Merge tag 'kvm-ppc-next-4.21-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / arm64 / kvm / hyp / switch.c
1 /*
2  * Copyright (C) 2015 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17
18 #include <linux/arm-smccc.h>
19 #include <linux/types.h>
20 #include <linux/jump_label.h>
21 #include <uapi/linux/psci.h>
22
23 #include <kvm/arm_psci.h>
24
25 #include <asm/cpufeature.h>
26 #include <asm/kvm_asm.h>
27 #include <asm/kvm_emulate.h>
28 #include <asm/kvm_host.h>
29 #include <asm/kvm_hyp.h>
30 #include <asm/kvm_mmu.h>
31 #include <asm/fpsimd.h>
32 #include <asm/debug-monitors.h>
33 #include <asm/processor.h>
34 #include <asm/thread_info.h>
35
36 /* Check whether the FP regs were dirtied while in the host-side run loop: */
37 static bool __hyp_text update_fp_enabled(struct kvm_vcpu *vcpu)
38 {
39         if (vcpu->arch.host_thread_info->flags & _TIF_FOREIGN_FPSTATE)
40                 vcpu->arch.flags &= ~(KVM_ARM64_FP_ENABLED |
41                                       KVM_ARM64_FP_HOST);
42
43         return !!(vcpu->arch.flags & KVM_ARM64_FP_ENABLED);
44 }
45
46 /* Save the 32-bit only FPSIMD system register state */
47 static void __hyp_text __fpsimd_save_fpexc32(struct kvm_vcpu *vcpu)
48 {
49         if (!vcpu_el1_is_32bit(vcpu))
50                 return;
51
52         vcpu->arch.ctxt.sys_regs[FPEXC32_EL2] = read_sysreg(fpexc32_el2);
53 }
54
55 static void __hyp_text __activate_traps_fpsimd32(struct kvm_vcpu *vcpu)
56 {
57         /*
58          * We are about to set CPTR_EL2.TFP to trap all floating point
59          * register accesses to EL2, however, the ARM ARM clearly states that
60          * traps are only taken to EL2 if the operation would not otherwise
61          * trap to EL1.  Therefore, always make sure that for 32-bit guests,
62          * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
63          * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
64          * it will cause an exception.
65          */
66         if (vcpu_el1_is_32bit(vcpu) && system_supports_fpsimd()) {
67                 write_sysreg(1 << 30, fpexc32_el2);
68                 isb();
69         }
70 }
71
72 static void __hyp_text __activate_traps_common(struct kvm_vcpu *vcpu)
73 {
74         /* Trap on AArch32 cp15 c15 (impdef sysregs) accesses (EL1 or EL0) */
75         write_sysreg(1 << 15, hstr_el2);
76
77         /*
78          * Make sure we trap PMU access from EL0 to EL2. Also sanitize
79          * PMSELR_EL0 to make sure it never contains the cycle
80          * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
81          * EL1 instead of being trapped to EL2.
82          */
83         write_sysreg(0, pmselr_el0);
84         write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
85         write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
86 }
87
88 static void __hyp_text __deactivate_traps_common(void)
89 {
90         write_sysreg(0, hstr_el2);
91         write_sysreg(0, pmuserenr_el0);
92 }
93
94 static void activate_traps_vhe(struct kvm_vcpu *vcpu)
95 {
96         u64 val;
97
98         val = read_sysreg(cpacr_el1);
99         val |= CPACR_EL1_TTA;
100         val &= ~CPACR_EL1_ZEN;
101         if (!update_fp_enabled(vcpu)) {
102                 val &= ~CPACR_EL1_FPEN;
103                 __activate_traps_fpsimd32(vcpu);
104         }
105
106         write_sysreg(val, cpacr_el1);
107
108         write_sysreg(kvm_get_hyp_vector(), vbar_el1);
109 }
110
111 static void __hyp_text __activate_traps_nvhe(struct kvm_vcpu *vcpu)
112 {
113         u64 val;
114
115         __activate_traps_common(vcpu);
116
117         val = CPTR_EL2_DEFAULT;
118         val |= CPTR_EL2_TTA | CPTR_EL2_TZ;
119         if (!update_fp_enabled(vcpu)) {
120                 val |= CPTR_EL2_TFP;
121                 __activate_traps_fpsimd32(vcpu);
122         }
123
124         write_sysreg(val, cptr_el2);
125 }
126
127 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
128 {
129         u64 hcr = vcpu->arch.hcr_el2;
130
131         write_sysreg(hcr, hcr_el2);
132
133         if (cpus_have_const_cap(ARM64_HAS_RAS_EXTN) && (hcr & HCR_VSE))
134                 write_sysreg_s(vcpu->arch.vsesr_el2, SYS_VSESR_EL2);
135
136         if (has_vhe())
137                 activate_traps_vhe(vcpu);
138         else
139                 __activate_traps_nvhe(vcpu);
140 }
141
142 static void deactivate_traps_vhe(void)
143 {
144         extern char vectors[];  /* kernel exception vectors */
145         write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
146         write_sysreg(CPACR_EL1_DEFAULT, cpacr_el1);
147         write_sysreg(vectors, vbar_el1);
148 }
149
150 static void __hyp_text __deactivate_traps_nvhe(void)
151 {
152         u64 mdcr_el2 = read_sysreg(mdcr_el2);
153
154         __deactivate_traps_common();
155
156         mdcr_el2 &= MDCR_EL2_HPMN_MASK;
157         mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
158
159         write_sysreg(mdcr_el2, mdcr_el2);
160         write_sysreg(HCR_RW, hcr_el2);
161         write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
162 }
163
164 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
165 {
166         /*
167          * If we pended a virtual abort, preserve it until it gets
168          * cleared. See D1.14.3 (Virtual Interrupts) for details, but
169          * the crucial bit is "On taking a vSError interrupt,
170          * HCR_EL2.VSE is cleared to 0."
171          */
172         if (vcpu->arch.hcr_el2 & HCR_VSE)
173                 vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
174
175         if (has_vhe())
176                 deactivate_traps_vhe();
177         else
178                 __deactivate_traps_nvhe();
179 }
180
181 void activate_traps_vhe_load(struct kvm_vcpu *vcpu)
182 {
183         __activate_traps_common(vcpu);
184 }
185
186 void deactivate_traps_vhe_put(void)
187 {
188         u64 mdcr_el2 = read_sysreg(mdcr_el2);
189
190         mdcr_el2 &= MDCR_EL2_HPMN_MASK |
191                     MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
192                     MDCR_EL2_TPMS;
193
194         write_sysreg(mdcr_el2, mdcr_el2);
195
196         __deactivate_traps_common();
197 }
198
199 static void __hyp_text __activate_vm(struct kvm *kvm)
200 {
201         __load_guest_stage2(kvm);
202 }
203
204 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
205 {
206         write_sysreg(0, vttbr_el2);
207 }
208
209 /* Save VGICv3 state on non-VHE systems */
210 static void __hyp_text __hyp_vgic_save_state(struct kvm_vcpu *vcpu)
211 {
212         if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
213                 __vgic_v3_save_state(vcpu);
214                 __vgic_v3_deactivate_traps(vcpu);
215         }
216 }
217
218 /* Restore VGICv3 state on non_VEH systems */
219 static void __hyp_text __hyp_vgic_restore_state(struct kvm_vcpu *vcpu)
220 {
221         if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) {
222                 __vgic_v3_activate_traps(vcpu);
223                 __vgic_v3_restore_state(vcpu);
224         }
225 }
226
227 static bool __hyp_text __true_value(void)
228 {
229         return true;
230 }
231
232 static bool __hyp_text __false_value(void)
233 {
234         return false;
235 }
236
237 static hyp_alternate_select(__check_arm_834220,
238                             __false_value, __true_value,
239                             ARM64_WORKAROUND_834220);
240
241 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
242 {
243         u64 par, tmp;
244
245         /*
246          * Resolve the IPA the hard way using the guest VA.
247          *
248          * Stage-1 translation already validated the memory access
249          * rights. As such, we can use the EL1 translation regime, and
250          * don't have to distinguish between EL0 and EL1 access.
251          *
252          * We do need to save/restore PAR_EL1 though, as we haven't
253          * saved the guest context yet, and we may return early...
254          */
255         par = read_sysreg(par_el1);
256         asm volatile("at s1e1r, %0" : : "r" (far));
257         isb();
258
259         tmp = read_sysreg(par_el1);
260         write_sysreg(par, par_el1);
261
262         if (unlikely(tmp & 1))
263                 return false; /* Translation failed, back to guest */
264
265         /* Convert PAR to HPFAR format */
266         *hpfar = PAR_TO_HPFAR(tmp);
267         return true;
268 }
269
270 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
271 {
272         u8 ec;
273         u64 esr;
274         u64 hpfar, far;
275
276         esr = vcpu->arch.fault.esr_el2;
277         ec = ESR_ELx_EC(esr);
278
279         if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
280                 return true;
281
282         far = read_sysreg_el2(far);
283
284         /*
285          * The HPFAR can be invalid if the stage 2 fault did not
286          * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
287          * bit is clear) and one of the two following cases are true:
288          *   1. The fault was due to a permission fault
289          *   2. The processor carries errata 834220
290          *
291          * Therefore, for all non S1PTW faults where we either have a
292          * permission fault or the errata workaround is enabled, we
293          * resolve the IPA using the AT instruction.
294          */
295         if (!(esr & ESR_ELx_S1PTW) &&
296             (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
297                 if (!__translate_far_to_hpfar(far, &hpfar))
298                         return false;
299         } else {
300                 hpfar = read_sysreg(hpfar_el2);
301         }
302
303         vcpu->arch.fault.far_el2 = far;
304         vcpu->arch.fault.hpfar_el2 = hpfar;
305         return true;
306 }
307
308 static bool __hyp_text __hyp_switch_fpsimd(struct kvm_vcpu *vcpu)
309 {
310         struct user_fpsimd_state *host_fpsimd = vcpu->arch.host_fpsimd_state;
311
312         if (has_vhe())
313                 write_sysreg(read_sysreg(cpacr_el1) | CPACR_EL1_FPEN,
314                              cpacr_el1);
315         else
316                 write_sysreg(read_sysreg(cptr_el2) & ~(u64)CPTR_EL2_TFP,
317                              cptr_el2);
318
319         isb();
320
321         if (vcpu->arch.flags & KVM_ARM64_FP_HOST) {
322                 /*
323                  * In the SVE case, VHE is assumed: it is enforced by
324                  * Kconfig and kvm_arch_init().
325                  */
326                 if (system_supports_sve() &&
327                     (vcpu->arch.flags & KVM_ARM64_HOST_SVE_IN_USE)) {
328                         struct thread_struct *thread = container_of(
329                                 host_fpsimd,
330                                 struct thread_struct, uw.fpsimd_state);
331
332                         sve_save_state(sve_pffr(thread), &host_fpsimd->fpsr);
333                 } else {
334                         __fpsimd_save_state(host_fpsimd);
335                 }
336
337                 vcpu->arch.flags &= ~KVM_ARM64_FP_HOST;
338         }
339
340         __fpsimd_restore_state(&vcpu->arch.ctxt.gp_regs.fp_regs);
341
342         /* Skip restoring fpexc32 for AArch64 guests */
343         if (!(read_sysreg(hcr_el2) & HCR_RW))
344                 write_sysreg(vcpu->arch.ctxt.sys_regs[FPEXC32_EL2],
345                              fpexc32_el2);
346
347         vcpu->arch.flags |= KVM_ARM64_FP_ENABLED;
348
349         return true;
350 }
351
352 /*
353  * Return true when we were able to fixup the guest exit and should return to
354  * the guest, false when we should restore the host state and return to the
355  * main run loop.
356  */
357 static bool __hyp_text fixup_guest_exit(struct kvm_vcpu *vcpu, u64 *exit_code)
358 {
359         if (ARM_EXCEPTION_CODE(*exit_code) != ARM_EXCEPTION_IRQ)
360                 vcpu->arch.fault.esr_el2 = read_sysreg_el2(esr);
361
362         /*
363          * We're using the raw exception code in order to only process
364          * the trap if no SError is pending. We will come back to the
365          * same PC once the SError has been injected, and replay the
366          * trapping instruction.
367          */
368         if (*exit_code != ARM_EXCEPTION_TRAP)
369                 goto exit;
370
371         /*
372          * We trap the first access to the FP/SIMD to save the host context
373          * and restore the guest context lazily.
374          * If FP/SIMD is not implemented, handle the trap and inject an
375          * undefined instruction exception to the guest.
376          */
377         if (system_supports_fpsimd() &&
378             kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_FP_ASIMD)
379                 return __hyp_switch_fpsimd(vcpu);
380
381         if (!__populate_fault_info(vcpu))
382                 return true;
383
384         if (static_branch_unlikely(&vgic_v2_cpuif_trap)) {
385                 bool valid;
386
387                 valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
388                         kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
389                         kvm_vcpu_dabt_isvalid(vcpu) &&
390                         !kvm_vcpu_dabt_isextabt(vcpu) &&
391                         !kvm_vcpu_dabt_iss1tw(vcpu);
392
393                 if (valid) {
394                         int ret = __vgic_v2_perform_cpuif_access(vcpu);
395
396                         if (ret == 1)
397                                 return true;
398
399                         /* Promote an illegal access to an SError.*/
400                         if (ret == -1)
401                                 *exit_code = ARM_EXCEPTION_EL1_SERROR;
402
403                         goto exit;
404                 }
405         }
406
407         if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
408             (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
409              kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
410                 int ret = __vgic_v3_perform_cpuif_access(vcpu);
411
412                 if (ret == 1)
413                         return true;
414         }
415
416 exit:
417         /* Return to the host kernel and handle the exit */
418         return false;
419 }
420
421 static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
422 {
423         if (!cpus_have_const_cap(ARM64_SSBD))
424                 return false;
425
426         return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
427 }
428
429 static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
430 {
431 #ifdef CONFIG_ARM64_SSBD
432         /*
433          * The host runs with the workaround always present. If the
434          * guest wants it disabled, so be it...
435          */
436         if (__needs_ssbd_off(vcpu) &&
437             __hyp_this_cpu_read(arm64_ssbd_callback_required))
438                 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
439 #endif
440 }
441
442 static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
443 {
444 #ifdef CONFIG_ARM64_SSBD
445         /*
446          * If the guest has disabled the workaround, bring it back on.
447          */
448         if (__needs_ssbd_off(vcpu) &&
449             __hyp_this_cpu_read(arm64_ssbd_callback_required))
450                 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
451 #endif
452 }
453
454 /* Switch to the guest for VHE systems running in EL2 */
455 int kvm_vcpu_run_vhe(struct kvm_vcpu *vcpu)
456 {
457         struct kvm_cpu_context *host_ctxt;
458         struct kvm_cpu_context *guest_ctxt;
459         u64 exit_code;
460
461         host_ctxt = vcpu->arch.host_cpu_context;
462         host_ctxt->__hyp_running_vcpu = vcpu;
463         guest_ctxt = &vcpu->arch.ctxt;
464
465         sysreg_save_host_state_vhe(host_ctxt);
466
467         __activate_traps(vcpu);
468         __activate_vm(vcpu->kvm);
469
470         sysreg_restore_guest_state_vhe(guest_ctxt);
471         __debug_switch_to_guest(vcpu);
472
473         __set_guest_arch_workaround_state(vcpu);
474
475         do {
476                 /* Jump in the fire! */
477                 exit_code = __guest_enter(vcpu, host_ctxt);
478
479                 /* And we're baaack! */
480         } while (fixup_guest_exit(vcpu, &exit_code));
481
482         __set_host_arch_workaround_state(vcpu);
483
484         sysreg_save_guest_state_vhe(guest_ctxt);
485
486         __deactivate_traps(vcpu);
487
488         sysreg_restore_host_state_vhe(host_ctxt);
489
490         if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
491                 __fpsimd_save_fpexc32(vcpu);
492
493         __debug_switch_to_host(vcpu);
494
495         return exit_code;
496 }
497
498 /* Switch to the guest for legacy non-VHE systems */
499 int __hyp_text __kvm_vcpu_run_nvhe(struct kvm_vcpu *vcpu)
500 {
501         struct kvm_cpu_context *host_ctxt;
502         struct kvm_cpu_context *guest_ctxt;
503         u64 exit_code;
504
505         vcpu = kern_hyp_va(vcpu);
506
507         host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
508         host_ctxt->__hyp_running_vcpu = vcpu;
509         guest_ctxt = &vcpu->arch.ctxt;
510
511         __sysreg_save_state_nvhe(host_ctxt);
512
513         __activate_traps(vcpu);
514         __activate_vm(kern_hyp_va(vcpu->kvm));
515
516         __hyp_vgic_restore_state(vcpu);
517         __timer_enable_traps(vcpu);
518
519         /*
520          * We must restore the 32-bit state before the sysregs, thanks
521          * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
522          */
523         __sysreg32_restore_state(vcpu);
524         __sysreg_restore_state_nvhe(guest_ctxt);
525         __debug_switch_to_guest(vcpu);
526
527         __set_guest_arch_workaround_state(vcpu);
528
529         do {
530                 /* Jump in the fire! */
531                 exit_code = __guest_enter(vcpu, host_ctxt);
532
533                 /* And we're baaack! */
534         } while (fixup_guest_exit(vcpu, &exit_code));
535
536         __set_host_arch_workaround_state(vcpu);
537
538         __sysreg_save_state_nvhe(guest_ctxt);
539         __sysreg32_save_state(vcpu);
540         __timer_disable_traps(vcpu);
541         __hyp_vgic_save_state(vcpu);
542
543         __deactivate_traps(vcpu);
544         __deactivate_vm(vcpu);
545
546         __sysreg_restore_state_nvhe(host_ctxt);
547
548         if (vcpu->arch.flags & KVM_ARM64_FP_ENABLED)
549                 __fpsimd_save_fpexc32(vcpu);
550
551         /*
552          * This must come after restoring the host sysregs, since a non-VHE
553          * system may enable SPE here and make use of the TTBRs.
554          */
555         __debug_switch_to_host(vcpu);
556
557         return exit_code;
558 }
559
560 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
561
562 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
563                                              struct kvm_cpu_context *__host_ctxt)
564 {
565         struct kvm_vcpu *vcpu;
566         unsigned long str_va;
567
568         vcpu = __host_ctxt->__hyp_running_vcpu;
569
570         if (read_sysreg(vttbr_el2)) {
571                 __timer_disable_traps(vcpu);
572                 __deactivate_traps(vcpu);
573                 __deactivate_vm(vcpu);
574                 __sysreg_restore_state_nvhe(__host_ctxt);
575         }
576
577         /*
578          * Force the panic string to be loaded from the literal pool,
579          * making sure it is a kernel address and not a PC-relative
580          * reference.
581          */
582         asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));
583
584         __hyp_do_panic(str_va,
585                        spsr,  elr,
586                        read_sysreg(esr_el2),   read_sysreg_el2(far),
587                        read_sysreg(hpfar_el2), par, vcpu);
588 }
589
590 static void __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
591                                  struct kvm_cpu_context *host_ctxt)
592 {
593         struct kvm_vcpu *vcpu;
594         vcpu = host_ctxt->__hyp_running_vcpu;
595
596         __deactivate_traps(vcpu);
597         sysreg_restore_host_state_vhe(host_ctxt);
598
599         panic(__hyp_panic_string,
600               spsr,  elr,
601               read_sysreg_el2(esr),   read_sysreg_el2(far),
602               read_sysreg(hpfar_el2), par, vcpu);
603 }
604
605 void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
606 {
607         u64 spsr = read_sysreg_el2(spsr);
608         u64 elr = read_sysreg_el2(elr);
609         u64 par = read_sysreg(par_el1);
610
611         if (!has_vhe())
612                 __hyp_call_panic_nvhe(spsr, elr, par, host_ctxt);
613         else
614                 __hyp_call_panic_vhe(spsr, elr, par, host_ctxt);
615
616         unreachable();
617 }