Merge branches 'work.misc' and 'work.dcache' of git://git.kernel.org/pub/scm/linux...
[sfrench/cifs-2.6.git] / arch / arm / probes / kprobes / core.c
1 /*
2  * arch/arm/kernel/kprobes.c
3  *
4  * Kprobes on ARM
5  *
6  * Abhishek Sagar <sagar.abhishek@gmail.com>
7  * Copyright (C) 2006, 2007 Motorola Inc.
8  *
9  * Nicolas Pitre <nico@marvell.com>
10  * Copyright (C) 2007 Marvell Ltd.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/stop_machine.h>
27 #include <linux/sched/debug.h>
28 #include <linux/stringify.h>
29 #include <asm/traps.h>
30 #include <asm/opcodes.h>
31 #include <asm/cacheflush.h>
32 #include <linux/percpu.h>
33 #include <linux/bug.h>
34 #include <asm/patch.h>
35 #include <asm/sections.h>
36
37 #include "../decode-arm.h"
38 #include "../decode-thumb.h"
39 #include "core.h"
40
41 #define MIN_STACK_SIZE(addr)                            \
42         min((unsigned long)MAX_STACK_SIZE,              \
43             (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
44
45 #define flush_insns(addr, size)                         \
46         flush_icache_range((unsigned long)(addr),       \
47                            (unsigned long)(addr) +      \
48                            (size))
49
50 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
51 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
52
53
54 int __kprobes arch_prepare_kprobe(struct kprobe *p)
55 {
56         kprobe_opcode_t insn;
57         kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
58         unsigned long addr = (unsigned long)p->addr;
59         bool thumb;
60         kprobe_decode_insn_t *decode_insn;
61         const union decode_action *actions;
62         int is;
63         const struct decode_checker **checkers;
64
65 #ifdef CONFIG_THUMB2_KERNEL
66         thumb = true;
67         addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
68         insn = __mem_to_opcode_thumb16(((u16 *)addr)[0]);
69         if (is_wide_instruction(insn)) {
70                 u16 inst2 = __mem_to_opcode_thumb16(((u16 *)addr)[1]);
71                 insn = __opcode_thumb32_compose(insn, inst2);
72                 decode_insn = thumb32_probes_decode_insn;
73                 actions = kprobes_t32_actions;
74                 checkers = kprobes_t32_checkers;
75         } else {
76                 decode_insn = thumb16_probes_decode_insn;
77                 actions = kprobes_t16_actions;
78                 checkers = kprobes_t16_checkers;
79         }
80 #else /* !CONFIG_THUMB2_KERNEL */
81         thumb = false;
82         if (addr & 0x3)
83                 return -EINVAL;
84         insn = __mem_to_opcode_arm(*p->addr);
85         decode_insn = arm_probes_decode_insn;
86         actions = kprobes_arm_actions;
87         checkers = kprobes_arm_checkers;
88 #endif
89
90         p->opcode = insn;
91         p->ainsn.insn = tmp_insn;
92
93         switch ((*decode_insn)(insn, &p->ainsn, true, actions, checkers)) {
94         case INSN_REJECTED:     /* not supported */
95                 return -EINVAL;
96
97         case INSN_GOOD:         /* instruction uses slot */
98                 p->ainsn.insn = get_insn_slot();
99                 if (!p->ainsn.insn)
100                         return -ENOMEM;
101                 for (is = 0; is < MAX_INSN_SIZE; ++is)
102                         p->ainsn.insn[is] = tmp_insn[is];
103                 flush_insns(p->ainsn.insn,
104                                 sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
105                 p->ainsn.insn_fn = (probes_insn_fn_t *)
106                                         ((uintptr_t)p->ainsn.insn | thumb);
107                 break;
108
109         case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
110                 p->ainsn.insn = NULL;
111                 break;
112         }
113
114         /*
115          * Never instrument insn like 'str r0, [sp, +/-r1]'. Also, insn likes
116          * 'str r0, [sp, #-68]' should also be prohibited.
117          * See __und_svc.
118          */
119         if ((p->ainsn.stack_space < 0) ||
120                         (p->ainsn.stack_space > MAX_STACK_SIZE))
121                 return -EINVAL;
122
123         return 0;
124 }
125
126 void __kprobes arch_arm_kprobe(struct kprobe *p)
127 {
128         unsigned int brkp;
129         void *addr;
130
131         if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
132                 /* Remove any Thumb flag */
133                 addr = (void *)((uintptr_t)p->addr & ~1);
134
135                 if (is_wide_instruction(p->opcode))
136                         brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
137                 else
138                         brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
139         } else {
140                 kprobe_opcode_t insn = p->opcode;
141
142                 addr = p->addr;
143                 brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
144
145                 if (insn >= 0xe0000000)
146                         brkp |= 0xe0000000;  /* Unconditional instruction */
147                 else
148                         brkp |= insn & 0xf0000000;  /* Copy condition from insn */
149         }
150
151         patch_text(addr, brkp);
152 }
153
154 /*
155  * The actual disarming is done here on each CPU and synchronized using
156  * stop_machine. This synchronization is necessary on SMP to avoid removing
157  * a probe between the moment the 'Undefined Instruction' exception is raised
158  * and the moment the exception handler reads the faulting instruction from
159  * memory. It is also needed to atomically set the two half-words of a 32-bit
160  * Thumb breakpoint.
161  */
162 struct patch {
163         void *addr;
164         unsigned int insn;
165 };
166
167 static int __kprobes_remove_breakpoint(void *data)
168 {
169         struct patch *p = data;
170         __patch_text(p->addr, p->insn);
171         return 0;
172 }
173
174 void __kprobes kprobes_remove_breakpoint(void *addr, unsigned int insn)
175 {
176         struct patch p = {
177                 .addr = addr,
178                 .insn = insn,
179         };
180         stop_machine_cpuslocked(__kprobes_remove_breakpoint, &p,
181                                 cpu_online_mask);
182 }
183
184 void __kprobes arch_disarm_kprobe(struct kprobe *p)
185 {
186         kprobes_remove_breakpoint((void *)((uintptr_t)p->addr & ~1),
187                         p->opcode);
188 }
189
190 void __kprobes arch_remove_kprobe(struct kprobe *p)
191 {
192         if (p->ainsn.insn) {
193                 free_insn_slot(p->ainsn.insn, 0);
194                 p->ainsn.insn = NULL;
195         }
196 }
197
198 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
199 {
200         kcb->prev_kprobe.kp = kprobe_running();
201         kcb->prev_kprobe.status = kcb->kprobe_status;
202 }
203
204 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
205 {
206         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
207         kcb->kprobe_status = kcb->prev_kprobe.status;
208 }
209
210 static void __kprobes set_current_kprobe(struct kprobe *p)
211 {
212         __this_cpu_write(current_kprobe, p);
213 }
214
215 static void __kprobes
216 singlestep_skip(struct kprobe *p, struct pt_regs *regs)
217 {
218 #ifdef CONFIG_THUMB2_KERNEL
219         regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
220         if (is_wide_instruction(p->opcode))
221                 regs->ARM_pc += 4;
222         else
223                 regs->ARM_pc += 2;
224 #else
225         regs->ARM_pc += 4;
226 #endif
227 }
228
229 static inline void __kprobes
230 singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
231 {
232         p->ainsn.insn_singlestep(p->opcode, &p->ainsn, regs);
233 }
234
235 /*
236  * Called with IRQs disabled. IRQs must remain disabled from that point
237  * all the way until processing this kprobe is complete.  The current
238  * kprobes implementation cannot process more than one nested level of
239  * kprobe, and that level is reserved for user kprobe handlers, so we can't
240  * risk encountering a new kprobe in an interrupt handler.
241  */
242 void __kprobes kprobe_handler(struct pt_regs *regs)
243 {
244         struct kprobe *p, *cur;
245         struct kprobe_ctlblk *kcb;
246
247         kcb = get_kprobe_ctlblk();
248         cur = kprobe_running();
249
250 #ifdef CONFIG_THUMB2_KERNEL
251         /*
252          * First look for a probe which was registered using an address with
253          * bit 0 set, this is the usual situation for pointers to Thumb code.
254          * If not found, fallback to looking for one with bit 0 clear.
255          */
256         p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
257         if (!p)
258                 p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
259
260 #else /* ! CONFIG_THUMB2_KERNEL */
261         p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
262 #endif
263
264         if (p) {
265                 if (!p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
266                         /*
267                          * Probe hit but conditional execution check failed,
268                          * so just skip the instruction and continue as if
269                          * nothing had happened.
270                          * In this case, we can skip recursing check too.
271                          */
272                         singlestep_skip(p, regs);
273                 } else if (cur) {
274                         /* Kprobe is pending, so we're recursing. */
275                         switch (kcb->kprobe_status) {
276                         case KPROBE_HIT_ACTIVE:
277                         case KPROBE_HIT_SSDONE:
278                         case KPROBE_HIT_SS:
279                                 /* A pre- or post-handler probe got us here. */
280                                 kprobes_inc_nmissed_count(p);
281                                 save_previous_kprobe(kcb);
282                                 set_current_kprobe(p);
283                                 kcb->kprobe_status = KPROBE_REENTER;
284                                 singlestep(p, regs, kcb);
285                                 restore_previous_kprobe(kcb);
286                                 break;
287                         case KPROBE_REENTER:
288                                 /* A nested probe was hit in FIQ, it is a BUG */
289                                 pr_warn("Unrecoverable kprobe detected.\n");
290                                 dump_kprobe(p);
291                                 /* fall through */
292                         default:
293                                 /* impossible cases */
294                                 BUG();
295                         }
296                 } else {
297                         /* Probe hit and conditional execution check ok. */
298                         set_current_kprobe(p);
299                         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
300
301                         /*
302                          * If we have no pre-handler or it returned 0, we
303                          * continue with normal processing. If we have a
304                          * pre-handler and it returned non-zero, it will
305                          * modify the execution path and no need to single
306                          * stepping. Let's just reset current kprobe and exit.
307                          */
308                         if (!p->pre_handler || !p->pre_handler(p, regs)) {
309                                 kcb->kprobe_status = KPROBE_HIT_SS;
310                                 singlestep(p, regs, kcb);
311                                 if (p->post_handler) {
312                                         kcb->kprobe_status = KPROBE_HIT_SSDONE;
313                                         p->post_handler(p, regs, 0);
314                                 }
315                         }
316                         reset_current_kprobe();
317                 }
318         } else {
319                 /*
320                  * The probe was removed and a race is in progress.
321                  * There is nothing we can do about it.  Let's restart
322                  * the instruction.  By the time we can restart, the
323                  * real instruction will be there.
324                  */
325         }
326 }
327
328 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
329 {
330         unsigned long flags;
331         local_irq_save(flags);
332         kprobe_handler(regs);
333         local_irq_restore(flags);
334         return 0;
335 }
336
337 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
338 {
339         struct kprobe *cur = kprobe_running();
340         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
341
342         switch (kcb->kprobe_status) {
343         case KPROBE_HIT_SS:
344         case KPROBE_REENTER:
345                 /*
346                  * We are here because the instruction being single
347                  * stepped caused a page fault. We reset the current
348                  * kprobe and the PC to point back to the probe address
349                  * and allow the page fault handler to continue as a
350                  * normal page fault.
351                  */
352                 regs->ARM_pc = (long)cur->addr;
353                 if (kcb->kprobe_status == KPROBE_REENTER) {
354                         restore_previous_kprobe(kcb);
355                 } else {
356                         reset_current_kprobe();
357                 }
358                 break;
359
360         case KPROBE_HIT_ACTIVE:
361         case KPROBE_HIT_SSDONE:
362                 /*
363                  * We increment the nmissed count for accounting,
364                  * we can also use npre/npostfault count for accounting
365                  * these specific fault cases.
366                  */
367                 kprobes_inc_nmissed_count(cur);
368
369                 /*
370                  * We come here because instructions in the pre/post
371                  * handler caused the page_fault, this could happen
372                  * if handler tries to access user space by
373                  * copy_from_user(), get_user() etc. Let the
374                  * user-specified handler try to fix it.
375                  */
376                 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
377                         return 1;
378                 break;
379
380         default:
381                 break;
382         }
383
384         return 0;
385 }
386
387 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
388                                        unsigned long val, void *data)
389 {
390         /*
391          * notify_die() is currently never called on ARM,
392          * so this callback is currently empty.
393          */
394         return NOTIFY_DONE;
395 }
396
397 /*
398  * When a retprobed function returns, trampoline_handler() is called,
399  * calling the kretprobe's handler. We construct a struct pt_regs to
400  * give a view of registers r0-r11 to the user return-handler.  This is
401  * not a complete pt_regs structure, but that should be plenty sufficient
402  * for kretprobe handlers which should normally be interested in r0 only
403  * anyway.
404  */
405 void __naked __kprobes kretprobe_trampoline(void)
406 {
407         __asm__ __volatile__ (
408                 "stmdb  sp!, {r0 - r11}         \n\t"
409                 "mov    r0, sp                  \n\t"
410                 "bl     trampoline_handler      \n\t"
411                 "mov    lr, r0                  \n\t"
412                 "ldmia  sp!, {r0 - r11}         \n\t"
413 #ifdef CONFIG_THUMB2_KERNEL
414                 "bx     lr                      \n\t"
415 #else
416                 "mov    pc, lr                  \n\t"
417 #endif
418                 : : : "memory");
419 }
420
421 /* Called from kretprobe_trampoline */
422 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
423 {
424         struct kretprobe_instance *ri = NULL;
425         struct hlist_head *head, empty_rp;
426         struct hlist_node *tmp;
427         unsigned long flags, orig_ret_address = 0;
428         unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
429         kprobe_opcode_t *correct_ret_addr = NULL;
430
431         INIT_HLIST_HEAD(&empty_rp);
432         kretprobe_hash_lock(current, &head, &flags);
433
434         /*
435          * It is possible to have multiple instances associated with a given
436          * task either because multiple functions in the call path have
437          * a return probe installed on them, and/or more than one return
438          * probe was registered for a target function.
439          *
440          * We can handle this because:
441          *     - instances are always inserted at the head of the list
442          *     - when multiple return probes are registered for the same
443          *       function, the first instance's ret_addr will point to the
444          *       real return address, and all the rest will point to
445          *       kretprobe_trampoline
446          */
447         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
448                 if (ri->task != current)
449                         /* another task is sharing our hash bucket */
450                         continue;
451
452                 orig_ret_address = (unsigned long)ri->ret_addr;
453
454                 if (orig_ret_address != trampoline_address)
455                         /*
456                          * This is the real return address. Any other
457                          * instances associated with this task are for
458                          * other calls deeper on the call stack
459                          */
460                         break;
461         }
462
463         kretprobe_assert(ri, orig_ret_address, trampoline_address);
464
465         correct_ret_addr = ri->ret_addr;
466         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
467                 if (ri->task != current)
468                         /* another task is sharing our hash bucket */
469                         continue;
470
471                 orig_ret_address = (unsigned long)ri->ret_addr;
472                 if (ri->rp && ri->rp->handler) {
473                         __this_cpu_write(current_kprobe, &ri->rp->kp);
474                         get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
475                         ri->ret_addr = correct_ret_addr;
476                         ri->rp->handler(ri, regs);
477                         __this_cpu_write(current_kprobe, NULL);
478                 }
479
480                 recycle_rp_inst(ri, &empty_rp);
481
482                 if (orig_ret_address != trampoline_address)
483                         /*
484                          * This is the real return address. Any other
485                          * instances associated with this task are for
486                          * other calls deeper on the call stack
487                          */
488                         break;
489         }
490
491         kretprobe_hash_unlock(current, &flags);
492
493         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
494                 hlist_del(&ri->hlist);
495                 kfree(ri);
496         }
497
498         return (void *)orig_ret_address;
499 }
500
501 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
502                                       struct pt_regs *regs)
503 {
504         ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
505
506         /* Replace the return addr with trampoline addr. */
507         regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
508 }
509
510 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
511 {
512         return 0;
513 }
514
515 #ifdef CONFIG_THUMB2_KERNEL
516
517 static struct undef_hook kprobes_thumb16_break_hook = {
518         .instr_mask     = 0xffff,
519         .instr_val      = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
520         .cpsr_mask      = MODE_MASK,
521         .cpsr_val       = SVC_MODE,
522         .fn             = kprobe_trap_handler,
523 };
524
525 static struct undef_hook kprobes_thumb32_break_hook = {
526         .instr_mask     = 0xffffffff,
527         .instr_val      = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
528         .cpsr_mask      = MODE_MASK,
529         .cpsr_val       = SVC_MODE,
530         .fn             = kprobe_trap_handler,
531 };
532
533 #else  /* !CONFIG_THUMB2_KERNEL */
534
535 static struct undef_hook kprobes_arm_break_hook = {
536         .instr_mask     = 0x0fffffff,
537         .instr_val      = KPROBE_ARM_BREAKPOINT_INSTRUCTION,
538         .cpsr_mask      = MODE_MASK,
539         .cpsr_val       = SVC_MODE,
540         .fn             = kprobe_trap_handler,
541 };
542
543 #endif /* !CONFIG_THUMB2_KERNEL */
544
545 int __init arch_init_kprobes()
546 {
547         arm_probes_decode_init();
548 #ifdef CONFIG_THUMB2_KERNEL
549         register_undef_hook(&kprobes_thumb16_break_hook);
550         register_undef_hook(&kprobes_thumb32_break_hook);
551 #else
552         register_undef_hook(&kprobes_arm_break_hook);
553 #endif
554         return 0;
555 }
556
557 bool arch_within_kprobe_blacklist(unsigned long addr)
558 {
559         void *a = (void *)addr;
560
561         return __in_irqentry_text(addr) ||
562                in_entry_text(addr) ||
563                in_idmap_text(addr) ||
564                memory_contains(__kprobes_text_start, __kprobes_text_end, a, 1);
565 }