Merge tag 'for-linus-4.9-ofs1' of git://git.kernel.org/pub/scm/linux/kernel/git/hubca...
[sfrench/cifs-2.6.git] / arch / metag / kernel / dma.c
1 /*
2  *  Meta version derived from arch/powerpc/lib/dma-noncoherent.c
3  *    Copyright (C) 2008 Imagination Technologies Ltd.
4  *
5  *  PowerPC version derived from arch/arm/mm/consistent.c
6  *    Copyright (C) 2001 Dan Malek (dmalek@jlc.net)
7  *
8  *  Copyright (C) 2000 Russell King
9  *
10  * Consistent memory allocators.  Used for DMA devices that want to
11  * share uncached memory with the processor core.  The function return
12  * is the virtual address and 'dma_handle' is the physical address.
13  * Mostly stolen from the ARM port, with some changes for PowerPC.
14  *                                              -- Dan
15  *
16  * Reorganized to get rid of the arch-specific consistent_* functions
17  * and provide non-coherent implementations for the DMA API. -Matt
18  *
19  * Added in_interrupt() safe dma_alloc_coherent()/dma_free_coherent()
20  * implementation. This is pulled straight from ARM and barely
21  * modified. -Matt
22  *
23  * This program is free software; you can redistribute it and/or modify
24  * it under the terms of the GNU General Public License version 2 as
25  * published by the Free Software Foundation.
26  */
27
28 #include <linux/sched.h>
29 #include <linux/kernel.h>
30 #include <linux/errno.h>
31 #include <linux/export.h>
32 #include <linux/string.h>
33 #include <linux/types.h>
34 #include <linux/highmem.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/slab.h>
37
38 #include <asm/tlbflush.h>
39 #include <asm/mmu.h>
40
41 #define CONSISTENT_OFFSET(x)    (((unsigned long)(x) - CONSISTENT_START) \
42                                         >> PAGE_SHIFT)
43
44 static u64 get_coherent_dma_mask(struct device *dev)
45 {
46         u64 mask = ~0ULL;
47
48         if (dev) {
49                 mask = dev->coherent_dma_mask;
50
51                 /*
52                  * Sanity check the DMA mask - it must be non-zero, and
53                  * must be able to be satisfied by a DMA allocation.
54                  */
55                 if (mask == 0) {
56                         dev_warn(dev, "coherent DMA mask is unset\n");
57                         return 0;
58                 }
59         }
60
61         return mask;
62 }
63 /*
64  * This is the page table (2MB) covering uncached, DMA consistent allocations
65  */
66 static pte_t *consistent_pte;
67 static DEFINE_SPINLOCK(consistent_lock);
68
69 /*
70  * VM region handling support.
71  *
72  * This should become something generic, handling VM region allocations for
73  * vmalloc and similar (ioremap, module space, etc).
74  *
75  * I envisage vmalloc()'s supporting vm_struct becoming:
76  *
77  *  struct vm_struct {
78  *    struct metag_vm_region    region;
79  *    unsigned long     flags;
80  *    struct page       **pages;
81  *    unsigned int      nr_pages;
82  *    unsigned long     phys_addr;
83  *  };
84  *
85  * get_vm_area() would then call metag_vm_region_alloc with an appropriate
86  * struct metag_vm_region head (eg):
87  *
88  *  struct metag_vm_region vmalloc_head = {
89  *      .vm_list        = LIST_HEAD_INIT(vmalloc_head.vm_list),
90  *      .vm_start       = VMALLOC_START,
91  *      .vm_end         = VMALLOC_END,
92  *  };
93  *
94  * However, vmalloc_head.vm_start is variable (typically, it is dependent on
95  * the amount of RAM found at boot time.)  I would imagine that get_vm_area()
96  * would have to initialise this each time prior to calling
97  * metag_vm_region_alloc().
98  */
99 struct metag_vm_region {
100         struct list_head vm_list;
101         unsigned long vm_start;
102         unsigned long vm_end;
103         struct page             *vm_pages;
104         int                     vm_active;
105 };
106
107 static struct metag_vm_region consistent_head = {
108         .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
109         .vm_start = CONSISTENT_START,
110         .vm_end = CONSISTENT_END,
111 };
112
113 static struct metag_vm_region *metag_vm_region_alloc(struct metag_vm_region
114                                                      *head, size_t size,
115                                                      gfp_t gfp)
116 {
117         unsigned long addr = head->vm_start, end = head->vm_end - size;
118         unsigned long flags;
119         struct metag_vm_region *c, *new;
120
121         new = kmalloc(sizeof(struct metag_vm_region), gfp);
122         if (!new)
123                 goto out;
124
125         spin_lock_irqsave(&consistent_lock, flags);
126
127         list_for_each_entry(c, &head->vm_list, vm_list) {
128                 if ((addr + size) < addr)
129                         goto nospc;
130                 if ((addr + size) <= c->vm_start)
131                         goto found;
132                 addr = c->vm_end;
133                 if (addr > end)
134                         goto nospc;
135         }
136
137 found:
138         /*
139          * Insert this entry _before_ the one we found.
140          */
141         list_add_tail(&new->vm_list, &c->vm_list);
142         new->vm_start = addr;
143         new->vm_end = addr + size;
144         new->vm_active = 1;
145
146         spin_unlock_irqrestore(&consistent_lock, flags);
147         return new;
148
149 nospc:
150         spin_unlock_irqrestore(&consistent_lock, flags);
151         kfree(new);
152 out:
153         return NULL;
154 }
155
156 static struct metag_vm_region *metag_vm_region_find(struct metag_vm_region
157                                                     *head, unsigned long addr)
158 {
159         struct metag_vm_region *c;
160
161         list_for_each_entry(c, &head->vm_list, vm_list) {
162                 if (c->vm_active && c->vm_start == addr)
163                         goto out;
164         }
165         c = NULL;
166 out:
167         return c;
168 }
169
170 /*
171  * Allocate DMA-coherent memory space and return both the kernel remapped
172  * virtual and bus address for that space.
173  */
174 static void *metag_dma_alloc(struct device *dev, size_t size,
175                 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
176 {
177         struct page *page;
178         struct metag_vm_region *c;
179         unsigned long order;
180         u64 mask = get_coherent_dma_mask(dev);
181         u64 limit;
182
183         if (!consistent_pte) {
184                 pr_err("%s: not initialised\n", __func__);
185                 dump_stack();
186                 return NULL;
187         }
188
189         if (!mask)
190                 goto no_page;
191         size = PAGE_ALIGN(size);
192         limit = (mask + 1) & ~mask;
193         if ((limit && size >= limit)
194             || size >= (CONSISTENT_END - CONSISTENT_START)) {
195                 pr_warn("coherent allocation too big (requested %#x mask %#Lx)\n",
196                         size, mask);
197                 return NULL;
198         }
199
200         order = get_order(size);
201
202         if (mask != 0xffffffff)
203                 gfp |= GFP_DMA;
204
205         page = alloc_pages(gfp, order);
206         if (!page)
207                 goto no_page;
208
209         /*
210          * Invalidate any data that might be lurking in the
211          * kernel direct-mapped region for device DMA.
212          */
213         {
214                 void *kaddr = page_address(page);
215                 memset(kaddr, 0, size);
216                 flush_dcache_region(kaddr, size);
217         }
218
219         /*
220          * Allocate a virtual address in the consistent mapping region.
221          */
222         c = metag_vm_region_alloc(&consistent_head, size,
223                                   gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
224         if (c) {
225                 unsigned long vaddr = c->vm_start;
226                 pte_t *pte = consistent_pte + CONSISTENT_OFFSET(vaddr);
227                 struct page *end = page + (1 << order);
228
229                 c->vm_pages = page;
230                 split_page(page, order);
231
232                 /*
233                  * Set the "dma handle"
234                  */
235                 *handle = page_to_bus(page);
236
237                 do {
238                         BUG_ON(!pte_none(*pte));
239
240                         SetPageReserved(page);
241                         set_pte_at(&init_mm, vaddr,
242                                    pte, mk_pte(page,
243                                                pgprot_writecombine
244                                                (PAGE_KERNEL)));
245                         page++;
246                         pte++;
247                         vaddr += PAGE_SIZE;
248                 } while (size -= PAGE_SIZE);
249
250                 /*
251                  * Free the otherwise unused pages.
252                  */
253                 while (page < end) {
254                         __free_page(page);
255                         page++;
256                 }
257
258                 return (void *)c->vm_start;
259         }
260
261         if (page)
262                 __free_pages(page, order);
263 no_page:
264         return NULL;
265 }
266
267 /*
268  * free a page as defined by the above mapping.
269  */
270 static void metag_dma_free(struct device *dev, size_t size, void *vaddr,
271                 dma_addr_t dma_handle, unsigned long attrs)
272 {
273         struct metag_vm_region *c;
274         unsigned long flags, addr;
275         pte_t *ptep;
276
277         size = PAGE_ALIGN(size);
278
279         spin_lock_irqsave(&consistent_lock, flags);
280
281         c = metag_vm_region_find(&consistent_head, (unsigned long)vaddr);
282         if (!c)
283                 goto no_area;
284
285         c->vm_active = 0;
286         if ((c->vm_end - c->vm_start) != size) {
287                 pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
288                        __func__, c->vm_end - c->vm_start, size);
289                 dump_stack();
290                 size = c->vm_end - c->vm_start;
291         }
292
293         ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
294         addr = c->vm_start;
295         do {
296                 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
297                 unsigned long pfn;
298
299                 ptep++;
300                 addr += PAGE_SIZE;
301
302                 if (!pte_none(pte) && pte_present(pte)) {
303                         pfn = pte_pfn(pte);
304
305                         if (pfn_valid(pfn)) {
306                                 struct page *page = pfn_to_page(pfn);
307                                 __free_reserved_page(page);
308                                 continue;
309                         }
310                 }
311
312                 pr_crit("%s: bad page in kernel page table\n",
313                         __func__);
314         } while (size -= PAGE_SIZE);
315
316         flush_tlb_kernel_range(c->vm_start, c->vm_end);
317
318         list_del(&c->vm_list);
319
320         spin_unlock_irqrestore(&consistent_lock, flags);
321
322         kfree(c);
323         return;
324
325 no_area:
326         spin_unlock_irqrestore(&consistent_lock, flags);
327         pr_err("%s: trying to free invalid coherent area: %p\n",
328                __func__, vaddr);
329         dump_stack();
330 }
331
332 static int metag_dma_mmap(struct device *dev, struct vm_area_struct *vma,
333                 void *cpu_addr, dma_addr_t dma_addr, size_t size,
334                 unsigned long attrs)
335 {
336         unsigned long flags, user_size, kern_size;
337         struct metag_vm_region *c;
338         int ret = -ENXIO;
339
340         if (attrs & DMA_ATTR_WRITE_COMBINE)
341                 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
342         else
343                 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
344
345         user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
346
347         spin_lock_irqsave(&consistent_lock, flags);
348         c = metag_vm_region_find(&consistent_head, (unsigned long)cpu_addr);
349         spin_unlock_irqrestore(&consistent_lock, flags);
350
351         if (c) {
352                 unsigned long off = vma->vm_pgoff;
353
354                 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
355
356                 if (off < kern_size &&
357                     user_size <= (kern_size - off)) {
358                         ret = remap_pfn_range(vma, vma->vm_start,
359                                               page_to_pfn(c->vm_pages) + off,
360                                               user_size << PAGE_SHIFT,
361                                               vma->vm_page_prot);
362                 }
363         }
364
365
366         return ret;
367 }
368
369 /*
370  * Initialise the consistent memory allocation.
371  */
372 static int __init dma_alloc_init(void)
373 {
374         pgd_t *pgd, *pgd_k;
375         pud_t *pud, *pud_k;
376         pmd_t *pmd, *pmd_k;
377         pte_t *pte;
378         int ret = 0;
379
380         do {
381                 int offset = pgd_index(CONSISTENT_START);
382                 pgd = pgd_offset(&init_mm, CONSISTENT_START);
383                 pud = pud_alloc(&init_mm, pgd, CONSISTENT_START);
384                 pmd = pmd_alloc(&init_mm, pud, CONSISTENT_START);
385                 WARN_ON(!pmd_none(*pmd));
386
387                 pte = pte_alloc_kernel(pmd, CONSISTENT_START);
388                 if (!pte) {
389                         pr_err("%s: no pte tables\n", __func__);
390                         ret = -ENOMEM;
391                         break;
392                 }
393
394                 pgd_k = ((pgd_t *) mmu_get_base()) + offset;
395                 pud_k = pud_offset(pgd_k, CONSISTENT_START);
396                 pmd_k = pmd_offset(pud_k, CONSISTENT_START);
397                 set_pmd(pmd_k, *pmd);
398
399                 consistent_pte = pte;
400         } while (0);
401
402         return ret;
403 }
404 early_initcall(dma_alloc_init);
405
406 /*
407  * make an area consistent to devices.
408  */
409 static void dma_sync_for_device(void *vaddr, size_t size, int dma_direction)
410 {
411         /*
412          * Ensure any writes get through the write combiner. This is necessary
413          * even with DMA_FROM_DEVICE, or the write may dirty the cache after
414          * we've invalidated it and get written back during the DMA.
415          */
416
417         barrier();
418
419         switch (dma_direction) {
420         case DMA_BIDIRECTIONAL:
421                 /*
422                  * Writeback to ensure the device can see our latest changes and
423                  * so that we have no dirty lines, and invalidate the cache
424                  * lines too in preparation for receiving the buffer back
425                  * (dma_sync_for_cpu) later.
426                  */
427                 flush_dcache_region(vaddr, size);
428                 break;
429         case DMA_TO_DEVICE:
430                 /*
431                  * Writeback to ensure the device can see our latest changes.
432                  * There's no need to invalidate as the device shouldn't write
433                  * to the buffer.
434                  */
435                 writeback_dcache_region(vaddr, size);
436                 break;
437         case DMA_FROM_DEVICE:
438                 /*
439                  * Invalidate to ensure we have no dirty lines that could get
440                  * written back during the DMA. It's also safe to flush
441                  * (writeback) here if necessary.
442                  */
443                 invalidate_dcache_region(vaddr, size);
444                 break;
445         case DMA_NONE:
446                 BUG();
447         }
448
449         wmb();
450 }
451
452 /*
453  * make an area consistent to the core.
454  */
455 static void dma_sync_for_cpu(void *vaddr, size_t size, int dma_direction)
456 {
457         /*
458          * Hardware L2 cache prefetch doesn't occur across 4K physical
459          * boundaries, however according to Documentation/DMA-API-HOWTO.txt
460          * kmalloc'd memory is DMA'able, so accesses in nearby memory could
461          * trigger a cache fill in the DMA buffer.
462          *
463          * This should never cause dirty lines, so a flush or invalidate should
464          * be safe to allow us to see data from the device.
465          */
466         if (_meta_l2c_pf_is_enabled()) {
467                 switch (dma_direction) {
468                 case DMA_BIDIRECTIONAL:
469                 case DMA_FROM_DEVICE:
470                         invalidate_dcache_region(vaddr, size);
471                         break;
472                 case DMA_TO_DEVICE:
473                         /* The device shouldn't have written to the buffer */
474                         break;
475                 case DMA_NONE:
476                         BUG();
477                 }
478         }
479
480         rmb();
481 }
482
483 static dma_addr_t metag_dma_map_page(struct device *dev, struct page *page,
484                 unsigned long offset, size_t size,
485                 enum dma_data_direction direction, unsigned long attrs)
486 {
487         dma_sync_for_device((void *)(page_to_phys(page) + offset), size,
488                             direction);
489         return page_to_phys(page) + offset;
490 }
491
492 static void metag_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
493                 size_t size, enum dma_data_direction direction,
494                 unsigned long attrs)
495 {
496         dma_sync_for_cpu(phys_to_virt(dma_address), size, direction);
497 }
498
499 static int metag_dma_map_sg(struct device *dev, struct scatterlist *sglist,
500                 int nents, enum dma_data_direction direction,
501                 unsigned long attrs)
502 {
503         struct scatterlist *sg;
504         int i;
505
506         for_each_sg(sglist, sg, nents, i) {
507                 BUG_ON(!sg_page(sg));
508
509                 sg->dma_address = sg_phys(sg);
510                 dma_sync_for_device(sg_virt(sg), sg->length, direction);
511         }
512
513         return nents;
514 }
515
516
517 static void metag_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
518                 int nhwentries, enum dma_data_direction direction,
519                 unsigned long attrs)
520 {
521         struct scatterlist *sg;
522         int i;
523
524         for_each_sg(sglist, sg, nhwentries, i) {
525                 BUG_ON(!sg_page(sg));
526
527                 sg->dma_address = sg_phys(sg);
528                 dma_sync_for_cpu(sg_virt(sg), sg->length, direction);
529         }
530 }
531
532 static void metag_dma_sync_single_for_cpu(struct device *dev,
533                 dma_addr_t dma_handle, size_t size,
534                 enum dma_data_direction direction)
535 {
536         dma_sync_for_cpu(phys_to_virt(dma_handle), size, direction);
537 }
538
539 static void metag_dma_sync_single_for_device(struct device *dev,
540                 dma_addr_t dma_handle, size_t size,
541                 enum dma_data_direction direction)
542 {
543         dma_sync_for_device(phys_to_virt(dma_handle), size, direction);
544 }
545
546 static void metag_dma_sync_sg_for_cpu(struct device *dev,
547                 struct scatterlist *sglist, int nelems,
548                 enum dma_data_direction direction)
549 {
550         int i;
551         struct scatterlist *sg;
552
553         for_each_sg(sglist, sg, nelems, i)
554                 dma_sync_for_cpu(sg_virt(sg), sg->length, direction);
555 }
556
557 static void metag_dma_sync_sg_for_device(struct device *dev,
558                 struct scatterlist *sglist, int nelems,
559                 enum dma_data_direction direction)
560 {
561         int i;
562         struct scatterlist *sg;
563
564         for_each_sg(sglist, sg, nelems, i)
565                 dma_sync_for_device(sg_virt(sg), sg->length, direction);
566 }
567
568 struct dma_map_ops metag_dma_ops = {
569         .alloc                  = metag_dma_alloc,
570         .free                   = metag_dma_free,
571         .map_page               = metag_dma_map_page,
572         .map_sg                 = metag_dma_map_sg,
573         .sync_single_for_device = metag_dma_sync_single_for_device,
574         .sync_single_for_cpu    = metag_dma_sync_single_for_cpu,
575         .sync_sg_for_cpu        = metag_dma_sync_sg_for_cpu,
576         .mmap                   = metag_dma_mmap,
577 };
578 EXPORT_SYMBOL(metag_dma_ops);