Merge tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
[sfrench/cifs-2.6.git] / arch / mips / cavium-octeon / csrc-octeon.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2007 by Ralf Baechle
7  * Copyright (C) 2009, 2012 Cavium, Inc.
8  */
9 #include <linux/clocksource.h>
10 #include <linux/export.h>
11 #include <linux/init.h>
12 #include <linux/smp.h>
13
14 #include <asm/cpu-info.h>
15 #include <asm/cpu-type.h>
16 #include <asm/time.h>
17
18 #include <asm/octeon/octeon.h>
19 #include <asm/octeon/cvmx-ipd-defs.h>
20 #include <asm/octeon/cvmx-mio-defs.h>
21 #include <asm/octeon/cvmx-rst-defs.h>
22 #include <asm/octeon/cvmx-fpa-defs.h>
23
24 static u64 f;
25 static u64 rdiv;
26 static u64 sdiv;
27 static u64 octeon_udelay_factor;
28 static u64 octeon_ndelay_factor;
29
30 void __init octeon_setup_delays(void)
31 {
32         octeon_udelay_factor = octeon_get_clock_rate() / 1000000;
33         /*
34          * For __ndelay we divide by 2^16, so the factor is multiplied
35          * by the same amount.
36          */
37         octeon_ndelay_factor = (octeon_udelay_factor * 0x10000ull) / 1000ull;
38
39         preset_lpj = octeon_get_clock_rate() / HZ;
40
41         if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
42                 union cvmx_mio_rst_boot rst_boot;
43
44                 rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
45                 rdiv = rst_boot.s.c_mul;        /* CPU clock */
46                 sdiv = rst_boot.s.pnr_mul;      /* I/O clock */
47                 f = (0x8000000000000000ull / sdiv) * 2;
48         } else if (current_cpu_type() == CPU_CAVIUM_OCTEON3) {
49                 union cvmx_rst_boot rst_boot;
50
51                 rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
52                 rdiv = rst_boot.s.c_mul;        /* CPU clock */
53                 sdiv = rst_boot.s.pnr_mul;      /* I/O clock */
54                 f = (0x8000000000000000ull / sdiv) * 2;
55         }
56
57 }
58
59 /*
60  * Set the current core's cvmcount counter to the value of the
61  * IPD_CLK_COUNT.  We do this on all cores as they are brought
62  * on-line.  This allows for a read from a local cpu register to
63  * access a synchronized counter.
64  *
65  * On CPU_CAVIUM_OCTEON2 the IPD_CLK_COUNT is scaled by rdiv/sdiv.
66  */
67 void octeon_init_cvmcount(void)
68 {
69         u64 clk_reg;
70         unsigned long flags;
71         unsigned loops = 2;
72
73         clk_reg = octeon_has_feature(OCTEON_FEATURE_FPA3) ?
74                 CVMX_FPA_CLK_COUNT : CVMX_IPD_CLK_COUNT;
75
76         /* Clobber loops so GCC will not unroll the following while loop. */
77         asm("" : "+r" (loops));
78
79         local_irq_save(flags);
80         /*
81          * Loop several times so we are executing from the cache,
82          * which should give more deterministic timing.
83          */
84         while (loops--) {
85                 u64 clk_count = cvmx_read_csr(clk_reg);
86                 if (rdiv != 0) {
87                         clk_count *= rdiv;
88                         if (f != 0) {
89                                 asm("dmultu\t%[cnt],%[f]\n\t"
90                                     "mfhi\t%[cnt]"
91                                     : [cnt] "+r" (clk_count)
92                                     : [f] "r" (f)
93                                     : "hi", "lo");
94                         }
95                 }
96                 write_c0_cvmcount(clk_count);
97         }
98         local_irq_restore(flags);
99 }
100
101 static u64 octeon_cvmcount_read(struct clocksource *cs)
102 {
103         return read_c0_cvmcount();
104 }
105
106 static struct clocksource clocksource_mips = {
107         .name           = "OCTEON_CVMCOUNT",
108         .read           = octeon_cvmcount_read,
109         .mask           = CLOCKSOURCE_MASK(64),
110         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
111 };
112
113 unsigned long long notrace sched_clock(void)
114 {
115         /* 64-bit arithmatic can overflow, so use 128-bit.  */
116         u64 t1, t2, t3;
117         unsigned long long rv;
118         u64 mult = clocksource_mips.mult;
119         u64 shift = clocksource_mips.shift;
120         u64 cnt = read_c0_cvmcount();
121
122         asm (
123                 "dmultu\t%[cnt],%[mult]\n\t"
124                 "nor\t%[t1],$0,%[shift]\n\t"
125                 "mfhi\t%[t2]\n\t"
126                 "mflo\t%[t3]\n\t"
127                 "dsll\t%[t2],%[t2],1\n\t"
128                 "dsrlv\t%[rv],%[t3],%[shift]\n\t"
129                 "dsllv\t%[t1],%[t2],%[t1]\n\t"
130                 "or\t%[rv],%[t1],%[rv]\n\t"
131                 : [rv] "=&r" (rv), [t1] "=&r" (t1), [t2] "=&r" (t2), [t3] "=&r" (t3)
132                 : [cnt] "r" (cnt), [mult] "r" (mult), [shift] "r" (shift)
133                 : "hi", "lo");
134         return rv;
135 }
136
137 void __init plat_time_init(void)
138 {
139         clocksource_mips.rating = 300;
140         clocksource_register_hz(&clocksource_mips, octeon_get_clock_rate());
141 }
142
143 void __udelay(unsigned long us)
144 {
145         u64 cur, end, inc;
146
147         cur = read_c0_cvmcount();
148
149         inc = us * octeon_udelay_factor;
150         end = cur + inc;
151
152         while (end > cur)
153                 cur = read_c0_cvmcount();
154 }
155 EXPORT_SYMBOL(__udelay);
156
157 void __ndelay(unsigned long ns)
158 {
159         u64 cur, end, inc;
160
161         cur = read_c0_cvmcount();
162
163         inc = ((ns * octeon_ndelay_factor) >> 16);
164         end = cur + inc;
165
166         while (end > cur)
167                 cur = read_c0_cvmcount();
168 }
169 EXPORT_SYMBOL(__ndelay);
170
171 void __delay(unsigned long loops)
172 {
173         u64 cur, end;
174
175         cur = read_c0_cvmcount();
176         end = cur + loops;
177
178         while (end > cur)
179                 cur = read_c0_cvmcount();
180 }
181 EXPORT_SYMBOL(__delay);
182
183
184 /**
185  * octeon_io_clk_delay - wait for a given number of io clock cycles to pass.
186  *
187  * We scale the wait by the clock ratio, and then wait for the
188  * corresponding number of core clocks.
189  *
190  * @count: The number of clocks to wait.
191  */
192 void octeon_io_clk_delay(unsigned long count)
193 {
194         u64 cur, end;
195
196         cur = read_c0_cvmcount();
197         if (rdiv != 0) {
198                 end = count * rdiv;
199                 if (f != 0) {
200                         asm("dmultu\t%[cnt],%[f]\n\t"
201                                 "mfhi\t%[cnt]"
202                                 : [cnt] "+r" (end)
203                                 : [f] "r" (f)
204                                 : "hi", "lo");
205                 }
206                 end = cur + end;
207         } else {
208                 end = cur + count;
209         }
210         while (end > cur)
211                 cur = read_c0_cvmcount();
212 }
213 EXPORT_SYMBOL(octeon_io_clk_delay);