Merge tag 'please-pull-for_5.3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / arc / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
4  */
5
6 #include <linux/types.h>
7 #include <linux/kprobes.h>
8 #include <linux/slab.h>
9 #include <linux/module.h>
10 #include <linux/kdebug.h>
11 #include <linux/sched.h>
12 #include <linux/uaccess.h>
13 #include <asm/cacheflush.h>
14 #include <asm/current.h>
15 #include <asm/disasm.h>
16
17 #define MIN_STACK_SIZE(addr)    min((unsigned long)MAX_STACK_SIZE, \
18                 (unsigned long)current_thread_info() + THREAD_SIZE - (addr))
19
20 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
21 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
22
23 int __kprobes arch_prepare_kprobe(struct kprobe *p)
24 {
25         /* Attempt to probe at unaligned address */
26         if ((unsigned long)p->addr & 0x01)
27                 return -EINVAL;
28
29         /* Address should not be in exception handling code */
30
31         p->ainsn.is_short = is_short_instr((unsigned long)p->addr);
32         p->opcode = *p->addr;
33
34         return 0;
35 }
36
37 void __kprobes arch_arm_kprobe(struct kprobe *p)
38 {
39         *p->addr = UNIMP_S_INSTRUCTION;
40
41         flush_icache_range((unsigned long)p->addr,
42                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
43 }
44
45 void __kprobes arch_disarm_kprobe(struct kprobe *p)
46 {
47         *p->addr = p->opcode;
48
49         flush_icache_range((unsigned long)p->addr,
50                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
51 }
52
53 void __kprobes arch_remove_kprobe(struct kprobe *p)
54 {
55         arch_disarm_kprobe(p);
56
57         /* Can we remove the kprobe in the middle of kprobe handling? */
58         if (p->ainsn.t1_addr) {
59                 *(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
60
61                 flush_icache_range((unsigned long)p->ainsn.t1_addr,
62                                    (unsigned long)p->ainsn.t1_addr +
63                                    sizeof(kprobe_opcode_t));
64
65                 p->ainsn.t1_addr = NULL;
66         }
67
68         if (p->ainsn.t2_addr) {
69                 *(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
70
71                 flush_icache_range((unsigned long)p->ainsn.t2_addr,
72                                    (unsigned long)p->ainsn.t2_addr +
73                                    sizeof(kprobe_opcode_t));
74
75                 p->ainsn.t2_addr = NULL;
76         }
77 }
78
79 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
80 {
81         kcb->prev_kprobe.kp = kprobe_running();
82         kcb->prev_kprobe.status = kcb->kprobe_status;
83 }
84
85 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
86 {
87         __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
88         kcb->kprobe_status = kcb->prev_kprobe.status;
89 }
90
91 static inline void __kprobes set_current_kprobe(struct kprobe *p)
92 {
93         __this_cpu_write(current_kprobe, p);
94 }
95
96 static void __kprobes resume_execution(struct kprobe *p, unsigned long addr,
97                                        struct pt_regs *regs)
98 {
99         /* Remove the trap instructions inserted for single step and
100          * restore the original instructions
101          */
102         if (p->ainsn.t1_addr) {
103                 *(p->ainsn.t1_addr) = p->ainsn.t1_opcode;
104
105                 flush_icache_range((unsigned long)p->ainsn.t1_addr,
106                                    (unsigned long)p->ainsn.t1_addr +
107                                    sizeof(kprobe_opcode_t));
108
109                 p->ainsn.t1_addr = NULL;
110         }
111
112         if (p->ainsn.t2_addr) {
113                 *(p->ainsn.t2_addr) = p->ainsn.t2_opcode;
114
115                 flush_icache_range((unsigned long)p->ainsn.t2_addr,
116                                    (unsigned long)p->ainsn.t2_addr +
117                                    sizeof(kprobe_opcode_t));
118
119                 p->ainsn.t2_addr = NULL;
120         }
121
122         return;
123 }
124
125 static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs)
126 {
127         unsigned long next_pc;
128         unsigned long tgt_if_br = 0;
129         int is_branch;
130         unsigned long bta;
131
132         /* Copy the opcode back to the kprobe location and execute the
133          * instruction. Because of this we will not be able to get into the
134          * same kprobe until this kprobe is done
135          */
136         *(p->addr) = p->opcode;
137
138         flush_icache_range((unsigned long)p->addr,
139                            (unsigned long)p->addr + sizeof(kprobe_opcode_t));
140
141         /* Now we insert the trap at the next location after this instruction to
142          * single step. If it is a branch we insert the trap at possible branch
143          * targets
144          */
145
146         bta = regs->bta;
147
148         if (regs->status32 & 0x40) {
149                 /* We are in a delay slot with the branch taken */
150
151                 next_pc = bta & ~0x01;
152
153                 if (!p->ainsn.is_short) {
154                         if (bta & 0x01)
155                                 regs->blink += 2;
156                         else {
157                                 /* Branch not taken */
158                                 next_pc += 2;
159
160                                 /* next pc is taken from bta after executing the
161                                  * delay slot instruction
162                                  */
163                                 regs->bta += 2;
164                         }
165                 }
166
167                 is_branch = 0;
168         } else
169                 is_branch =
170                     disasm_next_pc((unsigned long)p->addr, regs,
171                         (struct callee_regs *) current->thread.callee_reg,
172                         &next_pc, &tgt_if_br);
173
174         p->ainsn.t1_addr = (kprobe_opcode_t *) next_pc;
175         p->ainsn.t1_opcode = *(p->ainsn.t1_addr);
176         *(p->ainsn.t1_addr) = TRAP_S_2_INSTRUCTION;
177
178         flush_icache_range((unsigned long)p->ainsn.t1_addr,
179                            (unsigned long)p->ainsn.t1_addr +
180                            sizeof(kprobe_opcode_t));
181
182         if (is_branch) {
183                 p->ainsn.t2_addr = (kprobe_opcode_t *) tgt_if_br;
184                 p->ainsn.t2_opcode = *(p->ainsn.t2_addr);
185                 *(p->ainsn.t2_addr) = TRAP_S_2_INSTRUCTION;
186
187                 flush_icache_range((unsigned long)p->ainsn.t2_addr,
188                                    (unsigned long)p->ainsn.t2_addr +
189                                    sizeof(kprobe_opcode_t));
190         }
191 }
192
193 int __kprobes arc_kprobe_handler(unsigned long addr, struct pt_regs *regs)
194 {
195         struct kprobe *p;
196         struct kprobe_ctlblk *kcb;
197
198         preempt_disable();
199
200         kcb = get_kprobe_ctlblk();
201         p = get_kprobe((unsigned long *)addr);
202
203         if (p) {
204                 /*
205                  * We have reentered the kprobe_handler, since another kprobe
206                  * was hit while within the handler, we save the original
207                  * kprobes and single step on the instruction of the new probe
208                  * without calling any user handlers to avoid recursive
209                  * kprobes.
210                  */
211                 if (kprobe_running()) {
212                         save_previous_kprobe(kcb);
213                         set_current_kprobe(p);
214                         kprobes_inc_nmissed_count(p);
215                         setup_singlestep(p, regs);
216                         kcb->kprobe_status = KPROBE_REENTER;
217                         return 1;
218                 }
219
220                 set_current_kprobe(p);
221                 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
222
223                 /* If we have no pre-handler or it returned 0, we continue with
224                  * normal processing. If we have a pre-handler and it returned
225                  * non-zero - which means user handler setup registers to exit
226                  * to another instruction, we must skip the single stepping.
227                  */
228                 if (!p->pre_handler || !p->pre_handler(p, regs)) {
229                         setup_singlestep(p, regs);
230                         kcb->kprobe_status = KPROBE_HIT_SS;
231                 } else {
232                         reset_current_kprobe();
233                         preempt_enable_no_resched();
234                 }
235
236                 return 1;
237         }
238
239         /* no_kprobe: */
240         preempt_enable_no_resched();
241         return 0;
242 }
243
244 static int __kprobes arc_post_kprobe_handler(unsigned long addr,
245                                          struct pt_regs *regs)
246 {
247         struct kprobe *cur = kprobe_running();
248         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
249
250         if (!cur)
251                 return 0;
252
253         resume_execution(cur, addr, regs);
254
255         /* Rearm the kprobe */
256         arch_arm_kprobe(cur);
257
258         /*
259          * When we return from trap instruction we go to the next instruction
260          * We restored the actual instruction in resume_exectuiont and we to
261          * return to the same address and execute it
262          */
263         regs->ret = addr;
264
265         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
266                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
267                 cur->post_handler(cur, regs, 0);
268         }
269
270         if (kcb->kprobe_status == KPROBE_REENTER) {
271                 restore_previous_kprobe(kcb);
272                 goto out;
273         }
274
275         reset_current_kprobe();
276
277 out:
278         preempt_enable_no_resched();
279         return 1;
280 }
281
282 /*
283  * Fault can be for the instruction being single stepped or for the
284  * pre/post handlers in the module.
285  * This is applicable for applications like user probes, where we have the
286  * probe in user space and the handlers in the kernel
287  */
288
289 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned long trapnr)
290 {
291         struct kprobe *cur = kprobe_running();
292         struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
293
294         switch (kcb->kprobe_status) {
295         case KPROBE_HIT_SS:
296         case KPROBE_REENTER:
297                 /*
298                  * We are here because the instruction being single stepped
299                  * caused the fault. We reset the current kprobe and allow the
300                  * exception handler as if it is regular exception. In our
301                  * case it doesn't matter because the system will be halted
302                  */
303                 resume_execution(cur, (unsigned long)cur->addr, regs);
304
305                 if (kcb->kprobe_status == KPROBE_REENTER)
306                         restore_previous_kprobe(kcb);
307                 else
308                         reset_current_kprobe();
309
310                 preempt_enable_no_resched();
311                 break;
312
313         case KPROBE_HIT_ACTIVE:
314         case KPROBE_HIT_SSDONE:
315                 /*
316                  * We are here because the instructions in the pre/post handler
317                  * caused the fault.
318                  */
319
320                 /* We increment the nmissed count for accounting,
321                  * we can also use npre/npostfault count for accounting
322                  * these specific fault cases.
323                  */
324                 kprobes_inc_nmissed_count(cur);
325
326                 /*
327                  * We come here because instructions in the pre/post
328                  * handler caused the page_fault, this could happen
329                  * if handler tries to access user space by
330                  * copy_from_user(), get_user() etc. Let the
331                  * user-specified handler try to fix it first.
332                  */
333                 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
334                         return 1;
335
336                 /*
337                  * In case the user-specified fault handler returned zero,
338                  * try to fix up.
339                  */
340                 if (fixup_exception(regs))
341                         return 1;
342
343                 /*
344                  * fixup_exception() could not handle it,
345                  * Let do_page_fault() fix it.
346                  */
347                 break;
348
349         default:
350                 break;
351         }
352         return 0;
353 }
354
355 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
356                                        unsigned long val, void *data)
357 {
358         struct die_args *args = data;
359         unsigned long addr = args->err;
360         int ret = NOTIFY_DONE;
361
362         switch (val) {
363         case DIE_IERR:
364                 if (arc_kprobe_handler(addr, args->regs))
365                         return NOTIFY_STOP;
366                 break;
367
368         case DIE_TRAP:
369                 if (arc_post_kprobe_handler(addr, args->regs))
370                         return NOTIFY_STOP;
371                 break;
372
373         default:
374                 break;
375         }
376
377         return ret;
378 }
379
380 static void __used kretprobe_trampoline_holder(void)
381 {
382         __asm__ __volatile__(".global kretprobe_trampoline\n"
383                              "kretprobe_trampoline:\n" "nop\n");
384 }
385
386 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
387                                       struct pt_regs *regs)
388 {
389
390         ri->ret_addr = (kprobe_opcode_t *) regs->blink;
391
392         /* Replace the return addr with trampoline addr */
393         regs->blink = (unsigned long)&kretprobe_trampoline;
394 }
395
396 static int __kprobes trampoline_probe_handler(struct kprobe *p,
397                                               struct pt_regs *regs)
398 {
399         struct kretprobe_instance *ri = NULL;
400         struct hlist_head *head, empty_rp;
401         struct hlist_node *tmp;
402         unsigned long flags, orig_ret_address = 0;
403         unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
404
405         INIT_HLIST_HEAD(&empty_rp);
406         kretprobe_hash_lock(current, &head, &flags);
407
408         /*
409          * It is possible to have multiple instances associated with a given
410          * task either because an multiple functions in the call path
411          * have a return probe installed on them, and/or more than one return
412          * return probe was registered for a target function.
413          *
414          * We can handle this because:
415          *     - instances are always inserted at the head of the list
416          *     - when multiple return probes are registered for the same
417          *       function, the first instance's ret_addr will point to the
418          *       real return address, and all the rest will point to
419          *       kretprobe_trampoline
420          */
421         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
422                 if (ri->task != current)
423                         /* another task is sharing our hash bucket */
424                         continue;
425
426                 if (ri->rp && ri->rp->handler)
427                         ri->rp->handler(ri, regs);
428
429                 orig_ret_address = (unsigned long)ri->ret_addr;
430                 recycle_rp_inst(ri, &empty_rp);
431
432                 if (orig_ret_address != trampoline_address) {
433                         /*
434                          * This is the real return address. Any other
435                          * instances associated with this task are for
436                          * other calls deeper on the call stack
437                          */
438                         break;
439                 }
440         }
441
442         kretprobe_assert(ri, orig_ret_address, trampoline_address);
443         regs->ret = orig_ret_address;
444
445         kretprobe_hash_unlock(current, &flags);
446
447         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
448                 hlist_del(&ri->hlist);
449                 kfree(ri);
450         }
451
452         /* By returning a non zero value, we are telling the kprobe handler
453          * that we don't want the post_handler to run
454          */
455         return 1;
456 }
457
458 static struct kprobe trampoline_p = {
459         .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
460         .pre_handler = trampoline_probe_handler
461 };
462
463 int __init arch_init_kprobes(void)
464 {
465         /* Registering the trampoline code for the kret probe */
466         return register_kprobe(&trampoline_p);
467 }
468
469 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
470 {
471         if (p->addr == (kprobe_opcode_t *) &kretprobe_trampoline)
472                 return 1;
473
474         return 0;
475 }
476
477 void trap_is_kprobe(unsigned long address, struct pt_regs *regs)
478 {
479         notify_die(DIE_TRAP, "kprobe_trap", regs, address, 0, SIGTRAP);
480 }