io_uring: fix an issue when IOSQE_IO_LINK is inserted into defer list
[sfrench/cifs-2.6.git] / arch / arm64 / include / asm / cpufeature.h
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
4  */
5
6 #ifndef __ASM_CPUFEATURE_H
7 #define __ASM_CPUFEATURE_H
8
9 #include <asm/cpucaps.h>
10 #include <asm/cputype.h>
11 #include <asm/hwcap.h>
12 #include <asm/sysreg.h>
13
14 #define MAX_CPU_FEATURES        64
15 #define cpu_feature(x)          KERNEL_HWCAP_ ## x
16
17 #ifndef __ASSEMBLY__
18
19 #include <linux/bug.h>
20 #include <linux/jump_label.h>
21 #include <linux/kernel.h>
22
23 /*
24  * CPU feature register tracking
25  *
26  * The safe value of a CPUID feature field is dependent on the implications
27  * of the values assigned to it by the architecture. Based on the relationship
28  * between the values, the features are classified into 3 types - LOWER_SAFE,
29  * HIGHER_SAFE and EXACT.
30  *
31  * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
32  * for HIGHER_SAFE. It is expected that all CPUs have the same value for
33  * a field when EXACT is specified, failing which, the safe value specified
34  * in the table is chosen.
35  */
36
37 enum ftr_type {
38         FTR_EXACT,      /* Use a predefined safe value */
39         FTR_LOWER_SAFE, /* Smaller value is safe */
40         FTR_HIGHER_SAFE,/* Bigger value is safe */
41 };
42
43 #define FTR_STRICT      true    /* SANITY check strict matching required */
44 #define FTR_NONSTRICT   false   /* SANITY check ignored */
45
46 #define FTR_SIGNED      true    /* Value should be treated as signed */
47 #define FTR_UNSIGNED    false   /* Value should be treated as unsigned */
48
49 #define FTR_VISIBLE     true    /* Feature visible to the user space */
50 #define FTR_HIDDEN      false   /* Feature is hidden from the user */
51
52 #define FTR_VISIBLE_IF_IS_ENABLED(config)               \
53         (IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
54
55 struct arm64_ftr_bits {
56         bool            sign;   /* Value is signed ? */
57         bool            visible;
58         bool            strict; /* CPU Sanity check: strict matching required ? */
59         enum ftr_type   type;
60         u8              shift;
61         u8              width;
62         s64             safe_val; /* safe value for FTR_EXACT features */
63 };
64
65 /*
66  * @arm64_ftr_reg - Feature register
67  * @strict_mask         Bits which should match across all CPUs for sanity.
68  * @sys_val             Safe value across the CPUs (system view)
69  */
70 struct arm64_ftr_reg {
71         const char                      *name;
72         u64                             strict_mask;
73         u64                             user_mask;
74         u64                             sys_val;
75         u64                             user_val;
76         const struct arm64_ftr_bits     *ftr_bits;
77 };
78
79 extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
80
81 /*
82  * CPU capabilities:
83  *
84  * We use arm64_cpu_capabilities to represent system features, errata work
85  * arounds (both used internally by kernel and tracked in cpu_hwcaps) and
86  * ELF HWCAPs (which are exposed to user).
87  *
88  * To support systems with heterogeneous CPUs, we need to make sure that we
89  * detect the capabilities correctly on the system and take appropriate
90  * measures to ensure there are no incompatibilities.
91  *
92  * This comment tries to explain how we treat the capabilities.
93  * Each capability has the following list of attributes :
94  *
95  * 1) Scope of Detection : The system detects a given capability by
96  *    performing some checks at runtime. This could be, e.g, checking the
97  *    value of a field in CPU ID feature register or checking the cpu
98  *    model. The capability provides a call back ( @matches() ) to
99  *    perform the check. Scope defines how the checks should be performed.
100  *    There are three cases:
101  *
102  *     a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
103  *        matches. This implies, we have to run the check on all the
104  *        booting CPUs, until the system decides that state of the
105  *        capability is finalised. (See section 2 below)
106  *              Or
107  *     b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
108  *        matches. This implies, we run the check only once, when the
109  *        system decides to finalise the state of the capability. If the
110  *        capability relies on a field in one of the CPU ID feature
111  *        registers, we use the sanitised value of the register from the
112  *        CPU feature infrastructure to make the decision.
113  *              Or
114  *     c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
115  *        feature. This category is for features that are "finalised"
116  *        (or used) by the kernel very early even before the SMP cpus
117  *        are brought up.
118  *
119  *    The process of detection is usually denoted by "update" capability
120  *    state in the code.
121  *
122  * 2) Finalise the state : The kernel should finalise the state of a
123  *    capability at some point during its execution and take necessary
124  *    actions if any. Usually, this is done, after all the boot-time
125  *    enabled CPUs are brought up by the kernel, so that it can make
126  *    better decision based on the available set of CPUs. However, there
127  *    are some special cases, where the action is taken during the early
128  *    boot by the primary boot CPU. (e.g, running the kernel at EL2 with
129  *    Virtualisation Host Extensions). The kernel usually disallows any
130  *    changes to the state of a capability once it finalises the capability
131  *    and takes any action, as it may be impossible to execute the actions
132  *    safely. A CPU brought up after a capability is "finalised" is
133  *    referred to as "Late CPU" w.r.t the capability. e.g, all secondary
134  *    CPUs are treated "late CPUs" for capabilities determined by the boot
135  *    CPU.
136  *
137  *    At the moment there are two passes of finalising the capabilities.
138  *      a) Boot CPU scope capabilities - Finalised by primary boot CPU via
139  *         setup_boot_cpu_capabilities().
140  *      b) Everything except (a) - Run via setup_system_capabilities().
141  *
142  * 3) Verification: When a CPU is brought online (e.g, by user or by the
143  *    kernel), the kernel should make sure that it is safe to use the CPU,
144  *    by verifying that the CPU is compliant with the state of the
145  *    capabilities finalised already. This happens via :
146  *
147  *      secondary_start_kernel()-> check_local_cpu_capabilities()
148  *
149  *    As explained in (2) above, capabilities could be finalised at
150  *    different points in the execution. Each newly booted CPU is verified
151  *    against the capabilities that have been finalised by the time it
152  *    boots.
153  *
154  *      a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
155  *      except for the primary boot CPU.
156  *
157  *      b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
158  *      user after the kernel boot are verified against the capability.
159  *
160  *    If there is a conflict, the kernel takes an action, based on the
161  *    severity (e.g, a CPU could be prevented from booting or cause a
162  *    kernel panic). The CPU is allowed to "affect" the state of the
163  *    capability, if it has not been finalised already. See section 5
164  *    for more details on conflicts.
165  *
166  * 4) Action: As mentioned in (2), the kernel can take an action for each
167  *    detected capability, on all CPUs on the system. Appropriate actions
168  *    include, turning on an architectural feature, modifying the control
169  *    registers (e.g, SCTLR, TCR etc.) or patching the kernel via
170  *    alternatives. The kernel patching is batched and performed at later
171  *    point. The actions are always initiated only after the capability
172  *    is finalised. This is usally denoted by "enabling" the capability.
173  *    The actions are initiated as follows :
174  *      a) Action is triggered on all online CPUs, after the capability is
175  *      finalised, invoked within the stop_machine() context from
176  *      enable_cpu_capabilitie().
177  *
178  *      b) Any late CPU, brought up after (1), the action is triggered via:
179  *
180  *        check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
181  *
182  * 5) Conflicts: Based on the state of the capability on a late CPU vs.
183  *    the system state, we could have the following combinations :
184  *
185  *              x-----------------------------x
186  *              | Type  | System   | Late CPU |
187  *              |-----------------------------|
188  *              |  a    |   y      |    n     |
189  *              |-----------------------------|
190  *              |  b    |   n      |    y     |
191  *              x-----------------------------x
192  *
193  *     Two separate flag bits are defined to indicate whether each kind of
194  *     conflict can be allowed:
195  *              ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
196  *              ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
197  *
198  *     Case (a) is not permitted for a capability that the system requires
199  *     all CPUs to have in order for the capability to be enabled. This is
200  *     typical for capabilities that represent enhanced functionality.
201  *
202  *     Case (b) is not permitted for a capability that must be enabled
203  *     during boot if any CPU in the system requires it in order to run
204  *     safely. This is typical for erratum work arounds that cannot be
205  *     enabled after the corresponding capability is finalised.
206  *
207  *     In some non-typical cases either both (a) and (b), or neither,
208  *     should be permitted. This can be described by including neither
209  *     or both flags in the capability's type field.
210  */
211
212
213 /*
214  * Decide how the capability is detected.
215  * On any local CPU vs System wide vs the primary boot CPU
216  */
217 #define ARM64_CPUCAP_SCOPE_LOCAL_CPU            ((u16)BIT(0))
218 #define ARM64_CPUCAP_SCOPE_SYSTEM               ((u16)BIT(1))
219 /*
220  * The capabilitiy is detected on the Boot CPU and is used by kernel
221  * during early boot. i.e, the capability should be "detected" and
222  * "enabled" as early as possibly on all booting CPUs.
223  */
224 #define ARM64_CPUCAP_SCOPE_BOOT_CPU             ((u16)BIT(2))
225 #define ARM64_CPUCAP_SCOPE_MASK                 \
226         (ARM64_CPUCAP_SCOPE_SYSTEM      |       \
227          ARM64_CPUCAP_SCOPE_LOCAL_CPU   |       \
228          ARM64_CPUCAP_SCOPE_BOOT_CPU)
229
230 #define SCOPE_SYSTEM                            ARM64_CPUCAP_SCOPE_SYSTEM
231 #define SCOPE_LOCAL_CPU                         ARM64_CPUCAP_SCOPE_LOCAL_CPU
232 #define SCOPE_BOOT_CPU                          ARM64_CPUCAP_SCOPE_BOOT_CPU
233 #define SCOPE_ALL                               ARM64_CPUCAP_SCOPE_MASK
234
235 /*
236  * Is it permitted for a late CPU to have this capability when system
237  * hasn't already enabled it ?
238  */
239 #define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU     ((u16)BIT(4))
240 /* Is it safe for a late CPU to miss this capability when system has it */
241 #define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU      ((u16)BIT(5))
242
243 /*
244  * CPU errata workarounds that need to be enabled at boot time if one or
245  * more CPUs in the system requires it. When one of these capabilities
246  * has been enabled, it is safe to allow any CPU to boot that doesn't
247  * require the workaround. However, it is not safe if a "late" CPU
248  * requires a workaround and the system hasn't enabled it already.
249  */
250 #define ARM64_CPUCAP_LOCAL_CPU_ERRATUM          \
251         (ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
252 /*
253  * CPU feature detected at boot time based on system-wide value of a
254  * feature. It is safe for a late CPU to have this feature even though
255  * the system hasn't enabled it, although the feature will not be used
256  * by Linux in this case. If the system has enabled this feature already,
257  * then every late CPU must have it.
258  */
259 #define ARM64_CPUCAP_SYSTEM_FEATURE     \
260         (ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
261 /*
262  * CPU feature detected at boot time based on feature of one or more CPUs.
263  * All possible conflicts for a late CPU are ignored.
264  */
265 #define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE             \
266         (ARM64_CPUCAP_SCOPE_LOCAL_CPU           |       \
267          ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU     |       \
268          ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
269
270 /*
271  * CPU feature detected at boot time, on one or more CPUs. A late CPU
272  * is not allowed to have the capability when the system doesn't have it.
273  * It is Ok for a late CPU to miss the feature.
274  */
275 #define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE  \
276         (ARM64_CPUCAP_SCOPE_LOCAL_CPU           |       \
277          ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
278
279 /*
280  * CPU feature used early in the boot based on the boot CPU. All secondary
281  * CPUs must match the state of the capability as detected by the boot CPU.
282  */
283 #define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE ARM64_CPUCAP_SCOPE_BOOT_CPU
284
285 struct arm64_cpu_capabilities {
286         const char *desc;
287         u16 capability;
288         u16 type;
289         bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
290         /*
291          * Take the appropriate actions to enable this capability for this CPU.
292          * For each successfully booted CPU, this method is called for each
293          * globally detected capability.
294          */
295         void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
296         union {
297                 struct {        /* To be used for erratum handling only */
298                         struct midr_range midr_range;
299                         const struct arm64_midr_revidr {
300                                 u32 midr_rv;            /* revision/variant */
301                                 u32 revidr_mask;
302                         } * const fixed_revs;
303                 };
304
305                 const struct midr_range *midr_range_list;
306                 struct {        /* Feature register checking */
307                         u32 sys_reg;
308                         u8 field_pos;
309                         u8 min_field_value;
310                         u8 hwcap_type;
311                         bool sign;
312                         unsigned long hwcap;
313                 };
314         };
315
316         /*
317          * An optional list of "matches/cpu_enable" pair for the same
318          * "capability" of the same "type" as described by the parent.
319          * Only matches(), cpu_enable() and fields relevant to these
320          * methods are significant in the list. The cpu_enable is
321          * invoked only if the corresponding entry "matches()".
322          * However, if a cpu_enable() method is associated
323          * with multiple matches(), care should be taken that either
324          * the match criteria are mutually exclusive, or that the
325          * method is robust against being called multiple times.
326          */
327         const struct arm64_cpu_capabilities *match_list;
328 };
329
330 static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
331 {
332         return cap->type & ARM64_CPUCAP_SCOPE_MASK;
333 }
334
335 static inline bool
336 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
337 {
338         return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
339 }
340
341 static inline bool
342 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
343 {
344         return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
345 }
346
347 /*
348  * Generic helper for handling capabilties with multiple (match,enable) pairs
349  * of call backs, sharing the same capability bit.
350  * Iterate over each entry to see if at least one matches.
351  */
352 static inline bool
353 cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
354                                int scope)
355 {
356         const struct arm64_cpu_capabilities *caps;
357
358         for (caps = entry->match_list; caps->matches; caps++)
359                 if (caps->matches(caps, scope))
360                         return true;
361
362         return false;
363 }
364
365 /*
366  * Take appropriate action for all matching entries in the shared capability
367  * entry.
368  */
369 static inline void
370 cpucap_multi_entry_cap_cpu_enable(const struct arm64_cpu_capabilities *entry)
371 {
372         const struct arm64_cpu_capabilities *caps;
373
374         for (caps = entry->match_list; caps->matches; caps++)
375                 if (caps->matches(caps, SCOPE_LOCAL_CPU) &&
376                     caps->cpu_enable)
377                         caps->cpu_enable(caps);
378 }
379
380 extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
381 extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
382 extern struct static_key_false arm64_const_caps_ready;
383
384 /* ARM64 CAPS + alternative_cb */
385 #define ARM64_NPATCHABLE (ARM64_NCAPS + 1)
386 extern DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
387
388 #define for_each_available_cap(cap)             \
389         for_each_set_bit(cap, cpu_hwcaps, ARM64_NCAPS)
390
391 bool this_cpu_has_cap(unsigned int cap);
392 void cpu_set_feature(unsigned int num);
393 bool cpu_have_feature(unsigned int num);
394 unsigned long cpu_get_elf_hwcap(void);
395 unsigned long cpu_get_elf_hwcap2(void);
396
397 #define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name))
398 #define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name))
399
400 /* System capability check for constant caps */
401 static __always_inline bool __cpus_have_const_cap(int num)
402 {
403         if (num >= ARM64_NCAPS)
404                 return false;
405         return static_branch_unlikely(&cpu_hwcap_keys[num]);
406 }
407
408 static inline bool cpus_have_cap(unsigned int num)
409 {
410         if (num >= ARM64_NCAPS)
411                 return false;
412         return test_bit(num, cpu_hwcaps);
413 }
414
415 static __always_inline bool cpus_have_const_cap(int num)
416 {
417         if (static_branch_likely(&arm64_const_caps_ready))
418                 return __cpus_have_const_cap(num);
419         else
420                 return cpus_have_cap(num);
421 }
422
423 static inline void cpus_set_cap(unsigned int num)
424 {
425         if (num >= ARM64_NCAPS) {
426                 pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
427                         num, ARM64_NCAPS);
428         } else {
429                 __set_bit(num, cpu_hwcaps);
430         }
431 }
432
433 static inline int __attribute_const__
434 cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
435 {
436         return (s64)(features << (64 - width - field)) >> (64 - width);
437 }
438
439 static inline int __attribute_const__
440 cpuid_feature_extract_signed_field(u64 features, int field)
441 {
442         return cpuid_feature_extract_signed_field_width(features, field, 4);
443 }
444
445 static inline unsigned int __attribute_const__
446 cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
447 {
448         return (u64)(features << (64 - width - field)) >> (64 - width);
449 }
450
451 static inline unsigned int __attribute_const__
452 cpuid_feature_extract_unsigned_field(u64 features, int field)
453 {
454         return cpuid_feature_extract_unsigned_field_width(features, field, 4);
455 }
456
457 static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
458 {
459         return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
460 }
461
462 static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
463 {
464         return (reg->user_val | (reg->sys_val & reg->user_mask));
465 }
466
467 static inline int __attribute_const__
468 cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
469 {
470         return (sign) ?
471                 cpuid_feature_extract_signed_field_width(features, field, width) :
472                 cpuid_feature_extract_unsigned_field_width(features, field, width);
473 }
474
475 static inline int __attribute_const__
476 cpuid_feature_extract_field(u64 features, int field, bool sign)
477 {
478         return cpuid_feature_extract_field_width(features, field, 4, sign);
479 }
480
481 static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
482 {
483         return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
484 }
485
486 static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
487 {
488         return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
489                 cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
490 }
491
492 static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
493 {
494         u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
495
496         return val == ID_AA64PFR0_EL0_32BIT_64BIT;
497 }
498
499 static inline bool id_aa64pfr0_sve(u64 pfr0)
500 {
501         u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);
502
503         return val > 0;
504 }
505
506 void __init setup_cpu_features(void);
507 void check_local_cpu_capabilities(void);
508
509 u64 read_sanitised_ftr_reg(u32 id);
510
511 static inline bool cpu_supports_mixed_endian_el0(void)
512 {
513         return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
514 }
515
516 static inline bool system_supports_32bit_el0(void)
517 {
518         return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
519 }
520
521 static inline bool system_supports_4kb_granule(void)
522 {
523         u64 mmfr0;
524         u32 val;
525
526         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
527         val = cpuid_feature_extract_unsigned_field(mmfr0,
528                                                 ID_AA64MMFR0_TGRAN4_SHIFT);
529
530         return val == ID_AA64MMFR0_TGRAN4_SUPPORTED;
531 }
532
533 static inline bool system_supports_64kb_granule(void)
534 {
535         u64 mmfr0;
536         u32 val;
537
538         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
539         val = cpuid_feature_extract_unsigned_field(mmfr0,
540                                                 ID_AA64MMFR0_TGRAN64_SHIFT);
541
542         return val == ID_AA64MMFR0_TGRAN64_SUPPORTED;
543 }
544
545 static inline bool system_supports_16kb_granule(void)
546 {
547         u64 mmfr0;
548         u32 val;
549
550         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
551         val = cpuid_feature_extract_unsigned_field(mmfr0,
552                                                 ID_AA64MMFR0_TGRAN16_SHIFT);
553
554         return val == ID_AA64MMFR0_TGRAN16_SUPPORTED;
555 }
556
557 static inline bool system_supports_mixed_endian_el0(void)
558 {
559         return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
560 }
561
562 static inline bool system_supports_mixed_endian(void)
563 {
564         u64 mmfr0;
565         u32 val;
566
567         mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
568         val = cpuid_feature_extract_unsigned_field(mmfr0,
569                                                 ID_AA64MMFR0_BIGENDEL_SHIFT);
570
571         return val == 0x1;
572 }
573
574 static inline bool system_supports_fpsimd(void)
575 {
576         return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
577 }
578
579 static inline bool system_uses_ttbr0_pan(void)
580 {
581         return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
582                 !cpus_have_const_cap(ARM64_HAS_PAN);
583 }
584
585 static inline bool system_supports_sve(void)
586 {
587         return IS_ENABLED(CONFIG_ARM64_SVE) &&
588                 cpus_have_const_cap(ARM64_SVE);
589 }
590
591 static inline bool system_supports_cnp(void)
592 {
593         return IS_ENABLED(CONFIG_ARM64_CNP) &&
594                 cpus_have_const_cap(ARM64_HAS_CNP);
595 }
596
597 static inline bool system_supports_address_auth(void)
598 {
599         return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
600                 (cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH_ARCH) ||
601                  cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH_IMP_DEF));
602 }
603
604 static inline bool system_supports_generic_auth(void)
605 {
606         return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
607                 (cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
608                  cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF));
609 }
610
611 static inline bool system_uses_irq_prio_masking(void)
612 {
613         return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
614                cpus_have_const_cap(ARM64_HAS_IRQ_PRIO_MASKING);
615 }
616
617 static inline bool system_has_prio_mask_debugging(void)
618 {
619         return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) &&
620                system_uses_irq_prio_masking();
621 }
622
623 #define ARM64_BP_HARDEN_UNKNOWN         -1
624 #define ARM64_BP_HARDEN_WA_NEEDED       0
625 #define ARM64_BP_HARDEN_NOT_REQUIRED    1
626
627 int get_spectre_v2_workaround_state(void);
628
629 #define ARM64_SSBD_UNKNOWN              -1
630 #define ARM64_SSBD_FORCE_DISABLE        0
631 #define ARM64_SSBD_KERNEL               1
632 #define ARM64_SSBD_FORCE_ENABLE         2
633 #define ARM64_SSBD_MITIGATED            3
634
635 static inline int arm64_get_ssbd_state(void)
636 {
637 #ifdef CONFIG_ARM64_SSBD
638         extern int ssbd_state;
639         return ssbd_state;
640 #else
641         return ARM64_SSBD_UNKNOWN;
642 #endif
643 }
644
645 void arm64_set_ssbd_mitigation(bool state);
646
647 extern int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
648
649 static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
650 {
651         switch (parange) {
652         case 0: return 32;
653         case 1: return 36;
654         case 2: return 40;
655         case 3: return 42;
656         case 4: return 44;
657         case 5: return 48;
658         case 6: return 52;
659         /*
660          * A future PE could use a value unknown to the kernel.
661          * However, by the "D10.1.4 Principles of the ID scheme
662          * for fields in ID registers", ARM DDI 0487C.a, any new
663          * value is guaranteed to be higher than what we know already.
664          * As a safe limit, we return the limit supported by the kernel.
665          */
666         default: return CONFIG_ARM64_PA_BITS;
667         }
668 }
669 #endif /* __ASSEMBLY__ */
670
671 #endif