kvm: nVMX: Remove superfluous VMX instruction fault checks
[sfrench/cifs-2.6.git] / Documentation / virtual / kvm / api.txt
1 The Definitive KVM (Kernel-based Virtual Machine) API Documentation
2 ===================================================================
3
4 1. General description
5 ----------------------
6
7 The kvm API is a set of ioctls that are issued to control various aspects
8 of a virtual machine.  The ioctls belong to three classes
9
10  - System ioctls: These query and set global attributes which affect the
11    whole kvm subsystem.  In addition a system ioctl is used to create
12    virtual machines
13
14  - VM ioctls: These query and set attributes that affect an entire virtual
15    machine, for example memory layout.  In addition a VM ioctl is used to
16    create virtual cpus (vcpus).
17
18    Only run VM ioctls from the same process (address space) that was used
19    to create the VM.
20
21  - vcpu ioctls: These query and set attributes that control the operation
22    of a single virtual cpu.
23
24    Only run vcpu ioctls from the same thread that was used to create the
25    vcpu.
26
27
28 2. File descriptors
29 -------------------
30
31 The kvm API is centered around file descriptors.  An initial
32 open("/dev/kvm") obtains a handle to the kvm subsystem; this handle
33 can be used to issue system ioctls.  A KVM_CREATE_VM ioctl on this
34 handle will create a VM file descriptor which can be used to issue VM
35 ioctls.  A KVM_CREATE_VCPU ioctl on a VM fd will create a virtual cpu
36 and return a file descriptor pointing to it.  Finally, ioctls on a vcpu
37 fd can be used to control the vcpu, including the important task of
38 actually running guest code.
39
40 In general file descriptors can be migrated among processes by means
41 of fork() and the SCM_RIGHTS facility of unix domain socket.  These
42 kinds of tricks are explicitly not supported by kvm.  While they will
43 not cause harm to the host, their actual behavior is not guaranteed by
44 the API.  The only supported use is one virtual machine per process,
45 and one vcpu per thread.
46
47
48 3. Extensions
49 -------------
50
51 As of Linux 2.6.22, the KVM ABI has been stabilized: no backward
52 incompatible change are allowed.  However, there is an extension
53 facility that allows backward-compatible extensions to the API to be
54 queried and used.
55
56 The extension mechanism is not based on the Linux version number.
57 Instead, kvm defines extension identifiers and a facility to query
58 whether a particular extension identifier is available.  If it is, a
59 set of ioctls is available for application use.
60
61
62 4. API description
63 ------------------
64
65 This section describes ioctls that can be used to control kvm guests.
66 For each ioctl, the following information is provided along with a
67 description:
68
69   Capability: which KVM extension provides this ioctl.  Can be 'basic',
70       which means that is will be provided by any kernel that supports
71       API version 12 (see section 4.1), a KVM_CAP_xyz constant, which
72       means availability needs to be checked with KVM_CHECK_EXTENSION
73       (see section 4.4), or 'none' which means that while not all kernels
74       support this ioctl, there's no capability bit to check its
75       availability: for kernels that don't support the ioctl,
76       the ioctl returns -ENOTTY.
77
78   Architectures: which instruction set architectures provide this ioctl.
79       x86 includes both i386 and x86_64.
80
81   Type: system, vm, or vcpu.
82
83   Parameters: what parameters are accepted by the ioctl.
84
85   Returns: the return value.  General error numbers (EBADF, ENOMEM, EINVAL)
86       are not detailed, but errors with specific meanings are.
87
88
89 4.1 KVM_GET_API_VERSION
90
91 Capability: basic
92 Architectures: all
93 Type: system ioctl
94 Parameters: none
95 Returns: the constant KVM_API_VERSION (=12)
96
97 This identifies the API version as the stable kvm API. It is not
98 expected that this number will change.  However, Linux 2.6.20 and
99 2.6.21 report earlier versions; these are not documented and not
100 supported.  Applications should refuse to run if KVM_GET_API_VERSION
101 returns a value other than 12.  If this check passes, all ioctls
102 described as 'basic' will be available.
103
104
105 4.2 KVM_CREATE_VM
106
107 Capability: basic
108 Architectures: all
109 Type: system ioctl
110 Parameters: machine type identifier (KVM_VM_*)
111 Returns: a VM fd that can be used to control the new virtual machine.
112
113 The new VM has no virtual cpus and no memory.  An mmap() of a VM fd
114 will access the virtual machine's physical address space; offset zero
115 corresponds to guest physical address zero.  Use of mmap() on a VM fd
116 is discouraged if userspace memory allocation (KVM_CAP_USER_MEMORY) is
117 available.
118 You probably want to use 0 as machine type.
119
120 In order to create user controlled virtual machines on S390, check
121 KVM_CAP_S390_UCONTROL and use the flag KVM_VM_S390_UCONTROL as
122 privileged user (CAP_SYS_ADMIN).
123
124 To use hardware assisted virtualization on MIPS (VZ ASE) rather than
125 the default trap & emulate implementation (which changes the virtual
126 memory layout to fit in user mode), check KVM_CAP_MIPS_VZ and use the
127 flag KVM_VM_MIPS_VZ.
128
129
130 4.3 KVM_GET_MSR_INDEX_LIST
131
132 Capability: basic
133 Architectures: x86
134 Type: system
135 Parameters: struct kvm_msr_list (in/out)
136 Returns: 0 on success; -1 on error
137 Errors:
138   E2BIG:     the msr index list is to be to fit in the array specified by
139              the user.
140
141 struct kvm_msr_list {
142         __u32 nmsrs; /* number of msrs in entries */
143         __u32 indices[0];
144 };
145
146 This ioctl returns the guest msrs that are supported.  The list varies
147 by kvm version and host processor, but does not change otherwise.  The
148 user fills in the size of the indices array in nmsrs, and in return
149 kvm adjusts nmsrs to reflect the actual number of msrs and fills in
150 the indices array with their numbers.
151
152 Note: if kvm indicates supports MCE (KVM_CAP_MCE), then the MCE bank MSRs are
153 not returned in the MSR list, as different vcpus can have a different number
154 of banks, as set via the KVM_X86_SETUP_MCE ioctl.
155
156
157 4.4 KVM_CHECK_EXTENSION
158
159 Capability: basic, KVM_CAP_CHECK_EXTENSION_VM for vm ioctl
160 Architectures: all
161 Type: system ioctl, vm ioctl
162 Parameters: extension identifier (KVM_CAP_*)
163 Returns: 0 if unsupported; 1 (or some other positive integer) if supported
164
165 The API allows the application to query about extensions to the core
166 kvm API.  Userspace passes an extension identifier (an integer) and
167 receives an integer that describes the extension availability.
168 Generally 0 means no and 1 means yes, but some extensions may report
169 additional information in the integer return value.
170
171 Based on their initialization different VMs may have different capabilities.
172 It is thus encouraged to use the vm ioctl to query for capabilities (available
173 with KVM_CAP_CHECK_EXTENSION_VM on the vm fd)
174
175 4.5 KVM_GET_VCPU_MMAP_SIZE
176
177 Capability: basic
178 Architectures: all
179 Type: system ioctl
180 Parameters: none
181 Returns: size of vcpu mmap area, in bytes
182
183 The KVM_RUN ioctl (cf.) communicates with userspace via a shared
184 memory region.  This ioctl returns the size of that region.  See the
185 KVM_RUN documentation for details.
186
187
188 4.6 KVM_SET_MEMORY_REGION
189
190 Capability: basic
191 Architectures: all
192 Type: vm ioctl
193 Parameters: struct kvm_memory_region (in)
194 Returns: 0 on success, -1 on error
195
196 This ioctl is obsolete and has been removed.
197
198
199 4.7 KVM_CREATE_VCPU
200
201 Capability: basic
202 Architectures: all
203 Type: vm ioctl
204 Parameters: vcpu id (apic id on x86)
205 Returns: vcpu fd on success, -1 on error
206
207 This API adds a vcpu to a virtual machine. No more than max_vcpus may be added.
208 The vcpu id is an integer in the range [0, max_vcpu_id).
209
210 The recommended max_vcpus value can be retrieved using the KVM_CAP_NR_VCPUS of
211 the KVM_CHECK_EXTENSION ioctl() at run-time.
212 The maximum possible value for max_vcpus can be retrieved using the
213 KVM_CAP_MAX_VCPUS of the KVM_CHECK_EXTENSION ioctl() at run-time.
214
215 If the KVM_CAP_NR_VCPUS does not exist, you should assume that max_vcpus is 4
216 cpus max.
217 If the KVM_CAP_MAX_VCPUS does not exist, you should assume that max_vcpus is
218 same as the value returned from KVM_CAP_NR_VCPUS.
219
220 The maximum possible value for max_vcpu_id can be retrieved using the
221 KVM_CAP_MAX_VCPU_ID of the KVM_CHECK_EXTENSION ioctl() at run-time.
222
223 If the KVM_CAP_MAX_VCPU_ID does not exist, you should assume that max_vcpu_id
224 is the same as the value returned from KVM_CAP_MAX_VCPUS.
225
226 On powerpc using book3s_hv mode, the vcpus are mapped onto virtual
227 threads in one or more virtual CPU cores.  (This is because the
228 hardware requires all the hardware threads in a CPU core to be in the
229 same partition.)  The KVM_CAP_PPC_SMT capability indicates the number
230 of vcpus per virtual core (vcore).  The vcore id is obtained by
231 dividing the vcpu id by the number of vcpus per vcore.  The vcpus in a
232 given vcore will always be in the same physical core as each other
233 (though that might be a different physical core from time to time).
234 Userspace can control the threading (SMT) mode of the guest by its
235 allocation of vcpu ids.  For example, if userspace wants
236 single-threaded guest vcpus, it should make all vcpu ids be a multiple
237 of the number of vcpus per vcore.
238
239 For virtual cpus that have been created with S390 user controlled virtual
240 machines, the resulting vcpu fd can be memory mapped at page offset
241 KVM_S390_SIE_PAGE_OFFSET in order to obtain a memory map of the virtual
242 cpu's hardware control block.
243
244
245 4.8 KVM_GET_DIRTY_LOG (vm ioctl)
246
247 Capability: basic
248 Architectures: x86
249 Type: vm ioctl
250 Parameters: struct kvm_dirty_log (in/out)
251 Returns: 0 on success, -1 on error
252
253 /* for KVM_GET_DIRTY_LOG */
254 struct kvm_dirty_log {
255         __u32 slot;
256         __u32 padding;
257         union {
258                 void __user *dirty_bitmap; /* one bit per page */
259                 __u64 padding;
260         };
261 };
262
263 Given a memory slot, return a bitmap containing any pages dirtied
264 since the last call to this ioctl.  Bit 0 is the first page in the
265 memory slot.  Ensure the entire structure is cleared to avoid padding
266 issues.
267
268 If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 specifies
269 the address space for which you want to return the dirty bitmap.
270 They must be less than the value that KVM_CHECK_EXTENSION returns for
271 the KVM_CAP_MULTI_ADDRESS_SPACE capability.
272
273
274 4.9 KVM_SET_MEMORY_ALIAS
275
276 Capability: basic
277 Architectures: x86
278 Type: vm ioctl
279 Parameters: struct kvm_memory_alias (in)
280 Returns: 0 (success), -1 (error)
281
282 This ioctl is obsolete and has been removed.
283
284
285 4.10 KVM_RUN
286
287 Capability: basic
288 Architectures: all
289 Type: vcpu ioctl
290 Parameters: none
291 Returns: 0 on success, -1 on error
292 Errors:
293   EINTR:     an unmasked signal is pending
294
295 This ioctl is used to run a guest virtual cpu.  While there are no
296 explicit parameters, there is an implicit parameter block that can be
297 obtained by mmap()ing the vcpu fd at offset 0, with the size given by
298 KVM_GET_VCPU_MMAP_SIZE.  The parameter block is formatted as a 'struct
299 kvm_run' (see below).
300
301
302 4.11 KVM_GET_REGS
303
304 Capability: basic
305 Architectures: all except ARM, arm64
306 Type: vcpu ioctl
307 Parameters: struct kvm_regs (out)
308 Returns: 0 on success, -1 on error
309
310 Reads the general purpose registers from the vcpu.
311
312 /* x86 */
313 struct kvm_regs {
314         /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
315         __u64 rax, rbx, rcx, rdx;
316         __u64 rsi, rdi, rsp, rbp;
317         __u64 r8,  r9,  r10, r11;
318         __u64 r12, r13, r14, r15;
319         __u64 rip, rflags;
320 };
321
322 /* mips */
323 struct kvm_regs {
324         /* out (KVM_GET_REGS) / in (KVM_SET_REGS) */
325         __u64 gpr[32];
326         __u64 hi;
327         __u64 lo;
328         __u64 pc;
329 };
330
331
332 4.12 KVM_SET_REGS
333
334 Capability: basic
335 Architectures: all except ARM, arm64
336 Type: vcpu ioctl
337 Parameters: struct kvm_regs (in)
338 Returns: 0 on success, -1 on error
339
340 Writes the general purpose registers into the vcpu.
341
342 See KVM_GET_REGS for the data structure.
343
344
345 4.13 KVM_GET_SREGS
346
347 Capability: basic
348 Architectures: x86, ppc
349 Type: vcpu ioctl
350 Parameters: struct kvm_sregs (out)
351 Returns: 0 on success, -1 on error
352
353 Reads special registers from the vcpu.
354
355 /* x86 */
356 struct kvm_sregs {
357         struct kvm_segment cs, ds, es, fs, gs, ss;
358         struct kvm_segment tr, ldt;
359         struct kvm_dtable gdt, idt;
360         __u64 cr0, cr2, cr3, cr4, cr8;
361         __u64 efer;
362         __u64 apic_base;
363         __u64 interrupt_bitmap[(KVM_NR_INTERRUPTS + 63) / 64];
364 };
365
366 /* ppc -- see arch/powerpc/include/uapi/asm/kvm.h */
367
368 interrupt_bitmap is a bitmap of pending external interrupts.  At most
369 one bit may be set.  This interrupt has been acknowledged by the APIC
370 but not yet injected into the cpu core.
371
372
373 4.14 KVM_SET_SREGS
374
375 Capability: basic
376 Architectures: x86, ppc
377 Type: vcpu ioctl
378 Parameters: struct kvm_sregs (in)
379 Returns: 0 on success, -1 on error
380
381 Writes special registers into the vcpu.  See KVM_GET_SREGS for the
382 data structures.
383
384
385 4.15 KVM_TRANSLATE
386
387 Capability: basic
388 Architectures: x86
389 Type: vcpu ioctl
390 Parameters: struct kvm_translation (in/out)
391 Returns: 0 on success, -1 on error
392
393 Translates a virtual address according to the vcpu's current address
394 translation mode.
395
396 struct kvm_translation {
397         /* in */
398         __u64 linear_address;
399
400         /* out */
401         __u64 physical_address;
402         __u8  valid;
403         __u8  writeable;
404         __u8  usermode;
405         __u8  pad[5];
406 };
407
408
409 4.16 KVM_INTERRUPT
410
411 Capability: basic
412 Architectures: x86, ppc, mips
413 Type: vcpu ioctl
414 Parameters: struct kvm_interrupt (in)
415 Returns: 0 on success, negative on failure.
416
417 Queues a hardware interrupt vector to be injected.
418
419 /* for KVM_INTERRUPT */
420 struct kvm_interrupt {
421         /* in */
422         __u32 irq;
423 };
424
425 X86:
426
427 Returns: 0 on success,
428          -EEXIST if an interrupt is already enqueued
429          -EINVAL the the irq number is invalid
430          -ENXIO if the PIC is in the kernel
431          -EFAULT if the pointer is invalid
432
433 Note 'irq' is an interrupt vector, not an interrupt pin or line. This
434 ioctl is useful if the in-kernel PIC is not used.
435
436 PPC:
437
438 Queues an external interrupt to be injected. This ioctl is overleaded
439 with 3 different irq values:
440
441 a) KVM_INTERRUPT_SET
442
443   This injects an edge type external interrupt into the guest once it's ready
444   to receive interrupts. When injected, the interrupt is done.
445
446 b) KVM_INTERRUPT_UNSET
447
448   This unsets any pending interrupt.
449
450   Only available with KVM_CAP_PPC_UNSET_IRQ.
451
452 c) KVM_INTERRUPT_SET_LEVEL
453
454   This injects a level type external interrupt into the guest context. The
455   interrupt stays pending until a specific ioctl with KVM_INTERRUPT_UNSET
456   is triggered.
457
458   Only available with KVM_CAP_PPC_IRQ_LEVEL.
459
460 Note that any value for 'irq' other than the ones stated above is invalid
461 and incurs unexpected behavior.
462
463 MIPS:
464
465 Queues an external interrupt to be injected into the virtual CPU. A negative
466 interrupt number dequeues the interrupt.
467
468
469 4.17 KVM_DEBUG_GUEST
470
471 Capability: basic
472 Architectures: none
473 Type: vcpu ioctl
474 Parameters: none)
475 Returns: -1 on error
476
477 Support for this has been removed.  Use KVM_SET_GUEST_DEBUG instead.
478
479
480 4.18 KVM_GET_MSRS
481
482 Capability: basic
483 Architectures: x86
484 Type: vcpu ioctl
485 Parameters: struct kvm_msrs (in/out)
486 Returns: 0 on success, -1 on error
487
488 Reads model-specific registers from the vcpu.  Supported msr indices can
489 be obtained using KVM_GET_MSR_INDEX_LIST.
490
491 struct kvm_msrs {
492         __u32 nmsrs; /* number of msrs in entries */
493         __u32 pad;
494
495         struct kvm_msr_entry entries[0];
496 };
497
498 struct kvm_msr_entry {
499         __u32 index;
500         __u32 reserved;
501         __u64 data;
502 };
503
504 Application code should set the 'nmsrs' member (which indicates the
505 size of the entries array) and the 'index' member of each array entry.
506 kvm will fill in the 'data' member.
507
508
509 4.19 KVM_SET_MSRS
510
511 Capability: basic
512 Architectures: x86
513 Type: vcpu ioctl
514 Parameters: struct kvm_msrs (in)
515 Returns: 0 on success, -1 on error
516
517 Writes model-specific registers to the vcpu.  See KVM_GET_MSRS for the
518 data structures.
519
520 Application code should set the 'nmsrs' member (which indicates the
521 size of the entries array), and the 'index' and 'data' members of each
522 array entry.
523
524
525 4.20 KVM_SET_CPUID
526
527 Capability: basic
528 Architectures: x86
529 Type: vcpu ioctl
530 Parameters: struct kvm_cpuid (in)
531 Returns: 0 on success, -1 on error
532
533 Defines the vcpu responses to the cpuid instruction.  Applications
534 should use the KVM_SET_CPUID2 ioctl if available.
535
536
537 struct kvm_cpuid_entry {
538         __u32 function;
539         __u32 eax;
540         __u32 ebx;
541         __u32 ecx;
542         __u32 edx;
543         __u32 padding;
544 };
545
546 /* for KVM_SET_CPUID */
547 struct kvm_cpuid {
548         __u32 nent;
549         __u32 padding;
550         struct kvm_cpuid_entry entries[0];
551 };
552
553
554 4.21 KVM_SET_SIGNAL_MASK
555
556 Capability: basic
557 Architectures: all
558 Type: vcpu ioctl
559 Parameters: struct kvm_signal_mask (in)
560 Returns: 0 on success, -1 on error
561
562 Defines which signals are blocked during execution of KVM_RUN.  This
563 signal mask temporarily overrides the threads signal mask.  Any
564 unblocked signal received (except SIGKILL and SIGSTOP, which retain
565 their traditional behaviour) will cause KVM_RUN to return with -EINTR.
566
567 Note the signal will only be delivered if not blocked by the original
568 signal mask.
569
570 /* for KVM_SET_SIGNAL_MASK */
571 struct kvm_signal_mask {
572         __u32 len;
573         __u8  sigset[0];
574 };
575
576
577 4.22 KVM_GET_FPU
578
579 Capability: basic
580 Architectures: x86
581 Type: vcpu ioctl
582 Parameters: struct kvm_fpu (out)
583 Returns: 0 on success, -1 on error
584
585 Reads the floating point state from the vcpu.
586
587 /* for KVM_GET_FPU and KVM_SET_FPU */
588 struct kvm_fpu {
589         __u8  fpr[8][16];
590         __u16 fcw;
591         __u16 fsw;
592         __u8  ftwx;  /* in fxsave format */
593         __u8  pad1;
594         __u16 last_opcode;
595         __u64 last_ip;
596         __u64 last_dp;
597         __u8  xmm[16][16];
598         __u32 mxcsr;
599         __u32 pad2;
600 };
601
602
603 4.23 KVM_SET_FPU
604
605 Capability: basic
606 Architectures: x86
607 Type: vcpu ioctl
608 Parameters: struct kvm_fpu (in)
609 Returns: 0 on success, -1 on error
610
611 Writes the floating point state to the vcpu.
612
613 /* for KVM_GET_FPU and KVM_SET_FPU */
614 struct kvm_fpu {
615         __u8  fpr[8][16];
616         __u16 fcw;
617         __u16 fsw;
618         __u8  ftwx;  /* in fxsave format */
619         __u8  pad1;
620         __u16 last_opcode;
621         __u64 last_ip;
622         __u64 last_dp;
623         __u8  xmm[16][16];
624         __u32 mxcsr;
625         __u32 pad2;
626 };
627
628
629 4.24 KVM_CREATE_IRQCHIP
630
631 Capability: KVM_CAP_IRQCHIP, KVM_CAP_S390_IRQCHIP (s390)
632 Architectures: x86, ARM, arm64, s390
633 Type: vm ioctl
634 Parameters: none
635 Returns: 0 on success, -1 on error
636
637 Creates an interrupt controller model in the kernel.
638 On x86, creates a virtual ioapic, a virtual PIC (two PICs, nested), and sets up
639 future vcpus to have a local APIC.  IRQ routing for GSIs 0-15 is set to both
640 PIC and IOAPIC; GSI 16-23 only go to the IOAPIC.
641 On ARM/arm64, a GICv2 is created. Any other GIC versions require the usage of
642 KVM_CREATE_DEVICE, which also supports creating a GICv2.  Using
643 KVM_CREATE_DEVICE is preferred over KVM_CREATE_IRQCHIP for GICv2.
644 On s390, a dummy irq routing table is created.
645
646 Note that on s390 the KVM_CAP_S390_IRQCHIP vm capability needs to be enabled
647 before KVM_CREATE_IRQCHIP can be used.
648
649
650 4.25 KVM_IRQ_LINE
651
652 Capability: KVM_CAP_IRQCHIP
653 Architectures: x86, arm, arm64
654 Type: vm ioctl
655 Parameters: struct kvm_irq_level
656 Returns: 0 on success, -1 on error
657
658 Sets the level of a GSI input to the interrupt controller model in the kernel.
659 On some architectures it is required that an interrupt controller model has
660 been previously created with KVM_CREATE_IRQCHIP.  Note that edge-triggered
661 interrupts require the level to be set to 1 and then back to 0.
662
663 On real hardware, interrupt pins can be active-low or active-high.  This
664 does not matter for the level field of struct kvm_irq_level: 1 always
665 means active (asserted), 0 means inactive (deasserted).
666
667 x86 allows the operating system to program the interrupt polarity
668 (active-low/active-high) for level-triggered interrupts, and KVM used
669 to consider the polarity.  However, due to bitrot in the handling of
670 active-low interrupts, the above convention is now valid on x86 too.
671 This is signaled by KVM_CAP_X86_IOAPIC_POLARITY_IGNORED.  Userspace
672 should not present interrupts to the guest as active-low unless this
673 capability is present (or unless it is not using the in-kernel irqchip,
674 of course).
675
676
677 ARM/arm64 can signal an interrupt either at the CPU level, or at the
678 in-kernel irqchip (GIC), and for in-kernel irqchip can tell the GIC to
679 use PPIs designated for specific cpus.  The irq field is interpreted
680 like this:
681
682  Â bits:  | 31 ... 24 | 23  ... 16 | 15    ...    0 |
683   field: | irq_type  | vcpu_index |     irq_id     |
684
685 The irq_type field has the following values:
686 - irq_type[0]: out-of-kernel GIC: irq_id 0 is IRQ, irq_id 1 is FIQ
687 - irq_type[1]: in-kernel GIC: SPI, irq_id between 32 and 1019 (incl.)
688                (the vcpu_index field is ignored)
689 - irq_type[2]: in-kernel GIC: PPI, irq_id between 16 and 31 (incl.)
690
691 (The irq_id field thus corresponds nicely to the IRQ ID in the ARM GIC specs)
692
693 In both cases, level is used to assert/deassert the line.
694
695 struct kvm_irq_level {
696         union {
697                 __u32 irq;     /* GSI */
698                 __s32 status;  /* not used for KVM_IRQ_LEVEL */
699         };
700         __u32 level;           /* 0 or 1 */
701 };
702
703
704 4.26 KVM_GET_IRQCHIP
705
706 Capability: KVM_CAP_IRQCHIP
707 Architectures: x86
708 Type: vm ioctl
709 Parameters: struct kvm_irqchip (in/out)
710 Returns: 0 on success, -1 on error
711
712 Reads the state of a kernel interrupt controller created with
713 KVM_CREATE_IRQCHIP into a buffer provided by the caller.
714
715 struct kvm_irqchip {
716         __u32 chip_id;  /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
717         __u32 pad;
718         union {
719                 char dummy[512];  /* reserving space */
720                 struct kvm_pic_state pic;
721                 struct kvm_ioapic_state ioapic;
722         } chip;
723 };
724
725
726 4.27 KVM_SET_IRQCHIP
727
728 Capability: KVM_CAP_IRQCHIP
729 Architectures: x86
730 Type: vm ioctl
731 Parameters: struct kvm_irqchip (in)
732 Returns: 0 on success, -1 on error
733
734 Sets the state of a kernel interrupt controller created with
735 KVM_CREATE_IRQCHIP from a buffer provided by the caller.
736
737 struct kvm_irqchip {
738         __u32 chip_id;  /* 0 = PIC1, 1 = PIC2, 2 = IOAPIC */
739         __u32 pad;
740         union {
741                 char dummy[512];  /* reserving space */
742                 struct kvm_pic_state pic;
743                 struct kvm_ioapic_state ioapic;
744         } chip;
745 };
746
747
748 4.28 KVM_XEN_HVM_CONFIG
749
750 Capability: KVM_CAP_XEN_HVM
751 Architectures: x86
752 Type: vm ioctl
753 Parameters: struct kvm_xen_hvm_config (in)
754 Returns: 0 on success, -1 on error
755
756 Sets the MSR that the Xen HVM guest uses to initialize its hypercall
757 page, and provides the starting address and size of the hypercall
758 blobs in userspace.  When the guest writes the MSR, kvm copies one
759 page of a blob (32- or 64-bit, depending on the vcpu mode) to guest
760 memory.
761
762 struct kvm_xen_hvm_config {
763         __u32 flags;
764         __u32 msr;
765         __u64 blob_addr_32;
766         __u64 blob_addr_64;
767         __u8 blob_size_32;
768         __u8 blob_size_64;
769         __u8 pad2[30];
770 };
771
772
773 4.29 KVM_GET_CLOCK
774
775 Capability: KVM_CAP_ADJUST_CLOCK
776 Architectures: x86
777 Type: vm ioctl
778 Parameters: struct kvm_clock_data (out)
779 Returns: 0 on success, -1 on error
780
781 Gets the current timestamp of kvmclock as seen by the current guest. In
782 conjunction with KVM_SET_CLOCK, it is used to ensure monotonicity on scenarios
783 such as migration.
784
785 When KVM_CAP_ADJUST_CLOCK is passed to KVM_CHECK_EXTENSION, it returns the
786 set of bits that KVM can return in struct kvm_clock_data's flag member.
787
788 The only flag defined now is KVM_CLOCK_TSC_STABLE.  If set, the returned
789 value is the exact kvmclock value seen by all VCPUs at the instant
790 when KVM_GET_CLOCK was called.  If clear, the returned value is simply
791 CLOCK_MONOTONIC plus a constant offset; the offset can be modified
792 with KVM_SET_CLOCK.  KVM will try to make all VCPUs follow this clock,
793 but the exact value read by each VCPU could differ, because the host
794 TSC is not stable.
795
796 struct kvm_clock_data {
797         __u64 clock;  /* kvmclock current value */
798         __u32 flags;
799         __u32 pad[9];
800 };
801
802
803 4.30 KVM_SET_CLOCK
804
805 Capability: KVM_CAP_ADJUST_CLOCK
806 Architectures: x86
807 Type: vm ioctl
808 Parameters: struct kvm_clock_data (in)
809 Returns: 0 on success, -1 on error
810
811 Sets the current timestamp of kvmclock to the value specified in its parameter.
812 In conjunction with KVM_GET_CLOCK, it is used to ensure monotonicity on scenarios
813 such as migration.
814
815 struct kvm_clock_data {
816         __u64 clock;  /* kvmclock current value */
817         __u32 flags;
818         __u32 pad[9];
819 };
820
821
822 4.31 KVM_GET_VCPU_EVENTS
823
824 Capability: KVM_CAP_VCPU_EVENTS
825 Extended by: KVM_CAP_INTR_SHADOW
826 Architectures: x86
827 Type: vm ioctl
828 Parameters: struct kvm_vcpu_event (out)
829 Returns: 0 on success, -1 on error
830
831 Gets currently pending exceptions, interrupts, and NMIs as well as related
832 states of the vcpu.
833
834 struct kvm_vcpu_events {
835         struct {
836                 __u8 injected;
837                 __u8 nr;
838                 __u8 has_error_code;
839                 __u8 pad;
840                 __u32 error_code;
841         } exception;
842         struct {
843                 __u8 injected;
844                 __u8 nr;
845                 __u8 soft;
846                 __u8 shadow;
847         } interrupt;
848         struct {
849                 __u8 injected;
850                 __u8 pending;
851                 __u8 masked;
852                 __u8 pad;
853         } nmi;
854         __u32 sipi_vector;
855         __u32 flags;
856         struct {
857                 __u8 smm;
858                 __u8 pending;
859                 __u8 smm_inside_nmi;
860                 __u8 latched_init;
861         } smi;
862 };
863
864 Only two fields are defined in the flags field:
865
866 - KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
867   interrupt.shadow contains a valid state.
868
869 - KVM_VCPUEVENT_VALID_SMM may be set in the flags field to signal that
870   smi contains a valid state.
871
872 4.32 KVM_SET_VCPU_EVENTS
873
874 Capability: KVM_CAP_VCPU_EVENTS
875 Extended by: KVM_CAP_INTR_SHADOW
876 Architectures: x86
877 Type: vm ioctl
878 Parameters: struct kvm_vcpu_event (in)
879 Returns: 0 on success, -1 on error
880
881 Set pending exceptions, interrupts, and NMIs as well as related states of the
882 vcpu.
883
884 See KVM_GET_VCPU_EVENTS for the data structure.
885
886 Fields that may be modified asynchronously by running VCPUs can be excluded
887 from the update. These fields are nmi.pending, sipi_vector, smi.smm,
888 smi.pending. Keep the corresponding bits in the flags field cleared to
889 suppress overwriting the current in-kernel state. The bits are:
890
891 KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
892 KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
893 KVM_VCPUEVENT_VALID_SMM         - transfer the smi sub-struct.
894
895 If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
896 the flags field to signal that interrupt.shadow contains a valid state and
897 shall be written into the VCPU.
898
899 KVM_VCPUEVENT_VALID_SMM can only be set if KVM_CAP_X86_SMM is available.
900
901
902 4.33 KVM_GET_DEBUGREGS
903
904 Capability: KVM_CAP_DEBUGREGS
905 Architectures: x86
906 Type: vm ioctl
907 Parameters: struct kvm_debugregs (out)
908 Returns: 0 on success, -1 on error
909
910 Reads debug registers from the vcpu.
911
912 struct kvm_debugregs {
913         __u64 db[4];
914         __u64 dr6;
915         __u64 dr7;
916         __u64 flags;
917         __u64 reserved[9];
918 };
919
920
921 4.34 KVM_SET_DEBUGREGS
922
923 Capability: KVM_CAP_DEBUGREGS
924 Architectures: x86
925 Type: vm ioctl
926 Parameters: struct kvm_debugregs (in)
927 Returns: 0 on success, -1 on error
928
929 Writes debug registers into the vcpu.
930
931 See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
932 yet and must be cleared on entry.
933
934
935 4.35 KVM_SET_USER_MEMORY_REGION
936
937 Capability: KVM_CAP_USER_MEM
938 Architectures: all
939 Type: vm ioctl
940 Parameters: struct kvm_userspace_memory_region (in)
941 Returns: 0 on success, -1 on error
942
943 struct kvm_userspace_memory_region {
944         __u32 slot;
945         __u32 flags;
946         __u64 guest_phys_addr;
947         __u64 memory_size; /* bytes */
948         __u64 userspace_addr; /* start of the userspace allocated memory */
949 };
950
951 /* for kvm_memory_region::flags */
952 #define KVM_MEM_LOG_DIRTY_PAGES (1UL << 0)
953 #define KVM_MEM_READONLY        (1UL << 1)
954
955 This ioctl allows the user to create or modify a guest physical memory
956 slot.  When changing an existing slot, it may be moved in the guest
957 physical memory space, or its flags may be modified.  It may not be
958 resized.  Slots may not overlap in guest physical address space.
959 Bits 0-15 of "slot" specifies the slot id and this value should be
960 less than the maximum number of user memory slots supported per VM.
961 The maximum allowed slots can be queried using KVM_CAP_NR_MEMSLOTS,
962 if this capability is supported by the architecture.
963
964 If KVM_CAP_MULTI_ADDRESS_SPACE is available, bits 16-31 of "slot"
965 specifies the address space which is being modified.  They must be
966 less than the value that KVM_CHECK_EXTENSION returns for the
967 KVM_CAP_MULTI_ADDRESS_SPACE capability.  Slots in separate address spaces
968 are unrelated; the restriction on overlapping slots only applies within
969 each address space.
970
971 Memory for the region is taken starting at the address denoted by the
972 field userspace_addr, which must point at user addressable memory for
973 the entire memory slot size.  Any object may back this memory, including
974 anonymous memory, ordinary files, and hugetlbfs.
975
976 It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
977 be identical.  This allows large pages in the guest to be backed by large
978 pages in the host.
979
980 The flags field supports two flags: KVM_MEM_LOG_DIRTY_PAGES and
981 KVM_MEM_READONLY.  The former can be set to instruct KVM to keep track of
982 writes to memory within the slot.  See KVM_GET_DIRTY_LOG ioctl to know how to
983 use it.  The latter can be set, if KVM_CAP_READONLY_MEM capability allows it,
984 to make a new slot read-only.  In this case, writes to this memory will be
985 posted to userspace as KVM_EXIT_MMIO exits.
986
987 When the KVM_CAP_SYNC_MMU capability is available, changes in the backing of
988 the memory region are automatically reflected into the guest.  For example, an
989 mmap() that affects the region will be made visible immediately.  Another
990 example is madvise(MADV_DROP).
991
992 It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
993 The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
994 allocation and is deprecated.
995
996
997 4.36 KVM_SET_TSS_ADDR
998
999 Capability: KVM_CAP_SET_TSS_ADDR
1000 Architectures: x86
1001 Type: vm ioctl
1002 Parameters: unsigned long tss_address (in)
1003 Returns: 0 on success, -1 on error
1004
1005 This ioctl defines the physical address of a three-page region in the guest
1006 physical address space.  The region must be within the first 4GB of the
1007 guest physical address space and must not conflict with any memory slot
1008 or any mmio address.  The guest may malfunction if it accesses this memory
1009 region.
1010
1011 This ioctl is required on Intel-based hosts.  This is needed on Intel hardware
1012 because of a quirk in the virtualization implementation (see the internals
1013 documentation when it pops into existence).
1014
1015
1016 4.37 KVM_ENABLE_CAP
1017
1018 Capability: KVM_CAP_ENABLE_CAP, KVM_CAP_ENABLE_CAP_VM
1019 Architectures: x86 (only KVM_CAP_ENABLE_CAP_VM),
1020                mips (only KVM_CAP_ENABLE_CAP), ppc, s390
1021 Type: vcpu ioctl, vm ioctl (with KVM_CAP_ENABLE_CAP_VM)
1022 Parameters: struct kvm_enable_cap (in)
1023 Returns: 0 on success; -1 on error
1024
1025 +Not all extensions are enabled by default. Using this ioctl the application
1026 can enable an extension, making it available to the guest.
1027
1028 On systems that do not support this ioctl, it always fails. On systems that
1029 do support it, it only works for extensions that are supported for enablement.
1030
1031 To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
1032 be used.
1033
1034 struct kvm_enable_cap {
1035        /* in */
1036        __u32 cap;
1037
1038 The capability that is supposed to get enabled.
1039
1040        __u32 flags;
1041
1042 A bitfield indicating future enhancements. Has to be 0 for now.
1043
1044        __u64 args[4];
1045
1046 Arguments for enabling a feature. If a feature needs initial values to
1047 function properly, this is the place to put them.
1048
1049        __u8  pad[64];
1050 };
1051
1052 The vcpu ioctl should be used for vcpu-specific capabilities, the vm ioctl
1053 for vm-wide capabilities.
1054
1055 4.38 KVM_GET_MP_STATE
1056
1057 Capability: KVM_CAP_MP_STATE
1058 Architectures: x86, s390, arm, arm64
1059 Type: vcpu ioctl
1060 Parameters: struct kvm_mp_state (out)
1061 Returns: 0 on success; -1 on error
1062
1063 struct kvm_mp_state {
1064         __u32 mp_state;
1065 };
1066
1067 Returns the vcpu's current "multiprocessing state" (though also valid on
1068 uniprocessor guests).
1069
1070 Possible values are:
1071
1072  - KVM_MP_STATE_RUNNABLE:        the vcpu is currently running [x86,arm/arm64]
1073  - KVM_MP_STATE_UNINITIALIZED:   the vcpu is an application processor (AP)
1074                                  which has not yet received an INIT signal [x86]
1075  - KVM_MP_STATE_INIT_RECEIVED:   the vcpu has received an INIT signal, and is
1076                                  now ready for a SIPI [x86]
1077  - KVM_MP_STATE_HALTED:          the vcpu has executed a HLT instruction and
1078                                  is waiting for an interrupt [x86]
1079  - KVM_MP_STATE_SIPI_RECEIVED:   the vcpu has just received a SIPI (vector
1080                                  accessible via KVM_GET_VCPU_EVENTS) [x86]
1081  - KVM_MP_STATE_STOPPED:         the vcpu is stopped [s390,arm/arm64]
1082  - KVM_MP_STATE_CHECK_STOP:      the vcpu is in a special error state [s390]
1083  - KVM_MP_STATE_OPERATING:       the vcpu is operating (running or halted)
1084                                  [s390]
1085  - KVM_MP_STATE_LOAD:            the vcpu is in a special load/startup state
1086                                  [s390]
1087
1088 On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
1089 in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1090 these architectures.
1091
1092 For arm/arm64:
1093
1094 The only states that are valid are KVM_MP_STATE_STOPPED and
1095 KVM_MP_STATE_RUNNABLE which reflect if the vcpu is paused or not.
1096
1097 4.39 KVM_SET_MP_STATE
1098
1099 Capability: KVM_CAP_MP_STATE
1100 Architectures: x86, s390, arm, arm64
1101 Type: vcpu ioctl
1102 Parameters: struct kvm_mp_state (in)
1103 Returns: 0 on success; -1 on error
1104
1105 Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
1106 arguments.
1107
1108 On x86, this ioctl is only useful after KVM_CREATE_IRQCHIP. Without an
1109 in-kernel irqchip, the multiprocessing state must be maintained by userspace on
1110 these architectures.
1111
1112 For arm/arm64:
1113
1114 The only states that are valid are KVM_MP_STATE_STOPPED and
1115 KVM_MP_STATE_RUNNABLE which reflect if the vcpu should be paused or not.
1116
1117 4.40 KVM_SET_IDENTITY_MAP_ADDR
1118
1119 Capability: KVM_CAP_SET_IDENTITY_MAP_ADDR
1120 Architectures: x86
1121 Type: vm ioctl
1122 Parameters: unsigned long identity (in)
1123 Returns: 0 on success, -1 on error
1124
1125 This ioctl defines the physical address of a one-page region in the guest
1126 physical address space.  The region must be within the first 4GB of the
1127 guest physical address space and must not conflict with any memory slot
1128 or any mmio address.  The guest may malfunction if it accesses this memory
1129 region.
1130
1131 This ioctl is required on Intel-based hosts.  This is needed on Intel hardware
1132 because of a quirk in the virtualization implementation (see the internals
1133 documentation when it pops into existence).
1134
1135
1136 4.41 KVM_SET_BOOT_CPU_ID
1137
1138 Capability: KVM_CAP_SET_BOOT_CPU_ID
1139 Architectures: x86
1140 Type: vm ioctl
1141 Parameters: unsigned long vcpu_id
1142 Returns: 0 on success, -1 on error
1143
1144 Define which vcpu is the Bootstrap Processor (BSP).  Values are the same
1145 as the vcpu id in KVM_CREATE_VCPU.  If this ioctl is not called, the default
1146 is vcpu 0.
1147
1148
1149 4.42 KVM_GET_XSAVE
1150
1151 Capability: KVM_CAP_XSAVE
1152 Architectures: x86
1153 Type: vcpu ioctl
1154 Parameters: struct kvm_xsave (out)
1155 Returns: 0 on success, -1 on error
1156
1157 struct kvm_xsave {
1158         __u32 region[1024];
1159 };
1160
1161 This ioctl would copy current vcpu's xsave struct to the userspace.
1162
1163
1164 4.43 KVM_SET_XSAVE
1165
1166 Capability: KVM_CAP_XSAVE
1167 Architectures: x86
1168 Type: vcpu ioctl
1169 Parameters: struct kvm_xsave (in)
1170 Returns: 0 on success, -1 on error
1171
1172 struct kvm_xsave {
1173         __u32 region[1024];
1174 };
1175
1176 This ioctl would copy userspace's xsave struct to the kernel.
1177
1178
1179 4.44 KVM_GET_XCRS
1180
1181 Capability: KVM_CAP_XCRS
1182 Architectures: x86
1183 Type: vcpu ioctl
1184 Parameters: struct kvm_xcrs (out)
1185 Returns: 0 on success, -1 on error
1186
1187 struct kvm_xcr {
1188         __u32 xcr;
1189         __u32 reserved;
1190         __u64 value;
1191 };
1192
1193 struct kvm_xcrs {
1194         __u32 nr_xcrs;
1195         __u32 flags;
1196         struct kvm_xcr xcrs[KVM_MAX_XCRS];
1197         __u64 padding[16];
1198 };
1199
1200 This ioctl would copy current vcpu's xcrs to the userspace.
1201
1202
1203 4.45 KVM_SET_XCRS
1204
1205 Capability: KVM_CAP_XCRS
1206 Architectures: x86
1207 Type: vcpu ioctl
1208 Parameters: struct kvm_xcrs (in)
1209 Returns: 0 on success, -1 on error
1210
1211 struct kvm_xcr {
1212         __u32 xcr;
1213         __u32 reserved;
1214         __u64 value;
1215 };
1216
1217 struct kvm_xcrs {
1218         __u32 nr_xcrs;
1219         __u32 flags;
1220         struct kvm_xcr xcrs[KVM_MAX_XCRS];
1221         __u64 padding[16];
1222 };
1223
1224 This ioctl would set vcpu's xcr to the value userspace specified.
1225
1226
1227 4.46 KVM_GET_SUPPORTED_CPUID
1228
1229 Capability: KVM_CAP_EXT_CPUID
1230 Architectures: x86
1231 Type: system ioctl
1232 Parameters: struct kvm_cpuid2 (in/out)
1233 Returns: 0 on success, -1 on error
1234
1235 struct kvm_cpuid2 {
1236         __u32 nent;
1237         __u32 padding;
1238         struct kvm_cpuid_entry2 entries[0];
1239 };
1240
1241 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX         BIT(0)
1242 #define KVM_CPUID_FLAG_STATEFUL_FUNC            BIT(1)
1243 #define KVM_CPUID_FLAG_STATE_READ_NEXT          BIT(2)
1244
1245 struct kvm_cpuid_entry2 {
1246         __u32 function;
1247         __u32 index;
1248         __u32 flags;
1249         __u32 eax;
1250         __u32 ebx;
1251         __u32 ecx;
1252         __u32 edx;
1253         __u32 padding[3];
1254 };
1255
1256 This ioctl returns x86 cpuid features which are supported by both the hardware
1257 and kvm.  Userspace can use the information returned by this ioctl to
1258 construct cpuid information (for KVM_SET_CPUID2) that is consistent with
1259 hardware, kernel, and userspace capabilities, and with user requirements (for
1260 example, the user may wish to constrain cpuid to emulate older hardware,
1261 or for feature consistency across a cluster).
1262
1263 Userspace invokes KVM_GET_SUPPORTED_CPUID by passing a kvm_cpuid2 structure
1264 with the 'nent' field indicating the number of entries in the variable-size
1265 array 'entries'.  If the number of entries is too low to describe the cpu
1266 capabilities, an error (E2BIG) is returned.  If the number is too high,
1267 the 'nent' field is adjusted and an error (ENOMEM) is returned.  If the
1268 number is just right, the 'nent' field is adjusted to the number of valid
1269 entries in the 'entries' array, which is then filled.
1270
1271 The entries returned are the host cpuid as returned by the cpuid instruction,
1272 with unknown or unsupported features masked out.  Some features (for example,
1273 x2apic), may not be present in the host cpu, but are exposed by kvm if it can
1274 emulate them efficiently. The fields in each entry are defined as follows:
1275
1276   function: the eax value used to obtain the entry
1277   index: the ecx value used to obtain the entry (for entries that are
1278          affected by ecx)
1279   flags: an OR of zero or more of the following:
1280         KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
1281            if the index field is valid
1282         KVM_CPUID_FLAG_STATEFUL_FUNC:
1283            if cpuid for this function returns different values for successive
1284            invocations; there will be several entries with the same function,
1285            all with this flag set
1286         KVM_CPUID_FLAG_STATE_READ_NEXT:
1287            for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
1288            the first entry to be read by a cpu
1289    eax, ebx, ecx, edx: the values returned by the cpuid instruction for
1290          this function/index combination
1291
1292 The TSC deadline timer feature (CPUID leaf 1, ecx[24]) is always returned
1293 as false, since the feature depends on KVM_CREATE_IRQCHIP for local APIC
1294 support.  Instead it is reported via
1295
1296   ioctl(KVM_CHECK_EXTENSION, KVM_CAP_TSC_DEADLINE_TIMER)
1297
1298 if that returns true and you use KVM_CREATE_IRQCHIP, or if you emulate the
1299 feature in userspace, then you can enable the feature for KVM_SET_CPUID2.
1300
1301
1302 4.47 KVM_PPC_GET_PVINFO
1303
1304 Capability: KVM_CAP_PPC_GET_PVINFO
1305 Architectures: ppc
1306 Type: vm ioctl
1307 Parameters: struct kvm_ppc_pvinfo (out)
1308 Returns: 0 on success, !0 on error
1309
1310 struct kvm_ppc_pvinfo {
1311         __u32 flags;
1312         __u32 hcall[4];
1313         __u8  pad[108];
1314 };
1315
1316 This ioctl fetches PV specific information that need to be passed to the guest
1317 using the device tree or other means from vm context.
1318
1319 The hcall array defines 4 instructions that make up a hypercall.
1320
1321 If any additional field gets added to this structure later on, a bit for that
1322 additional piece of information will be set in the flags bitmap.
1323
1324 The flags bitmap is defined as:
1325
1326    /* the host supports the ePAPR idle hcall
1327    #define KVM_PPC_PVINFO_FLAGS_EV_IDLE   (1<<0)
1328
1329 4.52 KVM_SET_GSI_ROUTING
1330
1331 Capability: KVM_CAP_IRQ_ROUTING
1332 Architectures: x86 s390 arm arm64
1333 Type: vm ioctl
1334 Parameters: struct kvm_irq_routing (in)
1335 Returns: 0 on success, -1 on error
1336
1337 Sets the GSI routing table entries, overwriting any previously set entries.
1338
1339 On arm/arm64, GSI routing has the following limitation:
1340 - GSI routing does not apply to KVM_IRQ_LINE but only to KVM_IRQFD.
1341
1342 struct kvm_irq_routing {
1343         __u32 nr;
1344         __u32 flags;
1345         struct kvm_irq_routing_entry entries[0];
1346 };
1347
1348 No flags are specified so far, the corresponding field must be set to zero.
1349
1350 struct kvm_irq_routing_entry {
1351         __u32 gsi;
1352         __u32 type;
1353         __u32 flags;
1354         __u32 pad;
1355         union {
1356                 struct kvm_irq_routing_irqchip irqchip;
1357                 struct kvm_irq_routing_msi msi;
1358                 struct kvm_irq_routing_s390_adapter adapter;
1359                 struct kvm_irq_routing_hv_sint hv_sint;
1360                 __u32 pad[8];
1361         } u;
1362 };
1363
1364 /* gsi routing entry types */
1365 #define KVM_IRQ_ROUTING_IRQCHIP 1
1366 #define KVM_IRQ_ROUTING_MSI 2
1367 #define KVM_IRQ_ROUTING_S390_ADAPTER 3
1368 #define KVM_IRQ_ROUTING_HV_SINT 4
1369
1370 flags:
1371 - KVM_MSI_VALID_DEVID: used along with KVM_IRQ_ROUTING_MSI routing entry
1372   type, specifies that the devid field contains a valid value.  The per-VM
1373   KVM_CAP_MSI_DEVID capability advertises the requirement to provide
1374   the device ID.  If this capability is not available, userspace should
1375   never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail.
1376 - zero otherwise
1377
1378 struct kvm_irq_routing_irqchip {
1379         __u32 irqchip;
1380         __u32 pin;
1381 };
1382
1383 struct kvm_irq_routing_msi {
1384         __u32 address_lo;
1385         __u32 address_hi;
1386         __u32 data;
1387         union {
1388                 __u32 pad;
1389                 __u32 devid;
1390         };
1391 };
1392
1393 If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier
1394 for the device that wrote the MSI message.  For PCI, this is usually a
1395 BFD identifier in the lower 16 bits.
1396
1397 On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS
1398 feature of KVM_CAP_X2APIC_API capability is enabled.  If it is enabled,
1399 address_hi bits 31-8 provide bits 31-8 of the destination id.  Bits 7-0 of
1400 address_hi must be zero.
1401
1402 struct kvm_irq_routing_s390_adapter {
1403         __u64 ind_addr;
1404         __u64 summary_addr;
1405         __u64 ind_offset;
1406         __u32 summary_offset;
1407         __u32 adapter_id;
1408 };
1409
1410 struct kvm_irq_routing_hv_sint {
1411         __u32 vcpu;
1412         __u32 sint;
1413 };
1414
1415
1416 4.55 KVM_SET_TSC_KHZ
1417
1418 Capability: KVM_CAP_TSC_CONTROL
1419 Architectures: x86
1420 Type: vcpu ioctl
1421 Parameters: virtual tsc_khz
1422 Returns: 0 on success, -1 on error
1423
1424 Specifies the tsc frequency for the virtual machine. The unit of the
1425 frequency is KHz.
1426
1427
1428 4.56 KVM_GET_TSC_KHZ
1429
1430 Capability: KVM_CAP_GET_TSC_KHZ
1431 Architectures: x86
1432 Type: vcpu ioctl
1433 Parameters: none
1434 Returns: virtual tsc-khz on success, negative value on error
1435
1436 Returns the tsc frequency of the guest. The unit of the return value is
1437 KHz. If the host has unstable tsc this ioctl returns -EIO instead as an
1438 error.
1439
1440
1441 4.57 KVM_GET_LAPIC
1442
1443 Capability: KVM_CAP_IRQCHIP
1444 Architectures: x86
1445 Type: vcpu ioctl
1446 Parameters: struct kvm_lapic_state (out)
1447 Returns: 0 on success, -1 on error
1448
1449 #define KVM_APIC_REG_SIZE 0x400
1450 struct kvm_lapic_state {
1451         char regs[KVM_APIC_REG_SIZE];
1452 };
1453
1454 Reads the Local APIC registers and copies them into the input argument.  The
1455 data format and layout are the same as documented in the architecture manual.
1456
1457 If KVM_X2APIC_API_USE_32BIT_IDS feature of KVM_CAP_X2APIC_API is
1458 enabled, then the format of APIC_ID register depends on the APIC mode
1459 (reported by MSR_IA32_APICBASE) of its VCPU.  x2APIC stores APIC ID in
1460 the APIC_ID register (bytes 32-35).  xAPIC only allows an 8-bit APIC ID
1461 which is stored in bits 31-24 of the APIC register, or equivalently in
1462 byte 35 of struct kvm_lapic_state's regs field.  KVM_GET_LAPIC must then
1463 be called after MSR_IA32_APICBASE has been set with KVM_SET_MSR.
1464
1465 If KVM_X2APIC_API_USE_32BIT_IDS feature is disabled, struct kvm_lapic_state
1466 always uses xAPIC format.
1467
1468
1469 4.58 KVM_SET_LAPIC
1470
1471 Capability: KVM_CAP_IRQCHIP
1472 Architectures: x86
1473 Type: vcpu ioctl
1474 Parameters: struct kvm_lapic_state (in)
1475 Returns: 0 on success, -1 on error
1476
1477 #define KVM_APIC_REG_SIZE 0x400
1478 struct kvm_lapic_state {
1479         char regs[KVM_APIC_REG_SIZE];
1480 };
1481
1482 Copies the input argument into the Local APIC registers.  The data format
1483 and layout are the same as documented in the architecture manual.
1484
1485 The format of the APIC ID register (bytes 32-35 of struct kvm_lapic_state's
1486 regs field) depends on the state of the KVM_CAP_X2APIC_API capability.
1487 See the note in KVM_GET_LAPIC.
1488
1489
1490 4.59 KVM_IOEVENTFD
1491
1492 Capability: KVM_CAP_IOEVENTFD
1493 Architectures: all
1494 Type: vm ioctl
1495 Parameters: struct kvm_ioeventfd (in)
1496 Returns: 0 on success, !0 on error
1497
1498 This ioctl attaches or detaches an ioeventfd to a legal pio/mmio address
1499 within the guest.  A guest write in the registered address will signal the
1500 provided event instead of triggering an exit.
1501
1502 struct kvm_ioeventfd {
1503         __u64 datamatch;
1504         __u64 addr;        /* legal pio/mmio address */
1505         __u32 len;         /* 0, 1, 2, 4, or 8 bytes    */
1506         __s32 fd;
1507         __u32 flags;
1508         __u8  pad[36];
1509 };
1510
1511 For the special case of virtio-ccw devices on s390, the ioevent is matched
1512 to a subchannel/virtqueue tuple instead.
1513
1514 The following flags are defined:
1515
1516 #define KVM_IOEVENTFD_FLAG_DATAMATCH (1 << kvm_ioeventfd_flag_nr_datamatch)
1517 #define KVM_IOEVENTFD_FLAG_PIO       (1 << kvm_ioeventfd_flag_nr_pio)
1518 #define KVM_IOEVENTFD_FLAG_DEASSIGN  (1 << kvm_ioeventfd_flag_nr_deassign)
1519 #define KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY \
1520         (1 << kvm_ioeventfd_flag_nr_virtio_ccw_notify)
1521
1522 If datamatch flag is set, the event will be signaled only if the written value
1523 to the registered address is equal to datamatch in struct kvm_ioeventfd.
1524
1525 For virtio-ccw devices, addr contains the subchannel id and datamatch the
1526 virtqueue index.
1527
1528 With KVM_CAP_IOEVENTFD_ANY_LENGTH, a zero length ioeventfd is allowed, and
1529 the kernel will ignore the length of guest write and may get a faster vmexit.
1530 The speedup may only apply to specific architectures, but the ioeventfd will
1531 work anyway.
1532
1533 4.60 KVM_DIRTY_TLB
1534
1535 Capability: KVM_CAP_SW_TLB
1536 Architectures: ppc
1537 Type: vcpu ioctl
1538 Parameters: struct kvm_dirty_tlb (in)
1539 Returns: 0 on success, -1 on error
1540
1541 struct kvm_dirty_tlb {
1542         __u64 bitmap;
1543         __u32 num_dirty;
1544 };
1545
1546 This must be called whenever userspace has changed an entry in the shared
1547 TLB, prior to calling KVM_RUN on the associated vcpu.
1548
1549 The "bitmap" field is the userspace address of an array.  This array
1550 consists of a number of bits, equal to the total number of TLB entries as
1551 determined by the last successful call to KVM_CONFIG_TLB, rounded up to the
1552 nearest multiple of 64.
1553
1554 Each bit corresponds to one TLB entry, ordered the same as in the shared TLB
1555 array.
1556
1557 The array is little-endian: the bit 0 is the least significant bit of the
1558 first byte, bit 8 is the least significant bit of the second byte, etc.
1559 This avoids any complications with differing word sizes.
1560
1561 The "num_dirty" field is a performance hint for KVM to determine whether it
1562 should skip processing the bitmap and just invalidate everything.  It must
1563 be set to the number of set bits in the bitmap.
1564
1565
1566 4.62 KVM_CREATE_SPAPR_TCE
1567
1568 Capability: KVM_CAP_SPAPR_TCE
1569 Architectures: powerpc
1570 Type: vm ioctl
1571 Parameters: struct kvm_create_spapr_tce (in)
1572 Returns: file descriptor for manipulating the created TCE table
1573
1574 This creates a virtual TCE (translation control entry) table, which
1575 is an IOMMU for PAPR-style virtual I/O.  It is used to translate
1576 logical addresses used in virtual I/O into guest physical addresses,
1577 and provides a scatter/gather capability for PAPR virtual I/O.
1578
1579 /* for KVM_CAP_SPAPR_TCE */
1580 struct kvm_create_spapr_tce {
1581         __u64 liobn;
1582         __u32 window_size;
1583 };
1584
1585 The liobn field gives the logical IO bus number for which to create a
1586 TCE table.  The window_size field specifies the size of the DMA window
1587 which this TCE table will translate - the table will contain one 64
1588 bit TCE entry for every 4kiB of the DMA window.
1589
1590 When the guest issues an H_PUT_TCE hcall on a liobn for which a TCE
1591 table has been created using this ioctl(), the kernel will handle it
1592 in real mode, updating the TCE table.  H_PUT_TCE calls for other
1593 liobns will cause a vm exit and must be handled by userspace.
1594
1595 The return value is a file descriptor which can be passed to mmap(2)
1596 to map the created TCE table into userspace.  This lets userspace read
1597 the entries written by kernel-handled H_PUT_TCE calls, and also lets
1598 userspace update the TCE table directly which is useful in some
1599 circumstances.
1600
1601
1602 4.63 KVM_ALLOCATE_RMA
1603
1604 Capability: KVM_CAP_PPC_RMA
1605 Architectures: powerpc
1606 Type: vm ioctl
1607 Parameters: struct kvm_allocate_rma (out)
1608 Returns: file descriptor for mapping the allocated RMA
1609
1610 This allocates a Real Mode Area (RMA) from the pool allocated at boot
1611 time by the kernel.  An RMA is a physically-contiguous, aligned region
1612 of memory used on older POWER processors to provide the memory which
1613 will be accessed by real-mode (MMU off) accesses in a KVM guest.
1614 POWER processors support a set of sizes for the RMA that usually
1615 includes 64MB, 128MB, 256MB and some larger powers of two.
1616
1617 /* for KVM_ALLOCATE_RMA */
1618 struct kvm_allocate_rma {
1619         __u64 rma_size;
1620 };
1621
1622 The return value is a file descriptor which can be passed to mmap(2)
1623 to map the allocated RMA into userspace.  The mapped area can then be
1624 passed to the KVM_SET_USER_MEMORY_REGION ioctl to establish it as the
1625 RMA for a virtual machine.  The size of the RMA in bytes (which is
1626 fixed at host kernel boot time) is returned in the rma_size field of
1627 the argument structure.
1628
1629 The KVM_CAP_PPC_RMA capability is 1 or 2 if the KVM_ALLOCATE_RMA ioctl
1630 is supported; 2 if the processor requires all virtual machines to have
1631 an RMA, or 1 if the processor can use an RMA but doesn't require it,
1632 because it supports the Virtual RMA (VRMA) facility.
1633
1634
1635 4.64 KVM_NMI
1636
1637 Capability: KVM_CAP_USER_NMI
1638 Architectures: x86
1639 Type: vcpu ioctl
1640 Parameters: none
1641 Returns: 0 on success, -1 on error
1642
1643 Queues an NMI on the thread's vcpu.  Note this is well defined only
1644 when KVM_CREATE_IRQCHIP has not been called, since this is an interface
1645 between the virtual cpu core and virtual local APIC.  After KVM_CREATE_IRQCHIP
1646 has been called, this interface is completely emulated within the kernel.
1647
1648 To use this to emulate the LINT1 input with KVM_CREATE_IRQCHIP, use the
1649 following algorithm:
1650
1651   - pause the vcpu
1652   - read the local APIC's state (KVM_GET_LAPIC)
1653   - check whether changing LINT1 will queue an NMI (see the LVT entry for LINT1)
1654   - if so, issue KVM_NMI
1655   - resume the vcpu
1656
1657 Some guests configure the LINT1 NMI input to cause a panic, aiding in
1658 debugging.
1659
1660
1661 4.65 KVM_S390_UCAS_MAP
1662
1663 Capability: KVM_CAP_S390_UCONTROL
1664 Architectures: s390
1665 Type: vcpu ioctl
1666 Parameters: struct kvm_s390_ucas_mapping (in)
1667 Returns: 0 in case of success
1668
1669 The parameter is defined like this:
1670         struct kvm_s390_ucas_mapping {
1671                 __u64 user_addr;
1672                 __u64 vcpu_addr;
1673                 __u64 length;
1674         };
1675
1676 This ioctl maps the memory at "user_addr" with the length "length" to
1677 the vcpu's address space starting at "vcpu_addr". All parameters need to
1678 be aligned by 1 megabyte.
1679
1680
1681 4.66 KVM_S390_UCAS_UNMAP
1682
1683 Capability: KVM_CAP_S390_UCONTROL
1684 Architectures: s390
1685 Type: vcpu ioctl
1686 Parameters: struct kvm_s390_ucas_mapping (in)
1687 Returns: 0 in case of success
1688
1689 The parameter is defined like this:
1690         struct kvm_s390_ucas_mapping {
1691                 __u64 user_addr;
1692                 __u64 vcpu_addr;
1693                 __u64 length;
1694         };
1695
1696 This ioctl unmaps the memory in the vcpu's address space starting at
1697 "vcpu_addr" with the length "length". The field "user_addr" is ignored.
1698 All parameters need to be aligned by 1 megabyte.
1699
1700
1701 4.67 KVM_S390_VCPU_FAULT
1702
1703 Capability: KVM_CAP_S390_UCONTROL
1704 Architectures: s390
1705 Type: vcpu ioctl
1706 Parameters: vcpu absolute address (in)
1707 Returns: 0 in case of success
1708
1709 This call creates a page table entry on the virtual cpu's address space
1710 (for user controlled virtual machines) or the virtual machine's address
1711 space (for regular virtual machines). This only works for minor faults,
1712 thus it's recommended to access subject memory page via the user page
1713 table upfront. This is useful to handle validity intercepts for user
1714 controlled virtual machines to fault in the virtual cpu's lowcore pages
1715 prior to calling the KVM_RUN ioctl.
1716
1717
1718 4.68 KVM_SET_ONE_REG
1719
1720 Capability: KVM_CAP_ONE_REG
1721 Architectures: all
1722 Type: vcpu ioctl
1723 Parameters: struct kvm_one_reg (in)
1724 Returns: 0 on success, negative value on failure
1725
1726 struct kvm_one_reg {
1727        __u64 id;
1728        __u64 addr;
1729 };
1730
1731 Using this ioctl, a single vcpu register can be set to a specific value
1732 defined by user space with the passed in struct kvm_one_reg, where id
1733 refers to the register identifier as described below and addr is a pointer
1734 to a variable with the respective size. There can be architecture agnostic
1735 and architecture specific registers. Each have their own range of operation
1736 and their own constants and width. To keep track of the implemented
1737 registers, find a list below:
1738
1739   Arch  |           Register            | Width (bits)
1740         |                               |
1741   PPC   | KVM_REG_PPC_HIOR              | 64
1742   PPC   | KVM_REG_PPC_IAC1              | 64
1743   PPC   | KVM_REG_PPC_IAC2              | 64
1744   PPC   | KVM_REG_PPC_IAC3              | 64
1745   PPC   | KVM_REG_PPC_IAC4              | 64
1746   PPC   | KVM_REG_PPC_DAC1              | 64
1747   PPC   | KVM_REG_PPC_DAC2              | 64
1748   PPC   | KVM_REG_PPC_DABR              | 64
1749   PPC   | KVM_REG_PPC_DSCR              | 64
1750   PPC   | KVM_REG_PPC_PURR              | 64
1751   PPC   | KVM_REG_PPC_SPURR             | 64
1752   PPC   | KVM_REG_PPC_DAR               | 64
1753   PPC   | KVM_REG_PPC_DSISR             | 32
1754   PPC   | KVM_REG_PPC_AMR               | 64
1755   PPC   | KVM_REG_PPC_UAMOR             | 64
1756   PPC   | KVM_REG_PPC_MMCR0             | 64
1757   PPC   | KVM_REG_PPC_MMCR1             | 64
1758   PPC   | KVM_REG_PPC_MMCRA             | 64
1759   PPC   | KVM_REG_PPC_MMCR2             | 64
1760   PPC   | KVM_REG_PPC_MMCRS             | 64
1761   PPC   | KVM_REG_PPC_SIAR              | 64
1762   PPC   | KVM_REG_PPC_SDAR              | 64
1763   PPC   | KVM_REG_PPC_SIER              | 64
1764   PPC   | KVM_REG_PPC_PMC1              | 32
1765   PPC   | KVM_REG_PPC_PMC2              | 32
1766   PPC   | KVM_REG_PPC_PMC3              | 32
1767   PPC   | KVM_REG_PPC_PMC4              | 32
1768   PPC   | KVM_REG_PPC_PMC5              | 32
1769   PPC   | KVM_REG_PPC_PMC6              | 32
1770   PPC   | KVM_REG_PPC_PMC7              | 32
1771   PPC   | KVM_REG_PPC_PMC8              | 32
1772   PPC   | KVM_REG_PPC_FPR0              | 64
1773           ...
1774   PPC   | KVM_REG_PPC_FPR31             | 64
1775   PPC   | KVM_REG_PPC_VR0               | 128
1776           ...
1777   PPC   | KVM_REG_PPC_VR31              | 128
1778   PPC   | KVM_REG_PPC_VSR0              | 128
1779           ...
1780   PPC   | KVM_REG_PPC_VSR31             | 128
1781   PPC   | KVM_REG_PPC_FPSCR             | 64
1782   PPC   | KVM_REG_PPC_VSCR              | 32
1783   PPC   | KVM_REG_PPC_VPA_ADDR          | 64
1784   PPC   | KVM_REG_PPC_VPA_SLB           | 128
1785   PPC   | KVM_REG_PPC_VPA_DTL           | 128
1786   PPC   | KVM_REG_PPC_EPCR              | 32
1787   PPC   | KVM_REG_PPC_EPR               | 32
1788   PPC   | KVM_REG_PPC_TCR               | 32
1789   PPC   | KVM_REG_PPC_TSR               | 32
1790   PPC   | KVM_REG_PPC_OR_TSR            | 32
1791   PPC   | KVM_REG_PPC_CLEAR_TSR         | 32
1792   PPC   | KVM_REG_PPC_MAS0              | 32
1793   PPC   | KVM_REG_PPC_MAS1              | 32
1794   PPC   | KVM_REG_PPC_MAS2              | 64
1795   PPC   | KVM_REG_PPC_MAS7_3            | 64
1796   PPC   | KVM_REG_PPC_MAS4              | 32
1797   PPC   | KVM_REG_PPC_MAS6              | 32
1798   PPC   | KVM_REG_PPC_MMUCFG            | 32
1799   PPC   | KVM_REG_PPC_TLB0CFG           | 32
1800   PPC   | KVM_REG_PPC_TLB1CFG           | 32
1801   PPC   | KVM_REG_PPC_TLB2CFG           | 32
1802   PPC   | KVM_REG_PPC_TLB3CFG           | 32
1803   PPC   | KVM_REG_PPC_TLB0PS            | 32
1804   PPC   | KVM_REG_PPC_TLB1PS            | 32
1805   PPC   | KVM_REG_PPC_TLB2PS            | 32
1806   PPC   | KVM_REG_PPC_TLB3PS            | 32
1807   PPC   | KVM_REG_PPC_EPTCFG            | 32
1808   PPC   | KVM_REG_PPC_ICP_STATE         | 64
1809   PPC   | KVM_REG_PPC_TB_OFFSET         | 64
1810   PPC   | KVM_REG_PPC_SPMC1             | 32
1811   PPC   | KVM_REG_PPC_SPMC2             | 32
1812   PPC   | KVM_REG_PPC_IAMR              | 64
1813   PPC   | KVM_REG_PPC_TFHAR             | 64
1814   PPC   | KVM_REG_PPC_TFIAR             | 64
1815   PPC   | KVM_REG_PPC_TEXASR            | 64
1816   PPC   | KVM_REG_PPC_FSCR              | 64
1817   PPC   | KVM_REG_PPC_PSPB              | 32
1818   PPC   | KVM_REG_PPC_EBBHR             | 64
1819   PPC   | KVM_REG_PPC_EBBRR             | 64
1820   PPC   | KVM_REG_PPC_BESCR             | 64
1821   PPC   | KVM_REG_PPC_TAR               | 64
1822   PPC   | KVM_REG_PPC_DPDES             | 64
1823   PPC   | KVM_REG_PPC_DAWR              | 64
1824   PPC   | KVM_REG_PPC_DAWRX             | 64
1825   PPC   | KVM_REG_PPC_CIABR             | 64
1826   PPC   | KVM_REG_PPC_IC                | 64
1827   PPC   | KVM_REG_PPC_VTB               | 64
1828   PPC   | KVM_REG_PPC_CSIGR             | 64
1829   PPC   | KVM_REG_PPC_TACR              | 64
1830   PPC   | KVM_REG_PPC_TCSCR             | 64
1831   PPC   | KVM_REG_PPC_PID               | 64
1832   PPC   | KVM_REG_PPC_ACOP              | 64
1833   PPC   | KVM_REG_PPC_VRSAVE            | 32
1834   PPC   | KVM_REG_PPC_LPCR              | 32
1835   PPC   | KVM_REG_PPC_LPCR_64           | 64
1836   PPC   | KVM_REG_PPC_PPR               | 64
1837   PPC   | KVM_REG_PPC_ARCH_COMPAT       | 32
1838   PPC   | KVM_REG_PPC_DABRX             | 32
1839   PPC   | KVM_REG_PPC_WORT              | 64
1840   PPC   | KVM_REG_PPC_SPRG9             | 64
1841   PPC   | KVM_REG_PPC_DBSR              | 32
1842   PPC   | KVM_REG_PPC_TIDR              | 64
1843   PPC   | KVM_REG_PPC_PSSCR             | 64
1844   PPC   | KVM_REG_PPC_TM_GPR0           | 64
1845           ...
1846   PPC   | KVM_REG_PPC_TM_GPR31          | 64
1847   PPC   | KVM_REG_PPC_TM_VSR0           | 128
1848           ...
1849   PPC   | KVM_REG_PPC_TM_VSR63          | 128
1850   PPC   | KVM_REG_PPC_TM_CR             | 64
1851   PPC   | KVM_REG_PPC_TM_LR             | 64
1852   PPC   | KVM_REG_PPC_TM_CTR            | 64
1853   PPC   | KVM_REG_PPC_TM_FPSCR          | 64
1854   PPC   | KVM_REG_PPC_TM_AMR            | 64
1855   PPC   | KVM_REG_PPC_TM_PPR            | 64
1856   PPC   | KVM_REG_PPC_TM_VRSAVE         | 64
1857   PPC   | KVM_REG_PPC_TM_VSCR           | 32
1858   PPC   | KVM_REG_PPC_TM_DSCR           | 64
1859   PPC   | KVM_REG_PPC_TM_TAR            | 64
1860   PPC   | KVM_REG_PPC_TM_XER            | 64
1861         |                               |
1862   MIPS  | KVM_REG_MIPS_R0               | 64
1863           ...
1864   MIPS  | KVM_REG_MIPS_R31              | 64
1865   MIPS  | KVM_REG_MIPS_HI               | 64
1866   MIPS  | KVM_REG_MIPS_LO               | 64
1867   MIPS  | KVM_REG_MIPS_PC               | 64
1868   MIPS  | KVM_REG_MIPS_CP0_INDEX        | 32
1869   MIPS  | KVM_REG_MIPS_CP0_ENTRYLO0     | 64
1870   MIPS  | KVM_REG_MIPS_CP0_ENTRYLO1     | 64
1871   MIPS  | KVM_REG_MIPS_CP0_CONTEXT      | 64
1872   MIPS  | KVM_REG_MIPS_CP0_CONTEXTCONFIG| 32
1873   MIPS  | KVM_REG_MIPS_CP0_USERLOCAL    | 64
1874   MIPS  | KVM_REG_MIPS_CP0_XCONTEXTCONFIG| 64
1875   MIPS  | KVM_REG_MIPS_CP0_PAGEMASK     | 32
1876   MIPS  | KVM_REG_MIPS_CP0_PAGEGRAIN    | 32
1877   MIPS  | KVM_REG_MIPS_CP0_SEGCTL0      | 64
1878   MIPS  | KVM_REG_MIPS_CP0_SEGCTL1      | 64
1879   MIPS  | KVM_REG_MIPS_CP0_SEGCTL2      | 64
1880   MIPS  | KVM_REG_MIPS_CP0_PWBASE       | 64
1881   MIPS  | KVM_REG_MIPS_CP0_PWFIELD      | 64
1882   MIPS  | KVM_REG_MIPS_CP0_PWSIZE       | 64
1883   MIPS  | KVM_REG_MIPS_CP0_WIRED        | 32
1884   MIPS  | KVM_REG_MIPS_CP0_PWCTL        | 32
1885   MIPS  | KVM_REG_MIPS_CP0_HWRENA       | 32
1886   MIPS  | KVM_REG_MIPS_CP0_BADVADDR     | 64
1887   MIPS  | KVM_REG_MIPS_CP0_BADINSTR     | 32
1888   MIPS  | KVM_REG_MIPS_CP0_BADINSTRP    | 32
1889   MIPS  | KVM_REG_MIPS_CP0_COUNT        | 32
1890   MIPS  | KVM_REG_MIPS_CP0_ENTRYHI      | 64
1891   MIPS  | KVM_REG_MIPS_CP0_COMPARE      | 32
1892   MIPS  | KVM_REG_MIPS_CP0_STATUS       | 32
1893   MIPS  | KVM_REG_MIPS_CP0_INTCTL       | 32
1894   MIPS  | KVM_REG_MIPS_CP0_CAUSE        | 32
1895   MIPS  | KVM_REG_MIPS_CP0_EPC          | 64
1896   MIPS  | KVM_REG_MIPS_CP0_PRID         | 32
1897   MIPS  | KVM_REG_MIPS_CP0_EBASE        | 64
1898   MIPS  | KVM_REG_MIPS_CP0_CONFIG       | 32
1899   MIPS  | KVM_REG_MIPS_CP0_CONFIG1      | 32
1900   MIPS  | KVM_REG_MIPS_CP0_CONFIG2      | 32
1901   MIPS  | KVM_REG_MIPS_CP0_CONFIG3      | 32
1902   MIPS  | KVM_REG_MIPS_CP0_CONFIG4      | 32
1903   MIPS  | KVM_REG_MIPS_CP0_CONFIG5      | 32
1904   MIPS  | KVM_REG_MIPS_CP0_CONFIG7      | 32
1905   MIPS  | KVM_REG_MIPS_CP0_XCONTEXT     | 64
1906   MIPS  | KVM_REG_MIPS_CP0_ERROREPC     | 64
1907   MIPS  | KVM_REG_MIPS_CP0_KSCRATCH1    | 64
1908   MIPS  | KVM_REG_MIPS_CP0_KSCRATCH2    | 64
1909   MIPS  | KVM_REG_MIPS_CP0_KSCRATCH3    | 64
1910   MIPS  | KVM_REG_MIPS_CP0_KSCRATCH4    | 64
1911   MIPS  | KVM_REG_MIPS_CP0_KSCRATCH5    | 64
1912   MIPS  | KVM_REG_MIPS_CP0_KSCRATCH6    | 64
1913   MIPS  | KVM_REG_MIPS_CP0_MAAR(0..63)  | 64
1914   MIPS  | KVM_REG_MIPS_COUNT_CTL        | 64
1915   MIPS  | KVM_REG_MIPS_COUNT_RESUME     | 64
1916   MIPS  | KVM_REG_MIPS_COUNT_HZ         | 64
1917   MIPS  | KVM_REG_MIPS_FPR_32(0..31)    | 32
1918   MIPS  | KVM_REG_MIPS_FPR_64(0..31)    | 64
1919   MIPS  | KVM_REG_MIPS_VEC_128(0..31)   | 128
1920   MIPS  | KVM_REG_MIPS_FCR_IR           | 32
1921   MIPS  | KVM_REG_MIPS_FCR_CSR          | 32
1922   MIPS  | KVM_REG_MIPS_MSA_IR           | 32
1923   MIPS  | KVM_REG_MIPS_MSA_CSR          | 32
1924
1925 ARM registers are mapped using the lower 32 bits.  The upper 16 of that
1926 is the register group type, or coprocessor number:
1927
1928 ARM core registers have the following id bit patterns:
1929   0x4020 0000 0010 <index into the kvm_regs struct:16>
1930
1931 ARM 32-bit CP15 registers have the following id bit patterns:
1932   0x4020 0000 000F <zero:1> <crn:4> <crm:4> <opc1:4> <opc2:3>
1933
1934 ARM 64-bit CP15 registers have the following id bit patterns:
1935   0x4030 0000 000F <zero:1> <zero:4> <crm:4> <opc1:4> <zero:3>
1936
1937 ARM CCSIDR registers are demultiplexed by CSSELR value:
1938   0x4020 0000 0011 00 <csselr:8>
1939
1940 ARM 32-bit VFP control registers have the following id bit patterns:
1941   0x4020 0000 0012 1 <regno:12>
1942
1943 ARM 64-bit FP registers have the following id bit patterns:
1944   0x4030 0000 0012 0 <regno:12>
1945
1946
1947 arm64 registers are mapped using the lower 32 bits. The upper 16 of
1948 that is the register group type, or coprocessor number:
1949
1950 arm64 core/FP-SIMD registers have the following id bit patterns. Note
1951 that the size of the access is variable, as the kvm_regs structure
1952 contains elements ranging from 32 to 128 bits. The index is a 32bit
1953 value in the kvm_regs structure seen as a 32bit array.
1954   0x60x0 0000 0010 <index into the kvm_regs struct:16>
1955
1956 arm64 CCSIDR registers are demultiplexed by CSSELR value:
1957   0x6020 0000 0011 00 <csselr:8>
1958
1959 arm64 system registers have the following id bit patterns:
1960   0x6030 0000 0013 <op0:2> <op1:3> <crn:4> <crm:4> <op2:3>
1961
1962
1963 MIPS registers are mapped using the lower 32 bits.  The upper 16 of that is
1964 the register group type:
1965
1966 MIPS core registers (see above) have the following id bit patterns:
1967   0x7030 0000 0000 <reg:16>
1968
1969 MIPS CP0 registers (see KVM_REG_MIPS_CP0_* above) have the following id bit
1970 patterns depending on whether they're 32-bit or 64-bit registers:
1971   0x7020 0000 0001 00 <reg:5> <sel:3>   (32-bit)
1972   0x7030 0000 0001 00 <reg:5> <sel:3>   (64-bit)
1973
1974 Note: KVM_REG_MIPS_CP0_ENTRYLO0 and KVM_REG_MIPS_CP0_ENTRYLO1 are the MIPS64
1975 versions of the EntryLo registers regardless of the word size of the host
1976 hardware, host kernel, guest, and whether XPA is present in the guest, i.e.
1977 with the RI and XI bits (if they exist) in bits 63 and 62 respectively, and
1978 the PFNX field starting at bit 30.
1979
1980 MIPS MAARs (see KVM_REG_MIPS_CP0_MAAR(*) above) have the following id bit
1981 patterns:
1982   0x7030 0000 0001 01 <reg:8>
1983
1984 MIPS KVM control registers (see above) have the following id bit patterns:
1985   0x7030 0000 0002 <reg:16>
1986
1987 MIPS FPU registers (see KVM_REG_MIPS_FPR_{32,64}() above) have the following
1988 id bit patterns depending on the size of the register being accessed. They are
1989 always accessed according to the current guest FPU mode (Status.FR and
1990 Config5.FRE), i.e. as the guest would see them, and they become unpredictable
1991 if the guest FPU mode is changed. MIPS SIMD Architecture (MSA) vector
1992 registers (see KVM_REG_MIPS_VEC_128() above) have similar patterns as they
1993 overlap the FPU registers:
1994   0x7020 0000 0003 00 <0:3> <reg:5> (32-bit FPU registers)
1995   0x7030 0000 0003 00 <0:3> <reg:5> (64-bit FPU registers)
1996   0x7040 0000 0003 00 <0:3> <reg:5> (128-bit MSA vector registers)
1997
1998 MIPS FPU control registers (see KVM_REG_MIPS_FCR_{IR,CSR} above) have the
1999 following id bit patterns:
2000   0x7020 0000 0003 01 <0:3> <reg:5>
2001
2002 MIPS MSA control registers (see KVM_REG_MIPS_MSA_{IR,CSR} above) have the
2003 following id bit patterns:
2004   0x7020 0000 0003 02 <0:3> <reg:5>
2005
2006
2007 4.69 KVM_GET_ONE_REG
2008
2009 Capability: KVM_CAP_ONE_REG
2010 Architectures: all
2011 Type: vcpu ioctl
2012 Parameters: struct kvm_one_reg (in and out)
2013 Returns: 0 on success, negative value on failure
2014
2015 This ioctl allows to receive the value of a single register implemented
2016 in a vcpu. The register to read is indicated by the "id" field of the
2017 kvm_one_reg struct passed in. On success, the register value can be found
2018 at the memory location pointed to by "addr".
2019
2020 The list of registers accessible using this interface is identical to the
2021 list in 4.68.
2022
2023
2024 4.70 KVM_KVMCLOCK_CTRL
2025
2026 Capability: KVM_CAP_KVMCLOCK_CTRL
2027 Architectures: Any that implement pvclocks (currently x86 only)
2028 Type: vcpu ioctl
2029 Parameters: None
2030 Returns: 0 on success, -1 on error
2031
2032 This signals to the host kernel that the specified guest is being paused by
2033 userspace.  The host will set a flag in the pvclock structure that is checked
2034 from the soft lockup watchdog.  The flag is part of the pvclock structure that
2035 is shared between guest and host, specifically the second bit of the flags
2036 field of the pvclock_vcpu_time_info structure.  It will be set exclusively by
2037 the host and read/cleared exclusively by the guest.  The guest operation of
2038 checking and clearing the flag must an atomic operation so
2039 load-link/store-conditional, or equivalent must be used.  There are two cases
2040 where the guest will clear the flag: when the soft lockup watchdog timer resets
2041 itself or when a soft lockup is detected.  This ioctl can be called any time
2042 after pausing the vcpu, but before it is resumed.
2043
2044
2045 4.71 KVM_SIGNAL_MSI
2046
2047 Capability: KVM_CAP_SIGNAL_MSI
2048 Architectures: x86 arm arm64
2049 Type: vm ioctl
2050 Parameters: struct kvm_msi (in)
2051 Returns: >0 on delivery, 0 if guest blocked the MSI, and -1 on error
2052
2053 Directly inject a MSI message. Only valid with in-kernel irqchip that handles
2054 MSI messages.
2055
2056 struct kvm_msi {
2057         __u32 address_lo;
2058         __u32 address_hi;
2059         __u32 data;
2060         __u32 flags;
2061         __u32 devid;
2062         __u8  pad[12];
2063 };
2064
2065 flags: KVM_MSI_VALID_DEVID: devid contains a valid value.  The per-VM
2066   KVM_CAP_MSI_DEVID capability advertises the requirement to provide
2067   the device ID.  If this capability is not available, userspace
2068   should never set the KVM_MSI_VALID_DEVID flag as the ioctl might fail.
2069
2070 If KVM_MSI_VALID_DEVID is set, devid contains a unique device identifier
2071 for the device that wrote the MSI message.  For PCI, this is usually a
2072 BFD identifier in the lower 16 bits.
2073
2074 On x86, address_hi is ignored unless the KVM_X2APIC_API_USE_32BIT_IDS
2075 feature of KVM_CAP_X2APIC_API capability is enabled.  If it is enabled,
2076 address_hi bits 31-8 provide bits 31-8 of the destination id.  Bits 7-0 of
2077 address_hi must be zero.
2078
2079
2080 4.71 KVM_CREATE_PIT2
2081
2082 Capability: KVM_CAP_PIT2
2083 Architectures: x86
2084 Type: vm ioctl
2085 Parameters: struct kvm_pit_config (in)
2086 Returns: 0 on success, -1 on error
2087
2088 Creates an in-kernel device model for the i8254 PIT. This call is only valid
2089 after enabling in-kernel irqchip support via KVM_CREATE_IRQCHIP. The following
2090 parameters have to be passed:
2091
2092 struct kvm_pit_config {
2093         __u32 flags;
2094         __u32 pad[15];
2095 };
2096
2097 Valid flags are:
2098
2099 #define KVM_PIT_SPEAKER_DUMMY     1 /* emulate speaker port stub */
2100
2101 PIT timer interrupts may use a per-VM kernel thread for injection. If it
2102 exists, this thread will have a name of the following pattern:
2103
2104 kvm-pit/<owner-process-pid>
2105
2106 When running a guest with elevated priorities, the scheduling parameters of
2107 this thread may have to be adjusted accordingly.
2108
2109 This IOCTL replaces the obsolete KVM_CREATE_PIT.
2110
2111
2112 4.72 KVM_GET_PIT2
2113
2114 Capability: KVM_CAP_PIT_STATE2
2115 Architectures: x86
2116 Type: vm ioctl
2117 Parameters: struct kvm_pit_state2 (out)
2118 Returns: 0 on success, -1 on error
2119
2120 Retrieves the state of the in-kernel PIT model. Only valid after
2121 KVM_CREATE_PIT2. The state is returned in the following structure:
2122
2123 struct kvm_pit_state2 {
2124         struct kvm_pit_channel_state channels[3];
2125         __u32 flags;
2126         __u32 reserved[9];
2127 };
2128
2129 Valid flags are:
2130
2131 /* disable PIT in HPET legacy mode */
2132 #define KVM_PIT_FLAGS_HPET_LEGACY  0x00000001
2133
2134 This IOCTL replaces the obsolete KVM_GET_PIT.
2135
2136
2137 4.73 KVM_SET_PIT2
2138
2139 Capability: KVM_CAP_PIT_STATE2
2140 Architectures: x86
2141 Type: vm ioctl
2142 Parameters: struct kvm_pit_state2 (in)
2143 Returns: 0 on success, -1 on error
2144
2145 Sets the state of the in-kernel PIT model. Only valid after KVM_CREATE_PIT2.
2146 See KVM_GET_PIT2 for details on struct kvm_pit_state2.
2147
2148 This IOCTL replaces the obsolete KVM_SET_PIT.
2149
2150
2151 4.74 KVM_PPC_GET_SMMU_INFO
2152
2153 Capability: KVM_CAP_PPC_GET_SMMU_INFO
2154 Architectures: powerpc
2155 Type: vm ioctl
2156 Parameters: None
2157 Returns: 0 on success, -1 on error
2158
2159 This populates and returns a structure describing the features of
2160 the "Server" class MMU emulation supported by KVM.
2161 This can in turn be used by userspace to generate the appropriate
2162 device-tree properties for the guest operating system.
2163
2164 The structure contains some global information, followed by an
2165 array of supported segment page sizes:
2166
2167       struct kvm_ppc_smmu_info {
2168              __u64 flags;
2169              __u32 slb_size;
2170              __u32 pad;
2171              struct kvm_ppc_one_seg_page_size sps[KVM_PPC_PAGE_SIZES_MAX_SZ];
2172       };
2173
2174 The supported flags are:
2175
2176     - KVM_PPC_PAGE_SIZES_REAL:
2177         When that flag is set, guest page sizes must "fit" the backing
2178         store page sizes. When not set, any page size in the list can
2179         be used regardless of how they are backed by userspace.
2180
2181     - KVM_PPC_1T_SEGMENTS
2182         The emulated MMU supports 1T segments in addition to the
2183         standard 256M ones.
2184
2185 The "slb_size" field indicates how many SLB entries are supported
2186
2187 The "sps" array contains 8 entries indicating the supported base
2188 page sizes for a segment in increasing order. Each entry is defined
2189 as follow:
2190
2191    struct kvm_ppc_one_seg_page_size {
2192         __u32 page_shift;       /* Base page shift of segment (or 0) */
2193         __u32 slb_enc;          /* SLB encoding for BookS */
2194         struct kvm_ppc_one_page_size enc[KVM_PPC_PAGE_SIZES_MAX_SZ];
2195    };
2196
2197 An entry with a "page_shift" of 0 is unused. Because the array is
2198 organized in increasing order, a lookup can stop when encoutering
2199 such an entry.
2200
2201 The "slb_enc" field provides the encoding to use in the SLB for the
2202 page size. The bits are in positions such as the value can directly
2203 be OR'ed into the "vsid" argument of the slbmte instruction.
2204
2205 The "enc" array is a list which for each of those segment base page
2206 size provides the list of supported actual page sizes (which can be
2207 only larger or equal to the base page size), along with the
2208 corresponding encoding in the hash PTE. Similarly, the array is
2209 8 entries sorted by increasing sizes and an entry with a "0" shift
2210 is an empty entry and a terminator:
2211
2212    struct kvm_ppc_one_page_size {
2213         __u32 page_shift;       /* Page shift (or 0) */
2214         __u32 pte_enc;          /* Encoding in the HPTE (>>12) */
2215    };
2216
2217 The "pte_enc" field provides a value that can OR'ed into the hash
2218 PTE's RPN field (ie, it needs to be shifted left by 12 to OR it
2219 into the hash PTE second double word).
2220
2221 4.75 KVM_IRQFD
2222
2223 Capability: KVM_CAP_IRQFD
2224 Architectures: x86 s390 arm arm64
2225 Type: vm ioctl
2226 Parameters: struct kvm_irqfd (in)
2227 Returns: 0 on success, -1 on error
2228
2229 Allows setting an eventfd to directly trigger a guest interrupt.
2230 kvm_irqfd.fd specifies the file descriptor to use as the eventfd and
2231 kvm_irqfd.gsi specifies the irqchip pin toggled by this event.  When
2232 an event is triggered on the eventfd, an interrupt is injected into
2233 the guest using the specified gsi pin.  The irqfd is removed using
2234 the KVM_IRQFD_FLAG_DEASSIGN flag, specifying both kvm_irqfd.fd
2235 and kvm_irqfd.gsi.
2236
2237 With KVM_CAP_IRQFD_RESAMPLE, KVM_IRQFD supports a de-assert and notify
2238 mechanism allowing emulation of level-triggered, irqfd-based
2239 interrupts.  When KVM_IRQFD_FLAG_RESAMPLE is set the user must pass an
2240 additional eventfd in the kvm_irqfd.resamplefd field.  When operating
2241 in resample mode, posting of an interrupt through kvm_irq.fd asserts
2242 the specified gsi in the irqchip.  When the irqchip is resampled, such
2243 as from an EOI, the gsi is de-asserted and the user is notified via
2244 kvm_irqfd.resamplefd.  It is the user's responsibility to re-queue
2245 the interrupt if the device making use of it still requires service.
2246 Note that closing the resamplefd is not sufficient to disable the
2247 irqfd.  The KVM_IRQFD_FLAG_RESAMPLE is only necessary on assignment
2248 and need not be specified with KVM_IRQFD_FLAG_DEASSIGN.
2249
2250 On arm/arm64, gsi routing being supported, the following can happen:
2251 - in case no routing entry is associated to this gsi, injection fails
2252 - in case the gsi is associated to an irqchip routing entry,
2253   irqchip.pin + 32 corresponds to the injected SPI ID.
2254 - in case the gsi is associated to an MSI routing entry, the MSI
2255   message and device ID are translated into an LPI (support restricted
2256   to GICv3 ITS in-kernel emulation).
2257
2258 4.76 KVM_PPC_ALLOCATE_HTAB
2259
2260 Capability: KVM_CAP_PPC_ALLOC_HTAB
2261 Architectures: powerpc
2262 Type: vm ioctl
2263 Parameters: Pointer to u32 containing hash table order (in/out)
2264 Returns: 0 on success, -1 on error
2265
2266 This requests the host kernel to allocate an MMU hash table for a
2267 guest using the PAPR paravirtualization interface.  This only does
2268 anything if the kernel is configured to use the Book 3S HV style of
2269 virtualization.  Otherwise the capability doesn't exist and the ioctl
2270 returns an ENOTTY error.  The rest of this description assumes Book 3S
2271 HV.
2272
2273 There must be no vcpus running when this ioctl is called; if there
2274 are, it will do nothing and return an EBUSY error.
2275
2276 The parameter is a pointer to a 32-bit unsigned integer variable
2277 containing the order (log base 2) of the desired size of the hash
2278 table, which must be between 18 and 46.  On successful return from the
2279 ioctl, the value will not be changed by the kernel.
2280
2281 If no hash table has been allocated when any vcpu is asked to run
2282 (with the KVM_RUN ioctl), the host kernel will allocate a
2283 default-sized hash table (16 MB).
2284
2285 If this ioctl is called when a hash table has already been allocated,
2286 with a different order from the existing hash table, the existing hash
2287 table will be freed and a new one allocated.  If this is ioctl is
2288 called when a hash table has already been allocated of the same order
2289 as specified, the kernel will clear out the existing hash table (zero
2290 all HPTEs).  In either case, if the guest is using the virtualized
2291 real-mode area (VRMA) facility, the kernel will re-create the VMRA
2292 HPTEs on the next KVM_RUN of any vcpu.
2293
2294 4.77 KVM_S390_INTERRUPT
2295
2296 Capability: basic
2297 Architectures: s390
2298 Type: vm ioctl, vcpu ioctl
2299 Parameters: struct kvm_s390_interrupt (in)
2300 Returns: 0 on success, -1 on error
2301
2302 Allows to inject an interrupt to the guest. Interrupts can be floating
2303 (vm ioctl) or per cpu (vcpu ioctl), depending on the interrupt type.
2304
2305 Interrupt parameters are passed via kvm_s390_interrupt:
2306
2307 struct kvm_s390_interrupt {
2308         __u32 type;
2309         __u32 parm;
2310         __u64 parm64;
2311 };
2312
2313 type can be one of the following:
2314
2315 KVM_S390_SIGP_STOP (vcpu) - sigp stop; optional flags in parm
2316 KVM_S390_PROGRAM_INT (vcpu) - program check; code in parm
2317 KVM_S390_SIGP_SET_PREFIX (vcpu) - sigp set prefix; prefix address in parm
2318 KVM_S390_RESTART (vcpu) - restart
2319 KVM_S390_INT_CLOCK_COMP (vcpu) - clock comparator interrupt
2320 KVM_S390_INT_CPU_TIMER (vcpu) - CPU timer interrupt
2321 KVM_S390_INT_VIRTIO (vm) - virtio external interrupt; external interrupt
2322                            parameters in parm and parm64
2323 KVM_S390_INT_SERVICE (vm) - sclp external interrupt; sclp parameter in parm
2324 KVM_S390_INT_EMERGENCY (vcpu) - sigp emergency; source cpu in parm
2325 KVM_S390_INT_EXTERNAL_CALL (vcpu) - sigp external call; source cpu in parm
2326 KVM_S390_INT_IO(ai,cssid,ssid,schid) (vm) - compound value to indicate an
2327     I/O interrupt (ai - adapter interrupt; cssid,ssid,schid - subchannel);
2328     I/O interruption parameters in parm (subchannel) and parm64 (intparm,
2329     interruption subclass)
2330 KVM_S390_MCHK (vm, vcpu) - machine check interrupt; cr 14 bits in parm,
2331                            machine check interrupt code in parm64 (note that
2332                            machine checks needing further payload are not
2333                            supported by this ioctl)
2334
2335 Note that the vcpu ioctl is asynchronous to vcpu execution.
2336
2337 4.78 KVM_PPC_GET_HTAB_FD
2338
2339 Capability: KVM_CAP_PPC_HTAB_FD
2340 Architectures: powerpc
2341 Type: vm ioctl
2342 Parameters: Pointer to struct kvm_get_htab_fd (in)
2343 Returns: file descriptor number (>= 0) on success, -1 on error
2344
2345 This returns a file descriptor that can be used either to read out the
2346 entries in the guest's hashed page table (HPT), or to write entries to
2347 initialize the HPT.  The returned fd can only be written to if the
2348 KVM_GET_HTAB_WRITE bit is set in the flags field of the argument, and
2349 can only be read if that bit is clear.  The argument struct looks like
2350 this:
2351
2352 /* For KVM_PPC_GET_HTAB_FD */
2353 struct kvm_get_htab_fd {
2354         __u64   flags;
2355         __u64   start_index;
2356         __u64   reserved[2];
2357 };
2358
2359 /* Values for kvm_get_htab_fd.flags */
2360 #define KVM_GET_HTAB_BOLTED_ONLY        ((__u64)0x1)
2361 #define KVM_GET_HTAB_WRITE              ((__u64)0x2)
2362
2363 The `start_index' field gives the index in the HPT of the entry at
2364 which to start reading.  It is ignored when writing.
2365
2366 Reads on the fd will initially supply information about all
2367 "interesting" HPT entries.  Interesting entries are those with the
2368 bolted bit set, if the KVM_GET_HTAB_BOLTED_ONLY bit is set, otherwise
2369 all entries.  When the end of the HPT is reached, the read() will
2370 return.  If read() is called again on the fd, it will start again from
2371 the beginning of the HPT, but will only return HPT entries that have
2372 changed since they were last read.
2373
2374 Data read or written is structured as a header (8 bytes) followed by a
2375 series of valid HPT entries (16 bytes) each.  The header indicates how
2376 many valid HPT entries there are and how many invalid entries follow
2377 the valid entries.  The invalid entries are not represented explicitly
2378 in the stream.  The header format is:
2379
2380 struct kvm_get_htab_header {
2381         __u32   index;
2382         __u16   n_valid;
2383         __u16   n_invalid;
2384 };
2385
2386 Writes to the fd create HPT entries starting at the index given in the
2387 header; first `n_valid' valid entries with contents from the data
2388 written, then `n_invalid' invalid entries, invalidating any previously
2389 valid entries found.
2390
2391 4.79 KVM_CREATE_DEVICE
2392
2393 Capability: KVM_CAP_DEVICE_CTRL
2394 Type: vm ioctl
2395 Parameters: struct kvm_create_device (in/out)
2396 Returns: 0 on success, -1 on error
2397 Errors:
2398   ENODEV: The device type is unknown or unsupported
2399   EEXIST: Device already created, and this type of device may not
2400           be instantiated multiple times
2401
2402   Other error conditions may be defined by individual device types or
2403   have their standard meanings.
2404
2405 Creates an emulated device in the kernel.  The file descriptor returned
2406 in fd can be used with KVM_SET/GET/HAS_DEVICE_ATTR.
2407
2408 If the KVM_CREATE_DEVICE_TEST flag is set, only test whether the
2409 device type is supported (not necessarily whether it can be created
2410 in the current vm).
2411
2412 Individual devices should not define flags.  Attributes should be used
2413 for specifying any behavior that is not implied by the device type
2414 number.
2415
2416 struct kvm_create_device {
2417         __u32   type;   /* in: KVM_DEV_TYPE_xxx */
2418         __u32   fd;     /* out: device handle */
2419         __u32   flags;  /* in: KVM_CREATE_DEVICE_xxx */
2420 };
2421
2422 4.80 KVM_SET_DEVICE_ATTR/KVM_GET_DEVICE_ATTR
2423
2424 Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2425   KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2426 Type: device ioctl, vm ioctl, vcpu ioctl
2427 Parameters: struct kvm_device_attr
2428 Returns: 0 on success, -1 on error
2429 Errors:
2430   ENXIO:  The group or attribute is unknown/unsupported for this device
2431           or hardware support is missing.
2432   EPERM:  The attribute cannot (currently) be accessed this way
2433           (e.g. read-only attribute, or attribute that only makes
2434           sense when the device is in a different state)
2435
2436   Other error conditions may be defined by individual device types.
2437
2438 Gets/sets a specified piece of device configuration and/or state.  The
2439 semantics are device-specific.  See individual device documentation in
2440 the "devices" directory.  As with ONE_REG, the size of the data
2441 transferred is defined by the particular attribute.
2442
2443 struct kvm_device_attr {
2444         __u32   flags;          /* no flags currently defined */
2445         __u32   group;          /* device-defined */
2446         __u64   attr;           /* group-defined */
2447         __u64   addr;           /* userspace address of attr data */
2448 };
2449
2450 4.81 KVM_HAS_DEVICE_ATTR
2451
2452 Capability: KVM_CAP_DEVICE_CTRL, KVM_CAP_VM_ATTRIBUTES for vm device,
2453   KVM_CAP_VCPU_ATTRIBUTES for vcpu device
2454 Type: device ioctl, vm ioctl, vcpu ioctl
2455 Parameters: struct kvm_device_attr
2456 Returns: 0 on success, -1 on error
2457 Errors:
2458   ENXIO:  The group or attribute is unknown/unsupported for this device
2459           or hardware support is missing.
2460
2461 Tests whether a device supports a particular attribute.  A successful
2462 return indicates the attribute is implemented.  It does not necessarily
2463 indicate that the attribute can be read or written in the device's
2464 current state.  "addr" is ignored.
2465
2466 4.82 KVM_ARM_VCPU_INIT
2467
2468 Capability: basic
2469 Architectures: arm, arm64
2470 Type: vcpu ioctl
2471 Parameters: struct kvm_vcpu_init (in)
2472 Returns: 0 on success; -1 on error
2473 Errors:
2474  Â EINVAL: Â Â Â the target is unknown, or the combination of features is invalid.
2475  Â ENOENT: Â Â Â a features bit specified is unknown.
2476
2477 This tells KVM what type of CPU to present to the guest, and what
2478 optional features it should have. Â This will cause a reset of the cpu
2479 registers to their initial values. Â If this is not called, KVM_RUN will
2480 return ENOEXEC for that vcpu.
2481
2482 Note that because some registers reflect machine topology, all vcpus
2483 should be created before this ioctl is invoked.
2484
2485 Userspace can call this function multiple times for a given vcpu, including
2486 after the vcpu has been run. This will reset the vcpu to its initial
2487 state. All calls to this function after the initial call must use the same
2488 target and same set of feature flags, otherwise EINVAL will be returned.
2489
2490 Possible features:
2491         - KVM_ARM_VCPU_POWER_OFF: Starts the CPU in a power-off state.
2492           Depends on KVM_CAP_ARM_PSCI.  If not set, the CPU will be powered on
2493           and execute guest code when KVM_RUN is called.
2494         - KVM_ARM_VCPU_EL1_32BIT: Starts the CPU in a 32bit mode.
2495           Depends on KVM_CAP_ARM_EL1_32BIT (arm64 only).
2496         - KVM_ARM_VCPU_PSCI_0_2: Emulate PSCI v0.2 for the CPU.
2497           Depends on KVM_CAP_ARM_PSCI_0_2.
2498         - KVM_ARM_VCPU_PMU_V3: Emulate PMUv3 for the CPU.
2499           Depends on KVM_CAP_ARM_PMU_V3.
2500
2501
2502 4.83 KVM_ARM_PREFERRED_TARGET
2503
2504 Capability: basic
2505 Architectures: arm, arm64
2506 Type: vm ioctl
2507 Parameters: struct struct kvm_vcpu_init (out)
2508 Returns: 0 on success; -1 on error
2509 Errors:
2510   ENODEV:    no preferred target available for the host
2511
2512 This queries KVM for preferred CPU target type which can be emulated
2513 by KVM on underlying host.
2514
2515 The ioctl returns struct kvm_vcpu_init instance containing information
2516 about preferred CPU target type and recommended features for it.  The
2517 kvm_vcpu_init->features bitmap returned will have feature bits set if
2518 the preferred target recommends setting these features, but this is
2519 not mandatory.
2520
2521 The information returned by this ioctl can be used to prepare an instance
2522 of struct kvm_vcpu_init for KVM_ARM_VCPU_INIT ioctl which will result in
2523 in VCPU matching underlying host.
2524
2525
2526 4.84 KVM_GET_REG_LIST
2527
2528 Capability: basic
2529 Architectures: arm, arm64, mips
2530 Type: vcpu ioctl
2531 Parameters: struct kvm_reg_list (in/out)
2532 Returns: 0 on success; -1 on error
2533 Errors:
2534  Â E2BIG: Â Â Â Â the reg index list is too big to fit in the array specified by
2535  Â Â Â Â Â Â Â Â Â Â Â Â the user (the number required will be written into n).
2536
2537 struct kvm_reg_list {
2538         __u64 n; /* number of registers in reg[] */
2539         __u64 reg[0];
2540 };
2541
2542 This ioctl returns the guest registers that are supported for the
2543 KVM_GET_ONE_REG/KVM_SET_ONE_REG calls.
2544
2545
2546 4.85 KVM_ARM_SET_DEVICE_ADDR (deprecated)
2547
2548 Capability: KVM_CAP_ARM_SET_DEVICE_ADDR
2549 Architectures: arm, arm64
2550 Type: vm ioctl
2551 Parameters: struct kvm_arm_device_address (in)
2552 Returns: 0 on success, -1 on error
2553 Errors:
2554   ENODEV: The device id is unknown
2555   ENXIO:  Device not supported on current system
2556   EEXIST: Address already set
2557   E2BIG:  Address outside guest physical address space
2558   EBUSY:  Address overlaps with other device range
2559
2560 struct kvm_arm_device_addr {
2561         __u64 id;
2562         __u64 addr;
2563 };
2564
2565 Specify a device address in the guest's physical address space where guests
2566 can access emulated or directly exposed devices, which the host kernel needs
2567 to know about. The id field is an architecture specific identifier for a
2568 specific device.
2569
2570 ARM/arm64 divides the id field into two parts, a device id and an
2571 address type id specific to the individual device.
2572
2573  Â bits:  | 63        ...       32 | 31    ...    16 | 15    ...    0 |
2574   field: |        0x00000000      |     device id   |  addr type id  |
2575
2576 ARM/arm64 currently only require this when using the in-kernel GIC
2577 support for the hardware VGIC features, using KVM_ARM_DEVICE_VGIC_V2
2578 as the device id.  When setting the base address for the guest's
2579 mapping of the VGIC virtual CPU and distributor interface, the ioctl
2580 must be called after calling KVM_CREATE_IRQCHIP, but before calling
2581 KVM_RUN on any of the VCPUs.  Calling this ioctl twice for any of the
2582 base addresses will return -EEXIST.
2583
2584 Note, this IOCTL is deprecated and the more flexible SET/GET_DEVICE_ATTR API
2585 should be used instead.
2586
2587
2588 4.86 KVM_PPC_RTAS_DEFINE_TOKEN
2589
2590 Capability: KVM_CAP_PPC_RTAS
2591 Architectures: ppc
2592 Type: vm ioctl
2593 Parameters: struct kvm_rtas_token_args
2594 Returns: 0 on success, -1 on error
2595
2596 Defines a token value for a RTAS (Run Time Abstraction Services)
2597 service in order to allow it to be handled in the kernel.  The
2598 argument struct gives the name of the service, which must be the name
2599 of a service that has a kernel-side implementation.  If the token
2600 value is non-zero, it will be associated with that service, and
2601 subsequent RTAS calls by the guest specifying that token will be
2602 handled by the kernel.  If the token value is 0, then any token
2603 associated with the service will be forgotten, and subsequent RTAS
2604 calls by the guest for that service will be passed to userspace to be
2605 handled.
2606
2607 4.87 KVM_SET_GUEST_DEBUG
2608
2609 Capability: KVM_CAP_SET_GUEST_DEBUG
2610 Architectures: x86, s390, ppc, arm64
2611 Type: vcpu ioctl
2612 Parameters: struct kvm_guest_debug (in)
2613 Returns: 0 on success; -1 on error
2614
2615 struct kvm_guest_debug {
2616        __u32 control;
2617        __u32 pad;
2618        struct kvm_guest_debug_arch arch;
2619 };
2620
2621 Set up the processor specific debug registers and configure vcpu for
2622 handling guest debug events. There are two parts to the structure, the
2623 first a control bitfield indicates the type of debug events to handle
2624 when running. Common control bits are:
2625
2626   - KVM_GUESTDBG_ENABLE:        guest debugging is enabled
2627   - KVM_GUESTDBG_SINGLESTEP:    the next run should single-step
2628
2629 The top 16 bits of the control field are architecture specific control
2630 flags which can include the following:
2631
2632   - KVM_GUESTDBG_USE_SW_BP:     using software breakpoints [x86, arm64]
2633   - KVM_GUESTDBG_USE_HW_BP:     using hardware breakpoints [x86, s390, arm64]
2634   - KVM_GUESTDBG_INJECT_DB:     inject DB type exception [x86]
2635   - KVM_GUESTDBG_INJECT_BP:     inject BP type exception [x86]
2636   - KVM_GUESTDBG_EXIT_PENDING:  trigger an immediate guest exit [s390]
2637
2638 For example KVM_GUESTDBG_USE_SW_BP indicates that software breakpoints
2639 are enabled in memory so we need to ensure breakpoint exceptions are
2640 correctly trapped and the KVM run loop exits at the breakpoint and not
2641 running off into the normal guest vector. For KVM_GUESTDBG_USE_HW_BP
2642 we need to ensure the guest vCPUs architecture specific registers are
2643 updated to the correct (supplied) values.
2644
2645 The second part of the structure is architecture specific and
2646 typically contains a set of debug registers.
2647
2648 For arm64 the number of debug registers is implementation defined and
2649 can be determined by querying the KVM_CAP_GUEST_DEBUG_HW_BPS and
2650 KVM_CAP_GUEST_DEBUG_HW_WPS capabilities which return a positive number
2651 indicating the number of supported registers.
2652
2653 When debug events exit the main run loop with the reason
2654 KVM_EXIT_DEBUG with the kvm_debug_exit_arch part of the kvm_run
2655 structure containing architecture specific debug information.
2656
2657 4.88 KVM_GET_EMULATED_CPUID
2658
2659 Capability: KVM_CAP_EXT_EMUL_CPUID
2660 Architectures: x86
2661 Type: system ioctl
2662 Parameters: struct kvm_cpuid2 (in/out)
2663 Returns: 0 on success, -1 on error
2664
2665 struct kvm_cpuid2 {
2666         __u32 nent;
2667         __u32 flags;
2668         struct kvm_cpuid_entry2 entries[0];
2669 };
2670
2671 The member 'flags' is used for passing flags from userspace.
2672
2673 #define KVM_CPUID_FLAG_SIGNIFCANT_INDEX         BIT(0)
2674 #define KVM_CPUID_FLAG_STATEFUL_FUNC            BIT(1)
2675 #define KVM_CPUID_FLAG_STATE_READ_NEXT          BIT(2)
2676
2677 struct kvm_cpuid_entry2 {
2678         __u32 function;
2679         __u32 index;
2680         __u32 flags;
2681         __u32 eax;
2682         __u32 ebx;
2683         __u32 ecx;
2684         __u32 edx;
2685         __u32 padding[3];
2686 };
2687
2688 This ioctl returns x86 cpuid features which are emulated by
2689 kvm.Userspace can use the information returned by this ioctl to query
2690 which features are emulated by kvm instead of being present natively.
2691
2692 Userspace invokes KVM_GET_EMULATED_CPUID by passing a kvm_cpuid2
2693 structure with the 'nent' field indicating the number of entries in
2694 the variable-size array 'entries'. If the number of entries is too low
2695 to describe the cpu capabilities, an error (E2BIG) is returned. If the
2696 number is too high, the 'nent' field is adjusted and an error (ENOMEM)
2697 is returned. If the number is just right, the 'nent' field is adjusted
2698 to the number of valid entries in the 'entries' array, which is then
2699 filled.
2700
2701 The entries returned are the set CPUID bits of the respective features
2702 which kvm emulates, as returned by the CPUID instruction, with unknown
2703 or unsupported feature bits cleared.
2704
2705 Features like x2apic, for example, may not be present in the host cpu
2706 but are exposed by kvm in KVM_GET_SUPPORTED_CPUID because they can be
2707 emulated efficiently and thus not included here.
2708
2709 The fields in each entry are defined as follows:
2710
2711   function: the eax value used to obtain the entry
2712   index: the ecx value used to obtain the entry (for entries that are
2713          affected by ecx)
2714   flags: an OR of zero or more of the following:
2715         KVM_CPUID_FLAG_SIGNIFCANT_INDEX:
2716            if the index field is valid
2717         KVM_CPUID_FLAG_STATEFUL_FUNC:
2718            if cpuid for this function returns different values for successive
2719            invocations; there will be several entries with the same function,
2720            all with this flag set
2721         KVM_CPUID_FLAG_STATE_READ_NEXT:
2722            for KVM_CPUID_FLAG_STATEFUL_FUNC entries, set if this entry is
2723            the first entry to be read by a cpu
2724    eax, ebx, ecx, edx: the values returned by the cpuid instruction for
2725          this function/index combination
2726
2727 4.89 KVM_S390_MEM_OP
2728
2729 Capability: KVM_CAP_S390_MEM_OP
2730 Architectures: s390
2731 Type: vcpu ioctl
2732 Parameters: struct kvm_s390_mem_op (in)
2733 Returns: = 0 on success,
2734          < 0 on generic error (e.g. -EFAULT or -ENOMEM),
2735          > 0 if an exception occurred while walking the page tables
2736
2737 Read or write data from/to the logical (virtual) memory of a VCPU.
2738
2739 Parameters are specified via the following structure:
2740
2741 struct kvm_s390_mem_op {
2742         __u64 gaddr;            /* the guest address */
2743         __u64 flags;            /* flags */
2744         __u32 size;             /* amount of bytes */
2745         __u32 op;               /* type of operation */
2746         __u64 buf;              /* buffer in userspace */
2747         __u8 ar;                /* the access register number */
2748         __u8 reserved[31];      /* should be set to 0 */
2749 };
2750
2751 The type of operation is specified in the "op" field. It is either
2752 KVM_S390_MEMOP_LOGICAL_READ for reading from logical memory space or
2753 KVM_S390_MEMOP_LOGICAL_WRITE for writing to logical memory space. The
2754 KVM_S390_MEMOP_F_CHECK_ONLY flag can be set in the "flags" field to check
2755 whether the corresponding memory access would create an access exception
2756 (without touching the data in the memory at the destination). In case an
2757 access exception occurred while walking the MMU tables of the guest, the
2758 ioctl returns a positive error number to indicate the type of exception.
2759 This exception is also raised directly at the corresponding VCPU if the
2760 flag KVM_S390_MEMOP_F_INJECT_EXCEPTION is set in the "flags" field.
2761
2762 The start address of the memory region has to be specified in the "gaddr"
2763 field, and the length of the region in the "size" field. "buf" is the buffer
2764 supplied by the userspace application where the read data should be written
2765 to for KVM_S390_MEMOP_LOGICAL_READ, or where the data that should be written
2766 is stored for a KVM_S390_MEMOP_LOGICAL_WRITE. "buf" is unused and can be NULL
2767 when KVM_S390_MEMOP_F_CHECK_ONLY is specified. "ar" designates the access
2768 register number to be used.
2769
2770 The "reserved" field is meant for future extensions. It is not used by
2771 KVM with the currently defined set of flags.
2772
2773 4.90 KVM_S390_GET_SKEYS
2774
2775 Capability: KVM_CAP_S390_SKEYS
2776 Architectures: s390
2777 Type: vm ioctl
2778 Parameters: struct kvm_s390_skeys
2779 Returns: 0 on success, KVM_S390_GET_KEYS_NONE if guest is not using storage
2780          keys, negative value on error
2781
2782 This ioctl is used to get guest storage key values on the s390
2783 architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2784
2785 struct kvm_s390_skeys {
2786         __u64 start_gfn;
2787         __u64 count;
2788         __u64 skeydata_addr;
2789         __u32 flags;
2790         __u32 reserved[9];
2791 };
2792
2793 The start_gfn field is the number of the first guest frame whose storage keys
2794 you want to get.
2795
2796 The count field is the number of consecutive frames (starting from start_gfn)
2797 whose storage keys to get. The count field must be at least 1 and the maximum
2798 allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2799 will cause the ioctl to return -EINVAL.
2800
2801 The skeydata_addr field is the address to a buffer large enough to hold count
2802 bytes. This buffer will be filled with storage key data by the ioctl.
2803
2804 4.91 KVM_S390_SET_SKEYS
2805
2806 Capability: KVM_CAP_S390_SKEYS
2807 Architectures: s390
2808 Type: vm ioctl
2809 Parameters: struct kvm_s390_skeys
2810 Returns: 0 on success, negative value on error
2811
2812 This ioctl is used to set guest storage key values on the s390
2813 architecture. The ioctl takes parameters via the kvm_s390_skeys struct.
2814 See section on KVM_S390_GET_SKEYS for struct definition.
2815
2816 The start_gfn field is the number of the first guest frame whose storage keys
2817 you want to set.
2818
2819 The count field is the number of consecutive frames (starting from start_gfn)
2820 whose storage keys to get. The count field must be at least 1 and the maximum
2821 allowed value is defined as KVM_S390_SKEYS_ALLOC_MAX. Values outside this range
2822 will cause the ioctl to return -EINVAL.
2823
2824 The skeydata_addr field is the address to a buffer containing count bytes of
2825 storage keys. Each byte in the buffer will be set as the storage key for a
2826 single frame starting at start_gfn for count frames.
2827
2828 Note: If any architecturally invalid key value is found in the given data then
2829 the ioctl will return -EINVAL.
2830
2831 4.92 KVM_S390_IRQ
2832
2833 Capability: KVM_CAP_S390_INJECT_IRQ
2834 Architectures: s390
2835 Type: vcpu ioctl
2836 Parameters: struct kvm_s390_irq (in)
2837 Returns: 0 on success, -1 on error
2838 Errors:
2839   EINVAL: interrupt type is invalid
2840           type is KVM_S390_SIGP_STOP and flag parameter is invalid value
2841           type is KVM_S390_INT_EXTERNAL_CALL and code is bigger
2842             than the maximum of VCPUs
2843   EBUSY:  type is KVM_S390_SIGP_SET_PREFIX and vcpu is not stopped
2844           type is KVM_S390_SIGP_STOP and a stop irq is already pending
2845           type is KVM_S390_INT_EXTERNAL_CALL and an external call interrupt
2846             is already pending
2847
2848 Allows to inject an interrupt to the guest.
2849
2850 Using struct kvm_s390_irq as a parameter allows
2851 to inject additional payload which is not
2852 possible via KVM_S390_INTERRUPT.
2853
2854 Interrupt parameters are passed via kvm_s390_irq:
2855
2856 struct kvm_s390_irq {
2857         __u64 type;
2858         union {
2859                 struct kvm_s390_io_info io;
2860                 struct kvm_s390_ext_info ext;
2861                 struct kvm_s390_pgm_info pgm;
2862                 struct kvm_s390_emerg_info emerg;
2863                 struct kvm_s390_extcall_info extcall;
2864                 struct kvm_s390_prefix_info prefix;
2865                 struct kvm_s390_stop_info stop;
2866                 struct kvm_s390_mchk_info mchk;
2867                 char reserved[64];
2868         } u;
2869 };
2870
2871 type can be one of the following:
2872
2873 KVM_S390_SIGP_STOP - sigp stop; parameter in .stop
2874 KVM_S390_PROGRAM_INT - program check; parameters in .pgm
2875 KVM_S390_SIGP_SET_PREFIX - sigp set prefix; parameters in .prefix
2876 KVM_S390_RESTART - restart; no parameters
2877 KVM_S390_INT_CLOCK_COMP - clock comparator interrupt; no parameters
2878 KVM_S390_INT_CPU_TIMER - CPU timer interrupt; no parameters
2879 KVM_S390_INT_EMERGENCY - sigp emergency; parameters in .emerg
2880 KVM_S390_INT_EXTERNAL_CALL - sigp external call; parameters in .extcall
2881 KVM_S390_MCHK - machine check interrupt; parameters in .mchk
2882
2883
2884 Note that the vcpu ioctl is asynchronous to vcpu execution.
2885
2886 4.94 KVM_S390_GET_IRQ_STATE
2887
2888 Capability: KVM_CAP_S390_IRQ_STATE
2889 Architectures: s390
2890 Type: vcpu ioctl
2891 Parameters: struct kvm_s390_irq_state (out)
2892 Returns: >= number of bytes copied into buffer,
2893          -EINVAL if buffer size is 0,
2894          -ENOBUFS if buffer size is too small to fit all pending interrupts,
2895          -EFAULT if the buffer address was invalid
2896
2897 This ioctl allows userspace to retrieve the complete state of all currently
2898 pending interrupts in a single buffer. Use cases include migration
2899 and introspection. The parameter structure contains the address of a
2900 userspace buffer and its length:
2901
2902 struct kvm_s390_irq_state {
2903         __u64 buf;
2904         __u32 flags;
2905         __u32 len;
2906         __u32 reserved[4];
2907 };
2908
2909 Userspace passes in the above struct and for each pending interrupt a
2910 struct kvm_s390_irq is copied to the provided buffer.
2911
2912 If -ENOBUFS is returned the buffer provided was too small and userspace
2913 may retry with a bigger buffer.
2914
2915 4.95 KVM_S390_SET_IRQ_STATE
2916
2917 Capability: KVM_CAP_S390_IRQ_STATE
2918 Architectures: s390
2919 Type: vcpu ioctl
2920 Parameters: struct kvm_s390_irq_state (in)
2921 Returns: 0 on success,
2922          -EFAULT if the buffer address was invalid,
2923          -EINVAL for an invalid buffer length (see below),
2924          -EBUSY if there were already interrupts pending,
2925          errors occurring when actually injecting the
2926           interrupt. See KVM_S390_IRQ.
2927
2928 This ioctl allows userspace to set the complete state of all cpu-local
2929 interrupts currently pending for the vcpu. It is intended for restoring
2930 interrupt state after a migration. The input parameter is a userspace buffer
2931 containing a struct kvm_s390_irq_state:
2932
2933 struct kvm_s390_irq_state {
2934         __u64 buf;
2935         __u32 len;
2936         __u32 pad;
2937 };
2938
2939 The userspace memory referenced by buf contains a struct kvm_s390_irq
2940 for each interrupt to be injected into the guest.
2941 If one of the interrupts could not be injected for some reason the
2942 ioctl aborts.
2943
2944 len must be a multiple of sizeof(struct kvm_s390_irq). It must be > 0
2945 and it must not exceed (max_vcpus + 32) * sizeof(struct kvm_s390_irq),
2946 which is the maximum number of possibly pending cpu-local interrupts.
2947
2948 4.96 KVM_SMI
2949
2950 Capability: KVM_CAP_X86_SMM
2951 Architectures: x86
2952 Type: vcpu ioctl
2953 Parameters: none
2954 Returns: 0 on success, -1 on error
2955
2956 Queues an SMI on the thread's vcpu.
2957
2958 4.97 KVM_CAP_PPC_MULTITCE
2959
2960 Capability: KVM_CAP_PPC_MULTITCE
2961 Architectures: ppc
2962 Type: vm
2963
2964 This capability means the kernel is capable of handling hypercalls
2965 H_PUT_TCE_INDIRECT and H_STUFF_TCE without passing those into the user
2966 space. This significantly accelerates DMA operations for PPC KVM guests.
2967 User space should expect that its handlers for these hypercalls
2968 are not going to be called if user space previously registered LIOBN
2969 in KVM (via KVM_CREATE_SPAPR_TCE or similar calls).
2970
2971 In order to enable H_PUT_TCE_INDIRECT and H_STUFF_TCE use in the guest,
2972 user space might have to advertise it for the guest. For example,
2973 IBM pSeries (sPAPR) guest starts using them if "hcall-multi-tce" is
2974 present in the "ibm,hypertas-functions" device-tree property.
2975
2976 The hypercalls mentioned above may or may not be processed successfully
2977 in the kernel based fast path. If they can not be handled by the kernel,
2978 they will get passed on to user space. So user space still has to have
2979 an implementation for these despite the in kernel acceleration.
2980
2981 This capability is always enabled.
2982
2983 4.98 KVM_CREATE_SPAPR_TCE_64
2984
2985 Capability: KVM_CAP_SPAPR_TCE_64
2986 Architectures: powerpc
2987 Type: vm ioctl
2988 Parameters: struct kvm_create_spapr_tce_64 (in)
2989 Returns: file descriptor for manipulating the created TCE table
2990
2991 This is an extension for KVM_CAP_SPAPR_TCE which only supports 32bit
2992 windows, described in 4.62 KVM_CREATE_SPAPR_TCE
2993
2994 This capability uses extended struct in ioctl interface:
2995
2996 /* for KVM_CAP_SPAPR_TCE_64 */
2997 struct kvm_create_spapr_tce_64 {
2998         __u64 liobn;
2999         __u32 page_shift;
3000         __u32 flags;
3001         __u64 offset;   /* in pages */
3002         __u64 size;     /* in pages */
3003 };
3004
3005 The aim of extension is to support an additional bigger DMA window with
3006 a variable page size.
3007 KVM_CREATE_SPAPR_TCE_64 receives a 64bit window size, an IOMMU page shift and
3008 a bus offset of the corresponding DMA window, @size and @offset are numbers
3009 of IOMMU pages.
3010
3011 @flags are not used at the moment.
3012
3013 The rest of functionality is identical to KVM_CREATE_SPAPR_TCE.
3014
3015 4.99 KVM_REINJECT_CONTROL
3016
3017 Capability: KVM_CAP_REINJECT_CONTROL
3018 Architectures: x86
3019 Type: vm ioctl
3020 Parameters: struct kvm_reinject_control (in)
3021 Returns: 0 on success,
3022          -EFAULT if struct kvm_reinject_control cannot be read,
3023          -ENXIO if KVM_CREATE_PIT or KVM_CREATE_PIT2 didn't succeed earlier.
3024
3025 i8254 (PIT) has two modes, reinject and !reinject.  The default is reinject,
3026 where KVM queues elapsed i8254 ticks and monitors completion of interrupt from
3027 vector(s) that i8254 injects.  Reinject mode dequeues a tick and injects its
3028 interrupt whenever there isn't a pending interrupt from i8254.
3029 !reinject mode injects an interrupt as soon as a tick arrives.
3030
3031 struct kvm_reinject_control {
3032         __u8 pit_reinject;
3033         __u8 reserved[31];
3034 };
3035
3036 pit_reinject = 0 (!reinject mode) is recommended, unless running an old
3037 operating system that uses the PIT for timing (e.g. Linux 2.4.x).
3038
3039 4.100 KVM_PPC_CONFIGURE_V3_MMU
3040
3041 Capability: KVM_CAP_PPC_RADIX_MMU or KVM_CAP_PPC_HASH_MMU_V3
3042 Architectures: ppc
3043 Type: vm ioctl
3044 Parameters: struct kvm_ppc_mmuv3_cfg (in)
3045 Returns: 0 on success,
3046          -EFAULT if struct kvm_ppc_mmuv3_cfg cannot be read,
3047          -EINVAL if the configuration is invalid
3048
3049 This ioctl controls whether the guest will use radix or HPT (hashed
3050 page table) translation, and sets the pointer to the process table for
3051 the guest.
3052
3053 struct kvm_ppc_mmuv3_cfg {
3054         __u64   flags;
3055         __u64   process_table;
3056 };
3057
3058 There are two bits that can be set in flags; KVM_PPC_MMUV3_RADIX and
3059 KVM_PPC_MMUV3_GTSE.  KVM_PPC_MMUV3_RADIX, if set, configures the guest
3060 to use radix tree translation, and if clear, to use HPT translation.
3061 KVM_PPC_MMUV3_GTSE, if set and if KVM permits it, configures the guest
3062 to be able to use the global TLB and SLB invalidation instructions;
3063 if clear, the guest may not use these instructions.
3064
3065 The process_table field specifies the address and size of the guest
3066 process table, which is in the guest's space.  This field is formatted
3067 as the second doubleword of the partition table entry, as defined in
3068 the Power ISA V3.00, Book III section 5.7.6.1.
3069
3070 4.101 KVM_PPC_GET_RMMU_INFO
3071
3072 Capability: KVM_CAP_PPC_RADIX_MMU
3073 Architectures: ppc
3074 Type: vm ioctl
3075 Parameters: struct kvm_ppc_rmmu_info (out)
3076 Returns: 0 on success,
3077          -EFAULT if struct kvm_ppc_rmmu_info cannot be written,
3078          -EINVAL if no useful information can be returned
3079
3080 This ioctl returns a structure containing two things: (a) a list
3081 containing supported radix tree geometries, and (b) a list that maps
3082 page sizes to put in the "AP" (actual page size) field for the tlbie
3083 (TLB invalidate entry) instruction.
3084
3085 struct kvm_ppc_rmmu_info {
3086         struct kvm_ppc_radix_geom {
3087                 __u8    page_shift;
3088                 __u8    level_bits[4];
3089                 __u8    pad[3];
3090         }       geometries[8];
3091         __u32   ap_encodings[8];
3092 };
3093
3094 The geometries[] field gives up to 8 supported geometries for the
3095 radix page table, in terms of the log base 2 of the smallest page
3096 size, and the number of bits indexed at each level of the tree, from
3097 the PTE level up to the PGD level in that order.  Any unused entries
3098 will have 0 in the page_shift field.
3099
3100 The ap_encodings gives the supported page sizes and their AP field
3101 encodings, encoded with the AP value in the top 3 bits and the log
3102 base 2 of the page size in the bottom 6 bits.
3103
3104 4.102 KVM_PPC_RESIZE_HPT_PREPARE
3105
3106 Capability: KVM_CAP_SPAPR_RESIZE_HPT
3107 Architectures: powerpc
3108 Type: vm ioctl
3109 Parameters: struct kvm_ppc_resize_hpt (in)
3110 Returns: 0 on successful completion,
3111          >0 if a new HPT is being prepared, the value is an estimated
3112              number of milliseconds until preparation is complete
3113          -EFAULT if struct kvm_reinject_control cannot be read,
3114          -EINVAL if the supplied shift or flags are invalid
3115          -ENOMEM if unable to allocate the new HPT
3116          -ENOSPC if there was a hash collision when moving existing
3117                   HPT entries to the new HPT
3118          -EIO on other error conditions
3119
3120 Used to implement the PAPR extension for runtime resizing of a guest's
3121 Hashed Page Table (HPT).  Specifically this starts, stops or monitors
3122 the preparation of a new potential HPT for the guest, essentially
3123 implementing the H_RESIZE_HPT_PREPARE hypercall.
3124
3125 If called with shift > 0 when there is no pending HPT for the guest,
3126 this begins preparation of a new pending HPT of size 2^(shift) bytes.
3127 It then returns a positive integer with the estimated number of
3128 milliseconds until preparation is complete.
3129
3130 If called when there is a pending HPT whose size does not match that
3131 requested in the parameters, discards the existing pending HPT and
3132 creates a new one as above.
3133
3134 If called when there is a pending HPT of the size requested, will:
3135   * If preparation of the pending HPT is already complete, return 0
3136   * If preparation of the pending HPT has failed, return an error
3137     code, then discard the pending HPT.
3138   * If preparation of the pending HPT is still in progress, return an
3139     estimated number of milliseconds until preparation is complete.
3140
3141 If called with shift == 0, discards any currently pending HPT and
3142 returns 0 (i.e. cancels any in-progress preparation).
3143
3144 flags is reserved for future expansion, currently setting any bits in
3145 flags will result in an -EINVAL.
3146
3147 Normally this will be called repeatedly with the same parameters until
3148 it returns <= 0.  The first call will initiate preparation, subsequent
3149 ones will monitor preparation until it completes or fails.
3150
3151 struct kvm_ppc_resize_hpt {
3152         __u64 flags;
3153         __u32 shift;
3154         __u32 pad;
3155 };
3156
3157 4.103 KVM_PPC_RESIZE_HPT_COMMIT
3158
3159 Capability: KVM_CAP_SPAPR_RESIZE_HPT
3160 Architectures: powerpc
3161 Type: vm ioctl
3162 Parameters: struct kvm_ppc_resize_hpt (in)
3163 Returns: 0 on successful completion,
3164          -EFAULT if struct kvm_reinject_control cannot be read,
3165          -EINVAL if the supplied shift or flags are invalid
3166          -ENXIO is there is no pending HPT, or the pending HPT doesn't
3167                  have the requested size
3168          -EBUSY if the pending HPT is not fully prepared
3169          -ENOSPC if there was a hash collision when moving existing
3170                   HPT entries to the new HPT
3171          -EIO on other error conditions
3172
3173 Used to implement the PAPR extension for runtime resizing of a guest's
3174 Hashed Page Table (HPT).  Specifically this requests that the guest be
3175 transferred to working with the new HPT, essentially implementing the
3176 H_RESIZE_HPT_COMMIT hypercall.
3177
3178 This should only be called after KVM_PPC_RESIZE_HPT_PREPARE has
3179 returned 0 with the same parameters.  In other cases
3180 KVM_PPC_RESIZE_HPT_COMMIT will return an error (usually -ENXIO or
3181 -EBUSY, though others may be possible if the preparation was started,
3182 but failed).
3183
3184 This will have undefined effects on the guest if it has not already
3185 placed itself in a quiescent state where no vcpu will make MMU enabled
3186 memory accesses.
3187
3188 On succsful completion, the pending HPT will become the guest's active
3189 HPT and the previous HPT will be discarded.
3190
3191 On failure, the guest will still be operating on its previous HPT.
3192
3193 struct kvm_ppc_resize_hpt {
3194         __u64 flags;
3195         __u32 shift;
3196         __u32 pad;
3197 };
3198
3199 4.104 KVM_X86_GET_MCE_CAP_SUPPORTED
3200
3201 Capability: KVM_CAP_MCE
3202 Architectures: x86
3203 Type: system ioctl
3204 Parameters: u64 mce_cap (out)
3205 Returns: 0 on success, -1 on error
3206
3207 Returns supported MCE capabilities. The u64 mce_cap parameter
3208 has the same format as the MSR_IA32_MCG_CAP register. Supported
3209 capabilities will have the corresponding bits set.
3210
3211 4.105 KVM_X86_SETUP_MCE
3212
3213 Capability: KVM_CAP_MCE
3214 Architectures: x86
3215 Type: vcpu ioctl
3216 Parameters: u64 mcg_cap (in)
3217 Returns: 0 on success,
3218          -EFAULT if u64 mcg_cap cannot be read,
3219          -EINVAL if the requested number of banks is invalid,
3220          -EINVAL if requested MCE capability is not supported.
3221
3222 Initializes MCE support for use. The u64 mcg_cap parameter
3223 has the same format as the MSR_IA32_MCG_CAP register and
3224 specifies which capabilities should be enabled. The maximum
3225 supported number of error-reporting banks can be retrieved when
3226 checking for KVM_CAP_MCE. The supported capabilities can be
3227 retrieved with KVM_X86_GET_MCE_CAP_SUPPORTED.
3228
3229 4.106 KVM_X86_SET_MCE
3230
3231 Capability: KVM_CAP_MCE
3232 Architectures: x86
3233 Type: vcpu ioctl
3234 Parameters: struct kvm_x86_mce (in)
3235 Returns: 0 on success,
3236          -EFAULT if struct kvm_x86_mce cannot be read,
3237          -EINVAL if the bank number is invalid,
3238          -EINVAL if VAL bit is not set in status field.
3239
3240 Inject a machine check error (MCE) into the guest. The input
3241 parameter is:
3242
3243 struct kvm_x86_mce {
3244         __u64 status;
3245         __u64 addr;
3246         __u64 misc;
3247         __u64 mcg_status;
3248         __u8 bank;
3249         __u8 pad1[7];
3250         __u64 pad2[3];
3251 };
3252
3253 If the MCE being reported is an uncorrected error, KVM will
3254 inject it as an MCE exception into the guest. If the guest
3255 MCG_STATUS register reports that an MCE is in progress, KVM
3256 causes an KVM_EXIT_SHUTDOWN vmexit.
3257
3258 Otherwise, if the MCE is a corrected error, KVM will just
3259 store it in the corresponding bank (provided this bank is
3260 not holding a previously reported uncorrected error).
3261
3262 5. The kvm_run structure
3263 ------------------------
3264
3265 Application code obtains a pointer to the kvm_run structure by
3266 mmap()ing a vcpu fd.  From that point, application code can control
3267 execution by changing fields in kvm_run prior to calling the KVM_RUN
3268 ioctl, and obtain information about the reason KVM_RUN returned by
3269 looking up structure members.
3270
3271 struct kvm_run {
3272         /* in */
3273         __u8 request_interrupt_window;
3274
3275 Request that KVM_RUN return when it becomes possible to inject external
3276 interrupts into the guest.  Useful in conjunction with KVM_INTERRUPT.
3277
3278         __u8 immediate_exit;
3279
3280 This field is polled once when KVM_RUN starts; if non-zero, KVM_RUN
3281 exits immediately, returning -EINTR.  In the common scenario where a
3282 signal is used to "kick" a VCPU out of KVM_RUN, this field can be used
3283 to avoid usage of KVM_SET_SIGNAL_MASK, which has worse scalability.
3284 Rather than blocking the signal outside KVM_RUN, userspace can set up
3285 a signal handler that sets run->immediate_exit to a non-zero value.
3286
3287 This field is ignored if KVM_CAP_IMMEDIATE_EXIT is not available.
3288
3289         __u8 padding1[6];
3290
3291         /* out */
3292         __u32 exit_reason;
3293
3294 When KVM_RUN has returned successfully (return value 0), this informs
3295 application code why KVM_RUN has returned.  Allowable values for this
3296 field are detailed below.
3297
3298         __u8 ready_for_interrupt_injection;
3299
3300 If request_interrupt_window has been specified, this field indicates
3301 an interrupt can be injected now with KVM_INTERRUPT.
3302
3303         __u8 if_flag;
3304
3305 The value of the current interrupt flag.  Only valid if in-kernel
3306 local APIC is not used.
3307
3308         __u16 flags;
3309
3310 More architecture-specific flags detailing state of the VCPU that may
3311 affect the device's behavior.  The only currently defined flag is
3312 KVM_RUN_X86_SMM, which is valid on x86 machines and is set if the
3313 VCPU is in system management mode.
3314
3315         /* in (pre_kvm_run), out (post_kvm_run) */
3316         __u64 cr8;
3317
3318 The value of the cr8 register.  Only valid if in-kernel local APIC is
3319 not used.  Both input and output.
3320
3321         __u64 apic_base;
3322
3323 The value of the APIC BASE msr.  Only valid if in-kernel local
3324 APIC is not used.  Both input and output.
3325
3326         union {
3327                 /* KVM_EXIT_UNKNOWN */
3328                 struct {
3329                         __u64 hardware_exit_reason;
3330                 } hw;
3331
3332 If exit_reason is KVM_EXIT_UNKNOWN, the vcpu has exited due to unknown
3333 reasons.  Further architecture-specific information is available in
3334 hardware_exit_reason.
3335
3336                 /* KVM_EXIT_FAIL_ENTRY */
3337                 struct {
3338                         __u64 hardware_entry_failure_reason;
3339                 } fail_entry;
3340
3341 If exit_reason is KVM_EXIT_FAIL_ENTRY, the vcpu could not be run due
3342 to unknown reasons.  Further architecture-specific information is
3343 available in hardware_entry_failure_reason.
3344
3345                 /* KVM_EXIT_EXCEPTION */
3346                 struct {
3347                         __u32 exception;
3348                         __u32 error_code;
3349                 } ex;
3350
3351 Unused.
3352
3353                 /* KVM_EXIT_IO */
3354                 struct {
3355 #define KVM_EXIT_IO_IN  0
3356 #define KVM_EXIT_IO_OUT 1
3357                         __u8 direction;
3358                         __u8 size; /* bytes */
3359                         __u16 port;
3360                         __u32 count;
3361                         __u64 data_offset; /* relative to kvm_run start */
3362                 } io;
3363
3364 If exit_reason is KVM_EXIT_IO, then the vcpu has
3365 executed a port I/O instruction which could not be satisfied by kvm.
3366 data_offset describes where the data is located (KVM_EXIT_IO_OUT) or
3367 where kvm expects application code to place the data for the next
3368 KVM_RUN invocation (KVM_EXIT_IO_IN).  Data format is a packed array.
3369
3370                 /* KVM_EXIT_DEBUG */
3371                 struct {
3372                         struct kvm_debug_exit_arch arch;
3373                 } debug;
3374
3375 If the exit_reason is KVM_EXIT_DEBUG, then a vcpu is processing a debug event
3376 for which architecture specific information is returned.
3377
3378                 /* KVM_EXIT_MMIO */
3379                 struct {
3380                         __u64 phys_addr;
3381                         __u8  data[8];
3382                         __u32 len;
3383                         __u8  is_write;
3384                 } mmio;
3385
3386 If exit_reason is KVM_EXIT_MMIO, then the vcpu has
3387 executed a memory-mapped I/O instruction which could not be satisfied
3388 by kvm.  The 'data' member contains the written data if 'is_write' is
3389 true, and should be filled by application code otherwise.
3390
3391 The 'data' member contains, in its first 'len' bytes, the value as it would
3392 appear if the VCPU performed a load or store of the appropriate width directly
3393 to the byte array.
3394
3395 NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO, KVM_EXIT_OSI, KVM_EXIT_PAPR and
3396       KVM_EXIT_EPR the corresponding
3397 operations are complete (and guest state is consistent) only after userspace
3398 has re-entered the kernel with KVM_RUN.  The kernel side will first finish
3399 incomplete operations and then check for pending signals.  Userspace
3400 can re-enter the guest with an unmasked signal pending to complete
3401 pending operations.
3402
3403                 /* KVM_EXIT_HYPERCALL */
3404                 struct {
3405                         __u64 nr;
3406                         __u64 args[6];
3407                         __u64 ret;
3408                         __u32 longmode;
3409                         __u32 pad;
3410                 } hypercall;
3411
3412 Unused.  This was once used for 'hypercall to userspace'.  To implement
3413 such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
3414 Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.
3415
3416                 /* KVM_EXIT_TPR_ACCESS */
3417                 struct {
3418                         __u64 rip;
3419                         __u32 is_write;
3420                         __u32 pad;
3421                 } tpr_access;
3422
3423 To be documented (KVM_TPR_ACCESS_REPORTING).
3424
3425                 /* KVM_EXIT_S390_SIEIC */
3426                 struct {
3427                         __u8 icptcode;
3428                         __u64 mask; /* psw upper half */
3429                         __u64 addr; /* psw lower half */
3430                         __u16 ipa;
3431                         __u32 ipb;
3432                 } s390_sieic;
3433
3434 s390 specific.
3435
3436                 /* KVM_EXIT_S390_RESET */
3437 #define KVM_S390_RESET_POR       1
3438 #define KVM_S390_RESET_CLEAR     2
3439 #define KVM_S390_RESET_SUBSYSTEM 4
3440 #define KVM_S390_RESET_CPU_INIT  8
3441 #define KVM_S390_RESET_IPL       16
3442                 __u64 s390_reset_flags;
3443
3444 s390 specific.
3445
3446                 /* KVM_EXIT_S390_UCONTROL */
3447                 struct {
3448                         __u64 trans_exc_code;
3449                         __u32 pgm_code;
3450                 } s390_ucontrol;
3451
3452 s390 specific. A page fault has occurred for a user controlled virtual
3453 machine (KVM_VM_S390_UNCONTROL) on it's host page table that cannot be
3454 resolved by the kernel.
3455 The program code and the translation exception code that were placed
3456 in the cpu's lowcore are presented here as defined by the z Architecture
3457 Principles of Operation Book in the Chapter for Dynamic Address Translation
3458 (DAT)
3459
3460                 /* KVM_EXIT_DCR */
3461                 struct {
3462                         __u32 dcrn;
3463                         __u32 data;
3464                         __u8  is_write;
3465                 } dcr;
3466
3467 Deprecated - was used for 440 KVM.
3468
3469                 /* KVM_EXIT_OSI */
3470                 struct {
3471                         __u64 gprs[32];
3472                 } osi;
3473
3474 MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
3475 hypercalls and exit with this exit struct that contains all the guest gprs.
3476
3477 If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
3478 Userspace can now handle the hypercall and when it's done modify the gprs as
3479 necessary. Upon guest entry all guest GPRs will then be replaced by the values
3480 in this struct.
3481
3482                 /* KVM_EXIT_PAPR_HCALL */
3483                 struct {
3484                         __u64 nr;
3485                         __u64 ret;
3486                         __u64 args[9];
3487                 } papr_hcall;
3488
3489 This is used on 64-bit PowerPC when emulating a pSeries partition,
3490 e.g. with the 'pseries' machine type in qemu.  It occurs when the
3491 guest does a hypercall using the 'sc 1' instruction.  The 'nr' field
3492 contains the hypercall number (from the guest R3), and 'args' contains
3493 the arguments (from the guest R4 - R12).  Userspace should put the
3494 return code in 'ret' and any extra returned values in args[].
3495 The possible hypercalls are defined in the Power Architecture Platform
3496 Requirements (PAPR) document available from www.power.org (free
3497 developer registration required to access it).
3498
3499                 /* KVM_EXIT_S390_TSCH */
3500                 struct {
3501                         __u16 subchannel_id;
3502                         __u16 subchannel_nr;
3503                         __u32 io_int_parm;
3504                         __u32 io_int_word;
3505                         __u32 ipb;
3506                         __u8 dequeued;
3507                 } s390_tsch;
3508
3509 s390 specific. This exit occurs when KVM_CAP_S390_CSS_SUPPORT has been enabled
3510 and TEST SUBCHANNEL was intercepted. If dequeued is set, a pending I/O
3511 interrupt for the target subchannel has been dequeued and subchannel_id,
3512 subchannel_nr, io_int_parm and io_int_word contain the parameters for that
3513 interrupt. ipb is needed for instruction parameter decoding.
3514
3515                 /* KVM_EXIT_EPR */
3516                 struct {
3517                         __u32 epr;
3518                 } epr;
3519
3520 On FSL BookE PowerPC chips, the interrupt controller has a fast patch
3521 interrupt acknowledge path to the core. When the core successfully
3522 delivers an interrupt, it automatically populates the EPR register with
3523 the interrupt vector number and acknowledges the interrupt inside
3524 the interrupt controller.
3525
3526 In case the interrupt controller lives in user space, we need to do
3527 the interrupt acknowledge cycle through it to fetch the next to be
3528 delivered interrupt vector using this exit.
3529
3530 It gets triggered whenever both KVM_CAP_PPC_EPR are enabled and an
3531 external interrupt has just been delivered into the guest. User space
3532 should put the acknowledged interrupt vector into the 'epr' field.
3533
3534                 /* KVM_EXIT_SYSTEM_EVENT */
3535                 struct {
3536 #define KVM_SYSTEM_EVENT_SHUTDOWN       1
3537 #define KVM_SYSTEM_EVENT_RESET          2
3538 #define KVM_SYSTEM_EVENT_CRASH          3
3539                         __u32 type;
3540                         __u64 flags;
3541                 } system_event;
3542
3543 If exit_reason is KVM_EXIT_SYSTEM_EVENT then the vcpu has triggered
3544 a system-level event using some architecture specific mechanism (hypercall
3545 or some special instruction). In case of ARM/ARM64, this is triggered using
3546 HVC instruction based PSCI call from the vcpu. The 'type' field describes
3547 the system-level event type. The 'flags' field describes architecture
3548 specific flags for the system-level event.
3549
3550 Valid values for 'type' are:
3551   KVM_SYSTEM_EVENT_SHUTDOWN -- the guest has requested a shutdown of the
3552    VM. Userspace is not obliged to honour this, and if it does honour
3553    this does not need to destroy the VM synchronously (ie it may call
3554    KVM_RUN again before shutdown finally occurs).
3555   KVM_SYSTEM_EVENT_RESET -- the guest has requested a reset of the VM.
3556    As with SHUTDOWN, userspace can choose to ignore the request, or
3557    to schedule the reset to occur in the future and may call KVM_RUN again.
3558   KVM_SYSTEM_EVENT_CRASH -- the guest crash occurred and the guest
3559    has requested a crash condition maintenance. Userspace can choose
3560    to ignore the request, or to gather VM memory core dump and/or
3561    reset/shutdown of the VM.
3562
3563                 /* KVM_EXIT_IOAPIC_EOI */
3564                 struct {
3565                         __u8 vector;
3566                 } eoi;
3567
3568 Indicates that the VCPU's in-kernel local APIC received an EOI for a
3569 level-triggered IOAPIC interrupt.  This exit only triggers when the
3570 IOAPIC is implemented in userspace (i.e. KVM_CAP_SPLIT_IRQCHIP is enabled);
3571 the userspace IOAPIC should process the EOI and retrigger the interrupt if
3572 it is still asserted.  Vector is the LAPIC interrupt vector for which the
3573 EOI was received.
3574
3575                 struct kvm_hyperv_exit {
3576 #define KVM_EXIT_HYPERV_SYNIC          1
3577 #define KVM_EXIT_HYPERV_HCALL          2
3578                         __u32 type;
3579                         union {
3580                                 struct {
3581                                         __u32 msr;
3582                                         __u64 control;
3583                                         __u64 evt_page;
3584                                         __u64 msg_page;
3585                                 } synic;
3586                                 struct {
3587                                         __u64 input;
3588                                         __u64 result;
3589                                         __u64 params[2];
3590                                 } hcall;
3591                         } u;
3592                 };
3593                 /* KVM_EXIT_HYPERV */
3594                 struct kvm_hyperv_exit hyperv;
3595 Indicates that the VCPU exits into userspace to process some tasks
3596 related to Hyper-V emulation.
3597 Valid values for 'type' are:
3598         KVM_EXIT_HYPERV_SYNIC -- synchronously notify user-space about
3599 Hyper-V SynIC state change. Notification is used to remap SynIC
3600 event/message pages and to enable/disable SynIC messages/events processing
3601 in userspace.
3602
3603                 /* Fix the size of the union. */
3604                 char padding[256];
3605         };
3606
3607         /*
3608          * shared registers between kvm and userspace.
3609          * kvm_valid_regs specifies the register classes set by the host
3610          * kvm_dirty_regs specified the register classes dirtied by userspace
3611          * struct kvm_sync_regs is architecture specific, as well as the
3612          * bits for kvm_valid_regs and kvm_dirty_regs
3613          */
3614         __u64 kvm_valid_regs;
3615         __u64 kvm_dirty_regs;
3616         union {
3617                 struct kvm_sync_regs regs;
3618                 char padding[1024];
3619         } s;
3620
3621 If KVM_CAP_SYNC_REGS is defined, these fields allow userspace to access
3622 certain guest registers without having to call SET/GET_*REGS. Thus we can
3623 avoid some system call overhead if userspace has to handle the exit.
3624 Userspace can query the validity of the structure by checking
3625 kvm_valid_regs for specific bits. These bits are architecture specific
3626 and usually define the validity of a groups of registers. (e.g. one bit
3627  for general purpose registers)
3628
3629 Please note that the kernel is allowed to use the kvm_run structure as the
3630 primary storage for certain register types. Therefore, the kernel may use the
3631 values in kvm_run even if the corresponding bit in kvm_dirty_regs is not set.
3632
3633 };
3634
3635
3636
3637 6. Capabilities that can be enabled on vCPUs
3638 --------------------------------------------
3639
3640 There are certain capabilities that change the behavior of the virtual CPU or
3641 the virtual machine when enabled. To enable them, please see section 4.37.
3642 Below you can find a list of capabilities and what their effect on the vCPU or
3643 the virtual machine is when enabling them.
3644
3645 The following information is provided along with the description:
3646
3647   Architectures: which instruction set architectures provide this ioctl.
3648       x86 includes both i386 and x86_64.
3649
3650   Target: whether this is a per-vcpu or per-vm capability.
3651
3652   Parameters: what parameters are accepted by the capability.
3653
3654   Returns: the return value.  General error numbers (EBADF, ENOMEM, EINVAL)
3655       are not detailed, but errors with specific meanings are.
3656
3657
3658 6.1 KVM_CAP_PPC_OSI
3659
3660 Architectures: ppc
3661 Target: vcpu
3662 Parameters: none
3663 Returns: 0 on success; -1 on error
3664
3665 This capability enables interception of OSI hypercalls that otherwise would
3666 be treated as normal system calls to be injected into the guest. OSI hypercalls
3667 were invented by Mac-on-Linux to have a standardized communication mechanism
3668 between the guest and the host.
3669
3670 When this capability is enabled, KVM_EXIT_OSI can occur.
3671
3672
3673 6.2 KVM_CAP_PPC_PAPR
3674
3675 Architectures: ppc
3676 Target: vcpu
3677 Parameters: none
3678 Returns: 0 on success; -1 on error
3679
3680 This capability enables interception of PAPR hypercalls. PAPR hypercalls are
3681 done using the hypercall instruction "sc 1".
3682
3683 It also sets the guest privilege level to "supervisor" mode. Usually the guest
3684 runs in "hypervisor" privilege mode with a few missing features.
3685
3686 In addition to the above, it changes the semantics of SDR1. In this mode, the
3687 HTAB address part of SDR1 contains an HVA instead of a GPA, as PAPR keeps the
3688 HTAB invisible to the guest.
3689
3690 When this capability is enabled, KVM_EXIT_PAPR_HCALL can occur.
3691
3692
3693 6.3 KVM_CAP_SW_TLB
3694
3695 Architectures: ppc
3696 Target: vcpu
3697 Parameters: args[0] is the address of a struct kvm_config_tlb
3698 Returns: 0 on success; -1 on error
3699
3700 struct kvm_config_tlb {
3701         __u64 params;
3702         __u64 array;
3703         __u32 mmu_type;
3704         __u32 array_len;
3705 };
3706
3707 Configures the virtual CPU's TLB array, establishing a shared memory area
3708 between userspace and KVM.  The "params" and "array" fields are userspace
3709 addresses of mmu-type-specific data structures.  The "array_len" field is an
3710 safety mechanism, and should be set to the size in bytes of the memory that
3711 userspace has reserved for the array.  It must be at least the size dictated
3712 by "mmu_type" and "params".
3713
3714 While KVM_RUN is active, the shared region is under control of KVM.  Its
3715 contents are undefined, and any modification by userspace results in
3716 boundedly undefined behavior.
3717
3718 On return from KVM_RUN, the shared region will reflect the current state of
3719 the guest's TLB.  If userspace makes any changes, it must call KVM_DIRTY_TLB
3720 to tell KVM which entries have been changed, prior to calling KVM_RUN again
3721 on this vcpu.
3722
3723 For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
3724  - The "params" field is of type "struct kvm_book3e_206_tlb_params".
3725  - The "array" field points to an array of type "struct
3726    kvm_book3e_206_tlb_entry".
3727  - The array consists of all entries in the first TLB, followed by all
3728    entries in the second TLB.
3729  - Within a TLB, entries are ordered first by increasing set number.  Within a
3730    set, entries are ordered by way (increasing ESEL).
3731  - The hash for determining set number in TLB0 is: (MAS2 >> 12) & (num_sets - 1)
3732    where "num_sets" is the tlb_sizes[] value divided by the tlb_ways[] value.
3733  - The tsize field of mas1 shall be set to 4K on TLB0, even though the
3734    hardware ignores this value for TLB0.
3735
3736 6.4 KVM_CAP_S390_CSS_SUPPORT
3737
3738 Architectures: s390
3739 Target: vcpu
3740 Parameters: none
3741 Returns: 0 on success; -1 on error
3742
3743 This capability enables support for handling of channel I/O instructions.
3744
3745 TEST PENDING INTERRUPTION and the interrupt portion of TEST SUBCHANNEL are
3746 handled in-kernel, while the other I/O instructions are passed to userspace.
3747
3748 When this capability is enabled, KVM_EXIT_S390_TSCH will occur on TEST
3749 SUBCHANNEL intercepts.
3750
3751 Note that even though this capability is enabled per-vcpu, the complete
3752 virtual machine is affected.
3753
3754 6.5 KVM_CAP_PPC_EPR
3755
3756 Architectures: ppc
3757 Target: vcpu
3758 Parameters: args[0] defines whether the proxy facility is active
3759 Returns: 0 on success; -1 on error
3760
3761 This capability enables or disables the delivery of interrupts through the
3762 external proxy facility.
3763
3764 When enabled (args[0] != 0), every time the guest gets an external interrupt
3765 delivered, it automatically exits into user space with a KVM_EXIT_EPR exit
3766 to receive the topmost interrupt vector.
3767
3768 When disabled (args[0] == 0), behavior is as if this facility is unsupported.
3769
3770 When this capability is enabled, KVM_EXIT_EPR can occur.
3771
3772 6.6 KVM_CAP_IRQ_MPIC
3773
3774 Architectures: ppc
3775 Parameters: args[0] is the MPIC device fd
3776             args[1] is the MPIC CPU number for this vcpu
3777
3778 This capability connects the vcpu to an in-kernel MPIC device.
3779
3780 6.7 KVM_CAP_IRQ_XICS
3781
3782 Architectures: ppc
3783 Target: vcpu
3784 Parameters: args[0] is the XICS device fd
3785             args[1] is the XICS CPU number (server ID) for this vcpu
3786
3787 This capability connects the vcpu to an in-kernel XICS device.
3788
3789 6.8 KVM_CAP_S390_IRQCHIP
3790
3791 Architectures: s390
3792 Target: vm
3793 Parameters: none
3794
3795 This capability enables the in-kernel irqchip for s390. Please refer to
3796 "4.24 KVM_CREATE_IRQCHIP" for details.
3797
3798 6.9 KVM_CAP_MIPS_FPU
3799
3800 Architectures: mips
3801 Target: vcpu
3802 Parameters: args[0] is reserved for future use (should be 0).
3803
3804 This capability allows the use of the host Floating Point Unit by the guest. It
3805 allows the Config1.FP bit to be set to enable the FPU in the guest. Once this is
3806 done the KVM_REG_MIPS_FPR_* and KVM_REG_MIPS_FCR_* registers can be accessed
3807 (depending on the current guest FPU register mode), and the Status.FR,
3808 Config5.FRE bits are accessible via the KVM API and also from the guest,
3809 depending on them being supported by the FPU.
3810
3811 6.10 KVM_CAP_MIPS_MSA
3812
3813 Architectures: mips
3814 Target: vcpu
3815 Parameters: args[0] is reserved for future use (should be 0).
3816
3817 This capability allows the use of the MIPS SIMD Architecture (MSA) by the guest.
3818 It allows the Config3.MSAP bit to be set to enable the use of MSA by the guest.
3819 Once this is done the KVM_REG_MIPS_VEC_* and KVM_REG_MIPS_MSA_* registers can be
3820 accessed, and the Config5.MSAEn bit is accessible via the KVM API and also from
3821 the guest.
3822
3823 7. Capabilities that can be enabled on VMs
3824 ------------------------------------------
3825
3826 There are certain capabilities that change the behavior of the virtual
3827 machine when enabled. To enable them, please see section 4.37. Below
3828 you can find a list of capabilities and what their effect on the VM
3829 is when enabling them.
3830
3831 The following information is provided along with the description:
3832
3833   Architectures: which instruction set architectures provide this ioctl.
3834       x86 includes both i386 and x86_64.
3835
3836   Parameters: what parameters are accepted by the capability.
3837
3838   Returns: the return value.  General error numbers (EBADF, ENOMEM, EINVAL)
3839       are not detailed, but errors with specific meanings are.
3840
3841
3842 7.1 KVM_CAP_PPC_ENABLE_HCALL
3843
3844 Architectures: ppc
3845 Parameters: args[0] is the sPAPR hcall number
3846             args[1] is 0 to disable, 1 to enable in-kernel handling
3847
3848 This capability controls whether individual sPAPR hypercalls (hcalls)
3849 get handled by the kernel or not.  Enabling or disabling in-kernel
3850 handling of an hcall is effective across the VM.  On creation, an
3851 initial set of hcalls are enabled for in-kernel handling, which
3852 consists of those hcalls for which in-kernel handlers were implemented
3853 before this capability was implemented.  If disabled, the kernel will
3854 not to attempt to handle the hcall, but will always exit to userspace
3855 to handle it.  Note that it may not make sense to enable some and
3856 disable others of a group of related hcalls, but KVM does not prevent
3857 userspace from doing that.
3858
3859 If the hcall number specified is not one that has an in-kernel
3860 implementation, the KVM_ENABLE_CAP ioctl will fail with an EINVAL
3861 error.
3862
3863 7.2 KVM_CAP_S390_USER_SIGP
3864
3865 Architectures: s390
3866 Parameters: none
3867
3868 This capability controls which SIGP orders will be handled completely in user
3869 space. With this capability enabled, all fast orders will be handled completely
3870 in the kernel:
3871 - SENSE
3872 - SENSE RUNNING
3873 - EXTERNAL CALL
3874 - EMERGENCY SIGNAL
3875 - CONDITIONAL EMERGENCY SIGNAL
3876
3877 All other orders will be handled completely in user space.
3878
3879 Only privileged operation exceptions will be checked for in the kernel (or even
3880 in the hardware prior to interception). If this capability is not enabled, the
3881 old way of handling SIGP orders is used (partially in kernel and user space).
3882
3883 7.3 KVM_CAP_S390_VECTOR_REGISTERS
3884
3885 Architectures: s390
3886 Parameters: none
3887 Returns: 0 on success, negative value on error
3888
3889 Allows use of the vector registers introduced with z13 processor, and
3890 provides for the synchronization between host and user space.  Will
3891 return -EINVAL if the machine does not support vectors.
3892
3893 7.4 KVM_CAP_S390_USER_STSI
3894
3895 Architectures: s390
3896 Parameters: none
3897
3898 This capability allows post-handlers for the STSI instruction. After
3899 initial handling in the kernel, KVM exits to user space with
3900 KVM_EXIT_S390_STSI to allow user space to insert further data.
3901
3902 Before exiting to userspace, kvm handlers should fill in s390_stsi field of
3903 vcpu->run:
3904 struct {
3905         __u64 addr;
3906         __u8 ar;
3907         __u8 reserved;
3908         __u8 fc;
3909         __u8 sel1;
3910         __u16 sel2;
3911 } s390_stsi;
3912
3913 @addr - guest address of STSI SYSIB
3914 @fc   - function code
3915 @sel1 - selector 1
3916 @sel2 - selector 2
3917 @ar   - access register number
3918
3919 KVM handlers should exit to userspace with rc = -EREMOTE.
3920
3921 7.5 KVM_CAP_SPLIT_IRQCHIP
3922
3923 Architectures: x86
3924 Parameters: args[0] - number of routes reserved for userspace IOAPICs
3925 Returns: 0 on success, -1 on error
3926
3927 Create a local apic for each processor in the kernel. This can be used
3928 instead of KVM_CREATE_IRQCHIP if the userspace VMM wishes to emulate the
3929 IOAPIC and PIC (and also the PIT, even though this has to be enabled
3930 separately).
3931
3932 This capability also enables in kernel routing of interrupt requests;
3933 when KVM_CAP_SPLIT_IRQCHIP only routes of KVM_IRQ_ROUTING_MSI type are
3934 used in the IRQ routing table.  The first args[0] MSI routes are reserved
3935 for the IOAPIC pins.  Whenever the LAPIC receives an EOI for these routes,
3936 a KVM_EXIT_IOAPIC_EOI vmexit will be reported to userspace.
3937
3938 Fails if VCPU has already been created, or if the irqchip is already in the
3939 kernel (i.e. KVM_CREATE_IRQCHIP has already been called).
3940
3941 7.6 KVM_CAP_S390_RI
3942
3943 Architectures: s390
3944 Parameters: none
3945
3946 Allows use of runtime-instrumentation introduced with zEC12 processor.
3947 Will return -EINVAL if the machine does not support runtime-instrumentation.
3948 Will return -EBUSY if a VCPU has already been created.
3949
3950 7.7 KVM_CAP_X2APIC_API
3951
3952 Architectures: x86
3953 Parameters: args[0] - features that should be enabled
3954 Returns: 0 on success, -EINVAL when args[0] contains invalid features
3955
3956 Valid feature flags in args[0] are
3957
3958 #define KVM_X2APIC_API_USE_32BIT_IDS            (1ULL << 0)
3959 #define KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK  (1ULL << 1)
3960
3961 Enabling KVM_X2APIC_API_USE_32BIT_IDS changes the behavior of
3962 KVM_SET_GSI_ROUTING, KVM_SIGNAL_MSI, KVM_SET_LAPIC, and KVM_GET_LAPIC,
3963 allowing the use of 32-bit APIC IDs.  See KVM_CAP_X2APIC_API in their
3964 respective sections.
3965
3966 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK must be enabled for x2APIC to work
3967 in logical mode or with more than 255 VCPUs.  Otherwise, KVM treats 0xff
3968 as a broadcast even in x2APIC mode in order to support physical x2APIC
3969 without interrupt remapping.  This is undesirable in logical mode,
3970 where 0xff represents CPUs 0-7 in cluster 0.
3971
3972 7.8 KVM_CAP_S390_USER_INSTR0
3973
3974 Architectures: s390
3975 Parameters: none
3976
3977 With this capability enabled, all illegal instructions 0x0000 (2 bytes) will
3978 be intercepted and forwarded to user space. User space can use this
3979 mechanism e.g. to realize 2-byte software breakpoints. The kernel will
3980 not inject an operating exception for these instructions, user space has
3981 to take care of that.
3982
3983 This capability can be enabled dynamically even if VCPUs were already
3984 created and are running.
3985
3986 7.9 KVM_CAP_S390_GS
3987
3988 Architectures: s390
3989 Parameters: none
3990 Returns: 0 on success; -EINVAL if the machine does not support
3991          guarded storage; -EBUSY if a VCPU has already been created.
3992
3993 Allows use of guarded storage for the KVM guest.
3994
3995 7.10 KVM_CAP_S390_AIS
3996
3997 Architectures: s390
3998 Parameters: none
3999
4000 Allow use of adapter-interruption suppression.
4001 Returns: 0 on success; -EBUSY if a VCPU has already been created.
4002
4003 8. Other capabilities.
4004 ----------------------
4005
4006 This section lists capabilities that give information about other
4007 features of the KVM implementation.
4008
4009 8.1 KVM_CAP_PPC_HWRNG
4010
4011 Architectures: ppc
4012
4013 This capability, if KVM_CHECK_EXTENSION indicates that it is
4014 available, means that that the kernel has an implementation of the
4015 H_RANDOM hypercall backed by a hardware random-number generator.
4016 If present, the kernel H_RANDOM handler can be enabled for guest use
4017 with the KVM_CAP_PPC_ENABLE_HCALL capability.
4018
4019 8.2 KVM_CAP_HYPERV_SYNIC
4020
4021 Architectures: x86
4022 This capability, if KVM_CHECK_EXTENSION indicates that it is
4023 available, means that that the kernel has an implementation of the
4024 Hyper-V Synthetic interrupt controller(SynIC). Hyper-V SynIC is
4025 used to support Windows Hyper-V based guest paravirt drivers(VMBus).
4026
4027 In order to use SynIC, it has to be activated by setting this
4028 capability via KVM_ENABLE_CAP ioctl on the vcpu fd. Note that this
4029 will disable the use of APIC hardware virtualization even if supported
4030 by the CPU, as it's incompatible with SynIC auto-EOI behavior.
4031
4032 8.3 KVM_CAP_PPC_RADIX_MMU
4033
4034 Architectures: ppc
4035
4036 This capability, if KVM_CHECK_EXTENSION indicates that it is
4037 available, means that that the kernel can support guests using the
4038 radix MMU defined in Power ISA V3.00 (as implemented in the POWER9
4039 processor).
4040
4041 8.4 KVM_CAP_PPC_HASH_MMU_V3
4042
4043 Architectures: ppc
4044
4045 This capability, if KVM_CHECK_EXTENSION indicates that it is
4046 available, means that that the kernel can support guests using the
4047 hashed page table MMU defined in Power ISA V3.00 (as implemented in
4048 the POWER9 processor), including in-memory segment tables.
4049
4050 8.5 KVM_CAP_MIPS_VZ
4051
4052 Architectures: mips
4053
4054 This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that
4055 it is available, means that full hardware assisted virtualization capabilities
4056 of the hardware are available for use through KVM. An appropriate
4057 KVM_VM_MIPS_* type must be passed to KVM_CREATE_VM to create a VM which
4058 utilises it.
4059
4060 If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is
4061 available, it means that the VM is using full hardware assisted virtualization
4062 capabilities of the hardware. This is useful to check after creating a VM with
4063 KVM_VM_MIPS_DEFAULT.
4064
4065 The value returned by KVM_CHECK_EXTENSION should be compared against known
4066 values (see below). All other values are reserved. This is to allow for the
4067 possibility of other hardware assisted virtualization implementations which
4068 may be incompatible with the MIPS VZ ASE.
4069
4070  0: The trap & emulate implementation is in use to run guest code in user
4071     mode. Guest virtual memory segments are rearranged to fit the guest in the
4072     user mode address space.
4073
4074  1: The MIPS VZ ASE is in use, providing full hardware assisted
4075     virtualization, including standard guest virtual memory segments.
4076
4077 8.6 KVM_CAP_MIPS_TE
4078
4079 Architectures: mips
4080
4081 This capability, if KVM_CHECK_EXTENSION on the main kvm handle indicates that
4082 it is available, means that the trap & emulate implementation is available to
4083 run guest code in user mode, even if KVM_CAP_MIPS_VZ indicates that hardware
4084 assisted virtualisation is also available. KVM_VM_MIPS_TE (0) must be passed
4085 to KVM_CREATE_VM to create a VM which utilises it.
4086
4087 If KVM_CHECK_EXTENSION on a kvm VM handle indicates that this capability is
4088 available, it means that the VM is using trap & emulate.
4089
4090 8.7 KVM_CAP_MIPS_64BIT
4091
4092 Architectures: mips
4093
4094 This capability indicates the supported architecture type of the guest, i.e. the
4095 supported register and address width.
4096
4097 The values returned when this capability is checked by KVM_CHECK_EXTENSION on a
4098 kvm VM handle correspond roughly to the CP0_Config.AT register field, and should
4099 be checked specifically against known values (see below). All other values are
4100 reserved.
4101
4102  0: MIPS32 or microMIPS32.
4103     Both registers and addresses are 32-bits wide.
4104     It will only be possible to run 32-bit guest code.
4105
4106  1: MIPS64 or microMIPS64 with access only to 32-bit compatibility segments.
4107     Registers are 64-bits wide, but addresses are 32-bits wide.
4108     64-bit guest code may run but cannot access MIPS64 memory segments.
4109     It will also be possible to run 32-bit guest code.
4110
4111  2: MIPS64 or microMIPS64 with access to all address segments.
4112     Both registers and addresses are 64-bits wide.
4113     It will be possible to run 64-bit or 32-bit guest code.
4114
4115 8.8 KVM_CAP_X86_GUEST_MWAIT
4116
4117 Architectures: x86
4118
4119 This capability indicates that guest using memory monotoring instructions
4120 (MWAIT/MWAITX) to stop the virtual CPU will not cause a VM exit.  As such time
4121 spent while virtual CPU is halted in this way will then be accounted for as
4122 guest running time on the host (as opposed to e.g. HLT).