Merge branch 'ldmsw-fixes'
[sfrench/cifs-2.6.git] / arch / arm / kvm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32
33 #define CREATE_TRACE_POINTS
34 #include "trace.h"
35
36 #include <linux/uaccess.h>
37 #include <asm/ptrace.h>
38 #include <asm/mman.h>
39 #include <asm/tlbflush.h>
40 #include <asm/cacheflush.h>
41 #include <asm/virt.h>
42 #include <asm/kvm_arm.h>
43 #include <asm/kvm_asm.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/kvm_emulate.h>
46 #include <asm/kvm_coproc.h>
47 #include <asm/kvm_psci.h>
48 #include <asm/sections.h>
49
50 #ifdef REQUIRES_VIRT
51 __asm__(".arch_extension        virt");
52 #endif
53
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56
57 /* Per-CPU variable containing the currently running vcpu. */
58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59
60 /* The VMID used in the VTTBR */
61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 static u32 kvm_next_vmid;
63 static unsigned int kvm_vmid_bits __read_mostly;
64 static DEFINE_SPINLOCK(kvm_vmid_lock);
65
66 static bool vgic_present;
67
68 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
69
70 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
71 {
72         BUG_ON(preemptible());
73         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
74 }
75
76 /**
77  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
78  * Must be called from non-preemptible context
79  */
80 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
81 {
82         BUG_ON(preemptible());
83         return __this_cpu_read(kvm_arm_running_vcpu);
84 }
85
86 /**
87  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
88  */
89 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
90 {
91         return &kvm_arm_running_vcpu;
92 }
93
94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 {
96         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
97 }
98
99 int kvm_arch_hardware_setup(void)
100 {
101         return 0;
102 }
103
104 void kvm_arch_check_processor_compat(void *rtn)
105 {
106         *(int *)rtn = 0;
107 }
108
109
110 /**
111  * kvm_arch_init_vm - initializes a VM data structure
112  * @kvm:        pointer to the KVM struct
113  */
114 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
115 {
116         int ret, cpu;
117
118         if (type)
119                 return -EINVAL;
120
121         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
122         if (!kvm->arch.last_vcpu_ran)
123                 return -ENOMEM;
124
125         for_each_possible_cpu(cpu)
126                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
127
128         ret = kvm_alloc_stage2_pgd(kvm);
129         if (ret)
130                 goto out_fail_alloc;
131
132         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
133         if (ret)
134                 goto out_free_stage2_pgd;
135
136         kvm_vgic_early_init(kvm);
137
138         /* Mark the initial VMID generation invalid */
139         kvm->arch.vmid_gen = 0;
140
141         /* The maximum number of VCPUs is limited by the host's GIC model */
142         kvm->arch.max_vcpus = vgic_present ?
143                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
144
145         return ret;
146 out_free_stage2_pgd:
147         kvm_free_stage2_pgd(kvm);
148 out_fail_alloc:
149         free_percpu(kvm->arch.last_vcpu_ran);
150         kvm->arch.last_vcpu_ran = NULL;
151         return ret;
152 }
153
154 bool kvm_arch_has_vcpu_debugfs(void)
155 {
156         return false;
157 }
158
159 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
160 {
161         return 0;
162 }
163
164 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
165 {
166         return VM_FAULT_SIGBUS;
167 }
168
169
170 /**
171  * kvm_arch_destroy_vm - destroy the VM data structure
172  * @kvm:        pointer to the KVM struct
173  */
174 void kvm_arch_destroy_vm(struct kvm *kvm)
175 {
176         int i;
177
178         free_percpu(kvm->arch.last_vcpu_ran);
179         kvm->arch.last_vcpu_ran = NULL;
180
181         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
182                 if (kvm->vcpus[i]) {
183                         kvm_arch_vcpu_free(kvm->vcpus[i]);
184                         kvm->vcpus[i] = NULL;
185                 }
186         }
187
188         kvm_vgic_destroy(kvm);
189 }
190
191 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
192 {
193         int r;
194         switch (ext) {
195         case KVM_CAP_IRQCHIP:
196                 r = vgic_present;
197                 break;
198         case KVM_CAP_IOEVENTFD:
199         case KVM_CAP_DEVICE_CTRL:
200         case KVM_CAP_USER_MEMORY:
201         case KVM_CAP_SYNC_MMU:
202         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
203         case KVM_CAP_ONE_REG:
204         case KVM_CAP_ARM_PSCI:
205         case KVM_CAP_ARM_PSCI_0_2:
206         case KVM_CAP_READONLY_MEM:
207         case KVM_CAP_MP_STATE:
208         case KVM_CAP_IMMEDIATE_EXIT:
209                 r = 1;
210                 break;
211         case KVM_CAP_ARM_SET_DEVICE_ADDR:
212                 r = 1;
213                 break;
214         case KVM_CAP_NR_VCPUS:
215                 r = num_online_cpus();
216                 break;
217         case KVM_CAP_MAX_VCPUS:
218                 r = KVM_MAX_VCPUS;
219                 break;
220         case KVM_CAP_NR_MEMSLOTS:
221                 r = KVM_USER_MEM_SLOTS;
222                 break;
223         case KVM_CAP_MSI_DEVID:
224                 if (!kvm)
225                         r = -EINVAL;
226                 else
227                         r = kvm->arch.vgic.msis_require_devid;
228                 break;
229         case KVM_CAP_ARM_USER_IRQ:
230                 /*
231                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
232                  * (bump this number if adding more devices)
233                  */
234                 r = 1;
235                 break;
236         default:
237                 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
238                 break;
239         }
240         return r;
241 }
242
243 long kvm_arch_dev_ioctl(struct file *filp,
244                         unsigned int ioctl, unsigned long arg)
245 {
246         return -EINVAL;
247 }
248
249
250 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
251 {
252         int err;
253         struct kvm_vcpu *vcpu;
254
255         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
256                 err = -EBUSY;
257                 goto out;
258         }
259
260         if (id >= kvm->arch.max_vcpus) {
261                 err = -EINVAL;
262                 goto out;
263         }
264
265         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
266         if (!vcpu) {
267                 err = -ENOMEM;
268                 goto out;
269         }
270
271         err = kvm_vcpu_init(vcpu, kvm, id);
272         if (err)
273                 goto free_vcpu;
274
275         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
276         if (err)
277                 goto vcpu_uninit;
278
279         return vcpu;
280 vcpu_uninit:
281         kvm_vcpu_uninit(vcpu);
282 free_vcpu:
283         kmem_cache_free(kvm_vcpu_cache, vcpu);
284 out:
285         return ERR_PTR(err);
286 }
287
288 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
289 {
290         kvm_vgic_vcpu_early_init(vcpu);
291 }
292
293 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
294 {
295         kvm_mmu_free_memory_caches(vcpu);
296         kvm_timer_vcpu_terminate(vcpu);
297         kvm_vgic_vcpu_destroy(vcpu);
298         kvm_pmu_vcpu_destroy(vcpu);
299         kvm_vcpu_uninit(vcpu);
300         kmem_cache_free(kvm_vcpu_cache, vcpu);
301 }
302
303 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
304 {
305         kvm_arch_vcpu_free(vcpu);
306 }
307
308 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
309 {
310         return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
311                kvm_timer_should_fire(vcpu_ptimer(vcpu));
312 }
313
314 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
315 {
316         kvm_timer_schedule(vcpu);
317 }
318
319 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
320 {
321         kvm_timer_unschedule(vcpu);
322 }
323
324 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
325 {
326         /* Force users to call KVM_ARM_VCPU_INIT */
327         vcpu->arch.target = -1;
328         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
329
330         /* Set up the timer */
331         kvm_timer_vcpu_init(vcpu);
332
333         kvm_arm_reset_debug_ptr(vcpu);
334
335         return 0;
336 }
337
338 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
339 {
340         int *last_ran;
341
342         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
343
344         /*
345          * We might get preempted before the vCPU actually runs, but
346          * over-invalidation doesn't affect correctness.
347          */
348         if (*last_ran != vcpu->vcpu_id) {
349                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
350                 *last_ran = vcpu->vcpu_id;
351         }
352
353         vcpu->cpu = cpu;
354         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
355
356         kvm_arm_set_running_vcpu(vcpu);
357
358         kvm_vgic_load(vcpu);
359 }
360
361 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
362 {
363         kvm_vgic_put(vcpu);
364
365         vcpu->cpu = -1;
366
367         kvm_arm_set_running_vcpu(NULL);
368         kvm_timer_vcpu_put(vcpu);
369 }
370
371 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
372                                     struct kvm_mp_state *mp_state)
373 {
374         if (vcpu->arch.power_off)
375                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
376         else
377                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
378
379         return 0;
380 }
381
382 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
383                                     struct kvm_mp_state *mp_state)
384 {
385         switch (mp_state->mp_state) {
386         case KVM_MP_STATE_RUNNABLE:
387                 vcpu->arch.power_off = false;
388                 break;
389         case KVM_MP_STATE_STOPPED:
390                 vcpu->arch.power_off = true;
391                 break;
392         default:
393                 return -EINVAL;
394         }
395
396         return 0;
397 }
398
399 /**
400  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
401  * @v:          The VCPU pointer
402  *
403  * If the guest CPU is not waiting for interrupts or an interrupt line is
404  * asserted, the CPU is by definition runnable.
405  */
406 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
407 {
408         return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
409                 && !v->arch.power_off && !v->arch.pause);
410 }
411
412 /* Just ensure a guest exit from a particular CPU */
413 static void exit_vm_noop(void *info)
414 {
415 }
416
417 void force_vm_exit(const cpumask_t *mask)
418 {
419         preempt_disable();
420         smp_call_function_many(mask, exit_vm_noop, NULL, true);
421         preempt_enable();
422 }
423
424 /**
425  * need_new_vmid_gen - check that the VMID is still valid
426  * @kvm: The VM's VMID to check
427  *
428  * return true if there is a new generation of VMIDs being used
429  *
430  * The hardware supports only 256 values with the value zero reserved for the
431  * host, so we check if an assigned value belongs to a previous generation,
432  * which which requires us to assign a new value. If we're the first to use a
433  * VMID for the new generation, we must flush necessary caches and TLBs on all
434  * CPUs.
435  */
436 static bool need_new_vmid_gen(struct kvm *kvm)
437 {
438         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
439 }
440
441 /**
442  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
443  * @kvm The guest that we are about to run
444  *
445  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
446  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
447  * caches and TLBs.
448  */
449 static void update_vttbr(struct kvm *kvm)
450 {
451         phys_addr_t pgd_phys;
452         u64 vmid;
453
454         if (!need_new_vmid_gen(kvm))
455                 return;
456
457         spin_lock(&kvm_vmid_lock);
458
459         /*
460          * We need to re-check the vmid_gen here to ensure that if another vcpu
461          * already allocated a valid vmid for this vm, then this vcpu should
462          * use the same vmid.
463          */
464         if (!need_new_vmid_gen(kvm)) {
465                 spin_unlock(&kvm_vmid_lock);
466                 return;
467         }
468
469         /* First user of a new VMID generation? */
470         if (unlikely(kvm_next_vmid == 0)) {
471                 atomic64_inc(&kvm_vmid_gen);
472                 kvm_next_vmid = 1;
473
474                 /*
475                  * On SMP we know no other CPUs can use this CPU's or each
476                  * other's VMID after force_vm_exit returns since the
477                  * kvm_vmid_lock blocks them from reentry to the guest.
478                  */
479                 force_vm_exit(cpu_all_mask);
480                 /*
481                  * Now broadcast TLB + ICACHE invalidation over the inner
482                  * shareable domain to make sure all data structures are
483                  * clean.
484                  */
485                 kvm_call_hyp(__kvm_flush_vm_context);
486         }
487
488         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
489         kvm->arch.vmid = kvm_next_vmid;
490         kvm_next_vmid++;
491         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
492
493         /* update vttbr to be used with the new vmid */
494         pgd_phys = virt_to_phys(kvm->arch.pgd);
495         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
496         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
497         kvm->arch.vttbr = pgd_phys | vmid;
498
499         spin_unlock(&kvm_vmid_lock);
500 }
501
502 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
503 {
504         struct kvm *kvm = vcpu->kvm;
505         int ret = 0;
506
507         if (likely(vcpu->arch.has_run_once))
508                 return 0;
509
510         vcpu->arch.has_run_once = true;
511
512         /*
513          * Map the VGIC hardware resources before running a vcpu the first
514          * time on this VM.
515          */
516         if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
517                 ret = kvm_vgic_map_resources(kvm);
518                 if (ret)
519                         return ret;
520         }
521
522         ret = kvm_timer_enable(vcpu);
523
524         return ret;
525 }
526
527 bool kvm_arch_intc_initialized(struct kvm *kvm)
528 {
529         return vgic_initialized(kvm);
530 }
531
532 void kvm_arm_halt_guest(struct kvm *kvm)
533 {
534         int i;
535         struct kvm_vcpu *vcpu;
536
537         kvm_for_each_vcpu(i, vcpu, kvm)
538                 vcpu->arch.pause = true;
539         kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
540 }
541
542 void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
543 {
544         vcpu->arch.pause = true;
545         kvm_vcpu_kick(vcpu);
546 }
547
548 void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
549 {
550         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
551
552         vcpu->arch.pause = false;
553         swake_up(wq);
554 }
555
556 void kvm_arm_resume_guest(struct kvm *kvm)
557 {
558         int i;
559         struct kvm_vcpu *vcpu;
560
561         kvm_for_each_vcpu(i, vcpu, kvm)
562                 kvm_arm_resume_vcpu(vcpu);
563 }
564
565 static void vcpu_sleep(struct kvm_vcpu *vcpu)
566 {
567         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
568
569         swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
570                                        (!vcpu->arch.pause)));
571 }
572
573 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
574 {
575         return vcpu->arch.target >= 0;
576 }
577
578 /**
579  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
580  * @vcpu:       The VCPU pointer
581  * @run:        The kvm_run structure pointer used for userspace state exchange
582  *
583  * This function is called through the VCPU_RUN ioctl called from user space. It
584  * will execute VM code in a loop until the time slice for the process is used
585  * or some emulation is needed from user space in which case the function will
586  * return with return value 0 and with the kvm_run structure filled in with the
587  * required data for the requested emulation.
588  */
589 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
590 {
591         int ret;
592         sigset_t sigsaved;
593
594         if (unlikely(!kvm_vcpu_initialized(vcpu)))
595                 return -ENOEXEC;
596
597         ret = kvm_vcpu_first_run_init(vcpu);
598         if (ret)
599                 return ret;
600
601         if (run->exit_reason == KVM_EXIT_MMIO) {
602                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
603                 if (ret)
604                         return ret;
605         }
606
607         if (run->immediate_exit)
608                 return -EINTR;
609
610         if (vcpu->sigset_active)
611                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
612
613         ret = 1;
614         run->exit_reason = KVM_EXIT_UNKNOWN;
615         while (ret > 0) {
616                 /*
617                  * Check conditions before entering the guest
618                  */
619                 cond_resched();
620
621                 update_vttbr(vcpu->kvm);
622
623                 if (vcpu->arch.power_off || vcpu->arch.pause)
624                         vcpu_sleep(vcpu);
625
626                 /*
627                  * Preparing the interrupts to be injected also
628                  * involves poking the GIC, which must be done in a
629                  * non-preemptible context.
630                  */
631                 preempt_disable();
632
633                 kvm_pmu_flush_hwstate(vcpu);
634
635                 kvm_timer_flush_hwstate(vcpu);
636                 kvm_vgic_flush_hwstate(vcpu);
637
638                 local_irq_disable();
639
640                 /*
641                  * If we have a singal pending, or need to notify a userspace
642                  * irqchip about timer or PMU level changes, then we exit (and
643                  * update the timer level state in kvm_timer_update_run
644                  * below).
645                  */
646                 if (signal_pending(current) ||
647                     kvm_timer_should_notify_user(vcpu) ||
648                     kvm_pmu_should_notify_user(vcpu)) {
649                         ret = -EINTR;
650                         run->exit_reason = KVM_EXIT_INTR;
651                 }
652
653                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
654                         vcpu->arch.power_off || vcpu->arch.pause) {
655                         local_irq_enable();
656                         kvm_pmu_sync_hwstate(vcpu);
657                         kvm_timer_sync_hwstate(vcpu);
658                         kvm_vgic_sync_hwstate(vcpu);
659                         preempt_enable();
660                         continue;
661                 }
662
663                 kvm_arm_setup_debug(vcpu);
664
665                 /**************************************************************
666                  * Enter the guest
667                  */
668                 trace_kvm_entry(*vcpu_pc(vcpu));
669                 guest_enter_irqoff();
670                 vcpu->mode = IN_GUEST_MODE;
671
672                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
673
674                 vcpu->mode = OUTSIDE_GUEST_MODE;
675                 vcpu->stat.exits++;
676                 /*
677                  * Back from guest
678                  *************************************************************/
679
680                 kvm_arm_clear_debug(vcpu);
681
682                 /*
683                  * We may have taken a host interrupt in HYP mode (ie
684                  * while executing the guest). This interrupt is still
685                  * pending, as we haven't serviced it yet!
686                  *
687                  * We're now back in SVC mode, with interrupts
688                  * disabled.  Enabling the interrupts now will have
689                  * the effect of taking the interrupt again, in SVC
690                  * mode this time.
691                  */
692                 local_irq_enable();
693
694                 /*
695                  * We do local_irq_enable() before calling guest_exit() so
696                  * that if a timer interrupt hits while running the guest we
697                  * account that tick as being spent in the guest.  We enable
698                  * preemption after calling guest_exit() so that if we get
699                  * preempted we make sure ticks after that is not counted as
700                  * guest time.
701                  */
702                 guest_exit();
703                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
704
705                 /*
706                  * We must sync the PMU and timer state before the vgic state so
707                  * that the vgic can properly sample the updated state of the
708                  * interrupt line.
709                  */
710                 kvm_pmu_sync_hwstate(vcpu);
711                 kvm_timer_sync_hwstate(vcpu);
712
713                 kvm_vgic_sync_hwstate(vcpu);
714
715                 preempt_enable();
716
717                 ret = handle_exit(vcpu, run, ret);
718         }
719
720         /* Tell userspace about in-kernel device output levels */
721         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
722                 kvm_timer_update_run(vcpu);
723                 kvm_pmu_update_run(vcpu);
724         }
725
726         if (vcpu->sigset_active)
727                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
728         return ret;
729 }
730
731 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
732 {
733         int bit_index;
734         bool set;
735         unsigned long *ptr;
736
737         if (number == KVM_ARM_IRQ_CPU_IRQ)
738                 bit_index = __ffs(HCR_VI);
739         else /* KVM_ARM_IRQ_CPU_FIQ */
740                 bit_index = __ffs(HCR_VF);
741
742         ptr = (unsigned long *)&vcpu->arch.irq_lines;
743         if (level)
744                 set = test_and_set_bit(bit_index, ptr);
745         else
746                 set = test_and_clear_bit(bit_index, ptr);
747
748         /*
749          * If we didn't change anything, no need to wake up or kick other CPUs
750          */
751         if (set == level)
752                 return 0;
753
754         /*
755          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
756          * trigger a world-switch round on the running physical CPU to set the
757          * virtual IRQ/FIQ fields in the HCR appropriately.
758          */
759         kvm_vcpu_kick(vcpu);
760
761         return 0;
762 }
763
764 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
765                           bool line_status)
766 {
767         u32 irq = irq_level->irq;
768         unsigned int irq_type, vcpu_idx, irq_num;
769         int nrcpus = atomic_read(&kvm->online_vcpus);
770         struct kvm_vcpu *vcpu = NULL;
771         bool level = irq_level->level;
772
773         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
774         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
775         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
776
777         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
778
779         switch (irq_type) {
780         case KVM_ARM_IRQ_TYPE_CPU:
781                 if (irqchip_in_kernel(kvm))
782                         return -ENXIO;
783
784                 if (vcpu_idx >= nrcpus)
785                         return -EINVAL;
786
787                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
788                 if (!vcpu)
789                         return -EINVAL;
790
791                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
792                         return -EINVAL;
793
794                 return vcpu_interrupt_line(vcpu, irq_num, level);
795         case KVM_ARM_IRQ_TYPE_PPI:
796                 if (!irqchip_in_kernel(kvm))
797                         return -ENXIO;
798
799                 if (vcpu_idx >= nrcpus)
800                         return -EINVAL;
801
802                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
803                 if (!vcpu)
804                         return -EINVAL;
805
806                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
807                         return -EINVAL;
808
809                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
810         case KVM_ARM_IRQ_TYPE_SPI:
811                 if (!irqchip_in_kernel(kvm))
812                         return -ENXIO;
813
814                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
815                         return -EINVAL;
816
817                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
818         }
819
820         return -EINVAL;
821 }
822
823 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
824                                const struct kvm_vcpu_init *init)
825 {
826         unsigned int i;
827         int phys_target = kvm_target_cpu();
828
829         if (init->target != phys_target)
830                 return -EINVAL;
831
832         /*
833          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
834          * use the same target.
835          */
836         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
837                 return -EINVAL;
838
839         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
840         for (i = 0; i < sizeof(init->features) * 8; i++) {
841                 bool set = (init->features[i / 32] & (1 << (i % 32)));
842
843                 if (set && i >= KVM_VCPU_MAX_FEATURES)
844                         return -ENOENT;
845
846                 /*
847                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
848                  * use the same feature set.
849                  */
850                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
851                     test_bit(i, vcpu->arch.features) != set)
852                         return -EINVAL;
853
854                 if (set)
855                         set_bit(i, vcpu->arch.features);
856         }
857
858         vcpu->arch.target = phys_target;
859
860         /* Now we know what it is, we can reset it. */
861         return kvm_reset_vcpu(vcpu);
862 }
863
864
865 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
866                                          struct kvm_vcpu_init *init)
867 {
868         int ret;
869
870         ret = kvm_vcpu_set_target(vcpu, init);
871         if (ret)
872                 return ret;
873
874         /*
875          * Ensure a rebooted VM will fault in RAM pages and detect if the
876          * guest MMU is turned off and flush the caches as needed.
877          */
878         if (vcpu->arch.has_run_once)
879                 stage2_unmap_vm(vcpu->kvm);
880
881         vcpu_reset_hcr(vcpu);
882
883         /*
884          * Handle the "start in power-off" case.
885          */
886         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
887                 vcpu->arch.power_off = true;
888         else
889                 vcpu->arch.power_off = false;
890
891         return 0;
892 }
893
894 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
895                                  struct kvm_device_attr *attr)
896 {
897         int ret = -ENXIO;
898
899         switch (attr->group) {
900         default:
901                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
902                 break;
903         }
904
905         return ret;
906 }
907
908 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
909                                  struct kvm_device_attr *attr)
910 {
911         int ret = -ENXIO;
912
913         switch (attr->group) {
914         default:
915                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
916                 break;
917         }
918
919         return ret;
920 }
921
922 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
923                                  struct kvm_device_attr *attr)
924 {
925         int ret = -ENXIO;
926
927         switch (attr->group) {
928         default:
929                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
930                 break;
931         }
932
933         return ret;
934 }
935
936 long kvm_arch_vcpu_ioctl(struct file *filp,
937                          unsigned int ioctl, unsigned long arg)
938 {
939         struct kvm_vcpu *vcpu = filp->private_data;
940         void __user *argp = (void __user *)arg;
941         struct kvm_device_attr attr;
942
943         switch (ioctl) {
944         case KVM_ARM_VCPU_INIT: {
945                 struct kvm_vcpu_init init;
946
947                 if (copy_from_user(&init, argp, sizeof(init)))
948                         return -EFAULT;
949
950                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
951         }
952         case KVM_SET_ONE_REG:
953         case KVM_GET_ONE_REG: {
954                 struct kvm_one_reg reg;
955
956                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
957                         return -ENOEXEC;
958
959                 if (copy_from_user(&reg, argp, sizeof(reg)))
960                         return -EFAULT;
961                 if (ioctl == KVM_SET_ONE_REG)
962                         return kvm_arm_set_reg(vcpu, &reg);
963                 else
964                         return kvm_arm_get_reg(vcpu, &reg);
965         }
966         case KVM_GET_REG_LIST: {
967                 struct kvm_reg_list __user *user_list = argp;
968                 struct kvm_reg_list reg_list;
969                 unsigned n;
970
971                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
972                         return -ENOEXEC;
973
974                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
975                         return -EFAULT;
976                 n = reg_list.n;
977                 reg_list.n = kvm_arm_num_regs(vcpu);
978                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
979                         return -EFAULT;
980                 if (n < reg_list.n)
981                         return -E2BIG;
982                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
983         }
984         case KVM_SET_DEVICE_ATTR: {
985                 if (copy_from_user(&attr, argp, sizeof(attr)))
986                         return -EFAULT;
987                 return kvm_arm_vcpu_set_attr(vcpu, &attr);
988         }
989         case KVM_GET_DEVICE_ATTR: {
990                 if (copy_from_user(&attr, argp, sizeof(attr)))
991                         return -EFAULT;
992                 return kvm_arm_vcpu_get_attr(vcpu, &attr);
993         }
994         case KVM_HAS_DEVICE_ATTR: {
995                 if (copy_from_user(&attr, argp, sizeof(attr)))
996                         return -EFAULT;
997                 return kvm_arm_vcpu_has_attr(vcpu, &attr);
998         }
999         default:
1000                 return -EINVAL;
1001         }
1002 }
1003
1004 /**
1005  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1006  * @kvm: kvm instance
1007  * @log: slot id and address to which we copy the log
1008  *
1009  * Steps 1-4 below provide general overview of dirty page logging. See
1010  * kvm_get_dirty_log_protect() function description for additional details.
1011  *
1012  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1013  * always flush the TLB (step 4) even if previous step failed  and the dirty
1014  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1015  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1016  * writes will be marked dirty for next log read.
1017  *
1018  *   1. Take a snapshot of the bit and clear it if needed.
1019  *   2. Write protect the corresponding page.
1020  *   3. Copy the snapshot to the userspace.
1021  *   4. Flush TLB's if needed.
1022  */
1023 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1024 {
1025         bool is_dirty = false;
1026         int r;
1027
1028         mutex_lock(&kvm->slots_lock);
1029
1030         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1031
1032         if (is_dirty)
1033                 kvm_flush_remote_tlbs(kvm);
1034
1035         mutex_unlock(&kvm->slots_lock);
1036         return r;
1037 }
1038
1039 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1040                                         struct kvm_arm_device_addr *dev_addr)
1041 {
1042         unsigned long dev_id, type;
1043
1044         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1045                 KVM_ARM_DEVICE_ID_SHIFT;
1046         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1047                 KVM_ARM_DEVICE_TYPE_SHIFT;
1048
1049         switch (dev_id) {
1050         case KVM_ARM_DEVICE_VGIC_V2:
1051                 if (!vgic_present)
1052                         return -ENXIO;
1053                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1054         default:
1055                 return -ENODEV;
1056         }
1057 }
1058
1059 long kvm_arch_vm_ioctl(struct file *filp,
1060                        unsigned int ioctl, unsigned long arg)
1061 {
1062         struct kvm *kvm = filp->private_data;
1063         void __user *argp = (void __user *)arg;
1064
1065         switch (ioctl) {
1066         case KVM_CREATE_IRQCHIP: {
1067                 int ret;
1068                 if (!vgic_present)
1069                         return -ENXIO;
1070                 mutex_lock(&kvm->lock);
1071                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1072                 mutex_unlock(&kvm->lock);
1073                 return ret;
1074         }
1075         case KVM_ARM_SET_DEVICE_ADDR: {
1076                 struct kvm_arm_device_addr dev_addr;
1077
1078                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1079                         return -EFAULT;
1080                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1081         }
1082         case KVM_ARM_PREFERRED_TARGET: {
1083                 int err;
1084                 struct kvm_vcpu_init init;
1085
1086                 err = kvm_vcpu_preferred_target(&init);
1087                 if (err)
1088                         return err;
1089
1090                 if (copy_to_user(argp, &init, sizeof(init)))
1091                         return -EFAULT;
1092
1093                 return 0;
1094         }
1095         default:
1096                 return -EINVAL;
1097         }
1098 }
1099
1100 static void cpu_init_hyp_mode(void *dummy)
1101 {
1102         phys_addr_t pgd_ptr;
1103         unsigned long hyp_stack_ptr;
1104         unsigned long stack_page;
1105         unsigned long vector_ptr;
1106
1107         /* Switch from the HYP stub to our own HYP init vector */
1108         __hyp_set_vectors(kvm_get_idmap_vector());
1109
1110         pgd_ptr = kvm_mmu_get_httbr();
1111         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1112         hyp_stack_ptr = stack_page + PAGE_SIZE;
1113         vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1114
1115         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1116         __cpu_init_stage2();
1117
1118         if (is_kernel_in_hyp_mode())
1119                 kvm_timer_init_vhe();
1120
1121         kvm_arm_init_debug();
1122 }
1123
1124 static void cpu_hyp_reset(void)
1125 {
1126         if (!is_kernel_in_hyp_mode())
1127                 __hyp_reset_vectors();
1128 }
1129
1130 static void cpu_hyp_reinit(void)
1131 {
1132         cpu_hyp_reset();
1133
1134         if (is_kernel_in_hyp_mode()) {
1135                 /*
1136                  * __cpu_init_stage2() is safe to call even if the PM
1137                  * event was cancelled before the CPU was reset.
1138                  */
1139                 __cpu_init_stage2();
1140         } else {
1141                 cpu_init_hyp_mode(NULL);
1142         }
1143
1144         if (vgic_present)
1145                 kvm_vgic_init_cpu_hardware();
1146 }
1147
1148 static void _kvm_arch_hardware_enable(void *discard)
1149 {
1150         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1151                 cpu_hyp_reinit();
1152                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1153         }
1154 }
1155
1156 int kvm_arch_hardware_enable(void)
1157 {
1158         _kvm_arch_hardware_enable(NULL);
1159         return 0;
1160 }
1161
1162 static void _kvm_arch_hardware_disable(void *discard)
1163 {
1164         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1165                 cpu_hyp_reset();
1166                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1167         }
1168 }
1169
1170 void kvm_arch_hardware_disable(void)
1171 {
1172         _kvm_arch_hardware_disable(NULL);
1173 }
1174
1175 #ifdef CONFIG_CPU_PM
1176 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1177                                     unsigned long cmd,
1178                                     void *v)
1179 {
1180         /*
1181          * kvm_arm_hardware_enabled is left with its old value over
1182          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1183          * re-enable hyp.
1184          */
1185         switch (cmd) {
1186         case CPU_PM_ENTER:
1187                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1188                         /*
1189                          * don't update kvm_arm_hardware_enabled here
1190                          * so that the hardware will be re-enabled
1191                          * when we resume. See below.
1192                          */
1193                         cpu_hyp_reset();
1194
1195                 return NOTIFY_OK;
1196         case CPU_PM_EXIT:
1197                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1198                         /* The hardware was enabled before suspend. */
1199                         cpu_hyp_reinit();
1200
1201                 return NOTIFY_OK;
1202
1203         default:
1204                 return NOTIFY_DONE;
1205         }
1206 }
1207
1208 static struct notifier_block hyp_init_cpu_pm_nb = {
1209         .notifier_call = hyp_init_cpu_pm_notifier,
1210 };
1211
1212 static void __init hyp_cpu_pm_init(void)
1213 {
1214         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1215 }
1216 static void __init hyp_cpu_pm_exit(void)
1217 {
1218         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1219 }
1220 #else
1221 static inline void hyp_cpu_pm_init(void)
1222 {
1223 }
1224 static inline void hyp_cpu_pm_exit(void)
1225 {
1226 }
1227 #endif
1228
1229 static void teardown_common_resources(void)
1230 {
1231         free_percpu(kvm_host_cpu_state);
1232 }
1233
1234 static int init_common_resources(void)
1235 {
1236         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1237         if (!kvm_host_cpu_state) {
1238                 kvm_err("Cannot allocate host CPU state\n");
1239                 return -ENOMEM;
1240         }
1241
1242         /* set size of VMID supported by CPU */
1243         kvm_vmid_bits = kvm_get_vmid_bits();
1244         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1245
1246         return 0;
1247 }
1248
1249 static int init_subsystems(void)
1250 {
1251         int err = 0;
1252
1253         /*
1254          * Enable hardware so that subsystem initialisation can access EL2.
1255          */
1256         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1257
1258         /*
1259          * Register CPU lower-power notifier
1260          */
1261         hyp_cpu_pm_init();
1262
1263         /*
1264          * Init HYP view of VGIC
1265          */
1266         err = kvm_vgic_hyp_init();
1267         switch (err) {
1268         case 0:
1269                 vgic_present = true;
1270                 break;
1271         case -ENODEV:
1272         case -ENXIO:
1273                 vgic_present = false;
1274                 err = 0;
1275                 break;
1276         default:
1277                 goto out;
1278         }
1279
1280         /*
1281          * Init HYP architected timer support
1282          */
1283         err = kvm_timer_hyp_init();
1284         if (err)
1285                 goto out;
1286
1287         kvm_perf_init();
1288         kvm_coproc_table_init();
1289
1290 out:
1291         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1292
1293         return err;
1294 }
1295
1296 static void teardown_hyp_mode(void)
1297 {
1298         int cpu;
1299
1300         if (is_kernel_in_hyp_mode())
1301                 return;
1302
1303         free_hyp_pgds();
1304         for_each_possible_cpu(cpu)
1305                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1306         hyp_cpu_pm_exit();
1307 }
1308
1309 static int init_vhe_mode(void)
1310 {
1311         kvm_info("VHE mode initialized successfully\n");
1312         return 0;
1313 }
1314
1315 /**
1316  * Inits Hyp-mode on all online CPUs
1317  */
1318 static int init_hyp_mode(void)
1319 {
1320         int cpu;
1321         int err = 0;
1322
1323         /*
1324          * Allocate Hyp PGD and setup Hyp identity mapping
1325          */
1326         err = kvm_mmu_init();
1327         if (err)
1328                 goto out_err;
1329
1330         /*
1331          * Allocate stack pages for Hypervisor-mode
1332          */
1333         for_each_possible_cpu(cpu) {
1334                 unsigned long stack_page;
1335
1336                 stack_page = __get_free_page(GFP_KERNEL);
1337                 if (!stack_page) {
1338                         err = -ENOMEM;
1339                         goto out_err;
1340                 }
1341
1342                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1343         }
1344
1345         /*
1346          * Map the Hyp-code called directly from the host
1347          */
1348         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1349                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1350         if (err) {
1351                 kvm_err("Cannot map world-switch code\n");
1352                 goto out_err;
1353         }
1354
1355         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1356                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1357         if (err) {
1358                 kvm_err("Cannot map rodata section\n");
1359                 goto out_err;
1360         }
1361
1362         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1363                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1364         if (err) {
1365                 kvm_err("Cannot map bss section\n");
1366                 goto out_err;
1367         }
1368
1369         /*
1370          * Map the Hyp stack pages
1371          */
1372         for_each_possible_cpu(cpu) {
1373                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1374                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1375                                           PAGE_HYP);
1376
1377                 if (err) {
1378                         kvm_err("Cannot map hyp stack\n");
1379                         goto out_err;
1380                 }
1381         }
1382
1383         for_each_possible_cpu(cpu) {
1384                 kvm_cpu_context_t *cpu_ctxt;
1385
1386                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1387                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1388
1389                 if (err) {
1390                         kvm_err("Cannot map host CPU state: %d\n", err);
1391                         goto out_err;
1392                 }
1393         }
1394
1395         kvm_info("Hyp mode initialized successfully\n");
1396
1397         return 0;
1398
1399 out_err:
1400         teardown_hyp_mode();
1401         kvm_err("error initializing Hyp mode: %d\n", err);
1402         return err;
1403 }
1404
1405 static void check_kvm_target_cpu(void *ret)
1406 {
1407         *(int *)ret = kvm_target_cpu();
1408 }
1409
1410 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1411 {
1412         struct kvm_vcpu *vcpu;
1413         int i;
1414
1415         mpidr &= MPIDR_HWID_BITMASK;
1416         kvm_for_each_vcpu(i, vcpu, kvm) {
1417                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1418                         return vcpu;
1419         }
1420         return NULL;
1421 }
1422
1423 /**
1424  * Initialize Hyp-mode and memory mappings on all CPUs.
1425  */
1426 int kvm_arch_init(void *opaque)
1427 {
1428         int err;
1429         int ret, cpu;
1430
1431         if (!is_hyp_mode_available()) {
1432                 kvm_err("HYP mode not available\n");
1433                 return -ENODEV;
1434         }
1435
1436         for_each_online_cpu(cpu) {
1437                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1438                 if (ret < 0) {
1439                         kvm_err("Error, CPU %d not supported!\n", cpu);
1440                         return -ENODEV;
1441                 }
1442         }
1443
1444         err = init_common_resources();
1445         if (err)
1446                 return err;
1447
1448         if (is_kernel_in_hyp_mode())
1449                 err = init_vhe_mode();
1450         else
1451                 err = init_hyp_mode();
1452         if (err)
1453                 goto out_err;
1454
1455         err = init_subsystems();
1456         if (err)
1457                 goto out_hyp;
1458
1459         return 0;
1460
1461 out_hyp:
1462         teardown_hyp_mode();
1463 out_err:
1464         teardown_common_resources();
1465         return err;
1466 }
1467
1468 /* NOP: Compiling as a module not supported */
1469 void kvm_arch_exit(void)
1470 {
1471         kvm_perf_teardown();
1472 }
1473
1474 static int arm_init(void)
1475 {
1476         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1477         return rc;
1478 }
1479
1480 module_init(arm_init);