Merge branch 'topic/azt3328' into for-linus
[sfrench/cifs-2.6.git] / arch / blackfin / kernel / setup.c
1 /*
2  * arch/blackfin/kernel/setup.c
3  *
4  * Copyright 2004-2006 Analog Devices Inc.
5  *
6  * Enter bugs at http://blackfin.uclinux.org/
7  *
8  * Licensed under the GPL-2 or later.
9  */
10
11 #include <linux/delay.h>
12 #include <linux/console.h>
13 #include <linux/bootmem.h>
14 #include <linux/seq_file.h>
15 #include <linux/cpu.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/tty.h>
19 #include <linux/pfn.h>
20
21 #ifdef CONFIG_MTD_UCLINUX
22 #include <linux/mtd/map.h>
23 #include <linux/ext2_fs.h>
24 #include <linux/cramfs_fs.h>
25 #include <linux/romfs_fs.h>
26 #endif
27
28 #include <asm/cplb.h>
29 #include <asm/cacheflush.h>
30 #include <asm/blackfin.h>
31 #include <asm/cplbinit.h>
32 #include <asm/div64.h>
33 #include <asm/cpu.h>
34 #include <asm/fixed_code.h>
35 #include <asm/early_printk.h>
36
37 u16 _bfin_swrst;
38 EXPORT_SYMBOL(_bfin_swrst);
39
40 unsigned long memory_start, memory_end, physical_mem_end;
41 unsigned long _rambase, _ramstart, _ramend;
42 unsigned long reserved_mem_dcache_on;
43 unsigned long reserved_mem_icache_on;
44 EXPORT_SYMBOL(memory_start);
45 EXPORT_SYMBOL(memory_end);
46 EXPORT_SYMBOL(physical_mem_end);
47 EXPORT_SYMBOL(_ramend);
48 EXPORT_SYMBOL(reserved_mem_dcache_on);
49
50 #ifdef CONFIG_MTD_UCLINUX
51 extern struct map_info uclinux_ram_map;
52 unsigned long memory_mtd_end, memory_mtd_start, mtd_size;
53 unsigned long _ebss;
54 EXPORT_SYMBOL(memory_mtd_end);
55 EXPORT_SYMBOL(memory_mtd_start);
56 EXPORT_SYMBOL(mtd_size);
57 #endif
58
59 char __initdata command_line[COMMAND_LINE_SIZE];
60 void __initdata *init_retx, *init_saved_retx, *init_saved_seqstat,
61         *init_saved_icplb_fault_addr, *init_saved_dcplb_fault_addr;
62
63 /* boot memmap, for parsing "memmap=" */
64 #define BFIN_MEMMAP_MAX         128 /* number of entries in bfin_memmap */
65 #define BFIN_MEMMAP_RAM         1
66 #define BFIN_MEMMAP_RESERVED    2
67 static struct bfin_memmap {
68         int nr_map;
69         struct bfin_memmap_entry {
70                 unsigned long long addr; /* start of memory segment */
71                 unsigned long long size;
72                 unsigned long type;
73         } map[BFIN_MEMMAP_MAX];
74 } bfin_memmap __initdata;
75
76 /* for memmap sanitization */
77 struct change_member {
78         struct bfin_memmap_entry *pentry; /* pointer to original entry */
79         unsigned long long addr; /* address for this change point */
80 };
81 static struct change_member change_point_list[2*BFIN_MEMMAP_MAX] __initdata;
82 static struct change_member *change_point[2*BFIN_MEMMAP_MAX] __initdata;
83 static struct bfin_memmap_entry *overlap_list[BFIN_MEMMAP_MAX] __initdata;
84 static struct bfin_memmap_entry new_map[BFIN_MEMMAP_MAX] __initdata;
85
86 DEFINE_PER_CPU(struct blackfin_cpudata, cpu_data);
87
88 static int early_init_clkin_hz(char *buf);
89
90 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
91 void __init generate_cplb_tables(void)
92 {
93         unsigned int cpu;
94
95         generate_cplb_tables_all();
96         /* Generate per-CPU I&D CPLB tables */
97         for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
98                 generate_cplb_tables_cpu(cpu);
99 }
100 #endif
101
102 void __cpuinit bfin_setup_caches(unsigned int cpu)
103 {
104 #ifdef CONFIG_BFIN_ICACHE
105         bfin_icache_init(icplb_tbl[cpu]);
106 #endif
107
108 #ifdef CONFIG_BFIN_DCACHE
109         bfin_dcache_init(dcplb_tbl[cpu]);
110 #endif
111
112         /*
113          * In cache coherence emulation mode, we need to have the
114          * D-cache enabled before running any atomic operation which
115          * might invove cache invalidation (i.e. spinlock, rwlock).
116          * So printk's are deferred until then.
117          */
118 #ifdef CONFIG_BFIN_ICACHE
119         printk(KERN_INFO "Instruction Cache Enabled for CPU%u\n", cpu);
120         printk(KERN_INFO "  External memory:"
121 # ifdef CONFIG_BFIN_EXTMEM_ICACHEABLE
122                " cacheable"
123 # else
124                " uncacheable"
125 # endif
126                " in instruction cache\n");
127         if (L2_LENGTH)
128                 printk(KERN_INFO "  L2 SRAM        :"
129 # ifdef CONFIG_BFIN_L2_ICACHEABLE
130                        " cacheable"
131 # else
132                        " uncacheable"
133 # endif
134                        " in instruction cache\n");
135
136 #else
137         printk(KERN_INFO "Instruction Cache Disabled for CPU%u\n", cpu);
138 #endif
139
140 #ifdef CONFIG_BFIN_DCACHE
141         printk(KERN_INFO "Data Cache Enabled for CPU%u\n", cpu);
142         printk(KERN_INFO "  External memory:"
143 # if defined CONFIG_BFIN_EXTMEM_WRITEBACK
144                " cacheable (write-back)"
145 # elif defined CONFIG_BFIN_EXTMEM_WRITETHROUGH
146                " cacheable (write-through)"
147 # else
148                " uncacheable"
149 # endif
150                " in data cache\n");
151         if (L2_LENGTH)
152                 printk(KERN_INFO "  L2 SRAM        :"
153 # if defined CONFIG_BFIN_L2_WRITEBACK
154                        " cacheable (write-back)"
155 # elif defined CONFIG_BFIN_L2_WRITETHROUGH
156                        " cacheable (write-through)"
157 # else
158                        " uncacheable"
159 # endif
160                        " in data cache\n");
161 #else
162         printk(KERN_INFO "Data Cache Disabled for CPU%u\n", cpu);
163 #endif
164 }
165
166 void __cpuinit bfin_setup_cpudata(unsigned int cpu)
167 {
168         struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu);
169
170         cpudata->idle = current;
171         cpudata->imemctl = bfin_read_IMEM_CONTROL();
172         cpudata->dmemctl = bfin_read_DMEM_CONTROL();
173 }
174
175 void __init bfin_cache_init(void)
176 {
177 #if defined(CONFIG_BFIN_DCACHE) || defined(CONFIG_BFIN_ICACHE)
178         generate_cplb_tables();
179 #endif
180         bfin_setup_caches(0);
181 }
182
183 void __init bfin_relocate_l1_mem(void)
184 {
185         unsigned long l1_code_length;
186         unsigned long l1_data_a_length;
187         unsigned long l1_data_b_length;
188         unsigned long l2_length;
189
190         /*
191          * due to the ALIGN(4) in the arch/blackfin/kernel/vmlinux.lds.S
192          * we know that everything about l1 text/data is nice and aligned,
193          * so copy by 4 byte chunks, and don't worry about overlapping
194          * src/dest.
195          *
196          * We can't use the dma_memcpy functions, since they can call
197          * scheduler functions which might be in L1 :( and core writes
198          * into L1 instruction cause bad access errors, so we are stuck,
199          * we are required to use DMA, but can't use the common dma
200          * functions. We can't use memcpy either - since that might be
201          * going to be in the relocated L1
202          */
203
204         blackfin_dma_early_init();
205
206         /* if necessary, copy _stext_l1 to _etext_l1 to L1 instruction SRAM */
207         l1_code_length = _etext_l1 - _stext_l1;
208         if (l1_code_length)
209                 early_dma_memcpy(_stext_l1, _l1_lma_start, l1_code_length);
210
211         /* if necessary, copy _sdata_l1 to _sbss_l1 to L1 data bank A SRAM */
212         l1_data_a_length = _sbss_l1 - _sdata_l1;
213         if (l1_data_a_length)
214                 early_dma_memcpy(_sdata_l1, _l1_lma_start + l1_code_length, l1_data_a_length);
215
216         /* if necessary, copy _sdata_b_l1 to _sbss_b_l1 to L1 data bank B SRAM */
217         l1_data_b_length = _sbss_b_l1 - _sdata_b_l1;
218         if (l1_data_b_length)
219                 early_dma_memcpy(_sdata_b_l1, _l1_lma_start + l1_code_length +
220                         l1_data_a_length, l1_data_b_length);
221
222         early_dma_memcpy_done();
223
224         /* if necessary, copy _stext_l2 to _edata_l2 to L2 SRAM */
225         if (L2_LENGTH != 0) {
226                 l2_length = _sbss_l2 - _stext_l2;
227                 if (l2_length)
228                         memcpy(_stext_l2, _l2_lma_start, l2_length);
229         }
230 }
231
232 /* add_memory_region to memmap */
233 static void __init add_memory_region(unsigned long long start,
234                               unsigned long long size, int type)
235 {
236         int i;
237
238         i = bfin_memmap.nr_map;
239
240         if (i == BFIN_MEMMAP_MAX) {
241                 printk(KERN_ERR "Ooops! Too many entries in the memory map!\n");
242                 return;
243         }
244
245         bfin_memmap.map[i].addr = start;
246         bfin_memmap.map[i].size = size;
247         bfin_memmap.map[i].type = type;
248         bfin_memmap.nr_map++;
249 }
250
251 /*
252  * Sanitize the boot memmap, removing overlaps.
253  */
254 static int __init sanitize_memmap(struct bfin_memmap_entry *map, int *pnr_map)
255 {
256         struct change_member *change_tmp;
257         unsigned long current_type, last_type;
258         unsigned long long last_addr;
259         int chgidx, still_changing;
260         int overlap_entries;
261         int new_entry;
262         int old_nr, new_nr, chg_nr;
263         int i;
264
265         /*
266                 Visually we're performing the following (1,2,3,4 = memory types)
267
268                 Sample memory map (w/overlaps):
269                    ____22__________________
270                    ______________________4_
271                    ____1111________________
272                    _44_____________________
273                    11111111________________
274                    ____________________33__
275                    ___________44___________
276                    __________33333_________
277                    ______________22________
278                    ___________________2222_
279                    _________111111111______
280                    _____________________11_
281                    _________________4______
282
283                 Sanitized equivalent (no overlap):
284                    1_______________________
285                    _44_____________________
286                    ___1____________________
287                    ____22__________________
288                    ______11________________
289                    _________1______________
290                    __________3_____________
291                    ___________44___________
292                    _____________33_________
293                    _______________2________
294                    ________________1_______
295                    _________________4______
296                    ___________________2____
297                    ____________________33__
298                    ______________________4_
299         */
300         /* if there's only one memory region, don't bother */
301         if (*pnr_map < 2)
302                 return -1;
303
304         old_nr = *pnr_map;
305
306         /* bail out if we find any unreasonable addresses in memmap */
307         for (i = 0; i < old_nr; i++)
308                 if (map[i].addr + map[i].size < map[i].addr)
309                         return -1;
310
311         /* create pointers for initial change-point information (for sorting) */
312         for (i = 0; i < 2*old_nr; i++)
313                 change_point[i] = &change_point_list[i];
314
315         /* record all known change-points (starting and ending addresses),
316            omitting those that are for empty memory regions */
317         chgidx = 0;
318         for (i = 0; i < old_nr; i++) {
319                 if (map[i].size != 0) {
320                         change_point[chgidx]->addr = map[i].addr;
321                         change_point[chgidx++]->pentry = &map[i];
322                         change_point[chgidx]->addr = map[i].addr + map[i].size;
323                         change_point[chgidx++]->pentry = &map[i];
324                 }
325         }
326         chg_nr = chgidx;        /* true number of change-points */
327
328         /* sort change-point list by memory addresses (low -> high) */
329         still_changing = 1;
330         while (still_changing) {
331                 still_changing = 0;
332                 for (i = 1; i < chg_nr; i++) {
333                         /* if <current_addr> > <last_addr>, swap */
334                         /* or, if current=<start_addr> & last=<end_addr>, swap */
335                         if ((change_point[i]->addr < change_point[i-1]->addr) ||
336                                 ((change_point[i]->addr == change_point[i-1]->addr) &&
337                                  (change_point[i]->addr == change_point[i]->pentry->addr) &&
338                                  (change_point[i-1]->addr != change_point[i-1]->pentry->addr))
339                            ) {
340                                 change_tmp = change_point[i];
341                                 change_point[i] = change_point[i-1];
342                                 change_point[i-1] = change_tmp;
343                                 still_changing = 1;
344                         }
345                 }
346         }
347
348         /* create a new memmap, removing overlaps */
349         overlap_entries = 0;    /* number of entries in the overlap table */
350         new_entry = 0;          /* index for creating new memmap entries */
351         last_type = 0;          /* start with undefined memory type */
352         last_addr = 0;          /* start with 0 as last starting address */
353         /* loop through change-points, determining affect on the new memmap */
354         for (chgidx = 0; chgidx < chg_nr; chgidx++) {
355                 /* keep track of all overlapping memmap entries */
356                 if (change_point[chgidx]->addr == change_point[chgidx]->pentry->addr) {
357                         /* add map entry to overlap list (> 1 entry implies an overlap) */
358                         overlap_list[overlap_entries++] = change_point[chgidx]->pentry;
359                 } else {
360                         /* remove entry from list (order independent, so swap with last) */
361                         for (i = 0; i < overlap_entries; i++) {
362                                 if (overlap_list[i] == change_point[chgidx]->pentry)
363                                         overlap_list[i] = overlap_list[overlap_entries-1];
364                         }
365                         overlap_entries--;
366                 }
367                 /* if there are overlapping entries, decide which "type" to use */
368                 /* (larger value takes precedence -- 1=usable, 2,3,4,4+=unusable) */
369                 current_type = 0;
370                 for (i = 0; i < overlap_entries; i++)
371                         if (overlap_list[i]->type > current_type)
372                                 current_type = overlap_list[i]->type;
373                 /* continue building up new memmap based on this information */
374                 if (current_type != last_type) {
375                         if (last_type != 0) {
376                                 new_map[new_entry].size =
377                                         change_point[chgidx]->addr - last_addr;
378                                 /* move forward only if the new size was non-zero */
379                                 if (new_map[new_entry].size != 0)
380                                         if (++new_entry >= BFIN_MEMMAP_MAX)
381                                                 break;  /* no more space left for new entries */
382                         }
383                         if (current_type != 0) {
384                                 new_map[new_entry].addr = change_point[chgidx]->addr;
385                                 new_map[new_entry].type = current_type;
386                                 last_addr = change_point[chgidx]->addr;
387                         }
388                         last_type = current_type;
389                 }
390         }
391         new_nr = new_entry;     /* retain count for new entries */
392
393         /* copy new mapping into original location */
394         memcpy(map, new_map, new_nr*sizeof(struct bfin_memmap_entry));
395         *pnr_map = new_nr;
396
397         return 0;
398 }
399
400 static void __init print_memory_map(char *who)
401 {
402         int i;
403
404         for (i = 0; i < bfin_memmap.nr_map; i++) {
405                 printk(KERN_DEBUG " %s: %016Lx - %016Lx ", who,
406                         bfin_memmap.map[i].addr,
407                         bfin_memmap.map[i].addr + bfin_memmap.map[i].size);
408                 switch (bfin_memmap.map[i].type) {
409                 case BFIN_MEMMAP_RAM:
410                         printk(KERN_CONT "(usable)\n");
411                         break;
412                 case BFIN_MEMMAP_RESERVED:
413                         printk(KERN_CONT "(reserved)\n");
414                         break;
415                 default:
416                         printk(KERN_CONT "type %lu\n", bfin_memmap.map[i].type);
417                         break;
418                 }
419         }
420 }
421
422 static __init int parse_memmap(char *arg)
423 {
424         unsigned long long start_at, mem_size;
425
426         if (!arg)
427                 return -EINVAL;
428
429         mem_size = memparse(arg, &arg);
430         if (*arg == '@') {
431                 start_at = memparse(arg+1, &arg);
432                 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RAM);
433         } else if (*arg == '$') {
434                 start_at = memparse(arg+1, &arg);
435                 add_memory_region(start_at, mem_size, BFIN_MEMMAP_RESERVED);
436         }
437
438         return 0;
439 }
440
441 /*
442  * Initial parsing of the command line.  Currently, we support:
443  *  - Controlling the linux memory size: mem=xxx[KMG]
444  *  - Controlling the physical memory size: max_mem=xxx[KMG][$][#]
445  *       $ -> reserved memory is dcacheable
446  *       # -> reserved memory is icacheable
447  *  - "memmap=XXX[KkmM][@][$]XXX[KkmM]" defines a memory region
448  *       @ from <start> to <start>+<mem>, type RAM
449  *       $ from <start> to <start>+<mem>, type RESERVED
450  */
451 static __init void parse_cmdline_early(char *cmdline_p)
452 {
453         char c = ' ', *to = cmdline_p;
454         unsigned int memsize;
455         for (;;) {
456                 if (c == ' ') {
457                         if (!memcmp(to, "mem=", 4)) {
458                                 to += 4;
459                                 memsize = memparse(to, &to);
460                                 if (memsize)
461                                         _ramend = memsize;
462
463                         } else if (!memcmp(to, "max_mem=", 8)) {
464                                 to += 8;
465                                 memsize = memparse(to, &to);
466                                 if (memsize) {
467                                         physical_mem_end = memsize;
468                                         if (*to != ' ') {
469                                                 if (*to == '$'
470                                                     || *(to + 1) == '$')
471                                                         reserved_mem_dcache_on = 1;
472                                                 if (*to == '#'
473                                                     || *(to + 1) == '#')
474                                                         reserved_mem_icache_on = 1;
475                                         }
476                                 }
477                         } else if (!memcmp(to, "clkin_hz=", 9)) {
478                                 to += 9;
479                                 early_init_clkin_hz(to);
480 #ifdef CONFIG_EARLY_PRINTK
481                         } else if (!memcmp(to, "earlyprintk=", 12)) {
482                                 to += 12;
483                                 setup_early_printk(to);
484 #endif
485                         } else if (!memcmp(to, "memmap=", 7)) {
486                                 to += 7;
487                                 parse_memmap(to);
488                         }
489                 }
490                 c = *(to++);
491                 if (!c)
492                         break;
493         }
494 }
495
496 /*
497  * Setup memory defaults from user config.
498  * The physical memory layout looks like:
499  *
500  *  [_rambase, _ramstart]:              kernel image
501  *  [memory_start, memory_end]:         dynamic memory managed by kernel
502  *  [memory_end, _ramend]:              reserved memory
503  *      [memory_mtd_start(memory_end),
504  *              memory_mtd_start + mtd_size]:   rootfs (if any)
505  *      [_ramend - DMA_UNCACHED_REGION,
506  *              _ramend]:                       uncached DMA region
507  *  [_ramend, physical_mem_end]:        memory not managed by kernel
508  */
509 static __init void memory_setup(void)
510 {
511 #ifdef CONFIG_MTD_UCLINUX
512         unsigned long mtd_phys = 0;
513 #endif
514
515         _rambase = (unsigned long)_stext;
516         _ramstart = (unsigned long)_end;
517
518         if (DMA_UNCACHED_REGION > (_ramend - _ramstart)) {
519                 console_init();
520                 panic("DMA region exceeds memory limit: %lu.",
521                         _ramend - _ramstart);
522         }
523         memory_end = _ramend - DMA_UNCACHED_REGION;
524
525 #ifdef CONFIG_MPU
526         /* Round up to multiple of 4MB */
527         memory_start = (_ramstart + 0x3fffff) & ~0x3fffff;
528 #else
529         memory_start = PAGE_ALIGN(_ramstart);
530 #endif
531
532 #if defined(CONFIG_MTD_UCLINUX)
533         /* generic memory mapped MTD driver */
534         memory_mtd_end = memory_end;
535
536         mtd_phys = _ramstart;
537         mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 8)));
538
539 # if defined(CONFIG_EXT2_FS) || defined(CONFIG_EXT3_FS)
540         if (*((unsigned short *)(mtd_phys + 0x438)) == EXT2_SUPER_MAGIC)
541                 mtd_size =
542                     PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x404)) << 10);
543 # endif
544
545 # if defined(CONFIG_CRAMFS)
546         if (*((unsigned long *)(mtd_phys)) == CRAMFS_MAGIC)
547                 mtd_size = PAGE_ALIGN(*((unsigned long *)(mtd_phys + 0x4)));
548 # endif
549
550 # if defined(CONFIG_ROMFS_FS)
551         if (((unsigned long *)mtd_phys)[0] == ROMSB_WORD0
552             && ((unsigned long *)mtd_phys)[1] == ROMSB_WORD1)
553                 mtd_size =
554                     PAGE_ALIGN(be32_to_cpu(((unsigned long *)mtd_phys)[2]));
555 #  if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
556         /* Due to a Hardware Anomaly we need to limit the size of usable
557          * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
558          * 05000263 - Hardware loop corrupted when taking an ICPLB exception
559          */
560 #   if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
561         if (memory_end >= 56 * 1024 * 1024)
562                 memory_end = 56 * 1024 * 1024;
563 #   else
564         if (memory_end >= 60 * 1024 * 1024)
565                 memory_end = 60 * 1024 * 1024;
566 #   endif                               /* CONFIG_DEBUG_HUNT_FOR_ZERO */
567 #  endif                                /* ANOMALY_05000263 */
568 # endif                         /* CONFIG_ROMFS_FS */
569
570         /* Since the default MTD_UCLINUX has no magic number, we just blindly
571          * read 8 past the end of the kernel's image, and look at it.
572          * When no image is attached, mtd_size is set to a random number
573          * Do some basic sanity checks before operating on things
574          */
575         if (mtd_size == 0 || memory_end <= mtd_size) {
576                 pr_emerg("Could not find valid ram mtd attached.\n");
577         } else {
578                 memory_end -= mtd_size;
579
580                 /* Relocate MTD image to the top of memory after the uncached memory area */
581                 uclinux_ram_map.phys = memory_mtd_start = memory_end;
582                 uclinux_ram_map.size = mtd_size;
583                 pr_info("Found mtd parition at 0x%p, (len=0x%lx), moving to 0x%p\n",
584                         _end, mtd_size, (void *)memory_mtd_start);
585                 dma_memcpy((void *)uclinux_ram_map.phys, _end, uclinux_ram_map.size);
586         }
587 #endif                          /* CONFIG_MTD_UCLINUX */
588
589 #if (defined(CONFIG_BFIN_EXTMEM_ICACHEABLE) && ANOMALY_05000263)
590         /* Due to a Hardware Anomaly we need to limit the size of usable
591          * instruction memory to max 60MB, 56 if HUNT_FOR_ZERO is on
592          * 05000263 - Hardware loop corrupted when taking an ICPLB exception
593          */
594 #if (defined(CONFIG_DEBUG_HUNT_FOR_ZERO))
595         if (memory_end >= 56 * 1024 * 1024)
596                 memory_end = 56 * 1024 * 1024;
597 #else
598         if (memory_end >= 60 * 1024 * 1024)
599                 memory_end = 60 * 1024 * 1024;
600 #endif                          /* CONFIG_DEBUG_HUNT_FOR_ZERO */
601         printk(KERN_NOTICE "Warning: limiting memory to %liMB due to hardware anomaly 05000263\n", memory_end >> 20);
602 #endif                          /* ANOMALY_05000263 */
603
604 #ifdef CONFIG_MPU
605         page_mask_nelts = ((_ramend >> PAGE_SHIFT) + 31) / 32;
606         page_mask_order = get_order(3 * page_mask_nelts * sizeof(long));
607 #endif
608
609 #if !defined(CONFIG_MTD_UCLINUX)
610         /*In case there is no valid CPLB behind memory_end make sure we don't get to close*/
611         memory_end -= SIZE_4K;
612 #endif
613
614         init_mm.start_code = (unsigned long)_stext;
615         init_mm.end_code = (unsigned long)_etext;
616         init_mm.end_data = (unsigned long)_edata;
617         init_mm.brk = (unsigned long)0;
618
619         printk(KERN_INFO "Board Memory: %ldMB\n", physical_mem_end >> 20);
620         printk(KERN_INFO "Kernel Managed Memory: %ldMB\n", _ramend >> 20);
621
622         printk(KERN_INFO "Memory map:\n"
623                "  fixedcode = 0x%p-0x%p\n"
624                "  text      = 0x%p-0x%p\n"
625                "  rodata    = 0x%p-0x%p\n"
626                "  bss       = 0x%p-0x%p\n"
627                "  data      = 0x%p-0x%p\n"
628                "    stack   = 0x%p-0x%p\n"
629                "  init      = 0x%p-0x%p\n"
630                "  available = 0x%p-0x%p\n"
631 #ifdef CONFIG_MTD_UCLINUX
632                "  rootfs    = 0x%p-0x%p\n"
633 #endif
634 #if DMA_UNCACHED_REGION > 0
635                "  DMA Zone  = 0x%p-0x%p\n"
636 #endif
637                 , (void *)FIXED_CODE_START, (void *)FIXED_CODE_END,
638                 _stext, _etext,
639                 __start_rodata, __end_rodata,
640                 __bss_start, __bss_stop,
641                 _sdata, _edata,
642                 (void *)&init_thread_union,
643                 (void *)((int)(&init_thread_union) + 0x2000),
644                 __init_begin, __init_end,
645                 (void *)_ramstart, (void *)memory_end
646 #ifdef CONFIG_MTD_UCLINUX
647                 , (void *)memory_mtd_start, (void *)(memory_mtd_start + mtd_size)
648 #endif
649 #if DMA_UNCACHED_REGION > 0
650                 , (void *)(_ramend - DMA_UNCACHED_REGION), (void *)(_ramend)
651 #endif
652                 );
653 }
654
655 /*
656  * Find the lowest, highest page frame number we have available
657  */
658 void __init find_min_max_pfn(void)
659 {
660         int i;
661
662         max_pfn = 0;
663         min_low_pfn = memory_end;
664
665         for (i = 0; i < bfin_memmap.nr_map; i++) {
666                 unsigned long start, end;
667                 /* RAM? */
668                 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
669                         continue;
670                 start = PFN_UP(bfin_memmap.map[i].addr);
671                 end = PFN_DOWN(bfin_memmap.map[i].addr +
672                                 bfin_memmap.map[i].size);
673                 if (start >= end)
674                         continue;
675                 if (end > max_pfn)
676                         max_pfn = end;
677                 if (start < min_low_pfn)
678                         min_low_pfn = start;
679         }
680 }
681
682 static __init void setup_bootmem_allocator(void)
683 {
684         int bootmap_size;
685         int i;
686         unsigned long start_pfn, end_pfn;
687         unsigned long curr_pfn, last_pfn, size;
688
689         /* mark memory between memory_start and memory_end usable */
690         add_memory_region(memory_start,
691                 memory_end - memory_start, BFIN_MEMMAP_RAM);
692         /* sanity check for overlap */
693         sanitize_memmap(bfin_memmap.map, &bfin_memmap.nr_map);
694         print_memory_map("boot memmap");
695
696         /* intialize globals in linux/bootmem.h */
697         find_min_max_pfn();
698         /* pfn of the last usable page frame */
699         if (max_pfn > memory_end >> PAGE_SHIFT)
700                 max_pfn = memory_end >> PAGE_SHIFT;
701         /* pfn of last page frame directly mapped by kernel */
702         max_low_pfn = max_pfn;
703         /* pfn of the first usable page frame after kernel image*/
704         if (min_low_pfn < memory_start >> PAGE_SHIFT)
705                 min_low_pfn = memory_start >> PAGE_SHIFT;
706
707         start_pfn = PAGE_OFFSET >> PAGE_SHIFT;
708         end_pfn = memory_end >> PAGE_SHIFT;
709
710         /*
711          * give all the memory to the bootmap allocator, tell it to put the
712          * boot mem_map at the start of memory.
713          */
714         bootmap_size = init_bootmem_node(NODE_DATA(0),
715                         memory_start >> PAGE_SHIFT,     /* map goes here */
716                         start_pfn, end_pfn);
717
718         /* register the memmap regions with the bootmem allocator */
719         for (i = 0; i < bfin_memmap.nr_map; i++) {
720                 /*
721                  * Reserve usable memory
722                  */
723                 if (bfin_memmap.map[i].type != BFIN_MEMMAP_RAM)
724                         continue;
725                 /*
726                  * We are rounding up the start address of usable memory:
727                  */
728                 curr_pfn = PFN_UP(bfin_memmap.map[i].addr);
729                 if (curr_pfn >= end_pfn)
730                         continue;
731                 /*
732                  * ... and at the end of the usable range downwards:
733                  */
734                 last_pfn = PFN_DOWN(bfin_memmap.map[i].addr +
735                                          bfin_memmap.map[i].size);
736
737                 if (last_pfn > end_pfn)
738                         last_pfn = end_pfn;
739
740                 /*
741                  * .. finally, did all the rounding and playing
742                  * around just make the area go away?
743                  */
744                 if (last_pfn <= curr_pfn)
745                         continue;
746
747                 size = last_pfn - curr_pfn;
748                 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(size));
749         }
750
751         /* reserve memory before memory_start, including bootmap */
752         reserve_bootmem(PAGE_OFFSET,
753                 memory_start + bootmap_size + PAGE_SIZE - 1 - PAGE_OFFSET,
754                 BOOTMEM_DEFAULT);
755 }
756
757 #define EBSZ_TO_MEG(ebsz) \
758 ({ \
759         int meg = 0; \
760         switch (ebsz & 0xf) { \
761                 case 0x1: meg =  16; break; \
762                 case 0x3: meg =  32; break; \
763                 case 0x5: meg =  64; break; \
764                 case 0x7: meg = 128; break; \
765                 case 0x9: meg = 256; break; \
766                 case 0xb: meg = 512; break; \
767         } \
768         meg; \
769 })
770 static inline int __init get_mem_size(void)
771 {
772 #if defined(EBIU_SDBCTL)
773 # if defined(BF561_FAMILY)
774         int ret = 0;
775         u32 sdbctl = bfin_read_EBIU_SDBCTL();
776         ret += EBSZ_TO_MEG(sdbctl >>  0);
777         ret += EBSZ_TO_MEG(sdbctl >>  8);
778         ret += EBSZ_TO_MEG(sdbctl >> 16);
779         ret += EBSZ_TO_MEG(sdbctl >> 24);
780         return ret;
781 # else
782         return EBSZ_TO_MEG(bfin_read_EBIU_SDBCTL());
783 # endif
784 #elif defined(EBIU_DDRCTL1)
785         u32 ddrctl = bfin_read_EBIU_DDRCTL1();
786         int ret = 0;
787         switch (ddrctl & 0xc0000) {
788                 case DEVSZ_64:  ret = 64 / 8;
789                 case DEVSZ_128: ret = 128 / 8;
790                 case DEVSZ_256: ret = 256 / 8;
791                 case DEVSZ_512: ret = 512 / 8;
792         }
793         switch (ddrctl & 0x30000) {
794                 case DEVWD_4:  ret *= 2;
795                 case DEVWD_8:  ret *= 2;
796                 case DEVWD_16: break;
797         }
798         if ((ddrctl & 0xc000) == 0x4000)
799                 ret *= 2;
800         return ret;
801 #endif
802         BUG();
803 }
804
805 void __init setup_arch(char **cmdline_p)
806 {
807         unsigned long sclk, cclk;
808
809         /* Check to make sure we are running on the right processor */
810         if (unlikely(CPUID != bfin_cpuid()))
811                 printk(KERN_ERR "ERROR: Not running on ADSP-%s: unknown CPUID 0x%04x Rev 0.%d\n",
812                         CPU, bfin_cpuid(), bfin_revid());
813
814 #ifdef CONFIG_DUMMY_CONSOLE
815         conswitchp = &dummy_con;
816 #endif
817
818 #if defined(CONFIG_CMDLINE_BOOL)
819         strncpy(&command_line[0], CONFIG_CMDLINE, sizeof(command_line));
820         command_line[sizeof(command_line) - 1] = 0;
821 #endif
822
823         /* Keep a copy of command line */
824         *cmdline_p = &command_line[0];
825         memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
826         boot_command_line[COMMAND_LINE_SIZE - 1] = '\0';
827
828         memset(&bfin_memmap, 0, sizeof(bfin_memmap));
829
830         /* If the user does not specify things on the command line, use
831          * what the bootloader set things up as
832          */
833         physical_mem_end = 0;
834         parse_cmdline_early(&command_line[0]);
835
836         if (_ramend == 0)
837                 _ramend = get_mem_size() * 1024 * 1024;
838
839         if (physical_mem_end == 0)
840                 physical_mem_end = _ramend;
841
842         memory_setup();
843
844         /* Initialize Async memory banks */
845         bfin_write_EBIU_AMBCTL0(AMBCTL0VAL);
846         bfin_write_EBIU_AMBCTL1(AMBCTL1VAL);
847         bfin_write_EBIU_AMGCTL(AMGCTLVAL);
848 #ifdef CONFIG_EBIU_MBSCTLVAL
849         bfin_write_EBIU_MBSCTL(CONFIG_EBIU_MBSCTLVAL);
850         bfin_write_EBIU_MODE(CONFIG_EBIU_MODEVAL);
851         bfin_write_EBIU_FCTL(CONFIG_EBIU_FCTLVAL);
852 #endif
853
854         cclk = get_cclk();
855         sclk = get_sclk();
856
857         if ((ANOMALY_05000273 || ANOMALY_05000274) && (cclk >> 1) < sclk)
858                 panic("ANOMALY 05000273 or 05000274: CCLK must be >= 2*SCLK");
859
860 #ifdef BF561_FAMILY
861         if (ANOMALY_05000266) {
862                 bfin_read_IMDMA_D0_IRQ_STATUS();
863                 bfin_read_IMDMA_D1_IRQ_STATUS();
864         }
865 #endif
866         printk(KERN_INFO "Hardware Trace ");
867         if (bfin_read_TBUFCTL() & 0x1)
868                 printk(KERN_CONT "Active ");
869         else
870                 printk(KERN_CONT "Off ");
871         if (bfin_read_TBUFCTL() & 0x2)
872                 printk(KERN_CONT "and Enabled\n");
873         else
874                 printk(KERN_CONT "and Disabled\n");
875
876         printk(KERN_INFO "Boot Mode: %i\n", bfin_read_SYSCR() & 0xF);
877
878         /* Newer parts mirror SWRST bits in SYSCR */
879 #if defined(CONFIG_BF53x) || defined(CONFIG_BF561) || \
880     defined(CONFIG_BF538) || defined(CONFIG_BF539)
881         _bfin_swrst = bfin_read_SWRST();
882 #else
883         /* Clear boot mode field */
884         _bfin_swrst = bfin_read_SYSCR() & ~0xf;
885 #endif
886
887 #ifdef CONFIG_DEBUG_DOUBLEFAULT_PRINT
888         bfin_write_SWRST(_bfin_swrst & ~DOUBLE_FAULT);
889 #endif
890 #ifdef CONFIG_DEBUG_DOUBLEFAULT_RESET
891         bfin_write_SWRST(_bfin_swrst | DOUBLE_FAULT);
892 #endif
893
894 #ifdef CONFIG_SMP
895         if (_bfin_swrst & SWRST_DBL_FAULT_A) {
896 #else
897         if (_bfin_swrst & RESET_DOUBLE) {
898 #endif
899                 printk(KERN_EMERG "Recovering from DOUBLE FAULT event\n");
900 #ifdef CONFIG_DEBUG_DOUBLEFAULT
901                 /* We assume the crashing kernel, and the current symbol table match */
902                 printk(KERN_EMERG " While handling exception (EXCAUSE = 0x%x) at %pF\n",
903                         (int)init_saved_seqstat & SEQSTAT_EXCAUSE, init_saved_retx);
904                 printk(KERN_NOTICE "   DCPLB_FAULT_ADDR: %pF\n", init_saved_dcplb_fault_addr);
905                 printk(KERN_NOTICE "   ICPLB_FAULT_ADDR: %pF\n", init_saved_icplb_fault_addr);
906 #endif
907                 printk(KERN_NOTICE " The instruction at %pF caused a double exception\n",
908                         init_retx);
909         } else if (_bfin_swrst & RESET_WDOG)
910                 printk(KERN_INFO "Recovering from Watchdog event\n");
911         else if (_bfin_swrst & RESET_SOFTWARE)
912                 printk(KERN_NOTICE "Reset caused by Software reset\n");
913
914         printk(KERN_INFO "Blackfin support (C) 2004-2009 Analog Devices, Inc.\n");
915         if (bfin_compiled_revid() == 0xffff)
916                 printk(KERN_INFO "Compiled for ADSP-%s Rev any\n", CPU);
917         else if (bfin_compiled_revid() == -1)
918                 printk(KERN_INFO "Compiled for ADSP-%s Rev none\n", CPU);
919         else
920                 printk(KERN_INFO "Compiled for ADSP-%s Rev 0.%d\n", CPU, bfin_compiled_revid());
921
922         if (likely(CPUID == bfin_cpuid())) {
923                 if (bfin_revid() != bfin_compiled_revid()) {
924                         if (bfin_compiled_revid() == -1)
925                                 printk(KERN_ERR "Warning: Compiled for Rev none, but running on Rev %d\n",
926                                        bfin_revid());
927                         else if (bfin_compiled_revid() != 0xffff) {
928                                 printk(KERN_ERR "Warning: Compiled for Rev %d, but running on Rev %d\n",
929                                        bfin_compiled_revid(), bfin_revid());
930                                 if (bfin_compiled_revid() > bfin_revid())
931                                         panic("Error: you are missing anomaly workarounds for this rev");
932                         }
933                 }
934                 if (bfin_revid() < CONFIG_BF_REV_MIN || bfin_revid() > CONFIG_BF_REV_MAX)
935                         printk(KERN_ERR "Warning: Unsupported Chip Revision ADSP-%s Rev 0.%d detected\n",
936                                CPU, bfin_revid());
937         }
938
939         printk(KERN_INFO "Blackfin Linux support by http://blackfin.uclinux.org/\n");
940
941         printk(KERN_INFO "Processor Speed: %lu MHz core clock and %lu MHz System Clock\n",
942                cclk / 1000000, sclk / 1000000);
943
944         setup_bootmem_allocator();
945
946         paging_init();
947
948         /* Copy atomic sequences to their fixed location, and sanity check that
949            these locations are the ones that we advertise to userspace.  */
950         memcpy((void *)FIXED_CODE_START, &fixed_code_start,
951                FIXED_CODE_END - FIXED_CODE_START);
952         BUG_ON((char *)&sigreturn_stub - (char *)&fixed_code_start
953                != SIGRETURN_STUB - FIXED_CODE_START);
954         BUG_ON((char *)&atomic_xchg32 - (char *)&fixed_code_start
955                != ATOMIC_XCHG32 - FIXED_CODE_START);
956         BUG_ON((char *)&atomic_cas32 - (char *)&fixed_code_start
957                != ATOMIC_CAS32 - FIXED_CODE_START);
958         BUG_ON((char *)&atomic_add32 - (char *)&fixed_code_start
959                != ATOMIC_ADD32 - FIXED_CODE_START);
960         BUG_ON((char *)&atomic_sub32 - (char *)&fixed_code_start
961                != ATOMIC_SUB32 - FIXED_CODE_START);
962         BUG_ON((char *)&atomic_ior32 - (char *)&fixed_code_start
963                != ATOMIC_IOR32 - FIXED_CODE_START);
964         BUG_ON((char *)&atomic_and32 - (char *)&fixed_code_start
965                != ATOMIC_AND32 - FIXED_CODE_START);
966         BUG_ON((char *)&atomic_xor32 - (char *)&fixed_code_start
967                != ATOMIC_XOR32 - FIXED_CODE_START);
968         BUG_ON((char *)&safe_user_instruction - (char *)&fixed_code_start
969                 != SAFE_USER_INSTRUCTION - FIXED_CODE_START);
970
971 #ifdef CONFIG_SMP
972         platform_init_cpus();
973 #endif
974         init_exception_vectors();
975         bfin_cache_init();      /* Initialize caches for the boot CPU */
976 }
977
978 static int __init topology_init(void)
979 {
980         unsigned int cpu;
981         /* Record CPU-private information for the boot processor. */
982         bfin_setup_cpudata(0);
983
984         for_each_possible_cpu(cpu) {
985                 register_cpu(&per_cpu(cpu_data, cpu).cpu, cpu);
986         }
987
988         return 0;
989 }
990
991 subsys_initcall(topology_init);
992
993 /* Get the input clock frequency */
994 static u_long cached_clkin_hz = CONFIG_CLKIN_HZ;
995 static u_long get_clkin_hz(void)
996 {
997         return cached_clkin_hz;
998 }
999 static int __init early_init_clkin_hz(char *buf)
1000 {
1001         cached_clkin_hz = simple_strtoul(buf, NULL, 0);
1002 #ifdef BFIN_KERNEL_CLOCK
1003         if (cached_clkin_hz != CONFIG_CLKIN_HZ)
1004                 panic("cannot change clkin_hz when reprogramming clocks");
1005 #endif
1006         return 1;
1007 }
1008 early_param("clkin_hz=", early_init_clkin_hz);
1009
1010 /* Get the voltage input multiplier */
1011 static u_long get_vco(void)
1012 {
1013         static u_long cached_vco;
1014         u_long msel, pll_ctl;
1015
1016         /* The assumption here is that VCO never changes at runtime.
1017          * If, someday, we support that, then we'll have to change this.
1018          */
1019         if (cached_vco)
1020                 return cached_vco;
1021
1022         pll_ctl = bfin_read_PLL_CTL();
1023         msel = (pll_ctl >> 9) & 0x3F;
1024         if (0 == msel)
1025                 msel = 64;
1026
1027         cached_vco = get_clkin_hz();
1028         cached_vco >>= (1 & pll_ctl);   /* DF bit */
1029         cached_vco *= msel;
1030         return cached_vco;
1031 }
1032
1033 /* Get the Core clock */
1034 u_long get_cclk(void)
1035 {
1036         static u_long cached_cclk_pll_div, cached_cclk;
1037         u_long csel, ssel;
1038
1039         if (bfin_read_PLL_STAT() & 0x1)
1040                 return get_clkin_hz();
1041
1042         ssel = bfin_read_PLL_DIV();
1043         if (ssel == cached_cclk_pll_div)
1044                 return cached_cclk;
1045         else
1046                 cached_cclk_pll_div = ssel;
1047
1048         csel = ((ssel >> 4) & 0x03);
1049         ssel &= 0xf;
1050         if (ssel && ssel < (1 << csel)) /* SCLK > CCLK */
1051                 cached_cclk = get_vco() / ssel;
1052         else
1053                 cached_cclk = get_vco() >> csel;
1054         return cached_cclk;
1055 }
1056 EXPORT_SYMBOL(get_cclk);
1057
1058 /* Get the System clock */
1059 u_long get_sclk(void)
1060 {
1061         static u_long cached_sclk;
1062         u_long ssel;
1063
1064         /* The assumption here is that SCLK never changes at runtime.
1065          * If, someday, we support that, then we'll have to change this.
1066          */
1067         if (cached_sclk)
1068                 return cached_sclk;
1069
1070         if (bfin_read_PLL_STAT() & 0x1)
1071                 return get_clkin_hz();
1072
1073         ssel = bfin_read_PLL_DIV() & 0xf;
1074         if (0 == ssel) {
1075                 printk(KERN_WARNING "Invalid System Clock\n");
1076                 ssel = 1;
1077         }
1078
1079         cached_sclk = get_vco() / ssel;
1080         return cached_sclk;
1081 }
1082 EXPORT_SYMBOL(get_sclk);
1083
1084 unsigned long sclk_to_usecs(unsigned long sclk)
1085 {
1086         u64 tmp = USEC_PER_SEC * (u64)sclk;
1087         do_div(tmp, get_sclk());
1088         return tmp;
1089 }
1090 EXPORT_SYMBOL(sclk_to_usecs);
1091
1092 unsigned long usecs_to_sclk(unsigned long usecs)
1093 {
1094         u64 tmp = get_sclk() * (u64)usecs;
1095         do_div(tmp, USEC_PER_SEC);
1096         return tmp;
1097 }
1098 EXPORT_SYMBOL(usecs_to_sclk);
1099
1100 /*
1101  *      Get CPU information for use by the procfs.
1102  */
1103 static int show_cpuinfo(struct seq_file *m, void *v)
1104 {
1105         char *cpu, *mmu, *fpu, *vendor, *cache;
1106         uint32_t revid;
1107         int cpu_num = *(unsigned int *)v;
1108         u_long sclk, cclk;
1109         u_int icache_size = BFIN_ICACHESIZE / 1024, dcache_size = 0, dsup_banks = 0;
1110         struct blackfin_cpudata *cpudata = &per_cpu(cpu_data, cpu_num);
1111
1112         cpu = CPU;
1113         mmu = "none";
1114         fpu = "none";
1115         revid = bfin_revid();
1116
1117         sclk = get_sclk();
1118         cclk = get_cclk();
1119
1120         switch (bfin_read_CHIPID() & CHIPID_MANUFACTURE) {
1121         case 0xca:
1122                 vendor = "Analog Devices";
1123                 break;
1124         default:
1125                 vendor = "unknown";
1126                 break;
1127         }
1128
1129         seq_printf(m, "processor\t: %d\n" "vendor_id\t: %s\n", cpu_num, vendor);
1130
1131         if (CPUID == bfin_cpuid())
1132                 seq_printf(m, "cpu family\t: 0x%04x\n", CPUID);
1133         else
1134                 seq_printf(m, "cpu family\t: Compiled for:0x%04x, running on:0x%04x\n",
1135                         CPUID, bfin_cpuid());
1136
1137         seq_printf(m, "model name\t: ADSP-%s %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n"
1138                 "stepping\t: %d ",
1139                 cpu, cclk/1000000, sclk/1000000,
1140 #ifdef CONFIG_MPU
1141                 "mpu on",
1142 #else
1143                 "mpu off",
1144 #endif
1145                 revid);
1146
1147         if (bfin_revid() != bfin_compiled_revid()) {
1148                 if (bfin_compiled_revid() == -1)
1149                         seq_printf(m, "(Compiled for Rev none)");
1150                 else if (bfin_compiled_revid() == 0xffff)
1151                         seq_printf(m, "(Compiled for Rev any)");
1152                 else
1153                         seq_printf(m, "(Compiled for Rev %d)", bfin_compiled_revid());
1154         }
1155
1156         seq_printf(m, "\ncpu MHz\t\t: %lu.%03lu/%lu.%03lu\n",
1157                 cclk/1000000, cclk%1000000,
1158                 sclk/1000000, sclk%1000000);
1159         seq_printf(m, "bogomips\t: %lu.%02lu\n"
1160                 "Calibration\t: %lu loops\n",
1161                 (loops_per_jiffy * HZ) / 500000,
1162                 ((loops_per_jiffy * HZ) / 5000) % 100,
1163                 (loops_per_jiffy * HZ));
1164
1165         /* Check Cache configutation */
1166         switch (cpudata->dmemctl & (1 << DMC0_P | 1 << DMC1_P)) {
1167         case ACACHE_BSRAM:
1168                 cache = "dbank-A/B\t: cache/sram";
1169                 dcache_size = 16;
1170                 dsup_banks = 1;
1171                 break;
1172         case ACACHE_BCACHE:
1173                 cache = "dbank-A/B\t: cache/cache";
1174                 dcache_size = 32;
1175                 dsup_banks = 2;
1176                 break;
1177         case ASRAM_BSRAM:
1178                 cache = "dbank-A/B\t: sram/sram";
1179                 dcache_size = 0;
1180                 dsup_banks = 0;
1181                 break;
1182         default:
1183                 cache = "unknown";
1184                 dcache_size = 0;
1185                 dsup_banks = 0;
1186                 break;
1187         }
1188
1189         /* Is it turned on? */
1190         if ((cpudata->dmemctl & (ENDCPLB | DMC_ENABLE)) != (ENDCPLB | DMC_ENABLE))
1191                 dcache_size = 0;
1192
1193         if ((cpudata->imemctl & (IMC | ENICPLB)) != (IMC | ENICPLB))
1194                 icache_size = 0;
1195
1196         seq_printf(m, "cache size\t: %d KB(L1 icache) "
1197                 "%d KB(L1 dcache) %d KB(L2 cache)\n",
1198                 icache_size, dcache_size, 0);
1199         seq_printf(m, "%s\n", cache);
1200         seq_printf(m, "external memory\t: "
1201 #if defined(CONFIG_BFIN_EXTMEM_ICACHEABLE)
1202                    "cacheable"
1203 #else
1204                    "uncacheable"
1205 #endif
1206                    " in instruction cache\n");
1207         seq_printf(m, "external memory\t: "
1208 #if defined(CONFIG_BFIN_EXTMEM_WRITEBACK)
1209                       "cacheable (write-back)"
1210 #elif defined(CONFIG_BFIN_EXTMEM_WRITETHROUGH)
1211                       "cacheable (write-through)"
1212 #else
1213                       "uncacheable"
1214 #endif
1215                       " in data cache\n");
1216
1217         if (icache_size)
1218                 seq_printf(m, "icache setup\t: %d Sub-banks/%d Ways, %d Lines/Way\n",
1219                            BFIN_ISUBBANKS, BFIN_IWAYS, BFIN_ILINES);
1220         else
1221                 seq_printf(m, "icache setup\t: off\n");
1222
1223         seq_printf(m,
1224                    "dcache setup\t: %d Super-banks/%d Sub-banks/%d Ways, %d Lines/Way\n",
1225                    dsup_banks, BFIN_DSUBBANKS, BFIN_DWAYS,
1226                    BFIN_DLINES);
1227 #ifdef __ARCH_SYNC_CORE_DCACHE
1228         seq_printf(m, "SMP Dcache Flushes\t: %lu\n\n", cpudata->dcache_invld_count);
1229 #endif
1230 #ifdef __ARCH_SYNC_CORE_ICACHE
1231         seq_printf(m, "SMP Icache Flushes\t: %lu\n\n", cpudata->icache_invld_count);
1232 #endif
1233 #ifdef CONFIG_BFIN_ICACHE_LOCK
1234         switch ((cpudata->imemctl >> 3) & WAYALL_L) {
1235         case WAY0_L:
1236                 seq_printf(m, "Way0 Locked-Down\n");
1237                 break;
1238         case WAY1_L:
1239                 seq_printf(m, "Way1 Locked-Down\n");
1240                 break;
1241         case WAY01_L:
1242                 seq_printf(m, "Way0,Way1 Locked-Down\n");
1243                 break;
1244         case WAY2_L:
1245                 seq_printf(m, "Way2 Locked-Down\n");
1246                 break;
1247         case WAY02_L:
1248                 seq_printf(m, "Way0,Way2 Locked-Down\n");
1249                 break;
1250         case WAY12_L:
1251                 seq_printf(m, "Way1,Way2 Locked-Down\n");
1252                 break;
1253         case WAY012_L:
1254                 seq_printf(m, "Way0,Way1 & Way2 Locked-Down\n");
1255                 break;
1256         case WAY3_L:
1257                 seq_printf(m, "Way3 Locked-Down\n");
1258                 break;
1259         case WAY03_L:
1260                 seq_printf(m, "Way0,Way3 Locked-Down\n");
1261                 break;
1262         case WAY13_L:
1263                 seq_printf(m, "Way1,Way3 Locked-Down\n");
1264                 break;
1265         case WAY013_L:
1266                 seq_printf(m, "Way 0,Way1,Way3 Locked-Down\n");
1267                 break;
1268         case WAY32_L:
1269                 seq_printf(m, "Way3,Way2 Locked-Down\n");
1270                 break;
1271         case WAY320_L:
1272                 seq_printf(m, "Way3,Way2,Way0 Locked-Down\n");
1273                 break;
1274         case WAY321_L:
1275                 seq_printf(m, "Way3,Way2,Way1 Locked-Down\n");
1276                 break;
1277         case WAYALL_L:
1278                 seq_printf(m, "All Ways are locked\n");
1279                 break;
1280         default:
1281                 seq_printf(m, "No Ways are locked\n");
1282         }
1283 #endif
1284
1285         if (cpu_num != num_possible_cpus() - 1)
1286                 return 0;
1287
1288         if (L2_LENGTH) {
1289                 seq_printf(m, "L2 SRAM\t\t: %dKB\n", L2_LENGTH/0x400);
1290                 seq_printf(m, "L2 SRAM\t\t: "
1291 #if defined(CONFIG_BFIN_L2_ICACHEABLE)
1292                               "cacheable"
1293 #else
1294                               "uncacheable"
1295 #endif
1296                               " in instruction cache\n");
1297                 seq_printf(m, "L2 SRAM\t\t: "
1298 #if defined(CONFIG_BFIN_L2_WRITEBACK)
1299                               "cacheable (write-back)"
1300 #elif defined(CONFIG_BFIN_L2_WRITETHROUGH)
1301                               "cacheable (write-through)"
1302 #else
1303                               "uncacheable"
1304 #endif
1305                               " in data cache\n");
1306         }
1307         seq_printf(m, "board name\t: %s\n", bfin_board_name);
1308         seq_printf(m, "board memory\t: %ld kB (0x%p -> 0x%p)\n",
1309                  physical_mem_end >> 10, (void *)0, (void *)physical_mem_end);
1310         seq_printf(m, "kernel memory\t: %d kB (0x%p -> 0x%p)\n",
1311                 ((int)memory_end - (int)_stext) >> 10,
1312                 _stext,
1313                 (void *)memory_end);
1314         seq_printf(m, "\n");
1315
1316         return 0;
1317 }
1318
1319 static void *c_start(struct seq_file *m, loff_t *pos)
1320 {
1321         if (*pos == 0)
1322                 *pos = first_cpu(cpu_online_map);
1323         if (*pos >= num_online_cpus())
1324                 return NULL;
1325
1326         return pos;
1327 }
1328
1329 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1330 {
1331         *pos = next_cpu(*pos, cpu_online_map);
1332
1333         return c_start(m, pos);
1334 }
1335
1336 static void c_stop(struct seq_file *m, void *v)
1337 {
1338 }
1339
1340 const struct seq_operations cpuinfo_op = {
1341         .start = c_start,
1342         .next = c_next,
1343         .stop = c_stop,
1344         .show = show_cpuinfo,
1345 };
1346
1347 void __init cmdline_init(const char *r0)
1348 {
1349         if (r0)
1350                 strncpy(command_line, r0, COMMAND_LINE_SIZE);
1351 }