Merge tag 'sound-fix-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[sfrench/cifs-2.6.git] / arch / arm64 / kernel / module-plts.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
4  */
5
6 #include <linux/elf.h>
7 #include <linux/ftrace.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/sort.h>
11
12 static struct plt_entry __get_adrp_add_pair(u64 dst, u64 pc,
13                                             enum aarch64_insn_register reg)
14 {
15         u32 adrp, add;
16
17         adrp = aarch64_insn_gen_adr(pc, dst, reg, AARCH64_INSN_ADR_TYPE_ADRP);
18         add = aarch64_insn_gen_add_sub_imm(reg, reg, dst % SZ_4K,
19                                            AARCH64_INSN_VARIANT_64BIT,
20                                            AARCH64_INSN_ADSB_ADD);
21
22         return (struct plt_entry){ cpu_to_le32(adrp), cpu_to_le32(add) };
23 }
24
25 struct plt_entry get_plt_entry(u64 dst, void *pc)
26 {
27         struct plt_entry plt;
28         static u32 br;
29
30         if (!br)
31                 br = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_16,
32                                                  AARCH64_INSN_BRANCH_NOLINK);
33
34         plt = __get_adrp_add_pair(dst, (u64)pc, AARCH64_INSN_REG_16);
35         plt.br = cpu_to_le32(br);
36
37         return plt;
38 }
39
40 bool plt_entries_equal(const struct plt_entry *a, const struct plt_entry *b)
41 {
42         u64 p, q;
43
44         /*
45          * Check whether both entries refer to the same target:
46          * do the cheapest checks first.
47          * If the 'add' or 'br' opcodes are different, then the target
48          * cannot be the same.
49          */
50         if (a->add != b->add || a->br != b->br)
51                 return false;
52
53         p = ALIGN_DOWN((u64)a, SZ_4K);
54         q = ALIGN_DOWN((u64)b, SZ_4K);
55
56         /*
57          * If the 'adrp' opcodes are the same then we just need to check
58          * that they refer to the same 4k region.
59          */
60         if (a->adrp == b->adrp && p == q)
61                 return true;
62
63         return (p + aarch64_insn_adrp_get_offset(le32_to_cpu(a->adrp))) ==
64                (q + aarch64_insn_adrp_get_offset(le32_to_cpu(b->adrp)));
65 }
66
67 static bool in_init(const struct module *mod, void *loc)
68 {
69         return (u64)loc - (u64)mod->init_layout.base < mod->init_layout.size;
70 }
71
72 u64 module_emit_plt_entry(struct module *mod, Elf64_Shdr *sechdrs,
73                           void *loc, const Elf64_Rela *rela,
74                           Elf64_Sym *sym)
75 {
76         struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
77                                                           &mod->arch.init;
78         struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
79         int i = pltsec->plt_num_entries;
80         int j = i - 1;
81         u64 val = sym->st_value + rela->r_addend;
82
83         if (is_forbidden_offset_for_adrp(&plt[i].adrp))
84                 i++;
85
86         plt[i] = get_plt_entry(val, &plt[i]);
87
88         /*
89          * Check if the entry we just created is a duplicate. Given that the
90          * relocations are sorted, this will be the last entry we allocated.
91          * (if one exists).
92          */
93         if (j >= 0 && plt_entries_equal(plt + i, plt + j))
94                 return (u64)&plt[j];
95
96         pltsec->plt_num_entries += i - j;
97         if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
98                 return 0;
99
100         return (u64)&plt[i];
101 }
102
103 #ifdef CONFIG_ARM64_ERRATUM_843419
104 u64 module_emit_veneer_for_adrp(struct module *mod, Elf64_Shdr *sechdrs,
105                                 void *loc, u64 val)
106 {
107         struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
108                                                           &mod->arch.init;
109         struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
110         int i = pltsec->plt_num_entries++;
111         u32 br;
112         int rd;
113
114         if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
115                 return 0;
116
117         if (is_forbidden_offset_for_adrp(&plt[i].adrp))
118                 i = pltsec->plt_num_entries++;
119
120         /* get the destination register of the ADRP instruction */
121         rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD,
122                                           le32_to_cpup((__le32 *)loc));
123
124         br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4,
125                                          AARCH64_INSN_BRANCH_NOLINK);
126
127         plt[i] = __get_adrp_add_pair(val, (u64)&plt[i], rd);
128         plt[i].br = cpu_to_le32(br);
129
130         return (u64)&plt[i];
131 }
132 #endif
133
134 #define cmp_3way(a,b)   ((a) < (b) ? -1 : (a) > (b))
135
136 static int cmp_rela(const void *a, const void *b)
137 {
138         const Elf64_Rela *x = a, *y = b;
139         int i;
140
141         /* sort by type, symbol index and addend */
142         i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
143         if (i == 0)
144                 i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
145         if (i == 0)
146                 i = cmp_3way(x->r_addend, y->r_addend);
147         return i;
148 }
149
150 static bool duplicate_rel(const Elf64_Rela *rela, int num)
151 {
152         /*
153          * Entries are sorted by type, symbol index and addend. That means
154          * that, if a duplicate entry exists, it must be in the preceding
155          * slot.
156          */
157         return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
158 }
159
160 static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
161                                Elf64_Word dstidx, Elf_Shdr *dstsec)
162 {
163         unsigned int ret = 0;
164         Elf64_Sym *s;
165         int i;
166
167         for (i = 0; i < num; i++) {
168                 u64 min_align;
169
170                 switch (ELF64_R_TYPE(rela[i].r_info)) {
171                 case R_AARCH64_JUMP26:
172                 case R_AARCH64_CALL26:
173                         if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
174                                 break;
175
176                         /*
177                          * We only have to consider branch targets that resolve
178                          * to symbols that are defined in a different section.
179                          * This is not simply a heuristic, it is a fundamental
180                          * limitation, since there is no guaranteed way to emit
181                          * PLT entries sufficiently close to the branch if the
182                          * section size exceeds the range of a branch
183                          * instruction. So ignore relocations against defined
184                          * symbols if they live in the same section as the
185                          * relocation target.
186                          */
187                         s = syms + ELF64_R_SYM(rela[i].r_info);
188                         if (s->st_shndx == dstidx)
189                                 break;
190
191                         /*
192                          * Jump relocations with non-zero addends against
193                          * undefined symbols are supported by the ELF spec, but
194                          * do not occur in practice (e.g., 'jump n bytes past
195                          * the entry point of undefined function symbol f').
196                          * So we need to support them, but there is no need to
197                          * take them into consideration when trying to optimize
198                          * this code. So let's only check for duplicates when
199                          * the addend is zero: this allows us to record the PLT
200                          * entry address in the symbol table itself, rather than
201                          * having to search the list for duplicates each time we
202                          * emit one.
203                          */
204                         if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
205                                 ret++;
206                         break;
207                 case R_AARCH64_ADR_PREL_PG_HI21_NC:
208                 case R_AARCH64_ADR_PREL_PG_HI21:
209                         if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) ||
210                             !cpus_have_const_cap(ARM64_WORKAROUND_843419))
211                                 break;
212
213                         /*
214                          * Determine the minimal safe alignment for this ADRP
215                          * instruction: the section alignment at which it is
216                          * guaranteed not to appear at a vulnerable offset.
217                          *
218                          * This comes down to finding the least significant zero
219                          * bit in bits [11:3] of the section offset, and
220                          * increasing the section's alignment so that the
221                          * resulting address of this instruction is guaranteed
222                          * to equal the offset in that particular bit (as well
223                          * as all less signficant bits). This ensures that the
224                          * address modulo 4 KB != 0xfff8 or 0xfffc (which would
225                          * have all ones in bits [11:3])
226                          */
227                         min_align = 2ULL << ffz(rela[i].r_offset | 0x7);
228
229                         /*
230                          * Allocate veneer space for each ADRP that may appear
231                          * at a vulnerable offset nonetheless. At relocation
232                          * time, some of these will remain unused since some
233                          * ADRP instructions can be patched to ADR instructions
234                          * instead.
235                          */
236                         if (min_align > SZ_4K)
237                                 ret++;
238                         else
239                                 dstsec->sh_addralign = max(dstsec->sh_addralign,
240                                                            min_align);
241                         break;
242                 }
243         }
244
245         if (IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) &&
246             cpus_have_const_cap(ARM64_WORKAROUND_843419))
247                 /*
248                  * Add some slack so we can skip PLT slots that may trigger
249                  * the erratum due to the placement of the ADRP instruction.
250                  */
251                 ret += DIV_ROUND_UP(ret, (SZ_4K / sizeof(struct plt_entry)));
252
253         return ret;
254 }
255
256 int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
257                               char *secstrings, struct module *mod)
258 {
259         unsigned long core_plts = 0;
260         unsigned long init_plts = 0;
261         Elf64_Sym *syms = NULL;
262         Elf_Shdr *pltsec, *tramp = NULL;
263         int i;
264
265         /*
266          * Find the empty .plt section so we can expand it to store the PLT
267          * entries. Record the symtab address as well.
268          */
269         for (i = 0; i < ehdr->e_shnum; i++) {
270                 if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
271                         mod->arch.core.plt_shndx = i;
272                 else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
273                         mod->arch.init.plt_shndx = i;
274                 else if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) &&
275                          !strcmp(secstrings + sechdrs[i].sh_name,
276                                  ".text.ftrace_trampoline"))
277                         tramp = sechdrs + i;
278                 else if (sechdrs[i].sh_type == SHT_SYMTAB)
279                         syms = (Elf64_Sym *)sechdrs[i].sh_addr;
280         }
281
282         if (!mod->arch.core.plt_shndx || !mod->arch.init.plt_shndx) {
283                 pr_err("%s: module PLT section(s) missing\n", mod->name);
284                 return -ENOEXEC;
285         }
286         if (!syms) {
287                 pr_err("%s: module symtab section missing\n", mod->name);
288                 return -ENOEXEC;
289         }
290
291         for (i = 0; i < ehdr->e_shnum; i++) {
292                 Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
293                 int numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
294                 Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
295
296                 if (sechdrs[i].sh_type != SHT_RELA)
297                         continue;
298
299                 /* ignore relocations that operate on non-exec sections */
300                 if (!(dstsec->sh_flags & SHF_EXECINSTR))
301                         continue;
302
303                 /* sort by type, symbol index and addend */
304                 sort(rels, numrels, sizeof(Elf64_Rela), cmp_rela, NULL);
305
306                 if (!str_has_prefix(secstrings + dstsec->sh_name, ".init"))
307                         core_plts += count_plts(syms, rels, numrels,
308                                                 sechdrs[i].sh_info, dstsec);
309                 else
310                         init_plts += count_plts(syms, rels, numrels,
311                                                 sechdrs[i].sh_info, dstsec);
312         }
313
314         pltsec = sechdrs + mod->arch.core.plt_shndx;
315         pltsec->sh_type = SHT_NOBITS;
316         pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
317         pltsec->sh_addralign = L1_CACHE_BYTES;
318         pltsec->sh_size = (core_plts  + 1) * sizeof(struct plt_entry);
319         mod->arch.core.plt_num_entries = 0;
320         mod->arch.core.plt_max_entries = core_plts;
321
322         pltsec = sechdrs + mod->arch.init.plt_shndx;
323         pltsec->sh_type = SHT_NOBITS;
324         pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
325         pltsec->sh_addralign = L1_CACHE_BYTES;
326         pltsec->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
327         mod->arch.init.plt_num_entries = 0;
328         mod->arch.init.plt_max_entries = init_plts;
329
330         if (tramp) {
331                 tramp->sh_type = SHT_NOBITS;
332                 tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
333                 tramp->sh_addralign = __alignof__(struct plt_entry);
334                 tramp->sh_size = NR_FTRACE_PLTS * sizeof(struct plt_entry);
335         }
336
337         return 0;
338 }