Merge branch 'for-4.15/hyperv' into for-linus
[sfrench/cifs-2.6.git] / arch / arm / mm / fault.c
1 /*
2  *  linux/arch/arm/mm/fault.c
3  *
4  *  Copyright (C) 1995  Linus Torvalds
5  *  Modifications for ARM processor (c) 1995-2004 Russell King
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/extable.h>
12 #include <linux/signal.h>
13 #include <linux/mm.h>
14 #include <linux/hardirq.h>
15 #include <linux/init.h>
16 #include <linux/kprobes.h>
17 #include <linux/uaccess.h>
18 #include <linux/page-flags.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/highmem.h>
22 #include <linux/perf_event.h>
23
24 #include <asm/exception.h>
25 #include <asm/pgtable.h>
26 #include <asm/system_misc.h>
27 #include <asm/system_info.h>
28 #include <asm/tlbflush.h>
29
30 #include "fault.h"
31
32 #ifdef CONFIG_MMU
33
34 #ifdef CONFIG_KPROBES
35 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
36 {
37         int ret = 0;
38
39         if (!user_mode(regs)) {
40                 /* kprobe_running() needs smp_processor_id() */
41                 preempt_disable();
42                 if (kprobe_running() && kprobe_fault_handler(regs, fsr))
43                         ret = 1;
44                 preempt_enable();
45         }
46
47         return ret;
48 }
49 #else
50 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
51 {
52         return 0;
53 }
54 #endif
55
56 /*
57  * This is useful to dump out the page tables associated with
58  * 'addr' in mm 'mm'.
59  */
60 void show_pte(struct mm_struct *mm, unsigned long addr)
61 {
62         pgd_t *pgd;
63
64         if (!mm)
65                 mm = &init_mm;
66
67         pr_alert("pgd = %p\n", mm->pgd);
68         pgd = pgd_offset(mm, addr);
69         pr_alert("[%08lx] *pgd=%08llx",
70                         addr, (long long)pgd_val(*pgd));
71
72         do {
73                 pud_t *pud;
74                 pmd_t *pmd;
75                 pte_t *pte;
76
77                 if (pgd_none(*pgd))
78                         break;
79
80                 if (pgd_bad(*pgd)) {
81                         pr_cont("(bad)");
82                         break;
83                 }
84
85                 pud = pud_offset(pgd, addr);
86                 if (PTRS_PER_PUD != 1)
87                         pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
88
89                 if (pud_none(*pud))
90                         break;
91
92                 if (pud_bad(*pud)) {
93                         pr_cont("(bad)");
94                         break;
95                 }
96
97                 pmd = pmd_offset(pud, addr);
98                 if (PTRS_PER_PMD != 1)
99                         pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
100
101                 if (pmd_none(*pmd))
102                         break;
103
104                 if (pmd_bad(*pmd)) {
105                         pr_cont("(bad)");
106                         break;
107                 }
108
109                 /* We must not map this if we have highmem enabled */
110                 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
111                         break;
112
113                 pte = pte_offset_map(pmd, addr);
114                 pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
115 #ifndef CONFIG_ARM_LPAE
116                 pr_cont(", *ppte=%08llx",
117                        (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
118 #endif
119                 pte_unmap(pte);
120         } while(0);
121
122         pr_cont("\n");
123 }
124 #else                                   /* CONFIG_MMU */
125 void show_pte(struct mm_struct *mm, unsigned long addr)
126 { }
127 #endif                                  /* CONFIG_MMU */
128
129 /*
130  * Oops.  The kernel tried to access some page that wasn't present.
131  */
132 static void
133 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
134                   struct pt_regs *regs)
135 {
136         /*
137          * Are we prepared to handle this kernel fault?
138          */
139         if (fixup_exception(regs))
140                 return;
141
142         /*
143          * No handler, we'll have to terminate things with extreme prejudice.
144          */
145         bust_spinlocks(1);
146         pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
147                  (addr < PAGE_SIZE) ? "NULL pointer dereference" :
148                  "paging request", addr);
149
150         show_pte(mm, addr);
151         die("Oops", regs, fsr);
152         bust_spinlocks(0);
153         do_exit(SIGKILL);
154 }
155
156 /*
157  * Something tried to access memory that isn't in our memory map..
158  * User mode accesses just cause a SIGSEGV
159  */
160 static void
161 __do_user_fault(struct task_struct *tsk, unsigned long addr,
162                 unsigned int fsr, unsigned int sig, int code,
163                 struct pt_regs *regs)
164 {
165         struct siginfo si;
166
167 #ifdef CONFIG_DEBUG_USER
168         if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
169             ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
170                 printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
171                        tsk->comm, sig, addr, fsr);
172                 show_pte(tsk->mm, addr);
173                 show_regs(regs);
174         }
175 #endif
176
177         tsk->thread.address = addr;
178         tsk->thread.error_code = fsr;
179         tsk->thread.trap_no = 14;
180         si.si_signo = sig;
181         si.si_errno = 0;
182         si.si_code = code;
183         si.si_addr = (void __user *)addr;
184         force_sig_info(sig, &si, tsk);
185 }
186
187 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
188 {
189         struct task_struct *tsk = current;
190         struct mm_struct *mm = tsk->active_mm;
191
192         /*
193          * If we are in kernel mode at this point, we
194          * have no context to handle this fault with.
195          */
196         if (user_mode(regs))
197                 __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
198         else
199                 __do_kernel_fault(mm, addr, fsr, regs);
200 }
201
202 #ifdef CONFIG_MMU
203 #define VM_FAULT_BADMAP         0x010000
204 #define VM_FAULT_BADACCESS      0x020000
205
206 /*
207  * Check that the permissions on the VMA allow for the fault which occurred.
208  * If we encountered a write fault, we must have write permission, otherwise
209  * we allow any permission.
210  */
211 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
212 {
213         unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
214
215         if (fsr & FSR_WRITE)
216                 mask = VM_WRITE;
217         if (fsr & FSR_LNX_PF)
218                 mask = VM_EXEC;
219
220         return vma->vm_flags & mask ? false : true;
221 }
222
223 static int __kprobes
224 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
225                 unsigned int flags, struct task_struct *tsk)
226 {
227         struct vm_area_struct *vma;
228         int fault;
229
230         vma = find_vma(mm, addr);
231         fault = VM_FAULT_BADMAP;
232         if (unlikely(!vma))
233                 goto out;
234         if (unlikely(vma->vm_start > addr))
235                 goto check_stack;
236
237         /*
238          * Ok, we have a good vm_area for this
239          * memory access, so we can handle it.
240          */
241 good_area:
242         if (access_error(fsr, vma)) {
243                 fault = VM_FAULT_BADACCESS;
244                 goto out;
245         }
246
247         return handle_mm_fault(vma, addr & PAGE_MASK, flags);
248
249 check_stack:
250         /* Don't allow expansion below FIRST_USER_ADDRESS */
251         if (vma->vm_flags & VM_GROWSDOWN &&
252             addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
253                 goto good_area;
254 out:
255         return fault;
256 }
257
258 static int __kprobes
259 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
260 {
261         struct task_struct *tsk;
262         struct mm_struct *mm;
263         int fault, sig, code;
264         unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
265
266         if (notify_page_fault(regs, fsr))
267                 return 0;
268
269         tsk = current;
270         mm  = tsk->mm;
271
272         /* Enable interrupts if they were enabled in the parent context. */
273         if (interrupts_enabled(regs))
274                 local_irq_enable();
275
276         /*
277          * If we're in an interrupt or have no user
278          * context, we must not take the fault..
279          */
280         if (faulthandler_disabled() || !mm)
281                 goto no_context;
282
283         if (user_mode(regs))
284                 flags |= FAULT_FLAG_USER;
285         if (fsr & FSR_WRITE)
286                 flags |= FAULT_FLAG_WRITE;
287
288         /*
289          * As per x86, we may deadlock here.  However, since the kernel only
290          * validly references user space from well defined areas of the code,
291          * we can bug out early if this is from code which shouldn't.
292          */
293         if (!down_read_trylock(&mm->mmap_sem)) {
294                 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
295                         goto no_context;
296 retry:
297                 down_read(&mm->mmap_sem);
298         } else {
299                 /*
300                  * The above down_read_trylock() might have succeeded in
301                  * which case, we'll have missed the might_sleep() from
302                  * down_read()
303                  */
304                 might_sleep();
305 #ifdef CONFIG_DEBUG_VM
306                 if (!user_mode(regs) &&
307                     !search_exception_tables(regs->ARM_pc))
308                         goto no_context;
309 #endif
310         }
311
312         fault = __do_page_fault(mm, addr, fsr, flags, tsk);
313
314         /* If we need to retry but a fatal signal is pending, handle the
315          * signal first. We do not need to release the mmap_sem because
316          * it would already be released in __lock_page_or_retry in
317          * mm/filemap.c. */
318         if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
319                 if (!user_mode(regs))
320                         goto no_context;
321                 return 0;
322         }
323
324         /*
325          * Major/minor page fault accounting is only done on the
326          * initial attempt. If we go through a retry, it is extremely
327          * likely that the page will be found in page cache at that point.
328          */
329
330         perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
331         if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
332                 if (fault & VM_FAULT_MAJOR) {
333                         tsk->maj_flt++;
334                         perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
335                                         regs, addr);
336                 } else {
337                         tsk->min_flt++;
338                         perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
339                                         regs, addr);
340                 }
341                 if (fault & VM_FAULT_RETRY) {
342                         /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
343                         * of starvation. */
344                         flags &= ~FAULT_FLAG_ALLOW_RETRY;
345                         flags |= FAULT_FLAG_TRIED;
346                         goto retry;
347                 }
348         }
349
350         up_read(&mm->mmap_sem);
351
352         /*
353          * Handle the "normal" case first - VM_FAULT_MAJOR
354          */
355         if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
356                 return 0;
357
358         /*
359          * If we are in kernel mode at this point, we
360          * have no context to handle this fault with.
361          */
362         if (!user_mode(regs))
363                 goto no_context;
364
365         if (fault & VM_FAULT_OOM) {
366                 /*
367                  * We ran out of memory, call the OOM killer, and return to
368                  * userspace (which will retry the fault, or kill us if we
369                  * got oom-killed)
370                  */
371                 pagefault_out_of_memory();
372                 return 0;
373         }
374
375         if (fault & VM_FAULT_SIGBUS) {
376                 /*
377                  * We had some memory, but were unable to
378                  * successfully fix up this page fault.
379                  */
380                 sig = SIGBUS;
381                 code = BUS_ADRERR;
382         } else {
383                 /*
384                  * Something tried to access memory that
385                  * isn't in our memory map..
386                  */
387                 sig = SIGSEGV;
388                 code = fault == VM_FAULT_BADACCESS ?
389                         SEGV_ACCERR : SEGV_MAPERR;
390         }
391
392         __do_user_fault(tsk, addr, fsr, sig, code, regs);
393         return 0;
394
395 no_context:
396         __do_kernel_fault(mm, addr, fsr, regs);
397         return 0;
398 }
399 #else                                   /* CONFIG_MMU */
400 static int
401 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
402 {
403         return 0;
404 }
405 #endif                                  /* CONFIG_MMU */
406
407 /*
408  * First Level Translation Fault Handler
409  *
410  * We enter here because the first level page table doesn't contain
411  * a valid entry for the address.
412  *
413  * If the address is in kernel space (>= TASK_SIZE), then we are
414  * probably faulting in the vmalloc() area.
415  *
416  * If the init_task's first level page tables contains the relevant
417  * entry, we copy the it to this task.  If not, we send the process
418  * a signal, fixup the exception, or oops the kernel.
419  *
420  * NOTE! We MUST NOT take any locks for this case. We may be in an
421  * interrupt or a critical region, and should only copy the information
422  * from the master page table, nothing more.
423  */
424 #ifdef CONFIG_MMU
425 static int __kprobes
426 do_translation_fault(unsigned long addr, unsigned int fsr,
427                      struct pt_regs *regs)
428 {
429         unsigned int index;
430         pgd_t *pgd, *pgd_k;
431         pud_t *pud, *pud_k;
432         pmd_t *pmd, *pmd_k;
433
434         if (addr < TASK_SIZE)
435                 return do_page_fault(addr, fsr, regs);
436
437         if (user_mode(regs))
438                 goto bad_area;
439
440         index = pgd_index(addr);
441
442         pgd = cpu_get_pgd() + index;
443         pgd_k = init_mm.pgd + index;
444
445         if (pgd_none(*pgd_k))
446                 goto bad_area;
447         if (!pgd_present(*pgd))
448                 set_pgd(pgd, *pgd_k);
449
450         pud = pud_offset(pgd, addr);
451         pud_k = pud_offset(pgd_k, addr);
452
453         if (pud_none(*pud_k))
454                 goto bad_area;
455         if (!pud_present(*pud))
456                 set_pud(pud, *pud_k);
457
458         pmd = pmd_offset(pud, addr);
459         pmd_k = pmd_offset(pud_k, addr);
460
461 #ifdef CONFIG_ARM_LPAE
462         /*
463          * Only one hardware entry per PMD with LPAE.
464          */
465         index = 0;
466 #else
467         /*
468          * On ARM one Linux PGD entry contains two hardware entries (see page
469          * tables layout in pgtable.h). We normally guarantee that we always
470          * fill both L1 entries. But create_mapping() doesn't follow the rule.
471          * It can create inidividual L1 entries, so here we have to call
472          * pmd_none() check for the entry really corresponded to address, not
473          * for the first of pair.
474          */
475         index = (addr >> SECTION_SHIFT) & 1;
476 #endif
477         if (pmd_none(pmd_k[index]))
478                 goto bad_area;
479
480         copy_pmd(pmd, pmd_k);
481         return 0;
482
483 bad_area:
484         do_bad_area(addr, fsr, regs);
485         return 0;
486 }
487 #else                                   /* CONFIG_MMU */
488 static int
489 do_translation_fault(unsigned long addr, unsigned int fsr,
490                      struct pt_regs *regs)
491 {
492         return 0;
493 }
494 #endif                                  /* CONFIG_MMU */
495
496 /*
497  * Some section permission faults need to be handled gracefully.
498  * They can happen due to a __{get,put}_user during an oops.
499  */
500 #ifndef CONFIG_ARM_LPAE
501 static int
502 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
503 {
504         do_bad_area(addr, fsr, regs);
505         return 0;
506 }
507 #endif /* CONFIG_ARM_LPAE */
508
509 /*
510  * This abort handler always returns "fault".
511  */
512 static int
513 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
514 {
515         return 1;
516 }
517
518 struct fsr_info {
519         int     (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
520         int     sig;
521         int     code;
522         const char *name;
523 };
524
525 /* FSR definition */
526 #ifdef CONFIG_ARM_LPAE
527 #include "fsr-3level.c"
528 #else
529 #include "fsr-2level.c"
530 #endif
531
532 void __init
533 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
534                 int sig, int code, const char *name)
535 {
536         if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
537                 BUG();
538
539         fsr_info[nr].fn   = fn;
540         fsr_info[nr].sig  = sig;
541         fsr_info[nr].code = code;
542         fsr_info[nr].name = name;
543 }
544
545 /*
546  * Dispatch a data abort to the relevant handler.
547  */
548 asmlinkage void __exception
549 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
550 {
551         const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
552         struct siginfo info;
553
554         if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
555                 return;
556
557         pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
558                 inf->name, fsr, addr);
559         show_pte(current->mm, addr);
560
561         info.si_signo = inf->sig;
562         info.si_errno = 0;
563         info.si_code  = inf->code;
564         info.si_addr  = (void __user *)addr;
565         arm_notify_die("", regs, &info, fsr, 0);
566 }
567
568 void __init
569 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
570                  int sig, int code, const char *name)
571 {
572         if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
573                 BUG();
574
575         ifsr_info[nr].fn   = fn;
576         ifsr_info[nr].sig  = sig;
577         ifsr_info[nr].code = code;
578         ifsr_info[nr].name = name;
579 }
580
581 asmlinkage void __exception
582 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
583 {
584         const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
585         struct siginfo info;
586
587         if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
588                 return;
589
590         pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
591                 inf->name, ifsr, addr);
592
593         info.si_signo = inf->sig;
594         info.si_errno = 0;
595         info.si_code  = inf->code;
596         info.si_addr  = (void __user *)addr;
597         arm_notify_die("", regs, &info, ifsr, 0);
598 }
599
600 /*
601  * Abort handler to be used only during first unmasking of asynchronous aborts
602  * on the boot CPU. This makes sure that the machine will not die if the
603  * firmware/bootloader left an imprecise abort pending for us to trip over.
604  */
605 static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
606                                       struct pt_regs *regs)
607 {
608         pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
609                 "first unmask, this is most likely caused by a "
610                 "firmware/bootloader bug.\n", fsr);
611
612         return 0;
613 }
614
615 void __init early_abt_enable(void)
616 {
617         fsr_info[FSR_FS_AEA].fn = early_abort_handler;
618         local_abt_enable();
619         fsr_info[FSR_FS_AEA].fn = do_bad;
620 }
621
622 #ifndef CONFIG_ARM_LPAE
623 static int __init exceptions_init(void)
624 {
625         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
626                 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
627                                 "I-cache maintenance fault");
628         }
629
630         if (cpu_architecture() >= CPU_ARCH_ARMv7) {
631                 /*
632                  * TODO: Access flag faults introduced in ARMv6K.
633                  * Runtime check for 'K' extension is needed
634                  */
635                 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
636                                 "section access flag fault");
637                 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
638                                 "section access flag fault");
639         }
640
641         return 0;
642 }
643
644 arch_initcall(exceptions_init);
645 #endif