ARM: initial LMB trial
[sfrench/cifs-2.6.git] / arch / arm / mm / init.c
1 /*
2  *  linux/arch/arm/mm/init.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/highmem.h>
19 #include <linux/gfp.h>
20 #include <linux/memblock.h>
21
22 #include <asm/mach-types.h>
23 #include <asm/sections.h>
24 #include <asm/setup.h>
25 #include <asm/sizes.h>
26 #include <asm/tlb.h>
27 #include <asm/fixmap.h>
28
29 #include <asm/mach/arch.h>
30 #include <asm/mach/map.h>
31
32 #include "mm.h"
33
34 static unsigned long phys_initrd_start __initdata = 0;
35 static unsigned long phys_initrd_size __initdata = 0;
36
37 static int __init early_initrd(char *p)
38 {
39         unsigned long start, size;
40         char *endp;
41
42         start = memparse(p, &endp);
43         if (*endp == ',') {
44                 size = memparse(endp + 1, NULL);
45
46                 phys_initrd_start = start;
47                 phys_initrd_size = size;
48         }
49         return 0;
50 }
51 early_param("initrd", early_initrd);
52
53 static int __init parse_tag_initrd(const struct tag *tag)
54 {
55         printk(KERN_WARNING "ATAG_INITRD is deprecated; "
56                 "please update your bootloader.\n");
57         phys_initrd_start = __virt_to_phys(tag->u.initrd.start);
58         phys_initrd_size = tag->u.initrd.size;
59         return 0;
60 }
61
62 __tagtable(ATAG_INITRD, parse_tag_initrd);
63
64 static int __init parse_tag_initrd2(const struct tag *tag)
65 {
66         phys_initrd_start = tag->u.initrd.start;
67         phys_initrd_size = tag->u.initrd.size;
68         return 0;
69 }
70
71 __tagtable(ATAG_INITRD2, parse_tag_initrd2);
72
73 /*
74  * This keeps memory configuration data used by a couple memory
75  * initialization functions, as well as show_mem() for the skipping
76  * of holes in the memory map.  It is populated by arm_add_memory().
77  */
78 struct meminfo meminfo;
79
80 void show_mem(void)
81 {
82         int free = 0, total = 0, reserved = 0;
83         int shared = 0, cached = 0, slab = 0, i;
84         struct meminfo * mi = &meminfo;
85
86         printk("Mem-info:\n");
87         show_free_areas();
88
89         for_each_bank (i, mi) {
90                 struct membank *bank = &mi->bank[i];
91                 unsigned int pfn1, pfn2;
92                 struct page *page, *end;
93
94                 pfn1 = bank_pfn_start(bank);
95                 pfn2 = bank_pfn_end(bank);
96
97                 page = pfn_to_page(pfn1);
98                 end  = pfn_to_page(pfn2 - 1) + 1;
99
100                 do {
101                         total++;
102                         if (PageReserved(page))
103                                 reserved++;
104                         else if (PageSwapCache(page))
105                                 cached++;
106                         else if (PageSlab(page))
107                                 slab++;
108                         else if (!page_count(page))
109                                 free++;
110                         else
111                                 shared += page_count(page) - 1;
112                         page++;
113                 } while (page < end);
114         }
115
116         printk("%d pages of RAM\n", total);
117         printk("%d free pages\n", free);
118         printk("%d reserved pages\n", reserved);
119         printk("%d slab pages\n", slab);
120         printk("%d pages shared\n", shared);
121         printk("%d pages swap cached\n", cached);
122 }
123
124 static void __init find_limits(struct meminfo *mi,
125         unsigned long *min, unsigned long *max_low, unsigned long *max_high)
126 {
127         int i;
128
129         *min = -1UL;
130         *max_low = *max_high = 0;
131
132         for_each_bank (i, mi) {
133                 struct membank *bank = &mi->bank[i];
134                 unsigned long start, end;
135
136                 start = bank_pfn_start(bank);
137                 end = bank_pfn_end(bank);
138
139                 if (*min > start)
140                         *min = start;
141                 if (*max_high < end)
142                         *max_high = end;
143                 if (bank->highmem)
144                         continue;
145                 if (*max_low < end)
146                         *max_low = end;
147         }
148 }
149
150 static void __init arm_bootmem_init(struct meminfo *mi,
151         unsigned long start_pfn, unsigned long end_pfn)
152 {
153         unsigned int boot_pages;
154         phys_addr_t bitmap;
155         pg_data_t *pgdat;
156         int i;
157
158         /*
159          * Allocate the bootmem bitmap page.  This must be in a region
160          * of memory which has already been mapped.
161          */
162         boot_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
163         bitmap = memblock_alloc_base(boot_pages << PAGE_SHIFT, L1_CACHE_BYTES,
164                                 __pfn_to_phys(end_pfn));
165
166         /*
167          * Initialise the bootmem allocator, handing the
168          * memory banks over to bootmem.
169          */
170         node_set_online(0);
171         pgdat = NODE_DATA(0);
172         init_bootmem_node(pgdat, __phys_to_pfn(bitmap), start_pfn, end_pfn);
173
174         for_each_bank(i, mi) {
175                 struct membank *bank = &mi->bank[i];
176                 if (!bank->highmem)
177                         free_bootmem(bank_phys_start(bank), bank_phys_size(bank));
178         }
179
180         /*
181          * Reserve the memblock reserved regions in bootmem.
182          */
183         for (i = 0; i < memblock.reserved.cnt; i++) {
184                 phys_addr_t start = memblock_start_pfn(&memblock.reserved, i);
185                 if (start >= start_pfn &&
186                     memblock_end_pfn(&memblock.reserved, i) <= end_pfn)
187                         reserve_bootmem_node(pgdat, __pfn_to_phys(start),
188                                 memblock_size_bytes(&memblock.reserved, i),
189                                 BOOTMEM_DEFAULT);
190         }
191 }
192
193 static void __init arm_bootmem_free(struct meminfo *mi)
194 {
195         unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
196         unsigned long min, max_low, max_high;
197         int i;
198
199         find_limits(mi, &min, &max_low, &max_high);
200
201         /*
202          * initialise the zones.
203          */
204         memset(zone_size, 0, sizeof(zone_size));
205
206         /*
207          * The memory size has already been determined.  If we need
208          * to do anything fancy with the allocation of this memory
209          * to the zones, now is the time to do it.
210          */
211         zone_size[0] = max_low - min;
212 #ifdef CONFIG_HIGHMEM
213         zone_size[ZONE_HIGHMEM] = max_high - max_low;
214 #endif
215
216         /*
217          * Calculate the size of the holes.
218          *  holes = node_size - sum(bank_sizes)
219          */
220         memcpy(zhole_size, zone_size, sizeof(zhole_size));
221         for_each_bank(i, mi) {
222                 int idx = 0;
223 #ifdef CONFIG_HIGHMEM
224                 if (mi->bank[i].highmem)
225                         idx = ZONE_HIGHMEM;
226 #endif
227                 zhole_size[idx] -= bank_pfn_size(&mi->bank[i]);
228         }
229
230         /*
231          * Adjust the sizes according to any special requirements for
232          * this machine type.
233          */
234         arch_adjust_zones(zone_size, zhole_size);
235
236         free_area_init_node(0, zone_size, min, zhole_size);
237 }
238
239 #ifndef CONFIG_SPARSEMEM
240 int pfn_valid(unsigned long pfn)
241 {
242         struct meminfo *mi = &meminfo;
243         unsigned int left = 0, right = mi->nr_banks;
244
245         do {
246                 unsigned int mid = (right + left) / 2;
247                 struct membank *bank = &mi->bank[mid];
248
249                 if (pfn < bank_pfn_start(bank))
250                         right = mid;
251                 else if (pfn >= bank_pfn_end(bank))
252                         left = mid + 1;
253                 else
254                         return 1;
255         } while (left < right);
256         return 0;
257 }
258 EXPORT_SYMBOL(pfn_valid);
259
260 static void arm_memory_present(struct meminfo *mi)
261 {
262 }
263 #else
264 static void arm_memory_present(struct meminfo *mi)
265 {
266         int i;
267         for_each_bank(i, mi) {
268                 struct membank *bank = &mi->bank[i];
269                 memory_present(0, bank_pfn_start(bank), bank_pfn_end(bank));
270         }
271 }
272 #endif
273
274 void __init arm_memblock_init(struct meminfo *mi)
275 {
276         int i;
277
278         memblock_init();
279         for (i = 0; i < mi->nr_banks; i++)
280                 memblock_add(mi->bank[i].start, mi->bank[i].size);
281
282         /* Register the kernel text, kernel data and initrd with memblock. */
283 #ifdef CONFIG_XIP_KERNEL
284         memblock_reserve(__pa(_data), _end - _data);
285 #else
286         memblock_reserve(__pa(_stext), _end - _stext);
287 #endif
288 #ifdef CONFIG_BLK_DEV_INITRD
289         if (phys_initrd_size) {
290                 memblock_reserve(phys_initrd_start, phys_initrd_size);
291
292                 /* Now convert initrd to virtual addresses */
293                 initrd_start = __phys_to_virt(phys_initrd_start);
294                 initrd_end = initrd_start + phys_initrd_size;
295         }
296 #endif
297
298         arm_mm_memblock_reserve();
299
300         memblock_analyze();
301         memblock_dump_all();
302 }
303
304 void __init bootmem_init(struct machine_desc *mdesc)
305 {
306         struct meminfo *mi = &meminfo;
307         unsigned long min, max_low, max_high;
308
309         max_low = max_high = 0;
310
311         find_limits(mi, &min, &max_low, &max_high);
312
313         arm_bootmem_init(mi, min, max_low);
314
315         if (mdesc->reserve)
316                 mdesc->reserve();
317
318         /*
319          * Sparsemem tries to allocate bootmem in memory_present(),
320          * so must be done after the fixed reservations
321          */
322         arm_memory_present(mi);
323
324         /*
325          * sparse_init() needs the bootmem allocator up and running.
326          */
327         sparse_init();
328
329         /*
330          * Now free the memory - free_area_init_node needs
331          * the sparse mem_map arrays initialized by sparse_init()
332          * for memmap_init_zone(), otherwise all PFNs are invalid.
333          */
334         arm_bootmem_free(mi);
335
336         high_memory = __va((max_low << PAGE_SHIFT) - 1) + 1;
337
338         /*
339          * This doesn't seem to be used by the Linux memory manager any
340          * more, but is used by ll_rw_block.  If we can get rid of it, we
341          * also get rid of some of the stuff above as well.
342          *
343          * Note: max_low_pfn and max_pfn reflect the number of _pages_ in
344          * the system, not the maximum PFN.
345          */
346         max_low_pfn = max_low - PHYS_PFN_OFFSET;
347         max_pfn = max_high - PHYS_PFN_OFFSET;
348 }
349
350 static inline int free_area(unsigned long pfn, unsigned long end, char *s)
351 {
352         unsigned int pages = 0, size = (end - pfn) << (PAGE_SHIFT - 10);
353
354         for (; pfn < end; pfn++) {
355                 struct page *page = pfn_to_page(pfn);
356                 ClearPageReserved(page);
357                 init_page_count(page);
358                 __free_page(page);
359                 pages++;
360         }
361
362         if (size && s)
363                 printk(KERN_INFO "Freeing %s memory: %dK\n", s, size);
364
365         return pages;
366 }
367
368 static inline void
369 free_memmap(unsigned long start_pfn, unsigned long end_pfn)
370 {
371         struct page *start_pg, *end_pg;
372         unsigned long pg, pgend;
373
374         /*
375          * Convert start_pfn/end_pfn to a struct page pointer.
376          */
377         start_pg = pfn_to_page(start_pfn - 1) + 1;
378         end_pg = pfn_to_page(end_pfn);
379
380         /*
381          * Convert to physical addresses, and
382          * round start upwards and end downwards.
383          */
384         pg = PAGE_ALIGN(__pa(start_pg));
385         pgend = __pa(end_pg) & PAGE_MASK;
386
387         /*
388          * If there are free pages between these,
389          * free the section of the memmap array.
390          */
391         if (pg < pgend)
392                 free_bootmem(pg, pgend - pg);
393 }
394
395 /*
396  * The mem_map array can get very big.  Free the unused area of the memory map.
397  */
398 static void __init free_unused_memmap(struct meminfo *mi)
399 {
400         unsigned long bank_start, prev_bank_end = 0;
401         unsigned int i;
402
403         /*
404          * [FIXME] This relies on each bank being in address order.  This
405          * may not be the case, especially if the user has provided the
406          * information on the command line.
407          */
408         for_each_bank(i, mi) {
409                 struct membank *bank = &mi->bank[i];
410
411                 bank_start = bank_pfn_start(bank);
412                 if (bank_start < prev_bank_end) {
413                         printk(KERN_ERR "MEM: unordered memory banks.  "
414                                 "Not freeing memmap.\n");
415                         break;
416                 }
417
418                 /*
419                  * If we had a previous bank, and there is a space
420                  * between the current bank and the previous, free it.
421                  */
422                 if (prev_bank_end && prev_bank_end != bank_start)
423                         free_memmap(prev_bank_end, bank_start);
424
425                 prev_bank_end = bank_pfn_end(bank);
426         }
427 }
428
429 /*
430  * mem_init() marks the free areas in the mem_map and tells us how much
431  * memory is free.  This is done after various parts of the system have
432  * claimed their memory after the kernel image.
433  */
434 void __init mem_init(void)
435 {
436         unsigned long reserved_pages, free_pages;
437         int i;
438
439         max_mapnr   = pfn_to_page(max_pfn + PHYS_PFN_OFFSET) - mem_map;
440
441         /* this will put all unused low memory onto the freelists */
442         free_unused_memmap(&meminfo);
443
444         totalram_pages += free_all_bootmem();
445
446 #ifdef CONFIG_SA1111
447         /* now that our DMA memory is actually so designated, we can free it */
448         totalram_pages += free_area(PHYS_PFN_OFFSET,
449                                     __phys_to_pfn(__pa(swapper_pg_dir)), NULL);
450 #endif
451
452 #ifdef CONFIG_HIGHMEM
453         /* set highmem page free */
454         for_each_bank (i, &meminfo) {
455                 unsigned long start = bank_pfn_start(&meminfo.bank[i]);
456                 unsigned long end = bank_pfn_end(&meminfo.bank[i]);
457                 if (start >= max_low_pfn + PHYS_PFN_OFFSET)
458                         totalhigh_pages += free_area(start, end, NULL);
459         }
460         totalram_pages += totalhigh_pages;
461 #endif
462
463         reserved_pages = free_pages = 0;
464
465         for_each_bank(i, &meminfo) {
466                 struct membank *bank = &meminfo.bank[i];
467                 unsigned int pfn1, pfn2;
468                 struct page *page, *end;
469
470                 pfn1 = bank_pfn_start(bank);
471                 pfn2 = bank_pfn_end(bank);
472
473                 page = pfn_to_page(pfn1);
474                 end  = pfn_to_page(pfn2 - 1) + 1;
475
476                 do {
477                         if (PageReserved(page))
478                                 reserved_pages++;
479                         else if (!page_count(page))
480                                 free_pages++;
481                         page++;
482                 } while (page < end);
483         }
484
485         /*
486          * Since our memory may not be contiguous, calculate the
487          * real number of pages we have in this system
488          */
489         printk(KERN_INFO "Memory:");
490         num_physpages = 0;
491         for (i = 0; i < meminfo.nr_banks; i++) {
492                 num_physpages += bank_pfn_size(&meminfo.bank[i]);
493                 printk(" %ldMB", bank_phys_size(&meminfo.bank[i]) >> 20);
494         }
495         printk(" = %luMB total\n", num_physpages >> (20 - PAGE_SHIFT));
496
497         printk(KERN_NOTICE "Memory: %luk/%luk available, %luk reserved, %luK highmem\n",
498                 nr_free_pages() << (PAGE_SHIFT-10),
499                 free_pages << (PAGE_SHIFT-10),
500                 reserved_pages << (PAGE_SHIFT-10),
501                 totalhigh_pages << (PAGE_SHIFT-10));
502
503 #define MLK(b, t) b, t, ((t) - (b)) >> 10
504 #define MLM(b, t) b, t, ((t) - (b)) >> 20
505 #define MLK_ROUNDUP(b, t) b, t, DIV_ROUND_UP(((t) - (b)), SZ_1K)
506
507         printk(KERN_NOTICE "Virtual kernel memory layout:\n"
508                         "    vector  : 0x%08lx - 0x%08lx   (%4ld kB)\n"
509                         "    fixmap  : 0x%08lx - 0x%08lx   (%4ld kB)\n"
510 #ifdef CONFIG_MMU
511                         "    DMA     : 0x%08lx - 0x%08lx   (%4ld MB)\n"
512 #endif
513                         "    vmalloc : 0x%08lx - 0x%08lx   (%4ld MB)\n"
514                         "    lowmem  : 0x%08lx - 0x%08lx   (%4ld MB)\n"
515 #ifdef CONFIG_HIGHMEM
516                         "    pkmap   : 0x%08lx - 0x%08lx   (%4ld MB)\n"
517 #endif
518                         "    modules : 0x%08lx - 0x%08lx   (%4ld MB)\n"
519                         "      .init : 0x%p" " - 0x%p" "   (%4d kB)\n"
520                         "      .text : 0x%p" " - 0x%p" "   (%4d kB)\n"
521                         "      .data : 0x%p" " - 0x%p" "   (%4d kB)\n",
522
523                         MLK(UL(CONFIG_VECTORS_BASE), UL(CONFIG_VECTORS_BASE) +
524                                 (PAGE_SIZE)),
525                         MLK(FIXADDR_START, FIXADDR_TOP),
526 #ifdef CONFIG_MMU
527                         MLM(CONSISTENT_BASE, CONSISTENT_END),
528 #endif
529                         MLM(VMALLOC_START, VMALLOC_END),
530                         MLM(PAGE_OFFSET, (unsigned long)high_memory),
531 #ifdef CONFIG_HIGHMEM
532                         MLM(PKMAP_BASE, (PKMAP_BASE) + (LAST_PKMAP) *
533                                 (PAGE_SIZE)),
534 #endif
535                         MLM(MODULES_VADDR, MODULES_END),
536
537                         MLK_ROUNDUP(__init_begin, __init_end),
538                         MLK_ROUNDUP(_text, _etext),
539                         MLK_ROUNDUP(_data, _edata));
540
541 #undef MLK
542 #undef MLM
543 #undef MLK_ROUNDUP
544
545         /*
546          * Check boundaries twice: Some fundamental inconsistencies can
547          * be detected at build time already.
548          */
549 #ifdef CONFIG_MMU
550         BUILD_BUG_ON(VMALLOC_END                        > CONSISTENT_BASE);
551         BUG_ON(VMALLOC_END                              > CONSISTENT_BASE);
552
553         BUILD_BUG_ON(TASK_SIZE                          > MODULES_VADDR);
554         BUG_ON(TASK_SIZE                                > MODULES_VADDR);
555 #endif
556
557 #ifdef CONFIG_HIGHMEM
558         BUILD_BUG_ON(PKMAP_BASE + LAST_PKMAP * PAGE_SIZE > PAGE_OFFSET);
559         BUG_ON(PKMAP_BASE + LAST_PKMAP * PAGE_SIZE      > PAGE_OFFSET);
560 #endif
561
562         if (PAGE_SIZE >= 16384 && num_physpages <= 128) {
563                 extern int sysctl_overcommit_memory;
564                 /*
565                  * On a machine this small we won't get
566                  * anywhere without overcommit, so turn
567                  * it on by default.
568                  */
569                 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
570         }
571 }
572
573 void free_initmem(void)
574 {
575 #ifdef CONFIG_HAVE_TCM
576         extern char __tcm_start, __tcm_end;
577
578         totalram_pages += free_area(__phys_to_pfn(__pa(&__tcm_start)),
579                                     __phys_to_pfn(__pa(&__tcm_end)),
580                                     "TCM link");
581 #endif
582
583         if (!machine_is_integrator() && !machine_is_cintegrator())
584                 totalram_pages += free_area(__phys_to_pfn(__pa(__init_begin)),
585                                             __phys_to_pfn(__pa(__init_end)),
586                                             "init");
587 }
588
589 #ifdef CONFIG_BLK_DEV_INITRD
590
591 static int keep_initrd;
592
593 void free_initrd_mem(unsigned long start, unsigned long end)
594 {
595         if (!keep_initrd)
596                 totalram_pages += free_area(__phys_to_pfn(__pa(start)),
597                                             __phys_to_pfn(__pa(end)),
598                                             "initrd");
599 }
600
601 static int __init keepinitrd_setup(char *__unused)
602 {
603         keep_initrd = 1;
604         return 1;
605 }
606
607 __setup("keepinitrd", keepinitrd_setup);
608 #endif