Merge tag 'for-5.0-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[sfrench/cifs-2.6.git] / arch / ia64 / mm / init.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Initialize MMU support.
4  *
5  * Copyright (C) 1998-2003 Hewlett-Packard Co
6  *      David Mosberger-Tang <davidm@hpl.hp.com>
7  */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10
11 #include <linux/dma-noncoherent.h>
12 #include <linux/efi.h>
13 #include <linux/elf.h>
14 #include <linux/memblock.h>
15 #include <linux/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/mmzone.h>
18 #include <linux/module.h>
19 #include <linux/personality.h>
20 #include <linux/reboot.h>
21 #include <linux/slab.h>
22 #include <linux/swap.h>
23 #include <linux/proc_fs.h>
24 #include <linux/bitops.h>
25 #include <linux/kexec.h>
26
27 #include <asm/dma.h>
28 #include <asm/io.h>
29 #include <asm/machvec.h>
30 #include <asm/numa.h>
31 #include <asm/patch.h>
32 #include <asm/pgalloc.h>
33 #include <asm/sal.h>
34 #include <asm/sections.h>
35 #include <asm/tlb.h>
36 #include <linux/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/mca.h>
39
40 extern void ia64_tlb_init (void);
41
42 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
43
44 #ifdef CONFIG_VIRTUAL_MEM_MAP
45 unsigned long VMALLOC_END = VMALLOC_END_INIT;
46 EXPORT_SYMBOL(VMALLOC_END);
47 struct page *vmem_map;
48 EXPORT_SYMBOL(vmem_map);
49 #endif
50
51 struct page *zero_page_memmap_ptr;      /* map entry for zero page */
52 EXPORT_SYMBOL(zero_page_memmap_ptr);
53
54 void
55 __ia64_sync_icache_dcache (pte_t pte)
56 {
57         unsigned long addr;
58         struct page *page;
59
60         page = pte_page(pte);
61         addr = (unsigned long) page_address(page);
62
63         if (test_bit(PG_arch_1, &page->flags))
64                 return;                         /* i-cache is already coherent with d-cache */
65
66         flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
67         set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
68 }
69
70 #ifdef CONFIG_SWIOTLB
71 /*
72  * Since DMA is i-cache coherent, any (complete) pages that were written via
73  * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
74  * flush them when they get mapped into an executable vm-area.
75  */
76 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
77                 size_t size, enum dma_data_direction dir)
78 {
79         unsigned long pfn = PHYS_PFN(paddr);
80
81         do {
82                 set_bit(PG_arch_1, &pfn_to_page(pfn)->flags);
83         } while (++pfn <= PHYS_PFN(paddr + size - 1));
84 }
85 #endif
86
87 inline void
88 ia64_set_rbs_bot (void)
89 {
90         unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
91
92         if (stack_size > MAX_USER_STACK_SIZE)
93                 stack_size = MAX_USER_STACK_SIZE;
94         current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
95 }
96
97 /*
98  * This performs some platform-dependent address space initialization.
99  * On IA-64, we want to setup the VM area for the register backing
100  * store (which grows upwards) and install the gateway page which is
101  * used for signal trampolines, etc.
102  */
103 void
104 ia64_init_addr_space (void)
105 {
106         struct vm_area_struct *vma;
107
108         ia64_set_rbs_bot();
109
110         /*
111          * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
112          * the problem.  When the process attempts to write to the register backing store
113          * for the first time, it will get a SEGFAULT in this case.
114          */
115         vma = vm_area_alloc(current->mm);
116         if (vma) {
117                 vma_set_anonymous(vma);
118                 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
119                 vma->vm_end = vma->vm_start + PAGE_SIZE;
120                 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
121                 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
122                 down_write(&current->mm->mmap_sem);
123                 if (insert_vm_struct(current->mm, vma)) {
124                         up_write(&current->mm->mmap_sem);
125                         vm_area_free(vma);
126                         return;
127                 }
128                 up_write(&current->mm->mmap_sem);
129         }
130
131         /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
132         if (!(current->personality & MMAP_PAGE_ZERO)) {
133                 vma = vm_area_alloc(current->mm);
134                 if (vma) {
135                         vma_set_anonymous(vma);
136                         vma->vm_end = PAGE_SIZE;
137                         vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
138                         vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
139                                         VM_DONTEXPAND | VM_DONTDUMP;
140                         down_write(&current->mm->mmap_sem);
141                         if (insert_vm_struct(current->mm, vma)) {
142                                 up_write(&current->mm->mmap_sem);
143                                 vm_area_free(vma);
144                                 return;
145                         }
146                         up_write(&current->mm->mmap_sem);
147                 }
148         }
149 }
150
151 void
152 free_initmem (void)
153 {
154         free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
155                            -1, "unused kernel");
156 }
157
158 void __init
159 free_initrd_mem (unsigned long start, unsigned long end)
160 {
161         /*
162          * EFI uses 4KB pages while the kernel can use 4KB or bigger.
163          * Thus EFI and the kernel may have different page sizes. It is
164          * therefore possible to have the initrd share the same page as
165          * the end of the kernel (given current setup).
166          *
167          * To avoid freeing/using the wrong page (kernel sized) we:
168          *      - align up the beginning of initrd
169          *      - align down the end of initrd
170          *
171          *  |             |
172          *  |=============| a000
173          *  |             |
174          *  |             |
175          *  |             | 9000
176          *  |/////////////|
177          *  |/////////////|
178          *  |=============| 8000
179          *  |///INITRD////|
180          *  |/////////////|
181          *  |/////////////| 7000
182          *  |             |
183          *  |KKKKKKKKKKKKK|
184          *  |=============| 6000
185          *  |KKKKKKKKKKKKK|
186          *  |KKKKKKKKKKKKK|
187          *  K=kernel using 8KB pages
188          *
189          * In this example, we must free page 8000 ONLY. So we must align up
190          * initrd_start and keep initrd_end as is.
191          */
192         start = PAGE_ALIGN(start);
193         end = end & PAGE_MASK;
194
195         if (start < end)
196                 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
197
198         for (; start < end; start += PAGE_SIZE) {
199                 if (!virt_addr_valid(start))
200                         continue;
201                 free_reserved_page(virt_to_page(start));
202         }
203 }
204
205 /*
206  * This installs a clean page in the kernel's page table.
207  */
208 static struct page * __init
209 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
210 {
211         pgd_t *pgd;
212         pud_t *pud;
213         pmd_t *pmd;
214         pte_t *pte;
215
216         pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
217
218         {
219                 pud = pud_alloc(&init_mm, pgd, address);
220                 if (!pud)
221                         goto out;
222                 pmd = pmd_alloc(&init_mm, pud, address);
223                 if (!pmd)
224                         goto out;
225                 pte = pte_alloc_kernel(pmd, address);
226                 if (!pte)
227                         goto out;
228                 if (!pte_none(*pte))
229                         goto out;
230                 set_pte(pte, mk_pte(page, pgprot));
231         }
232   out:
233         /* no need for flush_tlb */
234         return page;
235 }
236
237 static void __init
238 setup_gate (void)
239 {
240         struct page *page;
241
242         /*
243          * Map the gate page twice: once read-only to export the ELF
244          * headers etc. and once execute-only page to enable
245          * privilege-promotion via "epc":
246          */
247         page = virt_to_page(ia64_imva(__start_gate_section));
248         put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
249 #ifdef HAVE_BUGGY_SEGREL
250         page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
251         put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
252 #else
253         put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
254         /* Fill in the holes (if any) with read-only zero pages: */
255         {
256                 unsigned long addr;
257
258                 for (addr = GATE_ADDR + PAGE_SIZE;
259                      addr < GATE_ADDR + PERCPU_PAGE_SIZE;
260                      addr += PAGE_SIZE)
261                 {
262                         put_kernel_page(ZERO_PAGE(0), addr,
263                                         PAGE_READONLY);
264                         put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
265                                         PAGE_READONLY);
266                 }
267         }
268 #endif
269         ia64_patch_gate();
270 }
271
272 static struct vm_area_struct gate_vma;
273
274 static int __init gate_vma_init(void)
275 {
276         vma_init(&gate_vma, NULL);
277         gate_vma.vm_start = FIXADDR_USER_START;
278         gate_vma.vm_end = FIXADDR_USER_END;
279         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
280         gate_vma.vm_page_prot = __P101;
281
282         return 0;
283 }
284 __initcall(gate_vma_init);
285
286 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
287 {
288         return &gate_vma;
289 }
290
291 int in_gate_area_no_mm(unsigned long addr)
292 {
293         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
294                 return 1;
295         return 0;
296 }
297
298 int in_gate_area(struct mm_struct *mm, unsigned long addr)
299 {
300         return in_gate_area_no_mm(addr);
301 }
302
303 void ia64_mmu_init(void *my_cpu_data)
304 {
305         unsigned long pta, impl_va_bits;
306         extern void tlb_init(void);
307
308 #ifdef CONFIG_DISABLE_VHPT
309 #       define VHPT_ENABLE_BIT  0
310 #else
311 #       define VHPT_ENABLE_BIT  1
312 #endif
313
314         /*
315          * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
316          * address space.  The IA-64 architecture guarantees that at least 50 bits of
317          * virtual address space are implemented but if we pick a large enough page size
318          * (e.g., 64KB), the mapped address space is big enough that it will overlap with
319          * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
320          * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
321          * problem in practice.  Alternatively, we could truncate the top of the mapped
322          * address space to not permit mappings that would overlap with the VMLPT.
323          * --davidm 00/12/06
324          */
325 #       define pte_bits                 3
326 #       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
327         /*
328          * The virtual page table has to cover the entire implemented address space within
329          * a region even though not all of this space may be mappable.  The reason for
330          * this is that the Access bit and Dirty bit fault handlers perform
331          * non-speculative accesses to the virtual page table, so the address range of the
332          * virtual page table itself needs to be covered by virtual page table.
333          */
334 #       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
335 #       define POW2(n)                  (1ULL << (n))
336
337         impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
338
339         if (impl_va_bits < 51 || impl_va_bits > 61)
340                 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
341         /*
342          * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
343          * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
344          * the test makes sure that our mapped space doesn't overlap the
345          * unimplemented hole in the middle of the region.
346          */
347         if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
348             (mapped_space_bits > impl_va_bits - 1))
349                 panic("Cannot build a big enough virtual-linear page table"
350                       " to cover mapped address space.\n"
351                       " Try using a smaller page size.\n");
352
353
354         /* place the VMLPT at the end of each page-table mapped region: */
355         pta = POW2(61) - POW2(vmlpt_bits);
356
357         /*
358          * Set the (virtually mapped linear) page table address.  Bit
359          * 8 selects between the short and long format, bits 2-7 the
360          * size of the table, and bit 0 whether the VHPT walker is
361          * enabled.
362          */
363         ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
364
365         ia64_tlb_init();
366
367 #ifdef  CONFIG_HUGETLB_PAGE
368         ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
369         ia64_srlz_d();
370 #endif
371 }
372
373 #ifdef CONFIG_VIRTUAL_MEM_MAP
374 int vmemmap_find_next_valid_pfn(int node, int i)
375 {
376         unsigned long end_address, hole_next_pfn;
377         unsigned long stop_address;
378         pg_data_t *pgdat = NODE_DATA(node);
379
380         end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
381         end_address = PAGE_ALIGN(end_address);
382         stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
383
384         do {
385                 pgd_t *pgd;
386                 pud_t *pud;
387                 pmd_t *pmd;
388                 pte_t *pte;
389
390                 pgd = pgd_offset_k(end_address);
391                 if (pgd_none(*pgd)) {
392                         end_address += PGDIR_SIZE;
393                         continue;
394                 }
395
396                 pud = pud_offset(pgd, end_address);
397                 if (pud_none(*pud)) {
398                         end_address += PUD_SIZE;
399                         continue;
400                 }
401
402                 pmd = pmd_offset(pud, end_address);
403                 if (pmd_none(*pmd)) {
404                         end_address += PMD_SIZE;
405                         continue;
406                 }
407
408                 pte = pte_offset_kernel(pmd, end_address);
409 retry_pte:
410                 if (pte_none(*pte)) {
411                         end_address += PAGE_SIZE;
412                         pte++;
413                         if ((end_address < stop_address) &&
414                             (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
415                                 goto retry_pte;
416                         continue;
417                 }
418                 /* Found next valid vmem_map page */
419                 break;
420         } while (end_address < stop_address);
421
422         end_address = min(end_address, stop_address);
423         end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
424         hole_next_pfn = end_address / sizeof(struct page);
425         return hole_next_pfn - pgdat->node_start_pfn;
426 }
427
428 int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
429 {
430         unsigned long address, start_page, end_page;
431         struct page *map_start, *map_end;
432         int node;
433         pgd_t *pgd;
434         pud_t *pud;
435         pmd_t *pmd;
436         pte_t *pte;
437
438         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
439         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
440
441         start_page = (unsigned long) map_start & PAGE_MASK;
442         end_page = PAGE_ALIGN((unsigned long) map_end);
443         node = paddr_to_nid(__pa(start));
444
445         for (address = start_page; address < end_page; address += PAGE_SIZE) {
446                 pgd = pgd_offset_k(address);
447                 if (pgd_none(*pgd))
448                         pgd_populate(&init_mm, pgd, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node));
449                 pud = pud_offset(pgd, address);
450
451                 if (pud_none(*pud))
452                         pud_populate(&init_mm, pud, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node));
453                 pmd = pmd_offset(pud, address);
454
455                 if (pmd_none(*pmd))
456                         pmd_populate_kernel(&init_mm, pmd, memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node));
457                 pte = pte_offset_kernel(pmd, address);
458
459                 if (pte_none(*pte))
460                         set_pte(pte, pfn_pte(__pa(memblock_alloc_node(PAGE_SIZE, PAGE_SIZE, node)) >> PAGE_SHIFT,
461                                              PAGE_KERNEL));
462         }
463         return 0;
464 }
465
466 struct memmap_init_callback_data {
467         struct page *start;
468         struct page *end;
469         int nid;
470         unsigned long zone;
471 };
472
473 static int __meminit
474 virtual_memmap_init(u64 start, u64 end, void *arg)
475 {
476         struct memmap_init_callback_data *args;
477         struct page *map_start, *map_end;
478
479         args = (struct memmap_init_callback_data *) arg;
480         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
481         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
482
483         if (map_start < args->start)
484                 map_start = args->start;
485         if (map_end > args->end)
486                 map_end = args->end;
487
488         /*
489          * We have to initialize "out of bounds" struct page elements that fit completely
490          * on the same pages that were allocated for the "in bounds" elements because they
491          * may be referenced later (and found to be "reserved").
492          */
493         map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
494         map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
495                     / sizeof(struct page));
496
497         if (map_start < map_end)
498                 memmap_init_zone((unsigned long)(map_end - map_start),
499                                  args->nid, args->zone, page_to_pfn(map_start),
500                                  MEMMAP_EARLY, NULL);
501         return 0;
502 }
503
504 void __meminit
505 memmap_init (unsigned long size, int nid, unsigned long zone,
506              unsigned long start_pfn)
507 {
508         if (!vmem_map) {
509                 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY,
510                                 NULL);
511         } else {
512                 struct page *start;
513                 struct memmap_init_callback_data args;
514
515                 start = pfn_to_page(start_pfn);
516                 args.start = start;
517                 args.end = start + size;
518                 args.nid = nid;
519                 args.zone = zone;
520
521                 efi_memmap_walk(virtual_memmap_init, &args);
522         }
523 }
524
525 int
526 ia64_pfn_valid (unsigned long pfn)
527 {
528         char byte;
529         struct page *pg = pfn_to_page(pfn);
530
531         return     (__get_user(byte, (char __user *) pg) == 0)
532                 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
533                         || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
534 }
535 EXPORT_SYMBOL(ia64_pfn_valid);
536
537 int __init find_largest_hole(u64 start, u64 end, void *arg)
538 {
539         u64 *max_gap = arg;
540
541         static u64 last_end = PAGE_OFFSET;
542
543         /* NOTE: this algorithm assumes efi memmap table is ordered */
544
545         if (*max_gap < (start - last_end))
546                 *max_gap = start - last_end;
547         last_end = end;
548         return 0;
549 }
550
551 #endif /* CONFIG_VIRTUAL_MEM_MAP */
552
553 int __init register_active_ranges(u64 start, u64 len, int nid)
554 {
555         u64 end = start + len;
556
557 #ifdef CONFIG_KEXEC
558         if (start > crashk_res.start && start < crashk_res.end)
559                 start = crashk_res.end;
560         if (end > crashk_res.start && end < crashk_res.end)
561                 end = crashk_res.start;
562 #endif
563
564         if (start < end)
565                 memblock_add_node(__pa(start), end - start, nid);
566         return 0;
567 }
568
569 int
570 find_max_min_low_pfn (u64 start, u64 end, void *arg)
571 {
572         unsigned long pfn_start, pfn_end;
573 #ifdef CONFIG_FLATMEM
574         pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
575         pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
576 #else
577         pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
578         pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
579 #endif
580         min_low_pfn = min(min_low_pfn, pfn_start);
581         max_low_pfn = max(max_low_pfn, pfn_end);
582         return 0;
583 }
584
585 /*
586  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
587  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
588  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
589  * useful for performance testing, but conceivably could also come in handy for debugging
590  * purposes.
591  */
592
593 static int nolwsys __initdata;
594
595 static int __init
596 nolwsys_setup (char *s)
597 {
598         nolwsys = 1;
599         return 1;
600 }
601
602 __setup("nolwsys", nolwsys_setup);
603
604 void __init
605 mem_init (void)
606 {
607         int i;
608
609         BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
610         BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
611         BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
612
613 #ifdef CONFIG_PCI
614         /*
615          * This needs to be called _after_ the command line has been parsed but _before_
616          * any drivers that may need the PCI DMA interface are initialized or bootmem has
617          * been freed.
618          */
619         platform_dma_init();
620 #endif
621
622 #ifdef CONFIG_FLATMEM
623         BUG_ON(!mem_map);
624 #endif
625
626         set_max_mapnr(max_low_pfn);
627         high_memory = __va(max_low_pfn * PAGE_SIZE);
628         memblock_free_all();
629         mem_init_print_info(NULL);
630
631         /*
632          * For fsyscall entrpoints with no light-weight handler, use the ordinary
633          * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
634          * code can tell them apart.
635          */
636         for (i = 0; i < NR_syscalls; ++i) {
637                 extern unsigned long fsyscall_table[NR_syscalls];
638                 extern unsigned long sys_call_table[NR_syscalls];
639
640                 if (!fsyscall_table[i] || nolwsys)
641                         fsyscall_table[i] = sys_call_table[i] | 1;
642         }
643         setup_gate();
644 }
645
646 #ifdef CONFIG_MEMORY_HOTPLUG
647 int arch_add_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap,
648                 bool want_memblock)
649 {
650         unsigned long start_pfn = start >> PAGE_SHIFT;
651         unsigned long nr_pages = size >> PAGE_SHIFT;
652         int ret;
653
654         ret = __add_pages(nid, start_pfn, nr_pages, altmap, want_memblock);
655         if (ret)
656                 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
657                        __func__,  ret);
658
659         return ret;
660 }
661
662 #ifdef CONFIG_MEMORY_HOTREMOVE
663 int arch_remove_memory(int nid, u64 start, u64 size, struct vmem_altmap *altmap)
664 {
665         unsigned long start_pfn = start >> PAGE_SHIFT;
666         unsigned long nr_pages = size >> PAGE_SHIFT;
667         struct zone *zone;
668         int ret;
669
670         zone = page_zone(pfn_to_page(start_pfn));
671         ret = __remove_pages(zone, start_pfn, nr_pages, altmap);
672         if (ret)
673                 pr_warn("%s: Problem encountered in __remove_pages() as"
674                         " ret=%d\n", __func__,  ret);
675
676         return ret;
677 }
678 #endif
679 #endif