Merge tag 'armsoc-defconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[sfrench/cifs-2.6.git] / arch / arm64 / kernel / module-plts.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
4  */
5
6 #include <linux/elf.h>
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/sort.h>
10
11 static struct plt_entry __get_adrp_add_pair(u64 dst, u64 pc,
12                                             enum aarch64_insn_register reg)
13 {
14         u32 adrp, add;
15
16         adrp = aarch64_insn_gen_adr(pc, dst, reg, AARCH64_INSN_ADR_TYPE_ADRP);
17         add = aarch64_insn_gen_add_sub_imm(reg, reg, dst % SZ_4K,
18                                            AARCH64_INSN_VARIANT_64BIT,
19                                            AARCH64_INSN_ADSB_ADD);
20
21         return (struct plt_entry){ cpu_to_le32(adrp), cpu_to_le32(add) };
22 }
23
24 struct plt_entry get_plt_entry(u64 dst, void *pc)
25 {
26         struct plt_entry plt;
27         static u32 br;
28
29         if (!br)
30                 br = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_16,
31                                                  AARCH64_INSN_BRANCH_NOLINK);
32
33         plt = __get_adrp_add_pair(dst, (u64)pc, AARCH64_INSN_REG_16);
34         plt.br = cpu_to_le32(br);
35
36         return plt;
37 }
38
39 bool plt_entries_equal(const struct plt_entry *a, const struct plt_entry *b)
40 {
41         u64 p, q;
42
43         /*
44          * Check whether both entries refer to the same target:
45          * do the cheapest checks first.
46          * If the 'add' or 'br' opcodes are different, then the target
47          * cannot be the same.
48          */
49         if (a->add != b->add || a->br != b->br)
50                 return false;
51
52         p = ALIGN_DOWN((u64)a, SZ_4K);
53         q = ALIGN_DOWN((u64)b, SZ_4K);
54
55         /*
56          * If the 'adrp' opcodes are the same then we just need to check
57          * that they refer to the same 4k region.
58          */
59         if (a->adrp == b->adrp && p == q)
60                 return true;
61
62         return (p + aarch64_insn_adrp_get_offset(le32_to_cpu(a->adrp))) ==
63                (q + aarch64_insn_adrp_get_offset(le32_to_cpu(b->adrp)));
64 }
65
66 static bool in_init(const struct module *mod, void *loc)
67 {
68         return (u64)loc - (u64)mod->init_layout.base < mod->init_layout.size;
69 }
70
71 u64 module_emit_plt_entry(struct module *mod, Elf64_Shdr *sechdrs,
72                           void *loc, const Elf64_Rela *rela,
73                           Elf64_Sym *sym)
74 {
75         struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
76                                                           &mod->arch.init;
77         struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
78         int i = pltsec->plt_num_entries;
79         int j = i - 1;
80         u64 val = sym->st_value + rela->r_addend;
81
82         if (is_forbidden_offset_for_adrp(&plt[i].adrp))
83                 i++;
84
85         plt[i] = get_plt_entry(val, &plt[i]);
86
87         /*
88          * Check if the entry we just created is a duplicate. Given that the
89          * relocations are sorted, this will be the last entry we allocated.
90          * (if one exists).
91          */
92         if (j >= 0 && plt_entries_equal(plt + i, plt + j))
93                 return (u64)&plt[j];
94
95         pltsec->plt_num_entries += i - j;
96         if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
97                 return 0;
98
99         return (u64)&plt[i];
100 }
101
102 #ifdef CONFIG_ARM64_ERRATUM_843419
103 u64 module_emit_veneer_for_adrp(struct module *mod, Elf64_Shdr *sechdrs,
104                                 void *loc, u64 val)
105 {
106         struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
107                                                           &mod->arch.init;
108         struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
109         int i = pltsec->plt_num_entries++;
110         u32 br;
111         int rd;
112
113         if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
114                 return 0;
115
116         if (is_forbidden_offset_for_adrp(&plt[i].adrp))
117                 i = pltsec->plt_num_entries++;
118
119         /* get the destination register of the ADRP instruction */
120         rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD,
121                                           le32_to_cpup((__le32 *)loc));
122
123         br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4,
124                                          AARCH64_INSN_BRANCH_NOLINK);
125
126         plt[i] = __get_adrp_add_pair(val, (u64)&plt[i], rd);
127         plt[i].br = cpu_to_le32(br);
128
129         return (u64)&plt[i];
130 }
131 #endif
132
133 #define cmp_3way(a,b)   ((a) < (b) ? -1 : (a) > (b))
134
135 static int cmp_rela(const void *a, const void *b)
136 {
137         const Elf64_Rela *x = a, *y = b;
138         int i;
139
140         /* sort by type, symbol index and addend */
141         i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
142         if (i == 0)
143                 i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
144         if (i == 0)
145                 i = cmp_3way(x->r_addend, y->r_addend);
146         return i;
147 }
148
149 static bool duplicate_rel(const Elf64_Rela *rela, int num)
150 {
151         /*
152          * Entries are sorted by type, symbol index and addend. That means
153          * that, if a duplicate entry exists, it must be in the preceding
154          * slot.
155          */
156         return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
157 }
158
159 static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
160                                Elf64_Word dstidx, Elf_Shdr *dstsec)
161 {
162         unsigned int ret = 0;
163         Elf64_Sym *s;
164         int i;
165
166         for (i = 0; i < num; i++) {
167                 u64 min_align;
168
169                 switch (ELF64_R_TYPE(rela[i].r_info)) {
170                 case R_AARCH64_JUMP26:
171                 case R_AARCH64_CALL26:
172                         if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
173                                 break;
174
175                         /*
176                          * We only have to consider branch targets that resolve
177                          * to symbols that are defined in a different section.
178                          * This is not simply a heuristic, it is a fundamental
179                          * limitation, since there is no guaranteed way to emit
180                          * PLT entries sufficiently close to the branch if the
181                          * section size exceeds the range of a branch
182                          * instruction. So ignore relocations against defined
183                          * symbols if they live in the same section as the
184                          * relocation target.
185                          */
186                         s = syms + ELF64_R_SYM(rela[i].r_info);
187                         if (s->st_shndx == dstidx)
188                                 break;
189
190                         /*
191                          * Jump relocations with non-zero addends against
192                          * undefined symbols are supported by the ELF spec, but
193                          * do not occur in practice (e.g., 'jump n bytes past
194                          * the entry point of undefined function symbol f').
195                          * So we need to support them, but there is no need to
196                          * take them into consideration when trying to optimize
197                          * this code. So let's only check for duplicates when
198                          * the addend is zero: this allows us to record the PLT
199                          * entry address in the symbol table itself, rather than
200                          * having to search the list for duplicates each time we
201                          * emit one.
202                          */
203                         if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
204                                 ret++;
205                         break;
206                 case R_AARCH64_ADR_PREL_PG_HI21_NC:
207                 case R_AARCH64_ADR_PREL_PG_HI21:
208                         if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) ||
209                             !cpus_have_const_cap(ARM64_WORKAROUND_843419))
210                                 break;
211
212                         /*
213                          * Determine the minimal safe alignment for this ADRP
214                          * instruction: the section alignment at which it is
215                          * guaranteed not to appear at a vulnerable offset.
216                          *
217                          * This comes down to finding the least significant zero
218                          * bit in bits [11:3] of the section offset, and
219                          * increasing the section's alignment so that the
220                          * resulting address of this instruction is guaranteed
221                          * to equal the offset in that particular bit (as well
222                          * as all less signficant bits). This ensures that the
223                          * address modulo 4 KB != 0xfff8 or 0xfffc (which would
224                          * have all ones in bits [11:3])
225                          */
226                         min_align = 2ULL << ffz(rela[i].r_offset | 0x7);
227
228                         /*
229                          * Allocate veneer space for each ADRP that may appear
230                          * at a vulnerable offset nonetheless. At relocation
231                          * time, some of these will remain unused since some
232                          * ADRP instructions can be patched to ADR instructions
233                          * instead.
234                          */
235                         if (min_align > SZ_4K)
236                                 ret++;
237                         else
238                                 dstsec->sh_addralign = max(dstsec->sh_addralign,
239                                                            min_align);
240                         break;
241                 }
242         }
243
244         if (IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) &&
245             cpus_have_const_cap(ARM64_WORKAROUND_843419))
246                 /*
247                  * Add some slack so we can skip PLT slots that may trigger
248                  * the erratum due to the placement of the ADRP instruction.
249                  */
250                 ret += DIV_ROUND_UP(ret, (SZ_4K / sizeof(struct plt_entry)));
251
252         return ret;
253 }
254
255 int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
256                               char *secstrings, struct module *mod)
257 {
258         unsigned long core_plts = 0;
259         unsigned long init_plts = 0;
260         Elf64_Sym *syms = NULL;
261         Elf_Shdr *pltsec, *tramp = NULL;
262         int i;
263
264         /*
265          * Find the empty .plt section so we can expand it to store the PLT
266          * entries. Record the symtab address as well.
267          */
268         for (i = 0; i < ehdr->e_shnum; i++) {
269                 if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
270                         mod->arch.core.plt_shndx = i;
271                 else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
272                         mod->arch.init.plt_shndx = i;
273                 else if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) &&
274                          !strcmp(secstrings + sechdrs[i].sh_name,
275                                  ".text.ftrace_trampoline"))
276                         tramp = sechdrs + i;
277                 else if (sechdrs[i].sh_type == SHT_SYMTAB)
278                         syms = (Elf64_Sym *)sechdrs[i].sh_addr;
279         }
280
281         if (!mod->arch.core.plt_shndx || !mod->arch.init.plt_shndx) {
282                 pr_err("%s: module PLT section(s) missing\n", mod->name);
283                 return -ENOEXEC;
284         }
285         if (!syms) {
286                 pr_err("%s: module symtab section missing\n", mod->name);
287                 return -ENOEXEC;
288         }
289
290         for (i = 0; i < ehdr->e_shnum; i++) {
291                 Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
292                 int numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
293                 Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
294
295                 if (sechdrs[i].sh_type != SHT_RELA)
296                         continue;
297
298                 /* ignore relocations that operate on non-exec sections */
299                 if (!(dstsec->sh_flags & SHF_EXECINSTR))
300                         continue;
301
302                 /* sort by type, symbol index and addend */
303                 sort(rels, numrels, sizeof(Elf64_Rela), cmp_rela, NULL);
304
305                 if (strncmp(secstrings + dstsec->sh_name, ".init", 5) != 0)
306                         core_plts += count_plts(syms, rels, numrels,
307                                                 sechdrs[i].sh_info, dstsec);
308                 else
309                         init_plts += count_plts(syms, rels, numrels,
310                                                 sechdrs[i].sh_info, dstsec);
311         }
312
313         pltsec = sechdrs + mod->arch.core.plt_shndx;
314         pltsec->sh_type = SHT_NOBITS;
315         pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
316         pltsec->sh_addralign = L1_CACHE_BYTES;
317         pltsec->sh_size = (core_plts  + 1) * sizeof(struct plt_entry);
318         mod->arch.core.plt_num_entries = 0;
319         mod->arch.core.plt_max_entries = core_plts;
320
321         pltsec = sechdrs + mod->arch.init.plt_shndx;
322         pltsec->sh_type = SHT_NOBITS;
323         pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
324         pltsec->sh_addralign = L1_CACHE_BYTES;
325         pltsec->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
326         mod->arch.init.plt_num_entries = 0;
327         mod->arch.init.plt_max_entries = init_plts;
328
329         if (tramp) {
330                 tramp->sh_type = SHT_NOBITS;
331                 tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
332                 tramp->sh_addralign = __alignof__(struct plt_entry);
333                 tramp->sh_size = sizeof(struct plt_entry);
334         }
335
336         return 0;
337 }