Merge tag 'drm-for-v4.15-part2' of git://people.freedesktop.org/~airlied/linux
[sfrench/cifs-2.6.git] / arch / cris / arch-v32 / mach-fs / arbiter.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory arbiter functions. Allocates bandwidth through the
4  * arbiter and sets up arbiter breakpoints.
5  *
6  * The algorithm first assigns slots to the clients that has specified
7  * bandwidth (e.g. ethernet) and then the remaining slots are divided
8  * on all the active clients.
9  *
10  * Copyright (c) 2004-2007 Axis Communications AB.
11  */
12
13 #include <hwregs/reg_map.h>
14 #include <hwregs/reg_rdwr.h>
15 #include <hwregs/marb_defs.h>
16 #include <arbiter.h>
17 #include <hwregs/intr_vect.h>
18 #include <linux/interrupt.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/spinlock.h>
22 #include <asm/io.h>
23 #include <asm/irq_regs.h>
24
25 struct crisv32_watch_entry {
26         unsigned long instance;
27         watch_callback *cb;
28         unsigned long start;
29         unsigned long end;
30         int used;
31 };
32
33 #define NUMBER_OF_BP 4
34 #define NBR_OF_CLIENTS 14
35 #define NBR_OF_SLOTS 64
36 #define SDRAM_BANDWIDTH 100000000       /* Some kind of expected value */
37 #define INTMEM_BANDWIDTH 400000000
38 #define NBR_OF_REGIONS 2
39
40 static struct crisv32_watch_entry watches[NUMBER_OF_BP] = {
41         {regi_marb_bp0},
42         {regi_marb_bp1},
43         {regi_marb_bp2},
44         {regi_marb_bp3}
45 };
46
47 static u8 requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS];
48 static u8 active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS];
49 static int max_bandwidth[NBR_OF_REGIONS] =
50     { SDRAM_BANDWIDTH, INTMEM_BANDWIDTH };
51
52 DEFINE_SPINLOCK(arbiter_lock);
53
54 static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id);
55
56 /*
57  * "I'm the arbiter, I know the score.
58  *  From square one I'll be watching all 64."
59  * (memory arbiter slots, that is)
60  *
61  *  Or in other words:
62  * Program the memory arbiter slots for "region" according to what's
63  * in requested_slots[] and active_clients[], while minimizing
64  * latency. A caller may pass a non-zero positive amount for
65  * "unused_slots", which must then be the unallocated, remaining
66  * number of slots, free to hand out to any client.
67  */
68
69 static void crisv32_arbiter_config(int region, int unused_slots)
70 {
71         int slot;
72         int client;
73         int interval = 0;
74
75         /*
76          * This vector corresponds to the hardware arbiter slots (see
77          * the hardware documentation for semantics). We initialize
78          * each slot with a suitable sentinel value outside the valid
79          * range {0 .. NBR_OF_CLIENTS - 1} and replace them with
80          * client indexes. Then it's fed to the hardware.
81          */
82         s8 val[NBR_OF_SLOTS];
83
84         for (slot = 0; slot < NBR_OF_SLOTS; slot++)
85                 val[slot] = -1;
86
87         for (client = 0; client < NBR_OF_CLIENTS; client++) {
88                 int pos;
89                 /* Allocate the requested non-zero number of slots, but
90                  * also give clients with zero-requests one slot each
91                  * while stocks last. We do the latter here, in client
92                  * order. This makes sure zero-request clients are the
93                  * first to get to any spare slots, else those slots
94                  * could, when bandwidth is allocated close to the limit,
95                  * all be allocated to low-index non-zero-request clients
96                  * in the default-fill loop below. Another positive but
97                  * secondary effect is a somewhat better spread of the
98                  * zero-bandwidth clients in the vector, avoiding some of
99                  * the latency that could otherwise be caused by the
100                  * partitioning of non-zero-bandwidth clients at low
101                  * indexes and zero-bandwidth clients at high
102                  * indexes. (Note that this spreading can only affect the
103                  * unallocated bandwidth.)  All the above only matters for
104                  * memory-intensive situations, of course.
105                  */
106                 if (!requested_slots[region][client]) {
107                         /*
108                          * Skip inactive clients. Also skip zero-slot
109                          * allocations in this pass when there are no known
110                          * free slots.
111                          */
112                         if (!active_clients[region][client]
113                             || unused_slots <= 0)
114                                 continue;
115
116                         unused_slots--;
117
118                         /* Only allocate one slot for this client. */
119                         interval = NBR_OF_SLOTS;
120                 } else
121                         interval =
122                             NBR_OF_SLOTS / requested_slots[region][client];
123
124                 pos = 0;
125                 while (pos < NBR_OF_SLOTS) {
126                         if (val[pos] >= 0)
127                                 pos++;
128                         else {
129                                 val[pos] = client;
130                                 pos += interval;
131                         }
132                 }
133         }
134
135         client = 0;
136         for (slot = 0; slot < NBR_OF_SLOTS; slot++) {
137                 /*
138                  * Allocate remaining slots in round-robin
139                  * client-number order for active clients. For this
140                  * pass, we ignore requested bandwidth and previous
141                  * allocations.
142                  */
143                 if (val[slot] < 0) {
144                         int first = client;
145                         while (!active_clients[region][client]) {
146                                 client = (client + 1) % NBR_OF_CLIENTS;
147                                 if (client == first)
148                                         break;
149                         }
150                         val[slot] = client;
151                         client = (client + 1) % NBR_OF_CLIENTS;
152                 }
153                 if (region == EXT_REGION)
154                         REG_WR_INT_VECT(marb, regi_marb, rw_ext_slots, slot,
155                                         val[slot]);
156                 else if (region == INT_REGION)
157                         REG_WR_INT_VECT(marb, regi_marb, rw_int_slots, slot,
158                                         val[slot]);
159         }
160 }
161
162 extern char _stext[], _etext[];
163
164 static void crisv32_arbiter_init(void)
165 {
166         static int initialized;
167
168         if (initialized)
169                 return;
170
171         initialized = 1;
172
173         /*
174          * CPU caches are always set to active, but with zero
175          * bandwidth allocated. It should be ok to allocate zero
176          * bandwidth for the caches, because DMA for other channels
177          * will supposedly finish, once their programmed amount is
178          * done, and then the caches will get access according to the
179          * "fixed scheme" for unclaimed slots. Though, if for some
180          * use-case somewhere, there's a maximum CPU latency for
181          * e.g. some interrupt, we have to start allocating specific
182          * bandwidth for the CPU caches too.
183          */
184         active_clients[EXT_REGION][10] = active_clients[EXT_REGION][11] = 1;
185         crisv32_arbiter_config(EXT_REGION, 0);
186         crisv32_arbiter_config(INT_REGION, 0);
187
188         if (request_irq(MEMARB_INTR_VECT, crisv32_arbiter_irq, 0,
189                         "arbiter", NULL))
190                 printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");
191
192 #ifndef CONFIG_ETRAX_KGDB
193         /* Global watch for writes to kernel text segment. */
194         crisv32_arbiter_watch(virt_to_phys(_stext), _etext - _stext,
195                               arbiter_all_clients, arbiter_all_write, NULL);
196 #endif
197 }
198
199 /* Main entry for bandwidth allocation. */
200
201 int crisv32_arbiter_allocate_bandwidth(int client, int region,
202                                        unsigned long bandwidth)
203 {
204         int i;
205         int total_assigned = 0;
206         int total_clients = 0;
207         int req;
208
209         crisv32_arbiter_init();
210
211         for (i = 0; i < NBR_OF_CLIENTS; i++) {
212                 total_assigned += requested_slots[region][i];
213                 total_clients += active_clients[region][i];
214         }
215
216         /* Avoid division by 0 for 0-bandwidth requests. */
217         req = bandwidth == 0
218             ? 0 : NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth);
219
220         /*
221          * We make sure that there are enough slots only for non-zero
222          * requests. Requesting 0 bandwidth *may* allocate slots,
223          * though if all bandwidth is allocated, such a client won't
224          * get any and will have to rely on getting memory access
225          * according to the fixed scheme that's the default when one
226          * of the slot-allocated clients doesn't claim their slot.
227          */
228         if (total_assigned + req > NBR_OF_SLOTS)
229                 return -ENOMEM;
230
231         active_clients[region][client] = 1;
232         requested_slots[region][client] = req;
233         crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned);
234
235         return 0;
236 }
237
238 /*
239  * Main entry for bandwidth deallocation.
240  *
241  * Strictly speaking, for a somewhat constant set of clients where
242  * each client gets a constant bandwidth and is just enabled or
243  * disabled (somewhat dynamically), no action is necessary here to
244  * avoid starvation for non-zero-allocation clients, as the allocated
245  * slots will just be unused. However, handing out those unused slots
246  * to active clients avoids needless latency if the "fixed scheme"
247  * would give unclaimed slots to an eager low-index client.
248  */
249
250 void crisv32_arbiter_deallocate_bandwidth(int client, int region)
251 {
252         int i;
253         int total_assigned = 0;
254
255         requested_slots[region][client] = 0;
256         active_clients[region][client] = 0;
257
258         for (i = 0; i < NBR_OF_CLIENTS; i++)
259                 total_assigned += requested_slots[region][i];
260
261         crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned);
262 }
263
264 int crisv32_arbiter_watch(unsigned long start, unsigned long size,
265                           unsigned long clients, unsigned long accesses,
266                           watch_callback *cb)
267 {
268         int i;
269
270         crisv32_arbiter_init();
271
272         if (start > 0x80000000) {
273                 printk(KERN_ERR "Arbiter: %lX doesn't look like a "
274                         "physical address", start);
275                 return -EFAULT;
276         }
277
278         spin_lock(&arbiter_lock);
279
280         for (i = 0; i < NUMBER_OF_BP; i++) {
281                 if (!watches[i].used) {
282                         reg_marb_rw_intr_mask intr_mask =
283                             REG_RD(marb, regi_marb, rw_intr_mask);
284
285                         watches[i].used = 1;
286                         watches[i].start = start;
287                         watches[i].end = start + size;
288                         watches[i].cb = cb;
289
290                         REG_WR_INT(marb_bp, watches[i].instance, rw_first_addr,
291                                    watches[i].start);
292                         REG_WR_INT(marb_bp, watches[i].instance, rw_last_addr,
293                                    watches[i].end);
294                         REG_WR_INT(marb_bp, watches[i].instance, rw_op,
295                                    accesses);
296                         REG_WR_INT(marb_bp, watches[i].instance, rw_clients,
297                                    clients);
298
299                         if (i == 0)
300                                 intr_mask.bp0 = regk_marb_yes;
301                         else if (i == 1)
302                                 intr_mask.bp1 = regk_marb_yes;
303                         else if (i == 2)
304                                 intr_mask.bp2 = regk_marb_yes;
305                         else if (i == 3)
306                                 intr_mask.bp3 = regk_marb_yes;
307
308                         REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
309                         spin_unlock(&arbiter_lock);
310
311                         return i;
312                 }
313         }
314         spin_unlock(&arbiter_lock);
315         return -ENOMEM;
316 }
317
318 int crisv32_arbiter_unwatch(int id)
319 {
320         reg_marb_rw_intr_mask intr_mask = REG_RD(marb, regi_marb, rw_intr_mask);
321
322         crisv32_arbiter_init();
323
324         spin_lock(&arbiter_lock);
325
326         if ((id < 0) || (id >= NUMBER_OF_BP) || (!watches[id].used)) {
327                 spin_unlock(&arbiter_lock);
328                 return -EINVAL;
329         }
330
331         memset(&watches[id], 0, sizeof(struct crisv32_watch_entry));
332
333         if (id == 0)
334                 intr_mask.bp0 = regk_marb_no;
335         else if (id == 1)
336                 intr_mask.bp1 = regk_marb_no;
337         else if (id == 2)
338                 intr_mask.bp2 = regk_marb_no;
339         else if (id == 3)
340                 intr_mask.bp3 = regk_marb_no;
341
342         REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
343
344         spin_unlock(&arbiter_lock);
345         return 0;
346 }
347
348 extern void show_registers(struct pt_regs *regs);
349
350 static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id)
351 {
352         reg_marb_r_masked_intr masked_intr =
353             REG_RD(marb, regi_marb, r_masked_intr);
354         reg_marb_bp_r_brk_clients r_clients;
355         reg_marb_bp_r_brk_addr r_addr;
356         reg_marb_bp_r_brk_op r_op;
357         reg_marb_bp_r_brk_first_client r_first;
358         reg_marb_bp_r_brk_size r_size;
359         reg_marb_bp_rw_ack ack = { 0 };
360         reg_marb_rw_ack_intr ack_intr = {
361                 .bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1
362         };
363         struct crisv32_watch_entry *watch;
364
365         if (masked_intr.bp0) {
366                 watch = &watches[0];
367                 ack_intr.bp0 = regk_marb_yes;
368         } else if (masked_intr.bp1) {
369                 watch = &watches[1];
370                 ack_intr.bp1 = regk_marb_yes;
371         } else if (masked_intr.bp2) {
372                 watch = &watches[2];
373                 ack_intr.bp2 = regk_marb_yes;
374         } else if (masked_intr.bp3) {
375                 watch = &watches[3];
376                 ack_intr.bp3 = regk_marb_yes;
377         } else {
378                 return IRQ_NONE;
379         }
380
381         /* Retrieve all useful information and print it. */
382         r_clients = REG_RD(marb_bp, watch->instance, r_brk_clients);
383         r_addr = REG_RD(marb_bp, watch->instance, r_brk_addr);
384         r_op = REG_RD(marb_bp, watch->instance, r_brk_op);
385         r_first = REG_RD(marb_bp, watch->instance, r_brk_first_client);
386         r_size = REG_RD(marb_bp, watch->instance, r_brk_size);
387
388         printk(KERN_INFO "Arbiter IRQ\n");
389         printk(KERN_INFO "Clients %X addr %X op %X first %X size %X\n",
390                REG_TYPE_CONV(int, reg_marb_bp_r_brk_clients, r_clients),
391                REG_TYPE_CONV(int, reg_marb_bp_r_brk_addr, r_addr),
392                REG_TYPE_CONV(int, reg_marb_bp_r_brk_op, r_op),
393                REG_TYPE_CONV(int, reg_marb_bp_r_brk_first_client, r_first),
394                REG_TYPE_CONV(int, reg_marb_bp_r_brk_size, r_size));
395
396         REG_WR(marb_bp, watch->instance, rw_ack, ack);
397         REG_WR(marb, regi_marb, rw_ack_intr, ack_intr);
398
399         printk(KERN_INFO "IRQ occurred at %lX\n", get_irq_regs()->erp);
400
401         if (watch->cb)
402                 watch->cb();
403
404         return IRQ_HANDLED;
405 }