Merge tag 'phy-for-4.15-rc_v2' of git://git.kernel.org/pub/scm/linux/kernel/git/kisho...
[sfrench/cifs-2.6.git] / arch / arm64 / kernel / cpufeature.c
1 /*
2  * Contains CPU feature definitions
3  *
4  * Copyright (C) 2015 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #define pr_fmt(fmt) "CPU features: " fmt
20
21 #include <linux/bsearch.h>
22 #include <linux/cpumask.h>
23 #include <linux/sort.h>
24 #include <linux/stop_machine.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <asm/cpu.h>
28 #include <asm/cpufeature.h>
29 #include <asm/cpu_ops.h>
30 #include <asm/fpsimd.h>
31 #include <asm/mmu_context.h>
32 #include <asm/processor.h>
33 #include <asm/sysreg.h>
34 #include <asm/traps.h>
35 #include <asm/virt.h>
36
37 unsigned long elf_hwcap __read_mostly;
38 EXPORT_SYMBOL_GPL(elf_hwcap);
39
40 #ifdef CONFIG_COMPAT
41 #define COMPAT_ELF_HWCAP_DEFAULT        \
42                                 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
43                                  COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
44                                  COMPAT_HWCAP_TLS|COMPAT_HWCAP_VFP|\
45                                  COMPAT_HWCAP_VFPv3|COMPAT_HWCAP_VFPv4|\
46                                  COMPAT_HWCAP_NEON|COMPAT_HWCAP_IDIV|\
47                                  COMPAT_HWCAP_LPAE)
48 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
49 unsigned int compat_elf_hwcap2 __read_mostly;
50 #endif
51
52 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
53 EXPORT_SYMBOL(cpu_hwcaps);
54
55 /*
56  * Flag to indicate if we have computed the system wide
57  * capabilities based on the boot time active CPUs. This
58  * will be used to determine if a new booting CPU should
59  * go through the verification process to make sure that it
60  * supports the system capabilities, without using a hotplug
61  * notifier.
62  */
63 static bool sys_caps_initialised;
64
65 static inline void set_sys_caps_initialised(void)
66 {
67         sys_caps_initialised = true;
68 }
69
70 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
71 {
72         /* file-wide pr_fmt adds "CPU features: " prefix */
73         pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
74         return 0;
75 }
76
77 static struct notifier_block cpu_hwcaps_notifier = {
78         .notifier_call = dump_cpu_hwcaps
79 };
80
81 static int __init register_cpu_hwcaps_dumper(void)
82 {
83         atomic_notifier_chain_register(&panic_notifier_list,
84                                        &cpu_hwcaps_notifier);
85         return 0;
86 }
87 __initcall(register_cpu_hwcaps_dumper);
88
89 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
90 EXPORT_SYMBOL(cpu_hwcap_keys);
91
92 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
93         {                                               \
94                 .sign = SIGNED,                         \
95                 .visible = VISIBLE,                     \
96                 .strict = STRICT,                       \
97                 .type = TYPE,                           \
98                 .shift = SHIFT,                         \
99                 .width = WIDTH,                         \
100                 .safe_val = SAFE_VAL,                   \
101         }
102
103 /* Define a feature with unsigned values */
104 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
105         __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
106
107 /* Define a feature with a signed value */
108 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
109         __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
110
111 #define ARM64_FTR_END                                   \
112         {                                               \
113                 .width = 0,                             \
114         }
115
116 /* meta feature for alternatives */
117 static bool __maybe_unused
118 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
119
120
121 /*
122  * NOTE: Any changes to the visibility of features should be kept in
123  * sync with the documentation of the CPU feature register ABI.
124  */
125 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
126         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
127         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
128         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
129         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
130         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
131         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
132         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
133         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
134         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
135         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
136         ARM64_FTR_END,
137 };
138
139 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
140         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
141         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
142         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
143         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
144         ARM64_FTR_END,
145 };
146
147 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
148         ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
149                                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
150         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
151         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
152         S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
153         /* Linux doesn't care about the EL3 */
154         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
155         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
156         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
157         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
158         ARM64_FTR_END,
159 };
160
161 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
162         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
163         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
164         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
165         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
166         /* Linux shouldn't care about secure memory */
167         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
168         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
169         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
170         /*
171          * Differing PARange is fine as long as all peripherals and memory are mapped
172          * within the minimum PARange of all CPUs
173          */
174         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
175         ARM64_FTR_END,
176 };
177
178 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
179         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
180         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
181         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
182         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
183         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
184         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
185         ARM64_FTR_END,
186 };
187
188 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
189         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
190         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
191         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
192         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
193         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
194         ARM64_FTR_END,
195 };
196
197 static const struct arm64_ftr_bits ftr_ctr[] = {
198         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1),   /* RAO */
199         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_SAFE, 24, 4, 0),     /* CWG */
200         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),      /* ERG */
201         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 1),      /* DminLine */
202         /*
203          * Linux can handle differing I-cache policies. Userspace JITs will
204          * make use of *minLine.
205          * If we have differing I-cache policies, report it as the weakest - VIPT.
206          */
207         ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT),       /* L1Ip */
208         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* IminLine */
209         ARM64_FTR_END,
210 };
211
212 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
213         .name           = "SYS_CTR_EL0",
214         .ftr_bits       = ftr_ctr
215 };
216
217 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
218         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf),   /* InnerShr */
219         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),       /* FCSE */
220         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0),    /* AuxReg */
221         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),       /* TCM */
222         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),       /* ShareLvl */
223         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf),    /* OuterShr */
224         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* PMSA */
225         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),        /* VMSA */
226         ARM64_FTR_END,
227 };
228
229 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
230         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
231         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
232         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
233         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
234         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
235         /*
236          * We can instantiate multiple PMU instances with different levels
237          * of support.
238          */
239         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
240         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
241         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
242         ARM64_FTR_END,
243 };
244
245 static const struct arm64_ftr_bits ftr_mvfr2[] = {
246         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* FPMisc */
247         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* SIMDMisc */
248         ARM64_FTR_END,
249 };
250
251 static const struct arm64_ftr_bits ftr_dczid[] = {
252         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1),            /* DZP */
253         ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),       /* BS */
254         ARM64_FTR_END,
255 };
256
257
258 static const struct arm64_ftr_bits ftr_id_isar5[] = {
259         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
260         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
261         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
262         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
263         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
264         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
265         ARM64_FTR_END,
266 };
267
268 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
269         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),        /* ac2 */
270         ARM64_FTR_END,
271 };
272
273 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
274         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),               /* State3 */
275         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),                /* State2 */
276         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),                /* State1 */
277         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),                /* State0 */
278         ARM64_FTR_END,
279 };
280
281 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
282         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
283         S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf),   /* PerfMon */
284         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
285         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
286         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
287         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
288         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
289         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
290         ARM64_FTR_END,
291 };
292
293 static const struct arm64_ftr_bits ftr_zcr[] = {
294         ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
295                 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),        /* LEN */
296         ARM64_FTR_END,
297 };
298
299 /*
300  * Common ftr bits for a 32bit register with all hidden, strict
301  * attributes, with 4bit feature fields and a default safe value of
302  * 0. Covers the following 32bit registers:
303  * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
304  */
305 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
306         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
307         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
308         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
309         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
310         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
311         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
312         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
313         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
314         ARM64_FTR_END,
315 };
316
317 /* Table for a single 32bit feature value */
318 static const struct arm64_ftr_bits ftr_single32[] = {
319         ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
320         ARM64_FTR_END,
321 };
322
323 static const struct arm64_ftr_bits ftr_raz[] = {
324         ARM64_FTR_END,
325 };
326
327 #define ARM64_FTR_REG(id, table) {              \
328         .sys_id = id,                           \
329         .reg =  &(struct arm64_ftr_reg){        \
330                 .name = #id,                    \
331                 .ftr_bits = &((table)[0]),      \
332         }}
333
334 static const struct __ftr_reg_entry {
335         u32                     sys_id;
336         struct arm64_ftr_reg    *reg;
337 } arm64_ftr_regs[] = {
338
339         /* Op1 = 0, CRn = 0, CRm = 1 */
340         ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
341         ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
342         ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
343         ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
344         ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
345         ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
346         ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
347
348         /* Op1 = 0, CRn = 0, CRm = 2 */
349         ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
350         ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
351         ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
352         ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
353         ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
354         ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
355         ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
356
357         /* Op1 = 0, CRn = 0, CRm = 3 */
358         ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
359         ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
360         ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
361
362         /* Op1 = 0, CRn = 0, CRm = 4 */
363         ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
364         ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_raz),
365         ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_raz),
366
367         /* Op1 = 0, CRn = 0, CRm = 5 */
368         ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
369         ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
370
371         /* Op1 = 0, CRn = 0, CRm = 6 */
372         ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
373         ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
374
375         /* Op1 = 0, CRn = 0, CRm = 7 */
376         ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
377         ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
378         ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
379
380         /* Op1 = 0, CRn = 1, CRm = 2 */
381         ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
382
383         /* Op1 = 3, CRn = 0, CRm = 0 */
384         { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
385         ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
386
387         /* Op1 = 3, CRn = 14, CRm = 0 */
388         ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
389 };
390
391 static int search_cmp_ftr_reg(const void *id, const void *regp)
392 {
393         return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
394 }
395
396 /*
397  * get_arm64_ftr_reg - Lookup a feature register entry using its
398  * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
399  * ascending order of sys_id , we use binary search to find a matching
400  * entry.
401  *
402  * returns - Upon success,  matching ftr_reg entry for id.
403  *         - NULL on failure. It is upto the caller to decide
404  *           the impact of a failure.
405  */
406 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
407 {
408         const struct __ftr_reg_entry *ret;
409
410         ret = bsearch((const void *)(unsigned long)sys_id,
411                         arm64_ftr_regs,
412                         ARRAY_SIZE(arm64_ftr_regs),
413                         sizeof(arm64_ftr_regs[0]),
414                         search_cmp_ftr_reg);
415         if (ret)
416                 return ret->reg;
417         return NULL;
418 }
419
420 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
421                                s64 ftr_val)
422 {
423         u64 mask = arm64_ftr_mask(ftrp);
424
425         reg &= ~mask;
426         reg |= (ftr_val << ftrp->shift) & mask;
427         return reg;
428 }
429
430 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
431                                 s64 cur)
432 {
433         s64 ret = 0;
434
435         switch (ftrp->type) {
436         case FTR_EXACT:
437                 ret = ftrp->safe_val;
438                 break;
439         case FTR_LOWER_SAFE:
440                 ret = new < cur ? new : cur;
441                 break;
442         case FTR_HIGHER_SAFE:
443                 ret = new > cur ? new : cur;
444                 break;
445         default:
446                 BUG();
447         }
448
449         return ret;
450 }
451
452 static void __init sort_ftr_regs(void)
453 {
454         int i;
455
456         /* Check that the array is sorted so that we can do the binary search */
457         for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
458                 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
459 }
460
461 /*
462  * Initialise the CPU feature register from Boot CPU values.
463  * Also initiliases the strict_mask for the register.
464  * Any bits that are not covered by an arm64_ftr_bits entry are considered
465  * RES0 for the system-wide value, and must strictly match.
466  */
467 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
468 {
469         u64 val = 0;
470         u64 strict_mask = ~0x0ULL;
471         u64 user_mask = 0;
472         u64 valid_mask = 0;
473
474         const struct arm64_ftr_bits *ftrp;
475         struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
476
477         BUG_ON(!reg);
478
479         for (ftrp  = reg->ftr_bits; ftrp->width; ftrp++) {
480                 u64 ftr_mask = arm64_ftr_mask(ftrp);
481                 s64 ftr_new = arm64_ftr_value(ftrp, new);
482
483                 val = arm64_ftr_set_value(ftrp, val, ftr_new);
484
485                 valid_mask |= ftr_mask;
486                 if (!ftrp->strict)
487                         strict_mask &= ~ftr_mask;
488                 if (ftrp->visible)
489                         user_mask |= ftr_mask;
490                 else
491                         reg->user_val = arm64_ftr_set_value(ftrp,
492                                                             reg->user_val,
493                                                             ftrp->safe_val);
494         }
495
496         val &= valid_mask;
497
498         reg->sys_val = val;
499         reg->strict_mask = strict_mask;
500         reg->user_mask = user_mask;
501 }
502
503 void __init init_cpu_features(struct cpuinfo_arm64 *info)
504 {
505         /* Before we start using the tables, make sure it is sorted */
506         sort_ftr_regs();
507
508         init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
509         init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
510         init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
511         init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
512         init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
513         init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
514         init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
515         init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
516         init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
517         init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
518         init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
519         init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
520         init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
521
522         if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
523                 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
524                 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
525                 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
526                 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
527                 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
528                 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
529                 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
530                 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
531                 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
532                 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
533                 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
534                 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
535                 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
536                 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
537                 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
538                 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
539         }
540
541         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
542                 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
543                 sve_init_vq_map();
544         }
545 }
546
547 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
548 {
549         const struct arm64_ftr_bits *ftrp;
550
551         for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
552                 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
553                 s64 ftr_new = arm64_ftr_value(ftrp, new);
554
555                 if (ftr_cur == ftr_new)
556                         continue;
557                 /* Find a safe value */
558                 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
559                 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
560         }
561
562 }
563
564 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
565 {
566         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
567
568         BUG_ON(!regp);
569         update_cpu_ftr_reg(regp, val);
570         if ((boot & regp->strict_mask) == (val & regp->strict_mask))
571                 return 0;
572         pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
573                         regp->name, boot, cpu, val);
574         return 1;
575 }
576
577 /*
578  * Update system wide CPU feature registers with the values from a
579  * non-boot CPU. Also performs SANITY checks to make sure that there
580  * aren't any insane variations from that of the boot CPU.
581  */
582 void update_cpu_features(int cpu,
583                          struct cpuinfo_arm64 *info,
584                          struct cpuinfo_arm64 *boot)
585 {
586         int taint = 0;
587
588         /*
589          * The kernel can handle differing I-cache policies, but otherwise
590          * caches should look identical. Userspace JITs will make use of
591          * *minLine.
592          */
593         taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
594                                       info->reg_ctr, boot->reg_ctr);
595
596         /*
597          * Userspace may perform DC ZVA instructions. Mismatched block sizes
598          * could result in too much or too little memory being zeroed if a
599          * process is preempted and migrated between CPUs.
600          */
601         taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
602                                       info->reg_dczid, boot->reg_dczid);
603
604         /* If different, timekeeping will be broken (especially with KVM) */
605         taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
606                                       info->reg_cntfrq, boot->reg_cntfrq);
607
608         /*
609          * The kernel uses self-hosted debug features and expects CPUs to
610          * support identical debug features. We presently need CTX_CMPs, WRPs,
611          * and BRPs to be identical.
612          * ID_AA64DFR1 is currently RES0.
613          */
614         taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
615                                       info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
616         taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
617                                       info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
618         /*
619          * Even in big.LITTLE, processors should be identical instruction-set
620          * wise.
621          */
622         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
623                                       info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
624         taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
625                                       info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
626
627         /*
628          * Differing PARange support is fine as long as all peripherals and
629          * memory are mapped within the minimum PARange of all CPUs.
630          * Linux should not care about secure memory.
631          */
632         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
633                                       info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
634         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
635                                       info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
636         taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
637                                       info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
638
639         /*
640          * EL3 is not our concern.
641          * ID_AA64PFR1 is currently RES0.
642          */
643         taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
644                                       info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
645         taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
646                                       info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
647
648         taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
649                                       info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
650
651         /*
652          * If we have AArch32, we care about 32-bit features for compat.
653          * If the system doesn't support AArch32, don't update them.
654          */
655         if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
656                 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
657
658                 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
659                                         info->reg_id_dfr0, boot->reg_id_dfr0);
660                 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
661                                         info->reg_id_isar0, boot->reg_id_isar0);
662                 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
663                                         info->reg_id_isar1, boot->reg_id_isar1);
664                 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
665                                         info->reg_id_isar2, boot->reg_id_isar2);
666                 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
667                                         info->reg_id_isar3, boot->reg_id_isar3);
668                 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
669                                         info->reg_id_isar4, boot->reg_id_isar4);
670                 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
671                                         info->reg_id_isar5, boot->reg_id_isar5);
672
673                 /*
674                  * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
675                  * ACTLR formats could differ across CPUs and therefore would have to
676                  * be trapped for virtualization anyway.
677                  */
678                 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
679                                         info->reg_id_mmfr0, boot->reg_id_mmfr0);
680                 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
681                                         info->reg_id_mmfr1, boot->reg_id_mmfr1);
682                 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
683                                         info->reg_id_mmfr2, boot->reg_id_mmfr2);
684                 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
685                                         info->reg_id_mmfr3, boot->reg_id_mmfr3);
686                 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
687                                         info->reg_id_pfr0, boot->reg_id_pfr0);
688                 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
689                                         info->reg_id_pfr1, boot->reg_id_pfr1);
690                 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
691                                         info->reg_mvfr0, boot->reg_mvfr0);
692                 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
693                                         info->reg_mvfr1, boot->reg_mvfr1);
694                 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
695                                         info->reg_mvfr2, boot->reg_mvfr2);
696         }
697
698         if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
699                 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
700                                         info->reg_zcr, boot->reg_zcr);
701
702                 /* Probe vector lengths, unless we already gave up on SVE */
703                 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
704                     !sys_caps_initialised)
705                         sve_update_vq_map();
706         }
707
708         /*
709          * Mismatched CPU features are a recipe for disaster. Don't even
710          * pretend to support them.
711          */
712         if (taint) {
713                 pr_warn_once("Unsupported CPU feature variation detected.\n");
714                 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
715         }
716 }
717
718 u64 read_sanitised_ftr_reg(u32 id)
719 {
720         struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
721
722         /* We shouldn't get a request for an unsupported register */
723         BUG_ON(!regp);
724         return regp->sys_val;
725 }
726
727 #define read_sysreg_case(r)     \
728         case r:         return read_sysreg_s(r)
729
730 /*
731  * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
732  * Read the system register on the current CPU
733  */
734 static u64 __read_sysreg_by_encoding(u32 sys_id)
735 {
736         switch (sys_id) {
737         read_sysreg_case(SYS_ID_PFR0_EL1);
738         read_sysreg_case(SYS_ID_PFR1_EL1);
739         read_sysreg_case(SYS_ID_DFR0_EL1);
740         read_sysreg_case(SYS_ID_MMFR0_EL1);
741         read_sysreg_case(SYS_ID_MMFR1_EL1);
742         read_sysreg_case(SYS_ID_MMFR2_EL1);
743         read_sysreg_case(SYS_ID_MMFR3_EL1);
744         read_sysreg_case(SYS_ID_ISAR0_EL1);
745         read_sysreg_case(SYS_ID_ISAR1_EL1);
746         read_sysreg_case(SYS_ID_ISAR2_EL1);
747         read_sysreg_case(SYS_ID_ISAR3_EL1);
748         read_sysreg_case(SYS_ID_ISAR4_EL1);
749         read_sysreg_case(SYS_ID_ISAR5_EL1);
750         read_sysreg_case(SYS_MVFR0_EL1);
751         read_sysreg_case(SYS_MVFR1_EL1);
752         read_sysreg_case(SYS_MVFR2_EL1);
753
754         read_sysreg_case(SYS_ID_AA64PFR0_EL1);
755         read_sysreg_case(SYS_ID_AA64PFR1_EL1);
756         read_sysreg_case(SYS_ID_AA64DFR0_EL1);
757         read_sysreg_case(SYS_ID_AA64DFR1_EL1);
758         read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
759         read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
760         read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
761         read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
762         read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
763
764         read_sysreg_case(SYS_CNTFRQ_EL0);
765         read_sysreg_case(SYS_CTR_EL0);
766         read_sysreg_case(SYS_DCZID_EL0);
767
768         default:
769                 BUG();
770                 return 0;
771         }
772 }
773
774 #include <linux/irqchip/arm-gic-v3.h>
775
776 static bool
777 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
778 {
779         int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
780
781         return val >= entry->min_field_value;
782 }
783
784 static bool
785 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
786 {
787         u64 val;
788
789         WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
790         if (scope == SCOPE_SYSTEM)
791                 val = read_sanitised_ftr_reg(entry->sys_reg);
792         else
793                 val = __read_sysreg_by_encoding(entry->sys_reg);
794
795         return feature_matches(val, entry);
796 }
797
798 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
799 {
800         bool has_sre;
801
802         if (!has_cpuid_feature(entry, scope))
803                 return false;
804
805         has_sre = gic_enable_sre();
806         if (!has_sre)
807                 pr_warn_once("%s present but disabled by higher exception level\n",
808                              entry->desc);
809
810         return has_sre;
811 }
812
813 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
814 {
815         u32 midr = read_cpuid_id();
816
817         /* Cavium ThunderX pass 1.x and 2.x */
818         return MIDR_IS_CPU_MODEL_RANGE(midr, MIDR_THUNDERX,
819                 MIDR_CPU_VAR_REV(0, 0),
820                 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
821 }
822
823 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
824 {
825         return is_kernel_in_hyp_mode();
826 }
827
828 static bool hyp_offset_low(const struct arm64_cpu_capabilities *entry,
829                            int __unused)
830 {
831         phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
832
833         /*
834          * Activate the lower HYP offset only if:
835          * - the idmap doesn't clash with it,
836          * - the kernel is not running at EL2.
837          */
838         return idmap_addr > GENMASK(VA_BITS - 2, 0) && !is_kernel_in_hyp_mode();
839 }
840
841 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
842 {
843         u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
844
845         return cpuid_feature_extract_signed_field(pfr0,
846                                         ID_AA64PFR0_FP_SHIFT) < 0;
847 }
848
849 static const struct arm64_cpu_capabilities arm64_features[] = {
850         {
851                 .desc = "GIC system register CPU interface",
852                 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
853                 .def_scope = SCOPE_SYSTEM,
854                 .matches = has_useable_gicv3_cpuif,
855                 .sys_reg = SYS_ID_AA64PFR0_EL1,
856                 .field_pos = ID_AA64PFR0_GIC_SHIFT,
857                 .sign = FTR_UNSIGNED,
858                 .min_field_value = 1,
859         },
860 #ifdef CONFIG_ARM64_PAN
861         {
862                 .desc = "Privileged Access Never",
863                 .capability = ARM64_HAS_PAN,
864                 .def_scope = SCOPE_SYSTEM,
865                 .matches = has_cpuid_feature,
866                 .sys_reg = SYS_ID_AA64MMFR1_EL1,
867                 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
868                 .sign = FTR_UNSIGNED,
869                 .min_field_value = 1,
870                 .enable = cpu_enable_pan,
871         },
872 #endif /* CONFIG_ARM64_PAN */
873 #if defined(CONFIG_AS_LSE) && defined(CONFIG_ARM64_LSE_ATOMICS)
874         {
875                 .desc = "LSE atomic instructions",
876                 .capability = ARM64_HAS_LSE_ATOMICS,
877                 .def_scope = SCOPE_SYSTEM,
878                 .matches = has_cpuid_feature,
879                 .sys_reg = SYS_ID_AA64ISAR0_EL1,
880                 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
881                 .sign = FTR_UNSIGNED,
882                 .min_field_value = 2,
883         },
884 #endif /* CONFIG_AS_LSE && CONFIG_ARM64_LSE_ATOMICS */
885         {
886                 .desc = "Software prefetching using PRFM",
887                 .capability = ARM64_HAS_NO_HW_PREFETCH,
888                 .def_scope = SCOPE_SYSTEM,
889                 .matches = has_no_hw_prefetch,
890         },
891 #ifdef CONFIG_ARM64_UAO
892         {
893                 .desc = "User Access Override",
894                 .capability = ARM64_HAS_UAO,
895                 .def_scope = SCOPE_SYSTEM,
896                 .matches = has_cpuid_feature,
897                 .sys_reg = SYS_ID_AA64MMFR2_EL1,
898                 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
899                 .min_field_value = 1,
900                 /*
901                  * We rely on stop_machine() calling uao_thread_switch() to set
902                  * UAO immediately after patching.
903                  */
904         },
905 #endif /* CONFIG_ARM64_UAO */
906 #ifdef CONFIG_ARM64_PAN
907         {
908                 .capability = ARM64_ALT_PAN_NOT_UAO,
909                 .def_scope = SCOPE_SYSTEM,
910                 .matches = cpufeature_pan_not_uao,
911         },
912 #endif /* CONFIG_ARM64_PAN */
913         {
914                 .desc = "Virtualization Host Extensions",
915                 .capability = ARM64_HAS_VIRT_HOST_EXTN,
916                 .def_scope = SCOPE_SYSTEM,
917                 .matches = runs_at_el2,
918         },
919         {
920                 .desc = "32-bit EL0 Support",
921                 .capability = ARM64_HAS_32BIT_EL0,
922                 .def_scope = SCOPE_SYSTEM,
923                 .matches = has_cpuid_feature,
924                 .sys_reg = SYS_ID_AA64PFR0_EL1,
925                 .sign = FTR_UNSIGNED,
926                 .field_pos = ID_AA64PFR0_EL0_SHIFT,
927                 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
928         },
929         {
930                 .desc = "Reduced HYP mapping offset",
931                 .capability = ARM64_HYP_OFFSET_LOW,
932                 .def_scope = SCOPE_SYSTEM,
933                 .matches = hyp_offset_low,
934         },
935         {
936                 /* FP/SIMD is not implemented */
937                 .capability = ARM64_HAS_NO_FPSIMD,
938                 .def_scope = SCOPE_SYSTEM,
939                 .min_field_value = 0,
940                 .matches = has_no_fpsimd,
941         },
942 #ifdef CONFIG_ARM64_PMEM
943         {
944                 .desc = "Data cache clean to Point of Persistence",
945                 .capability = ARM64_HAS_DCPOP,
946                 .def_scope = SCOPE_SYSTEM,
947                 .matches = has_cpuid_feature,
948                 .sys_reg = SYS_ID_AA64ISAR1_EL1,
949                 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
950                 .min_field_value = 1,
951         },
952 #endif
953 #ifdef CONFIG_ARM64_SVE
954         {
955                 .desc = "Scalable Vector Extension",
956                 .capability = ARM64_SVE,
957                 .def_scope = SCOPE_SYSTEM,
958                 .sys_reg = SYS_ID_AA64PFR0_EL1,
959                 .sign = FTR_UNSIGNED,
960                 .field_pos = ID_AA64PFR0_SVE_SHIFT,
961                 .min_field_value = ID_AA64PFR0_SVE,
962                 .matches = has_cpuid_feature,
963                 .enable = sve_kernel_enable,
964         },
965 #endif /* CONFIG_ARM64_SVE */
966         {},
967 };
968
969 #define HWCAP_CAP(reg, field, s, min_value, type, cap)  \
970         {                                                       \
971                 .desc = #cap,                                   \
972                 .def_scope = SCOPE_SYSTEM,                      \
973                 .matches = has_cpuid_feature,                   \
974                 .sys_reg = reg,                                 \
975                 .field_pos = field,                             \
976                 .sign = s,                                      \
977                 .min_field_value = min_value,                   \
978                 .hwcap_type = type,                             \
979                 .hwcap = cap,                                   \
980         }
981
982 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
983         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_PMULL),
984         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_AES),
985         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA1),
986         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA2),
987         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_SHA512),
988         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_CRC32),
989         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, HWCAP_ATOMICS),
990         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDRDM),
991         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SHA3),
992         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM3),
993         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_SM4),
994         HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_ASIMDDP),
995         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_FP),
996         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_FPHP),
997         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, HWCAP_ASIMD),
998         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, HWCAP_ASIMDHP),
999         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_DCPOP),
1000         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_JSCVT),
1001         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_FCMA),
1002         HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, HWCAP_LRCPC),
1003 #ifdef CONFIG_ARM64_SVE
1004         HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, HWCAP_SVE),
1005 #endif
1006         {},
1007 };
1008
1009 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1010 #ifdef CONFIG_COMPAT
1011         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1012         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1013         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1014         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1015         HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1016 #endif
1017         {},
1018 };
1019
1020 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1021 {
1022         switch (cap->hwcap_type) {
1023         case CAP_HWCAP:
1024                 elf_hwcap |= cap->hwcap;
1025                 break;
1026 #ifdef CONFIG_COMPAT
1027         case CAP_COMPAT_HWCAP:
1028                 compat_elf_hwcap |= (u32)cap->hwcap;
1029                 break;
1030         case CAP_COMPAT_HWCAP2:
1031                 compat_elf_hwcap2 |= (u32)cap->hwcap;
1032                 break;
1033 #endif
1034         default:
1035                 WARN_ON(1);
1036                 break;
1037         }
1038 }
1039
1040 /* Check if we have a particular HWCAP enabled */
1041 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1042 {
1043         bool rc;
1044
1045         switch (cap->hwcap_type) {
1046         case CAP_HWCAP:
1047                 rc = (elf_hwcap & cap->hwcap) != 0;
1048                 break;
1049 #ifdef CONFIG_COMPAT
1050         case CAP_COMPAT_HWCAP:
1051                 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1052                 break;
1053         case CAP_COMPAT_HWCAP2:
1054                 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1055                 break;
1056 #endif
1057         default:
1058                 WARN_ON(1);
1059                 rc = false;
1060         }
1061
1062         return rc;
1063 }
1064
1065 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1066 {
1067         /* We support emulation of accesses to CPU ID feature registers */
1068         elf_hwcap |= HWCAP_CPUID;
1069         for (; hwcaps->matches; hwcaps++)
1070                 if (hwcaps->matches(hwcaps, hwcaps->def_scope))
1071                         cap_set_elf_hwcap(hwcaps);
1072 }
1073
1074 void update_cpu_capabilities(const struct arm64_cpu_capabilities *caps,
1075                             const char *info)
1076 {
1077         for (; caps->matches; caps++) {
1078                 if (!caps->matches(caps, caps->def_scope))
1079                         continue;
1080
1081                 if (!cpus_have_cap(caps->capability) && caps->desc)
1082                         pr_info("%s %s\n", info, caps->desc);
1083                 cpus_set_cap(caps->capability);
1084         }
1085 }
1086
1087 /*
1088  * Run through the enabled capabilities and enable() it on all active
1089  * CPUs
1090  */
1091 void __init enable_cpu_capabilities(const struct arm64_cpu_capabilities *caps)
1092 {
1093         for (; caps->matches; caps++) {
1094                 unsigned int num = caps->capability;
1095
1096                 if (!cpus_have_cap(num))
1097                         continue;
1098
1099                 /* Ensure cpus_have_const_cap(num) works */
1100                 static_branch_enable(&cpu_hwcap_keys[num]);
1101
1102                 if (caps->enable) {
1103                         /*
1104                          * Use stop_machine() as it schedules the work allowing
1105                          * us to modify PSTATE, instead of on_each_cpu() which
1106                          * uses an IPI, giving us a PSTATE that disappears when
1107                          * we return.
1108                          */
1109                         stop_machine(caps->enable, NULL, cpu_online_mask);
1110                 }
1111         }
1112 }
1113
1114 /*
1115  * Check for CPU features that are used in early boot
1116  * based on the Boot CPU value.
1117  */
1118 static void check_early_cpu_features(void)
1119 {
1120         verify_cpu_run_el();
1121         verify_cpu_asid_bits();
1122 }
1123
1124 static void
1125 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
1126 {
1127
1128         for (; caps->matches; caps++)
1129                 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
1130                         pr_crit("CPU%d: missing HWCAP: %s\n",
1131                                         smp_processor_id(), caps->desc);
1132                         cpu_die_early();
1133                 }
1134 }
1135
1136 static void
1137 verify_local_cpu_features(const struct arm64_cpu_capabilities *caps)
1138 {
1139         for (; caps->matches; caps++) {
1140                 if (!cpus_have_cap(caps->capability))
1141                         continue;
1142                 /*
1143                  * If the new CPU misses an advertised feature, we cannot proceed
1144                  * further, park the cpu.
1145                  */
1146                 if (!caps->matches(caps, SCOPE_LOCAL_CPU)) {
1147                         pr_crit("CPU%d: missing feature: %s\n",
1148                                         smp_processor_id(), caps->desc);
1149                         cpu_die_early();
1150                 }
1151                 if (caps->enable)
1152                         caps->enable(NULL);
1153         }
1154 }
1155
1156 static void verify_sve_features(void)
1157 {
1158         u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
1159         u64 zcr = read_zcr_features();
1160
1161         unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
1162         unsigned int len = zcr & ZCR_ELx_LEN_MASK;
1163
1164         if (len < safe_len || sve_verify_vq_map()) {
1165                 pr_crit("CPU%d: SVE: required vector length(s) missing\n",
1166                         smp_processor_id());
1167                 cpu_die_early();
1168         }
1169
1170         /* Add checks on other ZCR bits here if necessary */
1171 }
1172
1173 /*
1174  * Run through the enabled system capabilities and enable() it on this CPU.
1175  * The capabilities were decided based on the available CPUs at the boot time.
1176  * Any new CPU should match the system wide status of the capability. If the
1177  * new CPU doesn't have a capability which the system now has enabled, we
1178  * cannot do anything to fix it up and could cause unexpected failures. So
1179  * we park the CPU.
1180  */
1181 static void verify_local_cpu_capabilities(void)
1182 {
1183         verify_local_cpu_errata_workarounds();
1184         verify_local_cpu_features(arm64_features);
1185         verify_local_elf_hwcaps(arm64_elf_hwcaps);
1186
1187         if (system_supports_32bit_el0())
1188                 verify_local_elf_hwcaps(compat_elf_hwcaps);
1189
1190         if (system_supports_sve())
1191                 verify_sve_features();
1192 }
1193
1194 void check_local_cpu_capabilities(void)
1195 {
1196         /*
1197          * All secondary CPUs should conform to the early CPU features
1198          * in use by the kernel based on boot CPU.
1199          */
1200         check_early_cpu_features();
1201
1202         /*
1203          * If we haven't finalised the system capabilities, this CPU gets
1204          * a chance to update the errata work arounds.
1205          * Otherwise, this CPU should verify that it has all the system
1206          * advertised capabilities.
1207          */
1208         if (!sys_caps_initialised)
1209                 update_cpu_errata_workarounds();
1210         else
1211                 verify_local_cpu_capabilities();
1212 }
1213
1214 static void __init setup_feature_capabilities(void)
1215 {
1216         update_cpu_capabilities(arm64_features, "detected feature:");
1217         enable_cpu_capabilities(arm64_features);
1218 }
1219
1220 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
1221 EXPORT_SYMBOL(arm64_const_caps_ready);
1222
1223 static void __init mark_const_caps_ready(void)
1224 {
1225         static_branch_enable(&arm64_const_caps_ready);
1226 }
1227
1228 /*
1229  * Check if the current CPU has a given feature capability.
1230  * Should be called from non-preemptible context.
1231  */
1232 static bool __this_cpu_has_cap(const struct arm64_cpu_capabilities *cap_array,
1233                                unsigned int cap)
1234 {
1235         const struct arm64_cpu_capabilities *caps;
1236
1237         if (WARN_ON(preemptible()))
1238                 return false;
1239
1240         for (caps = cap_array; caps->desc; caps++)
1241                 if (caps->capability == cap && caps->matches)
1242                         return caps->matches(caps, SCOPE_LOCAL_CPU);
1243
1244         return false;
1245 }
1246
1247 extern const struct arm64_cpu_capabilities arm64_errata[];
1248
1249 bool this_cpu_has_cap(unsigned int cap)
1250 {
1251         return (__this_cpu_has_cap(arm64_features, cap) ||
1252                 __this_cpu_has_cap(arm64_errata, cap));
1253 }
1254
1255 void __init setup_cpu_features(void)
1256 {
1257         u32 cwg;
1258         int cls;
1259
1260         /* Set the CPU feature capabilies */
1261         setup_feature_capabilities();
1262         enable_errata_workarounds();
1263         mark_const_caps_ready();
1264         setup_elf_hwcaps(arm64_elf_hwcaps);
1265
1266         if (system_supports_32bit_el0())
1267                 setup_elf_hwcaps(compat_elf_hwcaps);
1268
1269         sve_setup();
1270
1271         /* Advertise that we have computed the system capabilities */
1272         set_sys_caps_initialised();
1273
1274         /*
1275          * Check for sane CTR_EL0.CWG value.
1276          */
1277         cwg = cache_type_cwg();
1278         cls = cache_line_size();
1279         if (!cwg)
1280                 pr_warn("No Cache Writeback Granule information, assuming cache line size %d\n",
1281                         cls);
1282         if (L1_CACHE_BYTES < cls)
1283                 pr_warn("L1_CACHE_BYTES smaller than the Cache Writeback Granule (%d < %d)\n",
1284                         L1_CACHE_BYTES, cls);
1285 }
1286
1287 static bool __maybe_unused
1288 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
1289 {
1290         return (cpus_have_const_cap(ARM64_HAS_PAN) && !cpus_have_const_cap(ARM64_HAS_UAO));
1291 }
1292
1293 /*
1294  * We emulate only the following system register space.
1295  * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
1296  * See Table C5-6 System instruction encodings for System register accesses,
1297  * ARMv8 ARM(ARM DDI 0487A.f) for more details.
1298  */
1299 static inline bool __attribute_const__ is_emulated(u32 id)
1300 {
1301         return (sys_reg_Op0(id) == 0x3 &&
1302                 sys_reg_CRn(id) == 0x0 &&
1303                 sys_reg_Op1(id) == 0x0 &&
1304                 (sys_reg_CRm(id) == 0 ||
1305                  ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
1306 }
1307
1308 /*
1309  * With CRm == 0, reg should be one of :
1310  * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
1311  */
1312 static inline int emulate_id_reg(u32 id, u64 *valp)
1313 {
1314         switch (id) {
1315         case SYS_MIDR_EL1:
1316                 *valp = read_cpuid_id();
1317                 break;
1318         case SYS_MPIDR_EL1:
1319                 *valp = SYS_MPIDR_SAFE_VAL;
1320                 break;
1321         case SYS_REVIDR_EL1:
1322                 /* IMPLEMENTATION DEFINED values are emulated with 0 */
1323                 *valp = 0;
1324                 break;
1325         default:
1326                 return -EINVAL;
1327         }
1328
1329         return 0;
1330 }
1331
1332 static int emulate_sys_reg(u32 id, u64 *valp)
1333 {
1334         struct arm64_ftr_reg *regp;
1335
1336         if (!is_emulated(id))
1337                 return -EINVAL;
1338
1339         if (sys_reg_CRm(id) == 0)
1340                 return emulate_id_reg(id, valp);
1341
1342         regp = get_arm64_ftr_reg(id);
1343         if (regp)
1344                 *valp = arm64_ftr_reg_user_value(regp);
1345         else
1346                 /*
1347                  * The untracked registers are either IMPLEMENTATION DEFINED
1348                  * (e.g, ID_AFR0_EL1) or reserved RAZ.
1349                  */
1350                 *valp = 0;
1351         return 0;
1352 }
1353
1354 static int emulate_mrs(struct pt_regs *regs, u32 insn)
1355 {
1356         int rc;
1357         u32 sys_reg, dst;
1358         u64 val;
1359
1360         /*
1361          * sys_reg values are defined as used in mrs/msr instruction.
1362          * shift the imm value to get the encoding.
1363          */
1364         sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
1365         rc = emulate_sys_reg(sys_reg, &val);
1366         if (!rc) {
1367                 dst = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
1368                 pt_regs_write_reg(regs, dst, val);
1369                 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
1370         }
1371
1372         return rc;
1373 }
1374
1375 static struct undef_hook mrs_hook = {
1376         .instr_mask = 0xfff00000,
1377         .instr_val  = 0xd5300000,
1378         .pstate_mask = COMPAT_PSR_MODE_MASK,
1379         .pstate_val = PSR_MODE_EL0t,
1380         .fn = emulate_mrs,
1381 };
1382
1383 static int __init enable_mrs_emulation(void)
1384 {
1385         register_undef_hook(&mrs_hook);
1386         return 0;
1387 }
1388
1389 core_initcall(enable_mrs_emulation);