Merge branch 'cec-defines' into for-linus
[sfrench/cifs-2.6.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/sort.h>
23 #include <linux/types.h>
24 #include <asm/cpu.h>
25 #include <asm/cpufeature.h>
26 #include <asm/cpu_ops.h>
27 #include <asm/mmu_context.h>
28 #include <asm/processor.h>
29 #include <asm/sysreg.h>
30 #include <asm/virt.h>
31
32 unsigned long elf_hwcap __read_mostly;
33 EXPORT_SYMBOL_GPL(elf_hwcap);
34
35 #ifdef CONFIG_COMPAT
36 #define COMPAT_ELF_HWCAP_DEFAULT        \
37                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
38                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
39                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
40                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
41                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
42                                  COMPAT_HWCAP_LPAE)
43 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
44 unsigned int compat_elf_hwcap2 __read_mostly;
45 #endif
46
47 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
48
49 #define __ARM64_FTR_BITS(SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
50         {                                               \
51                 .sign = SIGNED,                         \
52                 .strict = STRICT,                       \
53                 .type = TYPE,                           \
54                 .shift = SHIFT,                         \
55                 .width = WIDTH,                         \
56                 .safe_val = SAFE_VAL,                   \
57         }
58
59 /* Define a feature with unsigned values */
60 #define ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
61         __ARM64_FTR_BITS(FTR_UNSIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
62
63 /* Define a feature with a signed value */
64 #define S_ARM64_FTR_BITS(STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
65         __ARM64_FTR_BITS(FTR_SIGNED, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
66
67 #define ARM64_FTR_END                                   \
68         {                                               \
69                 .width = 0,                             \
70         }
71
72 /* meta feature for alternatives */
73 static bool __maybe_unused
74 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry);
75
76 static struct arm64_ftr_bits ftr_id_aa64isar0[] = {
77         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
78         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
79         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),
80         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
81         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
82         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
83         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
84         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
85         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* RAZ */
86         ARM64_FTR_END,
87 };
88
89 static struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
90         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
91         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0),
92         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_GIC_SHIFT, 4, 0),
93         S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
94         S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
95         /* Linux doesn't care about the EL3 */
96         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64PFR0_EL3_SHIFT, 4, 0),
97         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL2_SHIFT, 4, 0),
98         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
99         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
100         ARM64_FTR_END,
101 };
102
103 static struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
104         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
105         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
106         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
107         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
108         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
109         /* Linux shouldn't care about secure memory */
110         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
111         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
112         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
113         /*
114          * Differing PARange is fine as long as all peripherals and memory are mapped
115          * within the minimum PARange of all CPUs
116          */
117         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
118         ARM64_FTR_END,
119 };
120
121 static struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
122         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
123         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
124         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
125         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
126         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
127         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
128         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
129         ARM64_FTR_END,
130 };
131
132 static struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
133         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
134         ARM64_FTR_END,
135 };
136
137 static struct arm64_ftr_bits ftr_ctr[] = {
138         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 31, 1, 1),        /* RAO */
139         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 3, 0),
140         ARM64_FTR_BITS(FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),  /* CWG */
141         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),   /* ERG */
142         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),   /* DminLine */
143         /*
144          * Linux can handle differing I-cache policies. Userspace JITs will
145          * make use of *minLine
146          */
147         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_EXACT, 14, 2, 0),     /* L1Ip */
148         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 10, 0),        /* RAZ */
149         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* IminLine */
150         ARM64_FTR_END,
151 };
152
153 static struct arm64_ftr_bits ftr_id_mmfr0[] = {
154         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 28, 4, 0xf),    /* InnerShr */
155         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 24, 4, 0),        /* FCSE */
156         ARM64_FTR_BITS(FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),        /* AuxReg */
157         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 4, 0),        /* TCM */
158         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* ShareLvl */
159         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0xf),     /* OuterShr */
160         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0), /* PMSA */
161         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0), /* VMSA */
162         ARM64_FTR_END,
163 };
164
165 static struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
166         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 32, 32, 0),
167         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
168         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
169         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
170         S_ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
171         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
172         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
173         ARM64_FTR_END,
174 };
175
176 static struct arm64_ftr_bits ftr_mvfr2[] = {
177         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
178         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* FPMisc */
179         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* SIMDMisc */
180         ARM64_FTR_END,
181 };
182
183 static struct arm64_ftr_bits ftr_dczid[] = {
184         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 5, 27, 0),        /* RAZ */
185         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 1, 1),         /* DZP */
186         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),    /* BS */
187         ARM64_FTR_END,
188 };
189
190
191 static struct arm64_ftr_bits ftr_id_isar5[] = {
192         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_RDM_SHIFT, 4, 0),
193         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 20, 4, 0),        /* RAZ */
194         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_CRC32_SHIFT, 4, 0),
195         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA2_SHIFT, 4, 0),
196         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SHA1_SHIFT, 4, 0),
197         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_AES_SHIFT, 4, 0),
198         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, ID_ISAR5_SEVL_SHIFT, 4, 0),
199         ARM64_FTR_END,
200 };
201
202 static struct arm64_ftr_bits ftr_id_mmfr4[] = {
203         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 24, 0),        /* RAZ */
204         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* ac2 */
205         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* RAZ */
206         ARM64_FTR_END,
207 };
208
209 static struct arm64_ftr_bits ftr_id_pfr0[] = {
210         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 16, 16, 0),       /* RAZ */
211         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 12, 4, 0),        /* State3 */
212         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 8, 4, 0),         /* State2 */
213         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 4, 4, 0),         /* State1 */
214         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 4, 0),         /* State0 */
215         ARM64_FTR_END,
216 };
217
218 static struct arm64_ftr_bits ftr_id_dfr0[] = {
219         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
220         S_ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),       /* PerfMon */
221         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
222         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
223         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
224         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
225         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
226         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
227         ARM64_FTR_END,
228 };
229
230 /*
231  * Common ftr bits for a 32bit register with all hidden, strict
232  * attributes, with 4bit feature fields and a default safe value of
233  * 0. Covers the following 32bit registers:
234  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
235  */
236 static struct arm64_ftr_bits ftr_generic_32bits[] = {
237         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
238         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
239         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
240         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
241         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
242         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
243         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
244         ARM64_FTR_BITS(FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
245         ARM64_FTR_END,
246 };
247
248 static struct arm64_ftr_bits ftr_generic[] = {
249         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
250         ARM64_FTR_END,
251 };
252
253 static struct arm64_ftr_bits ftr_generic32[] = {
254         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 32, 0),
255         ARM64_FTR_END,
256 };
257
258 static struct arm64_ftr_bits ftr_aa64raz[] = {
259         ARM64_FTR_BITS(FTR_STRICT, FTR_EXACT, 0, 64, 0),
260         ARM64_FTR_END,
261 };
262
263 #define ARM64_FTR_REG(id, table)                \
264         {                                       \
265                 .sys_id = id,                   \
266                 .name = #id,                    \
267                 .ftr_bits = &((table)[0]),      \
268         }
269
270 static struct arm64_ftr_reg arm64_ftr_regs[] = {
271
272         /* Op1 = 0, CRn = 0, CRm = 1 */
273         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
274         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
275         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
276         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
277         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
278         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
279         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
280
281         /* Op1 = 0, CRn = 0, CRm = 2 */
282         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
283         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
284         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
285         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
286         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
287         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
288         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
289
290         /* Op1 = 0, CRn = 0, CRm = 3 */
291         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
292         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
293         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
294
295         /* Op1 = 0, CRn = 0, CRm = 4 */
296         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
297         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_aa64raz),
298
299         /* Op1 = 0, CRn = 0, CRm = 5 */
300         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
301         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_generic),
302
303         /* Op1 = 0, CRn = 0, CRm = 6 */
304         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
305         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_aa64raz),
306
307         /* Op1 = 0, CRn = 0, CRm = 7 */
308         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
309         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
310         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
311
312         /* Op1 = 3, CRn = 0, CRm = 0 */
313         ARM64_FTR_REG(SYS_CTR_EL0, ftr_ctr),
314         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
315
316         /* Op1 = 3, CRn = 14, CRm = 0 */
317         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_generic32),
318 };
319
320 static int search_cmp_ftr_reg(const void *id, const void *regp)
321 {
322         return (int)(unsigned long)id - (int)((const struct arm64_ftr_reg *)regp)->sys_id;
323 }
324
325 /*
326  * get_arm64_ftr_reg - Lookup a feature register entry using its
327  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
328  * ascending order of sys_id , we use binary search to find a matching
329  * entry.
330  *
331  * returns - Upon success,  matching ftr_reg entry for id.
332  *         - NULL on failure. It is upto the caller to decide
333  *           the impact of a failure.
334  */
335 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
336 {
337         return bsearch((const void *)(unsigned long)sys_id,
338                         arm64_ftr_regs,
339                         ARRAY_SIZE(arm64_ftr_regs),
340                         sizeof(arm64_ftr_regs[0]),
341                         search_cmp_ftr_reg);
342 }
343
344 static u64 arm64_ftr_set_value(struct arm64_ftr_bits *ftrp, s64 reg, s64 ftr_val)
345 {
346         u64 mask = arm64_ftr_mask(ftrp);
347
348         reg &= ~mask;
349         reg |= (ftr_val << ftrp->shift) & mask;
350         return reg;
351 }
352
353 static s64 arm64_ftr_safe_value(struct arm64_ftr_bits *ftrp, s64 new, s64 cur)
354 {
355         s64 ret = 0;
356
357         switch (ftrp->type) {
358         case FTR_EXACT:
359                 ret = ftrp->safe_val;
360                 break;
361         case FTR_LOWER_SAFE:
362                 ret = new < cur ? new : cur;
363                 break;
364         case FTR_HIGHER_SAFE:
365                 ret = new > cur ? new : cur;
366                 break;
367         default:
368                 BUG();
369         }
370
371         return ret;
372 }
373
374 static int __init sort_cmp_ftr_regs(const void *a, const void *b)
375 {
376         return ((const struct arm64_ftr_reg *)a)->sys_id -
377                  ((const struct arm64_ftr_reg *)b)->sys_id;
378 }
379
380 static void __init swap_ftr_regs(void *a, void *b, int size)
381 {
382         struct arm64_ftr_reg tmp = *(struct arm64_ftr_reg *)a;
383         *(struct arm64_ftr_reg *)a = *(struct arm64_ftr_reg *)b;
384         *(struct arm64_ftr_reg *)b = tmp;
385 }
386
387 static void __init sort_ftr_regs(void)
388 {
389         /* Keep the array sorted so that we can do the binary search */
390         sort(arm64_ftr_regs,
391                 ARRAY_SIZE(arm64_ftr_regs),
392                 sizeof(arm64_ftr_regs[0]),
393                 sort_cmp_ftr_regs,
394                 swap_ftr_regs);
395 }
396
397 /*
398  * Initialise the CPU feature register from Boot CPU values.
399  * Also initiliases the strict_mask for the register.
400  */
401 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
402 {
403         u64 val = 0;
404         u64 strict_mask = ~0x0ULL;
405         struct arm64_ftr_bits *ftrp;
406         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
407
408         BUG_ON(!reg);
409
410         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
411                 s64 ftr_new = arm64_ftr_value(ftrp, new);
412
413                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
414                 if (!ftrp->strict)
415                         strict_mask &= ~arm64_ftr_mask(ftrp);
416         }
417         reg->sys_val = val;
418         reg->strict_mask = strict_mask;
419 }
420
421 void __init init_cpu_features(struct cpuinfo_arm64 *info)
422 {
423         /* Before we start using the tables, make sure it is sorted */
424         sort_ftr_regs();
425
426         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
427         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
428         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
429         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
430         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
431         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
432         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
433         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
434         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
435         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
436         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
437         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
438         init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
439         init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
440         init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
441         init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
442         init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
443         init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
444         init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
445         init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
446         init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
447         init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
448         init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
449         init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
450         init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
451         init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
452         init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
453         init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
454 }
455
456 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
457 {
458         struct arm64_ftr_bits *ftrp;
459
460         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
461                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
462                 s64 ftr_new = arm64_ftr_value(ftrp, new);
463
464                 if (ftr_cur == ftr_new)
465                         continue;
466                 /* Find a safe value */
467                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
468                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
469         }
470
471 }
472
473 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
474 {
475         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
476
477         BUG_ON(!regp);
478         update_cpu_ftr_reg(regp, val);
479         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
480                 return 0;
481         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
482                         regp->name, boot, cpu, val);
483         return 1;
484 }
485
486 /*
487  * Update system wide CPU feature registers with the values from a
488  * non-boot CPU. Also performs SANITY checks to make sure that there
489  * aren't any insane variations from that of the boot CPU.
490  */
491 void update_cpu_features(int cpu,
492                          struct cpuinfo_arm64 *info,
493                          struct cpuinfo_arm64 *boot)
494 {
495         int taint = 0;
496
497         /*
498          * The kernel can handle differing I-cache policies, but otherwise
499          * caches should look identical. Userspace JITs will make use of
500          * *minLine.
501          */
502         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
503                                       info->reg_ctr, boot->reg_ctr);
504
505         /*
506          * Userspace may perform DC ZVA instructions. Mismatched block sizes
507          * could result in too much or too little memory being zeroed if a
508          * process is preempted and migrated between CPUs.
509          */
510         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
511                                       info->reg_dczid, boot->reg_dczid);
512
513         /* If different, timekeeping will be broken (especially with KVM) */
514         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
515                                       info->reg_cntfrq, boot->reg_cntfrq);
516
517         /*
518          * The kernel uses self-hosted debug features and expects CPUs to
519          * support identical debug features. We presently need CTX_CMPs, WRPs,
520          * and BRPs to be identical.
521          * ID_AA64DFR1 is currently RES0.
522          */
523         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
524                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
525         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
526                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
527         /*
528          * Even in big.LITTLE, processors should be identical instruction-set
529          * wise.
530          */
531         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
532                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
533         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
534                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
535
536         /*
537          * Differing PARange support is fine as long as all peripherals and
538          * memory are mapped within the minimum PARange of all CPUs.
539          * Linux should not care about secure memory.
540          */
541         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
542                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
543         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
544                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
545         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
546                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
547
548         /*
549          * EL3 is not our concern.
550          * ID_AA64PFR1 is currently RES0.
551          */
552         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
553                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
554         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
555                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
556
557         /*
558          * If we have AArch32, we care about 32-bit features for compat. These
559          * registers should be RES0 otherwise.
560          */
561         taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
562                                         info->reg_id_dfr0, boot->reg_id_dfr0);
563         taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
564                                         info->reg_id_isar0, boot->reg_id_isar0);
565         taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
566                                         info->reg_id_isar1, boot->reg_id_isar1);
567         taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
568                                         info->reg_id_isar2, boot->reg_id_isar2);
569         taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
570                                         info->reg_id_isar3, boot->reg_id_isar3);
571         taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
572                                         info->reg_id_isar4, boot->reg_id_isar4);
573         taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
574                                         info->reg_id_isar5, boot->reg_id_isar5);
575
576         /*
577          * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
578          * ACTLR formats could differ across CPUs and therefore would have to
579          * be trapped for virtualization anyway.
580          */
581         taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
582                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
583         taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
584                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
585         taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
586                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
587         taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
588                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
589         taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
590                                         info->reg_id_pfr0, boot->reg_id_pfr0);
591         taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
592                                         info->reg_id_pfr1, boot->reg_id_pfr1);
593         taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
594                                         info->reg_mvfr0, boot->reg_mvfr0);
595         taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
596                                         info->reg_mvfr1, boot->reg_mvfr1);
597         taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
598                                         info->reg_mvfr2, boot->reg_mvfr2);
599
600         /*
601          * Mismatched CPU features are a recipe for disaster. Don't even
602          * pretend to support them.
603          */
604         WARN_TAINT_ONCE(taint, TAINT_CPU_OUT_OF_SPEC,
605                         "Unsupported CPU feature variation.\n");
606 }
607
608 u64 read_system_reg(u32 id)
609 {
610         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
611
612         /* We shouldn't get a request for an unsupported register */
613         BUG_ON(!regp);
614         return regp->sys_val;
615 }
616
617 #include <linux/irqchip/arm-gic-v3.h>
618
619 static bool
620 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
621 {
622         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
623
624         return val >= entry->min_field_value;
625 }
626
627 static bool
628 has_cpuid_feature(const struct arm64_cpu_capabilities *entry)
629 {
630         u64 val;
631
632         val = read_system_reg(entry->sys_reg);
633         return feature_matches(val, entry);
634 }
635
636 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry)
637 {
638         bool has_sre;
639
640         if (!has_cpuid_feature(entry))
641                 return false;
642
643         has_sre = gic_enable_sre();
644         if (!has_sre)
645                 pr_warn_once("%s present but disabled by higher exception level\n",
646                              entry->desc);
647
648         return has_sre;
649 }
650
651 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry)
652 {
653         u32 midr = read_cpuid_id();
654         u32 rv_min, rv_max;
655
656         /* Cavium ThunderX pass 1.x and 2.x */
657         rv_min = 0;
658         rv_max = (1 << MIDR_VARIANT_SHIFT) | MIDR_REVISION_MASK;
659
660         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX, rv_min, rv_max);
661 }
662
663 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry)
664 {
665         return is_kernel_in_hyp_mode();
666 }
667
668 static const struct arm64_cpu_capabilities arm64_features[] = {
669         {
670                 .desc = "GIC system register CPU interface",
671                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
672                 .matches = has_useable_gicv3_cpuif,
673                 .sys_reg = SYS_ID_AA64PFR0_EL1,
674                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
675                 .sign = FTR_UNSIGNED,
676                 .min_field_value = 1,
677         },
678 #ifdef CONFIG_ARM64_PAN
679         {
680                 .desc = "Privileged Access Never",
681                 .capability = ARM64_HAS_PAN,
682                 .matches = has_cpuid_feature,
683                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
684                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
685                 .sign = FTR_UNSIGNED,
686                 .min_field_value = 1,
687                 .enable = cpu_enable_pan,
688         },
689 #endif /* CONFIG_ARM64_PAN */
690 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
691         {
692                 .desc = "LSE atomic instructions",
693                 .capability = ARM64_HAS_LSE_ATOMICS,
694                 .matches = has_cpuid_feature,
695                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
696                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
697                 .sign = FTR_UNSIGNED,
698                 .min_field_value = 2,
699         },
700 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
701         {
702                 .desc = "Software prefetching using PRFM",
703                 .capability = ARM64_HAS_NO_HW_PREFETCH,
704                 .matches = has_no_hw_prefetch,
705         },
706 #ifdef CONFIG_ARM64_UAO
707         {
708                 .desc = "User Access Override",
709                 .capability = ARM64_HAS_UAO,
710                 .matches = has_cpuid_feature,
711                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
712                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
713                 .min_field_value = 1,
714                 .enable = cpu_enable_uao,
715         },
716 #endif /* CONFIG_ARM64_UAO */
717 #ifdef CONFIG_ARM64_PAN
718         {
719                 .capability = ARM64_ALT_PAN_NOT_UAO,
720                 .matches = cpufeature_pan_not_uao,
721         },
722 #endif /* CONFIG_ARM64_PAN */
723         {
724                 .desc = "Virtualization Host Extensions",
725                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
726                 .matches = runs_at_el2,
727         },
728         {},
729 };
730
731 #define HWCAP_CAP(reg, field, s, min_value, type, cap)  \
732         {                                                       \
733                 .desc = #cap,                                   \
734                 .matches = has_cpuid_feature,                   \
735                 .sys_reg = reg,                                 \
736                 .field_pos = field,                             \
737                 .sign = s,                                      \
738                 .min_field_value = min_value,                   \
739                 .hwcap_type = type,                             \
740                 .hwcap = cap,                                   \
741         }
742
743 static const struct arm64_cpu_capabilities arm64_hwcaps[] = {
744         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
745         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
746         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
747         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
748         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
749         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
750         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
751         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
752         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
753         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
754 #ifdef CONFIG_COMPAT
755         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
756         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
757         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
758         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
759         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
760 #endif
761         {},
762 };
763
764 static void __init cap_set_hwcap(const struct arm64_cpu_capabilities *cap)
765 {
766         switch (cap->hwcap_type) {
767         case CAP_HWCAP:
768                 elf_hwcap |= cap->hwcap;
769                 break;
770 #ifdef CONFIG_COMPAT
771         case CAP_COMPAT_HWCAP:
772                 compat_elf_hwcap |= (u32)cap->hwcap;
773                 break;
774         case CAP_COMPAT_HWCAP2:
775                 compat_elf_hwcap2 |= (u32)cap->hwcap;
776                 break;
777 #endif
778         default:
779                 WARN_ON(1);
780                 break;
781         }
782 }
783
784 /* Check if we have a particular HWCAP enabled */
785 static bool __maybe_unused cpus_have_hwcap(const struct arm64_cpu_capabilities *cap)
786 {
787         bool rc;
788
789         switch (cap->hwcap_type) {
790         case CAP_HWCAP:
791                 rc = (elf_hwcap & cap->hwcap) != 0;
792                 break;
793 #ifdef CONFIG_COMPAT
794         case CAP_COMPAT_HWCAP:
795                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
796                 break;
797         case CAP_COMPAT_HWCAP2:
798                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
799                 break;
800 #endif
801         default:
802                 WARN_ON(1);
803                 rc = false;
804         }
805
806         return rc;
807 }
808
809 static void __init setup_cpu_hwcaps(void)
810 {
811         int i;
812         const struct arm64_cpu_capabilities *hwcaps = arm64_hwcaps;
813
814         for (i = 0; hwcaps[i].matches; i++)
815                 if (hwcaps[i].matches(&hwcaps[i]))
816                         cap_set_hwcap(&hwcaps[i]);
817 }
818
819 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
820                             const char *info)
821 {
822         int i;
823
824         for (i = 0; caps[i].matches; i++) {
825                 if (!caps[i].matches(&caps[i]))
826                         continue;
827
828                 if (!cpus_have_cap(caps[i].capability) && caps[i].desc)
829                         pr_info("%s %s\n", info, caps[i].desc);
830                 cpus_set_cap(caps[i].capability);
831         }
832 }
833
834 /*
835  * Run through the enabled capabilities and enable() it on all active
836  * CPUs
837  */
838 static void __init
839 enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
840 {
841         int i;
842
843         for (i = 0; caps[i].matches; i++)
844                 if (caps[i].enable && cpus_have_cap(caps[i].capability))
845                         on_each_cpu(caps[i].enable, NULL, true);
846 }
847
848 /*
849  * Flag to indicate if we have computed the system wide
850  * capabilities based on the boot time active CPUs. This
851  * will be used to determine if a new booting CPU should
852  * go through the verification process to make sure that it
853  * supports the system capabilities, without using a hotplug
854  * notifier.
855  */
856 static bool sys_caps_initialised;
857
858 static inline void set_sys_caps_initialised(void)
859 {
860         sys_caps_initialised = true;
861 }
862
863 /*
864  * __raw_read_system_reg() - Used by a STARTING cpu before cpuinfo is populated.
865  */
866 static u64 __raw_read_system_reg(u32 sys_id)
867 {
868         switch (sys_id) {
869         case SYS_ID_PFR0_EL1:           return read_cpuid(ID_PFR0_EL1);
870         case SYS_ID_PFR1_EL1:           return read_cpuid(ID_PFR1_EL1);
871         case SYS_ID_DFR0_EL1:           return read_cpuid(ID_DFR0_EL1);
872         case SYS_ID_MMFR0_EL1:          return read_cpuid(ID_MMFR0_EL1);
873         case SYS_ID_MMFR1_EL1:          return read_cpuid(ID_MMFR1_EL1);
874         case SYS_ID_MMFR2_EL1:          return read_cpuid(ID_MMFR2_EL1);
875         case SYS_ID_MMFR3_EL1:          return read_cpuid(ID_MMFR3_EL1);
876         case SYS_ID_ISAR0_EL1:          return read_cpuid(ID_ISAR0_EL1);
877         case SYS_ID_ISAR1_EL1:          return read_cpuid(ID_ISAR1_EL1);
878         case SYS_ID_ISAR2_EL1:          return read_cpuid(ID_ISAR2_EL1);
879         case SYS_ID_ISAR3_EL1:          return read_cpuid(ID_ISAR3_EL1);
880         case SYS_ID_ISAR4_EL1:          return read_cpuid(ID_ISAR4_EL1);
881         case SYS_ID_ISAR5_EL1:          return read_cpuid(ID_ISAR4_EL1);
882         case SYS_MVFR0_EL1:             return read_cpuid(MVFR0_EL1);
883         case SYS_MVFR1_EL1:             return read_cpuid(MVFR1_EL1);
884         case SYS_MVFR2_EL1:             return read_cpuid(MVFR2_EL1);
885
886         case SYS_ID_AA64PFR0_EL1:       return read_cpuid(ID_AA64PFR0_EL1);
887         case SYS_ID_AA64PFR1_EL1:       return read_cpuid(ID_AA64PFR0_EL1);
888         case SYS_ID_AA64DFR0_EL1:       return read_cpuid(ID_AA64DFR0_EL1);
889         case SYS_ID_AA64DFR1_EL1:       return read_cpuid(ID_AA64DFR0_EL1);
890         case SYS_ID_AA64MMFR0_EL1:      return read_cpuid(ID_AA64MMFR0_EL1);
891         case SYS_ID_AA64MMFR1_EL1:      return read_cpuid(ID_AA64MMFR1_EL1);
892         case SYS_ID_AA64MMFR2_EL1:      return read_cpuid(ID_AA64MMFR2_EL1);
893         case SYS_ID_AA64ISAR0_EL1:      return read_cpuid(ID_AA64ISAR0_EL1);
894         case SYS_ID_AA64ISAR1_EL1:      return read_cpuid(ID_AA64ISAR1_EL1);
895
896         case SYS_CNTFRQ_EL0:            return read_cpuid(CNTFRQ_EL0);
897         case SYS_CTR_EL0:               return read_cpuid(CTR_EL0);
898         case SYS_DCZID_EL0:             return read_cpuid(DCZID_EL0);
899         default:
900                 BUG();
901                 return 0;
902         }
903 }
904
905 /*
906  * Check for CPU features that are used in early boot
907  * based on the Boot CPU value.
908  */
909 static void check_early_cpu_features(void)
910 {
911         verify_cpu_asid_bits();
912 }
913
914 /*
915  * Run through the enabled system capabilities and enable() it on this CPU.
916  * The capabilities were decided based on the available CPUs at the boot time.
917  * Any new CPU should match the system wide status of the capability. If the
918  * new CPU doesn't have a capability which the system now has enabled, we
919  * cannot do anything to fix it up and could cause unexpected failures. So
920  * we park the CPU.
921  */
922 void verify_local_cpu_capabilities(void)
923 {
924         int i;
925         const struct arm64_cpu_capabilities *caps;
926
927         check_early_cpu_features();
928
929         /*
930          * If we haven't computed the system capabilities, there is nothing
931          * to verify.
932          */
933         if (!sys_caps_initialised)
934                 return;
935
936         caps = arm64_features;
937         for (i = 0; caps[i].matches; i++) {
938                 if (!cpus_have_cap(caps[i].capability) || !caps[i].sys_reg)
939                         continue;
940                 /*
941                  * If the new CPU misses an advertised feature, we cannot proceed
942                  * further, park the cpu.
943                  */
944                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i])) {
945                         pr_crit("CPU%d: missing feature: %s\n",
946                                         smp_processor_id(), caps[i].desc);
947                         cpu_die_early();
948                 }
949                 if (caps[i].enable)
950                         caps[i].enable(NULL);
951         }
952
953         for (i = 0, caps = arm64_hwcaps; caps[i].matches; i++) {
954                 if (!cpus_have_hwcap(&caps[i]))
955                         continue;
956                 if (!feature_matches(__raw_read_system_reg(caps[i].sys_reg), &caps[i])) {
957                         pr_crit("CPU%d: missing HWCAP: %s\n",
958                                         smp_processor_id(), caps[i].desc);
959                         cpu_die_early();
960                 }
961         }
962 }
963
964 static void __init setup_feature_capabilities(void)
965 {
966         update_cpu_capabilities(arm64_features, "detected feature:");
967         enable_cpu_capabilities(arm64_features);
968 }
969
970 void __init setup_cpu_features(void)
971 {
972         u32 cwg;
973         int cls;
974
975         /* Set the CPU feature capabilies */
976         setup_feature_capabilities();
977         setup_cpu_hwcaps();
978
979         /* Advertise that we have computed the system capabilities */
980         set_sys_caps_initialised();
981
982         /*
983          * Check for sane CTR_EL0.CWG value.
984          */
985         cwg = cache_type_cwg();
986         cls = cache_line_size();
987         if (!cwg)
988                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
989                         cls);
990         if (L1_CACHE_BYTES < cls)
991                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
992                         L1_CACHE_BYTES, cls);
993 }
994
995 static bool __maybe_unused
996 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry)
997 {
998         return (cpus_have_cap(ARM64_HAS_PAN) && !cpus_have_cap(ARM64_HAS_UAO));
999 }