gfs2: Fix iomap buffered write support for journaled files
[sfrench/cifs-2.6.git] / arch / mips / kernel / process.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000 by Ralf Baechle and others.
7  * Copyright (C) 2005, 2006 by Ralf Baechle (ralf@linux-mips.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  * Copyright (C) 2004 Thiemo Seufer
10  * Copyright (C) 2013  Imagination Technologies Ltd.
11  */
12 #include <linux/errno.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/tick.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/stddef.h>
21 #include <linux/unistd.h>
22 #include <linux/export.h>
23 #include <linux/ptrace.h>
24 #include <linux/mman.h>
25 #include <linux/personality.h>
26 #include <linux/sys.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/kallsyms.h>
30 #include <linux/random.h>
31 #include <linux/prctl.h>
32 #include <linux/nmi.h>
33 #include <linux/cpu.h>
34
35 #include <asm/asm.h>
36 #include <asm/bootinfo.h>
37 #include <asm/cpu.h>
38 #include <asm/dsemul.h>
39 #include <asm/dsp.h>
40 #include <asm/fpu.h>
41 #include <asm/irq.h>
42 #include <asm/msa.h>
43 #include <asm/pgtable.h>
44 #include <asm/mipsregs.h>
45 #include <asm/processor.h>
46 #include <asm/reg.h>
47 #include <linux/uaccess.h>
48 #include <asm/io.h>
49 #include <asm/elf.h>
50 #include <asm/isadep.h>
51 #include <asm/inst.h>
52 #include <asm/stacktrace.h>
53 #include <asm/irq_regs.h>
54
55 #ifdef CONFIG_HOTPLUG_CPU
56 void arch_cpu_idle_dead(void)
57 {
58         play_dead();
59 }
60 #endif
61
62 asmlinkage void ret_from_fork(void);
63 asmlinkage void ret_from_kernel_thread(void);
64
65 void start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
66 {
67         unsigned long status;
68
69         /* New thread loses kernel privileges. */
70         status = regs->cp0_status & ~(ST0_CU0|ST0_CU1|ST0_FR|KU_MASK);
71         status |= KU_USER;
72         regs->cp0_status = status;
73         lose_fpu(0);
74         clear_thread_flag(TIF_MSA_CTX_LIVE);
75         clear_used_math();
76         atomic_set(&current->thread.bd_emu_frame, BD_EMUFRAME_NONE);
77         init_dsp();
78         regs->cp0_epc = pc;
79         regs->regs[29] = sp;
80 }
81
82 void exit_thread(struct task_struct *tsk)
83 {
84         /*
85          * User threads may have allocated a delay slot emulation frame.
86          * If so, clean up that allocation.
87          */
88         if (!(current->flags & PF_KTHREAD))
89                 dsemul_thread_cleanup(tsk);
90 }
91
92 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
93 {
94         /*
95          * Save any process state which is live in hardware registers to the
96          * parent context prior to duplication. This prevents the new child
97          * state becoming stale if the parent is preempted before copy_thread()
98          * gets a chance to save the parent's live hardware registers to the
99          * child context.
100          */
101         preempt_disable();
102
103         if (is_msa_enabled())
104                 save_msa(current);
105         else if (is_fpu_owner())
106                 _save_fp(current);
107
108         save_dsp(current);
109
110         preempt_enable();
111
112         *dst = *src;
113         return 0;
114 }
115
116 /*
117  * Copy architecture-specific thread state
118  */
119 int copy_thread_tls(unsigned long clone_flags, unsigned long usp,
120         unsigned long kthread_arg, struct task_struct *p, unsigned long tls)
121 {
122         struct thread_info *ti = task_thread_info(p);
123         struct pt_regs *childregs, *regs = current_pt_regs();
124         unsigned long childksp;
125
126         childksp = (unsigned long)task_stack_page(p) + THREAD_SIZE - 32;
127
128         /* set up new TSS. */
129         childregs = (struct pt_regs *) childksp - 1;
130         /*  Put the stack after the struct pt_regs.  */
131         childksp = (unsigned long) childregs;
132         p->thread.cp0_status = read_c0_status() & ~(ST0_CU2|ST0_CU1);
133         if (unlikely(p->flags & PF_KTHREAD)) {
134                 /* kernel thread */
135                 unsigned long status = p->thread.cp0_status;
136                 memset(childregs, 0, sizeof(struct pt_regs));
137                 ti->addr_limit = KERNEL_DS;
138                 p->thread.reg16 = usp; /* fn */
139                 p->thread.reg17 = kthread_arg;
140                 p->thread.reg29 = childksp;
141                 p->thread.reg31 = (unsigned long) ret_from_kernel_thread;
142 #if defined(CONFIG_CPU_R3000) || defined(CONFIG_CPU_TX39XX)
143                 status = (status & ~(ST0_KUP | ST0_IEP | ST0_IEC)) |
144                          ((status & (ST0_KUC | ST0_IEC)) << 2);
145 #else
146                 status |= ST0_EXL;
147 #endif
148                 childregs->cp0_status = status;
149                 return 0;
150         }
151
152         /* user thread */
153         *childregs = *regs;
154         childregs->regs[7] = 0; /* Clear error flag */
155         childregs->regs[2] = 0; /* Child gets zero as return value */
156         if (usp)
157                 childregs->regs[29] = usp;
158         ti->addr_limit = USER_DS;
159
160         p->thread.reg29 = (unsigned long) childregs;
161         p->thread.reg31 = (unsigned long) ret_from_fork;
162
163         /*
164          * New tasks lose permission to use the fpu. This accelerates context
165          * switching for most programs since they don't use the fpu.
166          */
167         childregs->cp0_status &= ~(ST0_CU2|ST0_CU1);
168
169         clear_tsk_thread_flag(p, TIF_USEDFPU);
170         clear_tsk_thread_flag(p, TIF_USEDMSA);
171         clear_tsk_thread_flag(p, TIF_MSA_CTX_LIVE);
172
173 #ifdef CONFIG_MIPS_MT_FPAFF
174         clear_tsk_thread_flag(p, TIF_FPUBOUND);
175 #endif /* CONFIG_MIPS_MT_FPAFF */
176
177         atomic_set(&p->thread.bd_emu_frame, BD_EMUFRAME_NONE);
178
179         if (clone_flags & CLONE_SETTLS)
180                 ti->tp_value = tls;
181
182         return 0;
183 }
184
185 #ifdef CONFIG_STACKPROTECTOR
186 #include <linux/stackprotector.h>
187 unsigned long __stack_chk_guard __read_mostly;
188 EXPORT_SYMBOL(__stack_chk_guard);
189 #endif
190
191 struct mips_frame_info {
192         void            *func;
193         unsigned long   func_size;
194         int             frame_size;
195         int             pc_offset;
196 };
197
198 #define J_TARGET(pc,target)     \
199                 (((unsigned long)(pc) & 0xf0000000) | ((target) << 2))
200
201 static inline int is_ra_save_ins(union mips_instruction *ip, int *poff)
202 {
203 #ifdef CONFIG_CPU_MICROMIPS
204         /*
205          * swsp ra,offset
206          * swm16 reglist,offset(sp)
207          * swm32 reglist,offset(sp)
208          * sw32 ra,offset(sp)
209          * jradiussp - NOT SUPPORTED
210          *
211          * microMIPS is way more fun...
212          */
213         if (mm_insn_16bit(ip->word >> 16)) {
214                 switch (ip->mm16_r5_format.opcode) {
215                 case mm_swsp16_op:
216                         if (ip->mm16_r5_format.rt != 31)
217                                 return 0;
218
219                         *poff = ip->mm16_r5_format.imm;
220                         *poff = (*poff << 2) / sizeof(ulong);
221                         return 1;
222
223                 case mm_pool16c_op:
224                         switch (ip->mm16_m_format.func) {
225                         case mm_swm16_op:
226                                 *poff = ip->mm16_m_format.imm;
227                                 *poff += 1 + ip->mm16_m_format.rlist;
228                                 *poff = (*poff << 2) / sizeof(ulong);
229                                 return 1;
230
231                         default:
232                                 return 0;
233                         }
234
235                 default:
236                         return 0;
237                 }
238         }
239
240         switch (ip->i_format.opcode) {
241         case mm_sw32_op:
242                 if (ip->i_format.rs != 29)
243                         return 0;
244                 if (ip->i_format.rt != 31)
245                         return 0;
246
247                 *poff = ip->i_format.simmediate / sizeof(ulong);
248                 return 1;
249
250         case mm_pool32b_op:
251                 switch (ip->mm_m_format.func) {
252                 case mm_swm32_func:
253                         if (ip->mm_m_format.rd < 0x10)
254                                 return 0;
255                         if (ip->mm_m_format.base != 29)
256                                 return 0;
257
258                         *poff = ip->mm_m_format.simmediate;
259                         *poff += (ip->mm_m_format.rd & 0xf) * sizeof(u32);
260                         *poff /= sizeof(ulong);
261                         return 1;
262                 default:
263                         return 0;
264                 }
265
266         default:
267                 return 0;
268         }
269 #else
270         /* sw / sd $ra, offset($sp) */
271         if ((ip->i_format.opcode == sw_op || ip->i_format.opcode == sd_op) &&
272                 ip->i_format.rs == 29 && ip->i_format.rt == 31) {
273                 *poff = ip->i_format.simmediate / sizeof(ulong);
274                 return 1;
275         }
276
277         return 0;
278 #endif
279 }
280
281 static inline int is_jump_ins(union mips_instruction *ip)
282 {
283 #ifdef CONFIG_CPU_MICROMIPS
284         /*
285          * jr16,jrc,jalr16,jalr16
286          * jal
287          * jalr/jr,jalr.hb/jr.hb,jalrs,jalrs.hb
288          * jraddiusp - NOT SUPPORTED
289          *
290          * microMIPS is kind of more fun...
291          */
292         if (mm_insn_16bit(ip->word >> 16)) {
293                 if ((ip->mm16_r5_format.opcode == mm_pool16c_op &&
294                     (ip->mm16_r5_format.rt & mm_jr16_op) == mm_jr16_op))
295                         return 1;
296                 return 0;
297         }
298
299         if (ip->j_format.opcode == mm_j32_op)
300                 return 1;
301         if (ip->j_format.opcode == mm_jal32_op)
302                 return 1;
303         if (ip->r_format.opcode != mm_pool32a_op ||
304                         ip->r_format.func != mm_pool32axf_op)
305                 return 0;
306         return ((ip->u_format.uimmediate >> 6) & mm_jalr_op) == mm_jalr_op;
307 #else
308         if (ip->j_format.opcode == j_op)
309                 return 1;
310         if (ip->j_format.opcode == jal_op)
311                 return 1;
312         if (ip->r_format.opcode != spec_op)
313                 return 0;
314         return ip->r_format.func == jalr_op || ip->r_format.func == jr_op;
315 #endif
316 }
317
318 static inline int is_sp_move_ins(union mips_instruction *ip, int *frame_size)
319 {
320 #ifdef CONFIG_CPU_MICROMIPS
321         unsigned short tmp;
322
323         /*
324          * addiusp -imm
325          * addius5 sp,-imm
326          * addiu32 sp,sp,-imm
327          * jradiussp - NOT SUPPORTED
328          *
329          * microMIPS is not more fun...
330          */
331         if (mm_insn_16bit(ip->word >> 16)) {
332                 if (ip->mm16_r3_format.opcode == mm_pool16d_op &&
333                     ip->mm16_r3_format.simmediate & mm_addiusp_func) {
334                         tmp = ip->mm_b0_format.simmediate >> 1;
335                         tmp = ((tmp & 0x1ff) ^ 0x100) - 0x100;
336                         if ((tmp + 2) < 4) /* 0x0,0x1,0x1fe,0x1ff are special */
337                                 tmp ^= 0x100;
338                         *frame_size = -(signed short)(tmp << 2);
339                         return 1;
340                 }
341                 if (ip->mm16_r5_format.opcode == mm_pool16d_op &&
342                     ip->mm16_r5_format.rt == 29) {
343                         tmp = ip->mm16_r5_format.imm >> 1;
344                         *frame_size = -(signed short)(tmp & 0xf);
345                         return 1;
346                 }
347                 return 0;
348         }
349
350         if (ip->mm_i_format.opcode == mm_addiu32_op &&
351             ip->mm_i_format.rt == 29 && ip->mm_i_format.rs == 29) {
352                 *frame_size = -ip->i_format.simmediate;
353                 return 1;
354         }
355 #else
356         /* addiu/daddiu sp,sp,-imm */
357         if (ip->i_format.rs != 29 || ip->i_format.rt != 29)
358                 return 0;
359
360         if (ip->i_format.opcode == addiu_op ||
361             ip->i_format.opcode == daddiu_op) {
362                 *frame_size = -ip->i_format.simmediate;
363                 return 1;
364         }
365 #endif
366         return 0;
367 }
368
369 static int get_frame_info(struct mips_frame_info *info)
370 {
371         bool is_mmips = IS_ENABLED(CONFIG_CPU_MICROMIPS);
372         union mips_instruction insn, *ip, *ip_end;
373         const unsigned int max_insns = 128;
374         unsigned int last_insn_size = 0;
375         unsigned int i;
376         bool saw_jump = false;
377
378         info->pc_offset = -1;
379         info->frame_size = 0;
380
381         ip = (void *)msk_isa16_mode((ulong)info->func);
382         if (!ip)
383                 goto err;
384
385         ip_end = (void *)ip + info->func_size;
386
387         for (i = 0; i < max_insns && ip < ip_end; i++) {
388                 ip = (void *)ip + last_insn_size;
389                 if (is_mmips && mm_insn_16bit(ip->halfword[0])) {
390                         insn.word = ip->halfword[0] << 16;
391                         last_insn_size = 2;
392                 } else if (is_mmips) {
393                         insn.word = ip->halfword[0] << 16 | ip->halfword[1];
394                         last_insn_size = 4;
395                 } else {
396                         insn.word = ip->word;
397                         last_insn_size = 4;
398                 }
399
400                 if (!info->frame_size) {
401                         is_sp_move_ins(&insn, &info->frame_size);
402                         continue;
403                 } else if (!saw_jump && is_jump_ins(ip)) {
404                         /*
405                          * If we see a jump instruction, we are finished
406                          * with the frame save.
407                          *
408                          * Some functions can have a shortcut return at
409                          * the beginning of the function, so don't start
410                          * looking for jump instruction until we see the
411                          * frame setup.
412                          *
413                          * The RA save instruction can get put into the
414                          * delay slot of the jump instruction, so look
415                          * at the next instruction, too.
416                          */
417                         saw_jump = true;
418                         continue;
419                 }
420                 if (info->pc_offset == -1 &&
421                     is_ra_save_ins(&insn, &info->pc_offset))
422                         break;
423                 if (saw_jump)
424                         break;
425         }
426         if (info->frame_size && info->pc_offset >= 0) /* nested */
427                 return 0;
428         if (info->pc_offset < 0) /* leaf */
429                 return 1;
430         /* prologue seems bogus... */
431 err:
432         return -1;
433 }
434
435 static struct mips_frame_info schedule_mfi __read_mostly;
436
437 #ifdef CONFIG_KALLSYMS
438 static unsigned long get___schedule_addr(void)
439 {
440         return kallsyms_lookup_name("__schedule");
441 }
442 #else
443 static unsigned long get___schedule_addr(void)
444 {
445         union mips_instruction *ip = (void *)schedule;
446         int max_insns = 8;
447         int i;
448
449         for (i = 0; i < max_insns; i++, ip++) {
450                 if (ip->j_format.opcode == j_op)
451                         return J_TARGET(ip, ip->j_format.target);
452         }
453         return 0;
454 }
455 #endif
456
457 static int __init frame_info_init(void)
458 {
459         unsigned long size = 0;
460 #ifdef CONFIG_KALLSYMS
461         unsigned long ofs;
462 #endif
463         unsigned long addr;
464
465         addr = get___schedule_addr();
466         if (!addr)
467                 addr = (unsigned long)schedule;
468
469 #ifdef CONFIG_KALLSYMS
470         kallsyms_lookup_size_offset(addr, &size, &ofs);
471 #endif
472         schedule_mfi.func = (void *)addr;
473         schedule_mfi.func_size = size;
474
475         get_frame_info(&schedule_mfi);
476
477         /*
478          * Without schedule() frame info, result given by
479          * thread_saved_pc() and get_wchan() are not reliable.
480          */
481         if (schedule_mfi.pc_offset < 0)
482                 printk("Can't analyze schedule() prologue at %p\n", schedule);
483
484         return 0;
485 }
486
487 arch_initcall(frame_info_init);
488
489 /*
490  * Return saved PC of a blocked thread.
491  */
492 static unsigned long thread_saved_pc(struct task_struct *tsk)
493 {
494         struct thread_struct *t = &tsk->thread;
495
496         /* New born processes are a special case */
497         if (t->reg31 == (unsigned long) ret_from_fork)
498                 return t->reg31;
499         if (schedule_mfi.pc_offset < 0)
500                 return 0;
501         return ((unsigned long *)t->reg29)[schedule_mfi.pc_offset];
502 }
503
504
505 #ifdef CONFIG_KALLSYMS
506 /* generic stack unwinding function */
507 unsigned long notrace unwind_stack_by_address(unsigned long stack_page,
508                                               unsigned long *sp,
509                                               unsigned long pc,
510                                               unsigned long *ra)
511 {
512         unsigned long low, high, irq_stack_high;
513         struct mips_frame_info info;
514         unsigned long size, ofs;
515         struct pt_regs *regs;
516         int leaf;
517
518         if (!stack_page)
519                 return 0;
520
521         /*
522          * IRQ stacks start at IRQ_STACK_START
523          * task stacks at THREAD_SIZE - 32
524          */
525         low = stack_page;
526         if (!preemptible() && on_irq_stack(raw_smp_processor_id(), *sp)) {
527                 high = stack_page + IRQ_STACK_START;
528                 irq_stack_high = high;
529         } else {
530                 high = stack_page + THREAD_SIZE - 32;
531                 irq_stack_high = 0;
532         }
533
534         /*
535          * If we reached the top of the interrupt stack, start unwinding
536          * the interrupted task stack.
537          */
538         if (unlikely(*sp == irq_stack_high)) {
539                 unsigned long task_sp = *(unsigned long *)*sp;
540
541                 /*
542                  * Check that the pointer saved in the IRQ stack head points to
543                  * something within the stack of the current task
544                  */
545                 if (!object_is_on_stack((void *)task_sp))
546                         return 0;
547
548                 /*
549                  * Follow pointer to tasks kernel stack frame where interrupted
550                  * state was saved.
551                  */
552                 regs = (struct pt_regs *)task_sp;
553                 pc = regs->cp0_epc;
554                 if (!user_mode(regs) && __kernel_text_address(pc)) {
555                         *sp = regs->regs[29];
556                         *ra = regs->regs[31];
557                         return pc;
558                 }
559                 return 0;
560         }
561         if (!kallsyms_lookup_size_offset(pc, &size, &ofs))
562                 return 0;
563         /*
564          * Return ra if an exception occurred at the first instruction
565          */
566         if (unlikely(ofs == 0)) {
567                 pc = *ra;
568                 *ra = 0;
569                 return pc;
570         }
571
572         info.func = (void *)(pc - ofs);
573         info.func_size = ofs;   /* analyze from start to ofs */
574         leaf = get_frame_info(&info);
575         if (leaf < 0)
576                 return 0;
577
578         if (*sp < low || *sp + info.frame_size > high)
579                 return 0;
580
581         if (leaf)
582                 /*
583                  * For some extreme cases, get_frame_info() can
584                  * consider wrongly a nested function as a leaf
585                  * one. In that cases avoid to return always the
586                  * same value.
587                  */
588                 pc = pc != *ra ? *ra : 0;
589         else
590                 pc = ((unsigned long *)(*sp))[info.pc_offset];
591
592         *sp += info.frame_size;
593         *ra = 0;
594         return __kernel_text_address(pc) ? pc : 0;
595 }
596 EXPORT_SYMBOL(unwind_stack_by_address);
597
598 /* used by show_backtrace() */
599 unsigned long unwind_stack(struct task_struct *task, unsigned long *sp,
600                            unsigned long pc, unsigned long *ra)
601 {
602         unsigned long stack_page = 0;
603         int cpu;
604
605         for_each_possible_cpu(cpu) {
606                 if (on_irq_stack(cpu, *sp)) {
607                         stack_page = (unsigned long)irq_stack[cpu];
608                         break;
609                 }
610         }
611
612         if (!stack_page)
613                 stack_page = (unsigned long)task_stack_page(task);
614
615         return unwind_stack_by_address(stack_page, sp, pc, ra);
616 }
617 #endif
618
619 /*
620  * get_wchan - a maintenance nightmare^W^Wpain in the ass ...
621  */
622 unsigned long get_wchan(struct task_struct *task)
623 {
624         unsigned long pc = 0;
625 #ifdef CONFIG_KALLSYMS
626         unsigned long sp;
627         unsigned long ra = 0;
628 #endif
629
630         if (!task || task == current || task->state == TASK_RUNNING)
631                 goto out;
632         if (!task_stack_page(task))
633                 goto out;
634
635         pc = thread_saved_pc(task);
636
637 #ifdef CONFIG_KALLSYMS
638         sp = task->thread.reg29 + schedule_mfi.frame_size;
639
640         while (in_sched_functions(pc))
641                 pc = unwind_stack(task, &sp, pc, &ra);
642 #endif
643
644 out:
645         return pc;
646 }
647
648 /*
649  * Don't forget that the stack pointer must be aligned on a 8 bytes
650  * boundary for 32-bits ABI and 16 bytes for 64-bits ABI.
651  */
652 unsigned long arch_align_stack(unsigned long sp)
653 {
654         if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
655                 sp -= get_random_int() & ~PAGE_MASK;
656
657         return sp & ALMASK;
658 }
659
660 static DEFINE_PER_CPU(call_single_data_t, backtrace_csd);
661 static struct cpumask backtrace_csd_busy;
662
663 static void handle_backtrace(void *info)
664 {
665         nmi_cpu_backtrace(get_irq_regs());
666         cpumask_clear_cpu(smp_processor_id(), &backtrace_csd_busy);
667 }
668
669 static void raise_backtrace(cpumask_t *mask)
670 {
671         call_single_data_t *csd;
672         int cpu;
673
674         for_each_cpu(cpu, mask) {
675                 /*
676                  * If we previously sent an IPI to the target CPU & it hasn't
677                  * cleared its bit in the busy cpumask then it didn't handle
678                  * our previous IPI & it's not safe for us to reuse the
679                  * call_single_data_t.
680                  */
681                 if (cpumask_test_and_set_cpu(cpu, &backtrace_csd_busy)) {
682                         pr_warn("Unable to send backtrace IPI to CPU%u - perhaps it hung?\n",
683                                 cpu);
684                         continue;
685                 }
686
687                 csd = &per_cpu(backtrace_csd, cpu);
688                 csd->func = handle_backtrace;
689                 smp_call_function_single_async(cpu, csd);
690         }
691 }
692
693 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
694 {
695         nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_backtrace);
696 }
697
698 int mips_get_process_fp_mode(struct task_struct *task)
699 {
700         int value = 0;
701
702         if (!test_tsk_thread_flag(task, TIF_32BIT_FPREGS))
703                 value |= PR_FP_MODE_FR;
704         if (test_tsk_thread_flag(task, TIF_HYBRID_FPREGS))
705                 value |= PR_FP_MODE_FRE;
706
707         return value;
708 }
709
710 static long prepare_for_fp_mode_switch(void *unused)
711 {
712         /*
713          * This is icky, but we use this to simply ensure that all CPUs have
714          * context switched, regardless of whether they were previously running
715          * kernel or user code. This ensures that no CPU currently has its FPU
716          * enabled, or is about to attempt to enable it through any path other
717          * than enable_restore_fp_context() which will wait appropriately for
718          * fp_mode_switching to be zero.
719          */
720         return 0;
721 }
722
723 int mips_set_process_fp_mode(struct task_struct *task, unsigned int value)
724 {
725         const unsigned int known_bits = PR_FP_MODE_FR | PR_FP_MODE_FRE;
726         struct task_struct *t;
727         struct cpumask process_cpus;
728         int cpu;
729
730         /* If nothing to change, return right away, successfully.  */
731         if (value == mips_get_process_fp_mode(task))
732                 return 0;
733
734         /* Only accept a mode change if 64-bit FP enabled for o32.  */
735         if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
736                 return -EOPNOTSUPP;
737
738         /* And only for o32 tasks.  */
739         if (IS_ENABLED(CONFIG_64BIT) && !test_thread_flag(TIF_32BIT_REGS))
740                 return -EOPNOTSUPP;
741
742         /* Check the value is valid */
743         if (value & ~known_bits)
744                 return -EOPNOTSUPP;
745
746         /* Setting FRE without FR is not supported.  */
747         if ((value & (PR_FP_MODE_FR | PR_FP_MODE_FRE)) == PR_FP_MODE_FRE)
748                 return -EOPNOTSUPP;
749
750         /* Avoid inadvertently triggering emulation */
751         if ((value & PR_FP_MODE_FR) && raw_cpu_has_fpu &&
752             !(raw_current_cpu_data.fpu_id & MIPS_FPIR_F64))
753                 return -EOPNOTSUPP;
754         if ((value & PR_FP_MODE_FRE) && raw_cpu_has_fpu && !cpu_has_fre)
755                 return -EOPNOTSUPP;
756
757         /* FR = 0 not supported in MIPS R6 */
758         if (!(value & PR_FP_MODE_FR) && raw_cpu_has_fpu && cpu_has_mips_r6)
759                 return -EOPNOTSUPP;
760
761         /* Indicate the new FP mode in each thread */
762         for_each_thread(task, t) {
763                 /* Update desired FP register width */
764                 if (value & PR_FP_MODE_FR) {
765                         clear_tsk_thread_flag(t, TIF_32BIT_FPREGS);
766                 } else {
767                         set_tsk_thread_flag(t, TIF_32BIT_FPREGS);
768                         clear_tsk_thread_flag(t, TIF_MSA_CTX_LIVE);
769                 }
770
771                 /* Update desired FP single layout */
772                 if (value & PR_FP_MODE_FRE)
773                         set_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
774                 else
775                         clear_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
776         }
777
778         /*
779          * We need to ensure that all threads in the process have switched mode
780          * before returning, in order to allow userland to not worry about
781          * races. We can do this by forcing all CPUs that any thread in the
782          * process may be running on to schedule something else - in this case
783          * prepare_for_fp_mode_switch().
784          *
785          * We begin by generating a mask of all CPUs that any thread in the
786          * process may be running on.
787          */
788         cpumask_clear(&process_cpus);
789         for_each_thread(task, t)
790                 cpumask_set_cpu(task_cpu(t), &process_cpus);
791
792         /*
793          * Now we schedule prepare_for_fp_mode_switch() on each of those CPUs.
794          *
795          * The CPUs may have rescheduled already since we switched mode or
796          * generated the cpumask, but that doesn't matter. If the task in this
797          * process is scheduled out then our scheduling
798          * prepare_for_fp_mode_switch() will simply be redundant. If it's
799          * scheduled in then it will already have picked up the new FP mode
800          * whilst doing so.
801          */
802         get_online_cpus();
803         for_each_cpu_and(cpu, &process_cpus, cpu_online_mask)
804                 work_on_cpu(cpu, prepare_for_fp_mode_switch, NULL);
805         put_online_cpus();
806
807         wake_up_var(&task->mm->context.fp_mode_switching);
808
809         return 0;
810 }
811
812 #if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
813 void mips_dump_regs32(u32 *uregs, const struct pt_regs *regs)
814 {
815         unsigned int i;
816
817         for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) {
818                 /* k0/k1 are copied as zero. */
819                 if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27)
820                         uregs[i] = 0;
821                 else
822                         uregs[i] = regs->regs[i - MIPS32_EF_R0];
823         }
824
825         uregs[MIPS32_EF_LO] = regs->lo;
826         uregs[MIPS32_EF_HI] = regs->hi;
827         uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc;
828         uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
829         uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status;
830         uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause;
831 }
832 #endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
833
834 #ifdef CONFIG_64BIT
835 void mips_dump_regs64(u64 *uregs, const struct pt_regs *regs)
836 {
837         unsigned int i;
838
839         for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) {
840                 /* k0/k1 are copied as zero. */
841                 if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27)
842                         uregs[i] = 0;
843                 else
844                         uregs[i] = regs->regs[i - MIPS64_EF_R0];
845         }
846
847         uregs[MIPS64_EF_LO] = regs->lo;
848         uregs[MIPS64_EF_HI] = regs->hi;
849         uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc;
850         uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
851         uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status;
852         uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause;
853 }
854 #endif /* CONFIG_64BIT */