM_REG_MIPS_CP0_HWRENA:
828                 kvm_write_c0_guest_hwrena(cop0, v);
829                 break;
830         case KVM_REG_MIPS_CP0_BADVADDR:
831                 kvm_write_c0_guest_badvaddr(cop0, v);
832                 break;
833         case KVM_REG_MIPS_CP0_ENTRYHI:
834                 kvm_write_c0_guest_entryhi(cop0, v);
835                 break;
836         case KVM_REG_MIPS_CP0_STATUS:
837                 kvm_write_c0_guest_status(cop0, v);
838                 break;
839         case KVM_REG_MIPS_CP0_EPC:
840                 kvm_write_c0_guest_epc(cop0, v);
841                 break;
842         case KVM_REG_MIPS_CP0_PRID:
843                 kvm_write_c0_guest_prid(cop0, v);
844                 break;
845         case KVM_REG_MIPS_CP0_ERROREPC:
846                 kvm_write_c0_guest_errorepc(cop0, v);
847                 break;
848         /* registers to be handled specially */
849         case KVM_REG_MIPS_CP0_COUNT:
850         case KVM_REG_MIPS_CP0_COMPARE:
851         case KVM_REG_MIPS_CP0_CAUSE:
852         case KVM_REG_MIPS_CP0_CONFIG:
853         case KVM_REG_MIPS_CP0_CONFIG1:
854         case KVM_REG_MIPS_CP0_CONFIG2:
855         case KVM_REG_MIPS_CP0_CONFIG3:
856         case KVM_REG_MIPS_CP0_CONFIG4:
857         case KVM_REG_MIPS_CP0_CONFIG5:
858         case KVM_REG_MIPS_COUNT_CTL:
859         case KVM_REG_MIPS_COUNT_RESUME:
860         case KVM_REG_MIPS_COUNT_HZ:
861                 return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
862         default:
863                 return -EINVAL;
864         }
865         return 0;
866 }
867
868 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
869                                      struct kvm_enable_cap *cap)
870 {
871         int r = 0;
872
873         if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
874                 return -EINVAL;
875         if (cap->flags)
876                 return -EINVAL;
877         if (cap->args[0])
878                 return -EINVAL;
879
880         switch (cap->cap) {
881         case KVM_CAP_MIPS_FPU:
882                 vcpu->arch.fpu_enabled = true;
883                 break;
884         case KVM_CAP_MIPS_MSA:
885                 vcpu->arch.msa_enabled = true;
886                 break;
887         default:
888                 r = -EINVAL;
889                 break;
890         }
891
892         return r;
893 }
894
895 long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
896                          unsigned long arg)
897 {
898         struct kvm_vcpu *vcpu = filp->private_data;
899         void __user *argp = (void __user *)arg;
900         long r;
901
902         switch (ioctl) {
903         case KVM_SET_ONE_REG:
904         case KVM_GET_ONE_REG: {
905                 struct kvm_one_reg reg;
906
907                 if (copy_from_user(&reg, argp, sizeof(reg)))
908                         return -EFAULT;
909                 if (ioctl == KVM_SET_ONE_REG)
910                         return kvm_mips_set_reg(vcpu, &reg);
911                 else
912                         return kvm_mips_get_reg(vcpu, &reg);
913         }
914         case KVM_GET_REG_LIST: {
915                 struct kvm_reg_list __user *user_list = argp;
916                 u64 __user *reg_dest;
917                 struct kvm_reg_list reg_list;
918                 unsigned n;
919
920                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
921                         return -EFAULT;
922                 n = reg_list.n;
923                 reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
924                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
925                         return -EFAULT;
926                 if (n < reg_list.n)
927                         return -E2BIG;
928                 reg_dest = user_list->reg;
929                 if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
930                                  sizeof(kvm_mips_get_one_regs)))
931                         return -EFAULT;
932                 return 0;
933         }
934         case KVM_NMI:
935                 /* Treat the NMI as a CPU reset */
936                 r = kvm_mips_reset_vcpu(vcpu);
937                 break;
938         case KVM_INTERRUPT:
939                 {
940                         struct kvm_mips_interrupt irq;
941
942                         r = -EFAULT;
943                         if (copy_from_user(&irq, argp, sizeof(irq)))
944                                 goto out;
945
946                         kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
947                                   irq.irq);
948
949                         r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
950                         break;
951                 }
952         case KVM_ENABLE_CAP: {
953                 struct kvm_enable_cap cap;
954
955                 r = -EFAULT;
956                 if (copy_from_user(&cap, argp, sizeof(cap)))
957                         goto out;
958                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
959                 break;
960         }
961         default:
962                 r = -ENOIOCTLCMD;
963         }
964
965 out:
966         return r;
967 }
968
969 /* Get (and clear) the dirty memory log for a memory slot. */
970 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
971 {
972         struct kvm_memslots *slots;
973         struct kvm_memory_slot *memslot;
974         unsigned long ga, ga_end;
975         int is_dirty = 0;
976         int r;
977         unsigned long n;
978
979         mutex_lock(&kvm->slots_lock);
980
981         r = kvm_get_dirty_log(kvm, log, &is_dirty);
982         if (r)
983                 goto out;
984
985         /* If nothing is dirty, don't bother messing with page tables. */
986         if (is_dirty) {
987                 slots = kvm_memslots(kvm);
988                 memslot = id_to_memslot(slots, log->slot);
989
990                 ga = memslot->base_gfn << PAGE_SHIFT;
991                 ga_end = ga + (memslot->npages << PAGE_SHIFT);
992
993                 kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
994                          ga_end);
995
996                 n = kvm_dirty_bitmap_bytes(memslot);
997                 memset(memslot->dirty_bitmap, 0, n);
998         }
999
1000         r = 0;
1001 out:
1002         mutex_unlock(&kvm->slots_lock);
1003         return r;
1004
1005 }
1006
1007 long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1008 {
1009         long r;
1010
1011         switch (ioctl) {
1012         default:
1013                 r = -ENOIOCTLCMD;
1014         }
1015
1016         return r;
1017 }
1018
1019 int kvm_arch_init(void *opaque)
1020 {
1021         if (kvm_mips_callbacks) {
1022                 kvm_err("kvm: module already exists\n");
1023                 return -EEXIST;
1024         }
1025
1026         return kvm_mips_emulation_init(&kvm_mips_callbacks);
1027 }
1028
1029 void kvm_arch_exit(void)
1030 {
1031         kvm_mips_callbacks = NULL;
1032 }
1033
1034 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1035                                   struct kvm_sregs *sregs)
1036 {
1037         return -ENOIOCTLCMD;
1038 }
1039
1040 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1041                                   struct kvm_sregs *sregs)
1042 {
1043         return -ENOIOCTLCMD;
1044 }
1045
1046 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1047 {
1048 }
1049
1050 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1051 {
1052         return -ENOIOCTLCMD;
1053 }
1054
1055 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1056 {
1057         return -ENOIOCTLCMD;
1058 }
1059
1060 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1061 {
1062         return VM_FAULT_SIGBUS;
1063 }
1064
1065 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1066 {
1067         int r;
1068
1069         switch (ext) {
1070         case KVM_CAP_ONE_REG:
1071         case KVM_CAP_ENABLE_CAP:
1072                 r = 1;
1073                 break;
1074         case KVM_CAP_COALESCED_MMIO:
1075                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1076                 break;
1077         case KVM_CAP_MIPS_FPU:
1078                 r = !!cpu_has_fpu;
1079                 break;
1080         case KVM_CAP_MIPS_MSA:
1081                 /*
1082                  * We don't support MSA vector partitioning yet:
1083                  * 1) It would require explicit support which can't be tested
1084                  *    yet due to lack of support in current hardware.
1085                  * 2) It extends the state that would need to be saved/restored
1086                  *    by e.g. QEMU for migration.
1087                  *
1088                  * When vector partitioning hardware becomes available, support
1089                  * could be added by requiring a flag when enabling
1090                  * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1091                  * to save/restore the appropriate extra state.
1092                  */
1093                 r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1094                 break;
1095         default:
1096                 r = 0;
1097                 break;
1098         }
1099         return r;
1100 }
1101
1102 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1103 {
1104         return kvm_mips_pending_timer(vcpu);
1105 }
1106
1107 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1108 {
1109         int i;
1110         struct mips_coproc *cop0;
1111
1112         if (!vcpu)
1113                 return -1;
1114
1115         kvm_debug("VCPU Register Dump:\n");
1116         kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1117         kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1118
1119         for (i = 0; i < 32; i += 4) {
1120                 kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1121                        vcpu->arch.gprs[i],
1122                        vcpu->arch.gprs[i + 1],
1123                        vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1124         }
1125         kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1126         kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1127
1128         cop0 = vcpu->arch.cop0;
1129         kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1130                   kvm_read_c0_guest_status(cop0),
1131                   kvm_read_c0_guest_cause(cop0));
1132
1133         kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1134
1135         return 0;
1136 }
1137
1138 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1139 {
1140         int i;
1141
1142         for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1143                 vcpu->arch.gprs[i] = regs->gpr[i];
1144         vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1145         vcpu->arch.hi = regs->hi;
1146         vcpu->arch.lo = regs->lo;
1147         vcpu->arch.pc = regs->pc;
1148
1149         return 0;
1150 }
1151
1152 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1153 {
1154         int i;
1155
1156         for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1157                 regs->gpr[i] = vcpu->arch.gprs[i];
1158
1159         regs->hi = vcpu->arch.hi;
1160         regs->lo = vcpu->arch.lo;
1161         regs->pc = vcpu->arch.pc;
1162
1163         return 0;
1164 }
1165
1166 static void kvm_mips_comparecount_func(unsigned long data)
1167 {
1168         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1169
1170         kvm_mips_callbacks->queue_timer_int(vcpu);
1171
1172         vcpu->arch.wait = 0;
1173         if (waitqueue_active(&vcpu->wq))
1174                 wake_up_interruptible(&vcpu->wq);
1175 }
1176
1177 /* low level hrtimer wake routine */
1178 static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1179 {
1180         struct kvm_vcpu *vcpu;
1181
1182         vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1183         kvm_mips_comparecount_func((unsigned long) vcpu);
1184         return kvm_mips_count_timeout(vcpu);
1185 }
1186
1187 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1188 {
1189         kvm_mips_callbacks->vcpu_init(vcpu);
1190         hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1191                      HRTIMER_MODE_REL);
1192         vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1193         return 0;
1194 }
1195
1196 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1197                                   struct kvm_translation *tr)
1198 {
1199         return 0;
1200 }
1201
1202 /* Initial guest state */
1203 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1204 {
1205         return kvm_mips_callbacks->vcpu_setup(vcpu);
1206 }
1207
1208 static void kvm_mips_set_c0_status(void)
1209 {
1210         uint32_t status = read_c0_status();
1211
1212         if (cpu_has_dsp)
1213                 status |= (ST0_MX);
1214
1215         write_c0_status(status);
1216         ehb();
1217 }
1218
1219 /*
1220  * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1221  */
1222 int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1223 {
1224         uint32_t cause = vcpu->arch.host_cp0_cause;
1225         uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1226         uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
1227         unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1228         enum emulation_result er = EMULATE_DONE;
1229         int ret = RESUME_GUEST;
1230
1231         /* re-enable HTW before enabling interrupts */
1232         htw_start();
1233
1234         /* Set a default exit reason */
1235         run->exit_reason = KVM_EXIT_UNKNOWN;
1236         run->ready_for_interrupt_injection = 1;
1237
1238         /*
1239          * Set the appropriate status bits based on host CPU features,
1240          * before we hit the scheduler
1241          */
1242         kvm_mips_set_c0_status();
1243
1244         local_irq_enable();
1245
1246         kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1247                         cause, opc, run, vcpu);
1248
1249         /*
1250          * Do a privilege check, if in UM most of these exit conditions end up
1251          * causing an exception to be delivered to the Guest Kernel
1252          */
1253         er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1254         if (er == EMULATE_PRIV_FAIL) {
1255                 goto skip_emul;
1256         } else if (er == EMULATE_FAIL) {
1257                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1258                 ret = RESUME_HOST;
1259                 goto skip_emul;
1260         }
1261
1262         switch (exccode) {
1263         case T_INT:
1264                 kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
1265
1266                 ++vcpu->stat.int_exits;
1267                 trace_kvm_exit(vcpu, INT_EXITS);
1268
1269                 if (need_resched())
1270                         cond_resched();
1271
1272                 ret = RESUME_GUEST;
1273                 break;
1274
1275         case T_COP_UNUSABLE:
1276                 kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
1277
1278                 ++vcpu->stat.cop_unusable_exits;
1279                 trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
1280                 ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1281                 /* XXXKYMA: Might need to return to user space */
1282                 if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1283                         ret = RESUME_HOST;
1284                 break;
1285
1286         case T_TLB_MOD:
1287                 ++vcpu->stat.tlbmod_exits;
1288                 trace_kvm_exit(vcpu, TLBMOD_EXITS);
1289                 ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1290                 break;
1291
1292         case T_TLB_ST_MISS:
1293                 kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1294                           cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1295                           badvaddr);
1296
1297                 ++vcpu->stat.tlbmiss_st_exits;
1298                 trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
1299                 ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1300                 break;
1301
1302         case T_TLB_LD_MISS:
1303                 kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1304                           cause, opc, badvaddr);
1305
1306                 ++vcpu->stat.tlbmiss_ld_exits;
1307                 trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
1308                 ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1309                 break;
1310
1311         case T_ADDR_ERR_ST:
1312                 ++vcpu->stat.addrerr_st_exits;
1313                 trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
1314                 ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1315                 break;
1316
1317         case T_ADDR_ERR_LD:
1318                 ++vcpu->stat.addrerr_ld_exits;
1319                 trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
1320                 ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1321                 break;
1322
1323         case T_SYSCALL:
1324                 ++vcpu->stat.syscall_exits;
1325                 trace_kvm_exit(vcpu, SYSCALL_EXITS);
1326                 ret = kvm_mips_callbacks->handle_syscall(vcpu);
1327                 break;
1328
1329         case T_RES_INST:
1330                 ++vcpu->stat.resvd_inst_exits;
1331                 trace_kvm_exit(vcpu, RESVD_INST_EXITS);
1332                 ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1333                 break;
1334
1335         case T_BREAK:
1336                 ++vcpu->stat.break_inst_exits;
1337                 trace_kvm_exit(vcpu, BREAK_INST_EXITS);
1338                 ret = kvm_mips_callbacks->handle_break(vcpu);
1339                 break;
1340
1341         case T_TRAP:
1342                 ++vcpu->stat.trap_inst_exits;
1343                 trace_kvm_exit(vcpu, TRAP_INST_EXITS);
1344                 ret = kvm_mips_callbacks->handle_trap(vcpu);
1345                 break;
1346
1347         case T_MSAFPE:
1348                 ++vcpu->stat.msa_fpe_exits;
1349                 trace_kvm_exit(vcpu, MSA_FPE_EXITS);
1350                 ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1351                 break;
1352
1353         case T_FPE:
1354                 ++vcpu->stat.fpe_exits;
1355                 trace_kvm_exit(vcpu, FPE_EXITS);
1356                 ret = kvm_mips_callbacks->handle_fpe(vcpu);
1357                 break;
1358
1359         case T_MSADIS:
1360                 ++vcpu->stat.msa_disabled_exits;
1361                 trace_kvm_exit(vcpu, MSA_DISABLED_EXITS);
1362                 ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1363                 break;
1364
1365         default:
1366                 kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1367                         exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1368                         kvm_read_c0_guest_status(vcpu->arch.cop0));
1369                 kvm_arch_vcpu_dump_regs(vcpu);
1370                 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1371                 ret = RESUME_HOST;
1372                 break;
1373
1374         }
1375
1376 skip_emul:
1377         local_irq_disable();
1378
1379         if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1380                 kvm_mips_deliver_interrupts(vcpu, cause);
1381
1382         if (!(ret & RESUME_HOST)) {
1383                 /* Only check for signals if not already exiting to userspace */
1384                 if (signal_pending(current)) {
1385                         run->exit_reason = KVM_EXIT_INTR;
1386                         ret = (-EINTR << 2) | RESUME_HOST;
1387                         ++vcpu->stat.signal_exits;
1388                         trace_kvm_exit(vcpu, SIGNAL_EXITS);
1389                 }
1390         }
1391
1392         if (ret == RESUME_GUEST) {
1393                 /*
1394                  * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1395                  * is live), restore FCR31 / MSACSR.
1396                  *
1397                  * This should be before returning to the guest exception
1398                  * vector, as it may well cause an [MSA] FP exception if there
1399                  * are pending exception bits unmasked. (see
1400                  * kvm_mips_csr_die_notifier() for how that is handled).
1401                  */
1402                 if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1403                     read_c0_status() & ST0_CU1)
1404                         __kvm_restore_fcsr(&vcpu->arch);
1405
1406                 if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1407                     read_c0_config5() & MIPS_CONF5_MSAEN)
1408                         __kvm_restore_msacsr(&vcpu->arch);
1409         }
1410
1411         /* Disable HTW before returning to guest or host */
1412         htw_stop();
1413
1414         return ret;
1415 }
1416
1417 /* Enable FPU for guest and restore context */
1418 void kvm_own_fpu(struct kvm_vcpu *vcpu)
1419 {
1420         struct mips_coproc *cop0 = vcpu->arch.cop0;
1421         unsigned int sr, cfg5;
1422
1423         preempt_disable();
1424
1425         sr = kvm_read_c0_guest_status(cop0);
1426
1427         /*
1428          * If MSA state is already live, it is undefined how it interacts with
1429          * FR=0 FPU state, and we don't want to hit reserved instruction
1430          * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1431          * play it safe and save it first.
1432          *
1433          * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1434          * get called when guest CU1 is set, however we can't trust the guest
1435          * not to clobber the status register directly via the commpage.
1436          */
1437         if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1438             vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA)
1439                 kvm_lose_fpu(vcpu);
1440
1441         /*
1442          * Enable FPU for guest
1443          * We set FR and FRE according to guest context
1444          */
1445         change_c0_status(ST0_CU1 | ST0_FR, sr);
1446         if (cpu_has_fre) {
1447                 cfg5 = kvm_read_c0_guest_config5(cop0);
1448                 change_c0_config5(MIPS_CONF5_FRE, cfg5);
1449         }
1450         enable_fpu_hazard();
1451
1452         /* If guest FPU state not active, restore it now */
1453         if (!(vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)) {
1454                 __kvm_restore_fpu(&vcpu->arch);
1455                 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1456         }
1457
1458         preempt_enable();
1459 }
1460
1461 #ifdef CONFIG_CPU_HAS_MSA
1462 /* Enable MSA for guest and restore context */
1463 void kvm_own_msa(struct kvm_vcpu *vcpu)
1464 {
1465         struct mips_coproc *cop0 = vcpu->arch.cop0;
1466         unsigned int sr, cfg5;
1467
1468         preempt_disable();
1469
1470         /*
1471          * Enable FPU if enabled in guest, since we're restoring FPU context
1472          * anyway. We set FR and FRE according to guest context.
1473          */
1474         if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1475                 sr = kvm_read_c0_guest_status(cop0);
1476
1477                 /*
1478                  * If FR=0 FPU state is already live, it is undefined how it
1479                  * interacts with MSA state, so play it safe and save it first.
1480                  */
1481                 if (!(sr & ST0_FR) &&
1482                     (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU |
1483                                 KVM_MIPS_FPU_MSA)) == KVM_MIPS_FPU_FPU)
1484                         kvm_lose_fpu(vcpu);
1485
1486                 change_c0_status(ST0_CU1 | ST0_FR, sr);
1487                 if (sr & ST0_CU1 && cpu_has_fre) {
1488                         cfg5 = kvm_read_c0_guest_config5(cop0);
1489                         change_c0_config5(MIPS_CONF5_FRE, cfg5);
1490                 }
1491         }
1492
1493         /* Enable MSA for guest */
1494         set_c0_config5(MIPS_CONF5_MSAEN);
1495         enable_fpu_hazard();
1496
1497         switch (vcpu->arch.fpu_inuse & (KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA)) {
1498         case KVM_MIPS_FPU_FPU:
1499                 /*
1500                  * Guest FPU state already loaded, only restore upper MSA state
1501                  */
1502                 __kvm_restore_msa_upper(&vcpu->arch);
1503                 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1504                 break;
1505         case 0:
1506                 /* Neither FPU or MSA already active, restore full MSA state */
1507                 __kvm_restore_msa(&vcpu->arch);
1508                 vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_MSA;
1509                 if (kvm_mips_guest_has_fpu(&vcpu->arch))
1510                         vcpu->arch.fpu_inuse |= KVM_MIPS_FPU_FPU;
1511                 break;
1512         default:
1513                 break;
1514         }
1515
1516         preempt_enable();
1517 }
1518 #endif
1519
1520 /* Drop FPU & MSA without saving it */
1521 void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1522 {
1523         preempt_disable();
1524         if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1525                 disable_msa();
1526                 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_MSA;
1527         }
1528         if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1529                 clear_c0_status(ST0_CU1 | ST0_FR);
1530                 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1531         }
1532         preempt_enable();
1533 }
1534
1535 /* Save and disable FPU & MSA */
1536 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1537 {
1538         /*
1539          * FPU & MSA get disabled in root context (hardware) when it is disabled
1540          * in guest context (software), but the register state in the hardware
1541          * may still be in use. This is why we explicitly re-enable the hardware
1542          * before saving.
1543          */
1544
1545         preempt_disable();
1546         if (cpu_has_msa && vcpu->arch.fpu_inuse & KVM_MIPS_FPU_MSA) {
1547                 set_c0_config5(MIPS_CONF5_MSAEN);
1548                 enable_fpu_hazard();
1549
1550                 __kvm_save_msa(&vcpu->arch);
1551
1552                 /* Disable MSA & FPU */
1553                 disable_msa();
1554                 if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU)
1555                         clear_c0_status(ST0_CU1 | ST0_FR);
1556                 vcpu->arch.fpu_inuse &= ~(KVM_MIPS_FPU_FPU | KVM_MIPS_FPU_MSA);
1557         } else if (vcpu->arch.fpu_inuse & KVM_MIPS_FPU_FPU) {
1558                 set_c0_status(ST0_CU1);
1559                 enable_fpu_hazard();
1560
1561                 __kvm_save_fpu(&vcpu->arch);
1562                 vcpu->arch.fpu_inuse &= ~KVM_MIPS_FPU_FPU;
1563
1564                 /* Disable FPU */
1565                 clear_c0_status(ST0_CU1 | ST0_FR);
1566         }
1567         preempt_enable();
1568 }
1569
1570 /*
1571  * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1572  * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1573  * exception if cause bits are set in the value being written.
1574  */
1575 static int kvm_mips_csr_die_notify(struct notifier_block *self,
1576                                    unsigned long cmd, void *ptr)
1577 {
1578         struct die_args *args = (struct die_args *)ptr;
1579         struct pt_regs *regs = args->regs;
1580         unsigned long pc;
1581
1582         /* Only interested in FPE and MSAFPE */
1583         if (cmd != DIE_FP && cmd != DIE_MSAFP)
1584                 return NOTIFY_DONE;
1585
1586         /* Return immediately if guest context isn't active */
1587         if (!(current->flags & PF_VCPU))
1588                 return NOTIFY_DONE;
1589
1590         /* Should never get here from user mode */
1591         BUG_ON(user_mode(regs));
1592
1593         pc = instruction_pointer(regs);
1594         switch (cmd) {
1595         case DIE_FP:
1596                 /* match 2nd instruction in __kvm_restore_fcsr */
1597                 if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1598                         return NOTIFY_DONE;
1599                 break;
1600         case DIE_MSAFP:
1601                 /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1602                 if (!cpu_has_msa ||
1603                     pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1604                     pc > (unsigned long)&__kvm_restore_msacsr + 8)
1605                         return NOTIFY_DONE;
1606                 break;
1607         }
1608
1609         /* Move PC forward a little and continue executing */
1610         instruction_pointer(regs) += 4;
1611
1612         return NOTIFY_STOP;
1613 }
1614
1615 static struct notifier_block kvm_mips_csr_die_notifier = {
1616         .notifier_call = kvm_mips_csr_die_notify,
1617 };
1618
1619 int __init kvm_mips_init(void)
1620 {
1621         int ret;
1622
1623         ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1624
1625         if (ret)
1626                 return ret;
1627
1628         register_die_notifier(&kvm_mips_csr_die_notifier);
1629
1630         /*
1631          * On MIPS, kernel modules are executed from "mapped space", which
1632          * requires TLBs. The TLB handling code is statically linked with
1633          * the rest of the kernel (tlb.c) to avoid the possibility of
1634          * double faulting. The issue is that the TLB code references
1635          * routines that are part of the the KVM module, which are only
1636          * available once the module is loaded.
1637          */
1638         kvm_mips_gfn_to_pfn = gfn_to_pfn;
1639         kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
1640         kvm_mips_is_error_pfn = is_error_pfn;
1641
1642         return 0;
1643 }
1644
1645 void __exit kvm_mips_exit(void)
1646 {
1647         kvm_exit();
1648
1649         kvm_mips_gfn_to_pfn = NULL;
1650         kvm_mips_release_pfn_clean = NULL;
1651         kvm_mips_is_error_pfn = NULL;
1652
1653         unregister_die_notifier(&kvm_mips_csr_die_notifier);
1654 }
1655
1656 module_init(kvm_mips_init);
1657 module_exit(kvm_mips_exit);
1658
1659 EXPORT_TRACEPOINT_SYMBOL(kvm_exit);