Merge branch 'idr-4.11' of git://git.infradead.org/users/willy/linux-dax
[sfrench/cifs-2.6.git] / Documentation / gpu / drm-mm.rst
1 =====================
2 DRM Memory Management
3 =====================
4
5 Modern Linux systems require large amount of graphics memory to store
6 frame buffers, textures, vertices and other graphics-related data. Given
7 the very dynamic nature of many of that data, managing graphics memory
8 efficiently is thus crucial for the graphics stack and plays a central
9 role in the DRM infrastructure.
10
11 The DRM core includes two memory managers, namely Translation Table Maps
12 (TTM) and Graphics Execution Manager (GEM). TTM was the first DRM memory
13 manager to be developed and tried to be a one-size-fits-them all
14 solution. It provides a single userspace API to accommodate the need of
15 all hardware, supporting both Unified Memory Architecture (UMA) devices
16 and devices with dedicated video RAM (i.e. most discrete video cards).
17 This resulted in a large, complex piece of code that turned out to be
18 hard to use for driver development.
19
20 GEM started as an Intel-sponsored project in reaction to TTM's
21 complexity. Its design philosophy is completely different: instead of
22 providing a solution to every graphics memory-related problems, GEM
23 identified common code between drivers and created a support library to
24 share it. GEM has simpler initialization and execution requirements than
25 TTM, but has no video RAM management capabilities and is thus limited to
26 UMA devices.
27
28 The Translation Table Manager (TTM)
29 ===================================
30
31 TTM design background and information belongs here.
32
33 TTM initialization
34 ------------------
35
36     **Warning**
37     This section is outdated.
38
39 Drivers wishing to support TTM must pass a filled :c:type:`ttm_bo_driver
40 <ttm_bo_driver>` structure to ttm_bo_device_init, together with an
41 initialized global reference to the memory manager.  The ttm_bo_driver
42 structure contains several fields with function pointers for
43 initializing the TTM, allocating and freeing memory, waiting for command
44 completion and fence synchronization, and memory migration.
45
46 The :c:type:`struct drm_global_reference <drm_global_reference>` is made
47 up of several fields:
48
49 .. code-block:: c
50
51               struct drm_global_reference {
52                       enum ttm_global_types global_type;
53                       size_t size;
54                       void *object;
55                       int (*init) (struct drm_global_reference *);
56                       void (*release) (struct drm_global_reference *);
57               };
58
59
60 There should be one global reference structure for your memory manager
61 as a whole, and there will be others for each object created by the
62 memory manager at runtime. Your global TTM should have a type of
63 TTM_GLOBAL_TTM_MEM. The size field for the global object should be
64 sizeof(struct ttm_mem_global), and the init and release hooks should
65 point at your driver-specific init and release routines, which probably
66 eventually call ttm_mem_global_init and ttm_mem_global_release,
67 respectively.
68
69 Once your global TTM accounting structure is set up and initialized by
70 calling ttm_global_item_ref() on it, you need to create a buffer
71 object TTM to provide a pool for buffer object allocation by clients and
72 the kernel itself. The type of this object should be
73 TTM_GLOBAL_TTM_BO, and its size should be sizeof(struct
74 ttm_bo_global). Again, driver-specific init and release functions may
75 be provided, likely eventually calling ttm_bo_global_init() and
76 ttm_bo_global_release(), respectively. Also, like the previous
77 object, ttm_global_item_ref() is used to create an initial reference
78 count for the TTM, which will call your initialization function.
79
80 See the radeon_ttm.c file for an example of usage.
81
82 .. kernel-doc:: drivers/gpu/drm/drm_global.c
83    :export:
84
85
86 The Graphics Execution Manager (GEM)
87 ====================================
88
89 The GEM design approach has resulted in a memory manager that doesn't
90 provide full coverage of all (or even all common) use cases in its
91 userspace or kernel API. GEM exposes a set of standard memory-related
92 operations to userspace and a set of helper functions to drivers, and
93 let drivers implement hardware-specific operations with their own
94 private API.
95
96 The GEM userspace API is described in the `GEM - the Graphics Execution
97 Manager <http://lwn.net/Articles/283798/>`__ article on LWN. While
98 slightly outdated, the document provides a good overview of the GEM API
99 principles. Buffer allocation and read and write operations, described
100 as part of the common GEM API, are currently implemented using
101 driver-specific ioctls.
102
103 GEM is data-agnostic. It manages abstract buffer objects without knowing
104 what individual buffers contain. APIs that require knowledge of buffer
105 contents or purpose, such as buffer allocation or synchronization
106 primitives, are thus outside of the scope of GEM and must be implemented
107 using driver-specific ioctls.
108
109 On a fundamental level, GEM involves several operations:
110
111 -  Memory allocation and freeing
112 -  Command execution
113 -  Aperture management at command execution time
114
115 Buffer object allocation is relatively straightforward and largely
116 provided by Linux's shmem layer, which provides memory to back each
117 object.
118
119 Device-specific operations, such as command execution, pinning, buffer
120 read & write, mapping, and domain ownership transfers are left to
121 driver-specific ioctls.
122
123 GEM Initialization
124 ------------------
125
126 Drivers that use GEM must set the DRIVER_GEM bit in the struct
127 :c:type:`struct drm_driver <drm_driver>` driver_features
128 field. The DRM core will then automatically initialize the GEM core
129 before calling the load operation. Behind the scene, this will create a
130 DRM Memory Manager object which provides an address space pool for
131 object allocation.
132
133 In a KMS configuration, drivers need to allocate and initialize a
134 command ring buffer following core GEM initialization if required by the
135 hardware. UMA devices usually have what is called a "stolen" memory
136 region, which provides space for the initial framebuffer and large,
137 contiguous memory regions required by the device. This space is
138 typically not managed by GEM, and must be initialized separately into
139 its own DRM MM object.
140
141 GEM Objects Creation
142 --------------------
143
144 GEM splits creation of GEM objects and allocation of the memory that
145 backs them in two distinct operations.
146
147 GEM objects are represented by an instance of struct :c:type:`struct
148 drm_gem_object <drm_gem_object>`. Drivers usually need to
149 extend GEM objects with private information and thus create a
150 driver-specific GEM object structure type that embeds an instance of
151 struct :c:type:`struct drm_gem_object <drm_gem_object>`.
152
153 To create a GEM object, a driver allocates memory for an instance of its
154 specific GEM object type and initializes the embedded struct
155 :c:type:`struct drm_gem_object <drm_gem_object>` with a call
156 to :c:func:`drm_gem_object_init()`. The function takes a pointer
157 to the DRM device, a pointer to the GEM object and the buffer object
158 size in bytes.
159
160 GEM uses shmem to allocate anonymous pageable memory.
161 :c:func:`drm_gem_object_init()` will create an shmfs file of the
162 requested size and store it into the struct :c:type:`struct
163 drm_gem_object <drm_gem_object>` filp field. The memory is
164 used as either main storage for the object when the graphics hardware
165 uses system memory directly or as a backing store otherwise.
166
167 Drivers are responsible for the actual physical pages allocation by
168 calling :c:func:`shmem_read_mapping_page_gfp()` for each page.
169 Note that they can decide to allocate pages when initializing the GEM
170 object, or to delay allocation until the memory is needed (for instance
171 when a page fault occurs as a result of a userspace memory access or
172 when the driver needs to start a DMA transfer involving the memory).
173
174 Anonymous pageable memory allocation is not always desired, for instance
175 when the hardware requires physically contiguous system memory as is
176 often the case in embedded devices. Drivers can create GEM objects with
177 no shmfs backing (called private GEM objects) by initializing them with
178 a call to :c:func:`drm_gem_private_object_init()` instead of
179 :c:func:`drm_gem_object_init()`. Storage for private GEM objects
180 must be managed by drivers.
181
182 GEM Objects Lifetime
183 --------------------
184
185 All GEM objects are reference-counted by the GEM core. References can be
186 acquired and release by :c:func:`calling
187 drm_gem_object_reference()` and
188 :c:func:`drm_gem_object_unreference()` respectively. The caller
189 must hold the :c:type:`struct drm_device <drm_device>`
190 struct_mutex lock when calling
191 :c:func:`drm_gem_object_reference()`. As a convenience, GEM
192 provides :c:func:`drm_gem_object_unreference_unlocked()`
193 functions that can be called without holding the lock.
194
195 When the last reference to a GEM object is released the GEM core calls
196 the :c:type:`struct drm_driver <drm_driver>` gem_free_object
197 operation. That operation is mandatory for GEM-enabled drivers and must
198 free the GEM object and all associated resources.
199
200 void (\*gem_free_object) (struct drm_gem_object \*obj); Drivers are
201 responsible for freeing all GEM object resources. This includes the
202 resources created by the GEM core, which need to be released with
203 :c:func:`drm_gem_object_release()`.
204
205 GEM Objects Naming
206 ------------------
207
208 Communication between userspace and the kernel refers to GEM objects
209 using local handles, global names or, more recently, file descriptors.
210 All of those are 32-bit integer values; the usual Linux kernel limits
211 apply to the file descriptors.
212
213 GEM handles are local to a DRM file. Applications get a handle to a GEM
214 object through a driver-specific ioctl, and can use that handle to refer
215 to the GEM object in other standard or driver-specific ioctls. Closing a
216 DRM file handle frees all its GEM handles and dereferences the
217 associated GEM objects.
218
219 To create a handle for a GEM object drivers call
220 :c:func:`drm_gem_handle_create()`. The function takes a pointer
221 to the DRM file and the GEM object and returns a locally unique handle.
222 When the handle is no longer needed drivers delete it with a call to
223 :c:func:`drm_gem_handle_delete()`. Finally the GEM object
224 associated with a handle can be retrieved by a call to
225 :c:func:`drm_gem_object_lookup()`.
226
227 Handles don't take ownership of GEM objects, they only take a reference
228 to the object that will be dropped when the handle is destroyed. To
229 avoid leaking GEM objects, drivers must make sure they drop the
230 reference(s) they own (such as the initial reference taken at object
231 creation time) as appropriate, without any special consideration for the
232 handle. For example, in the particular case of combined GEM object and
233 handle creation in the implementation of the dumb_create operation,
234 drivers must drop the initial reference to the GEM object before
235 returning the handle.
236
237 GEM names are similar in purpose to handles but are not local to DRM
238 files. They can be passed between processes to reference a GEM object
239 globally. Names can't be used directly to refer to objects in the DRM
240 API, applications must convert handles to names and names to handles
241 using the DRM_IOCTL_GEM_FLINK and DRM_IOCTL_GEM_OPEN ioctls
242 respectively. The conversion is handled by the DRM core without any
243 driver-specific support.
244
245 GEM also supports buffer sharing with dma-buf file descriptors through
246 PRIME. GEM-based drivers must use the provided helpers functions to
247 implement the exporting and importing correctly. See ?. Since sharing
248 file descriptors is inherently more secure than the easily guessable and
249 global GEM names it is the preferred buffer sharing mechanism. Sharing
250 buffers through GEM names is only supported for legacy userspace.
251 Furthermore PRIME also allows cross-device buffer sharing since it is
252 based on dma-bufs.
253
254 GEM Objects Mapping
255 -------------------
256
257 Because mapping operations are fairly heavyweight GEM favours
258 read/write-like access to buffers, implemented through driver-specific
259 ioctls, over mapping buffers to userspace. However, when random access
260 to the buffer is needed (to perform software rendering for instance),
261 direct access to the object can be more efficient.
262
263 The mmap system call can't be used directly to map GEM objects, as they
264 don't have their own file handle. Two alternative methods currently
265 co-exist to map GEM objects to userspace. The first method uses a
266 driver-specific ioctl to perform the mapping operation, calling
267 :c:func:`do_mmap()` under the hood. This is often considered
268 dubious, seems to be discouraged for new GEM-enabled drivers, and will
269 thus not be described here.
270
271 The second method uses the mmap system call on the DRM file handle. void
272 \*mmap(void \*addr, size_t length, int prot, int flags, int fd, off_t
273 offset); DRM identifies the GEM object to be mapped by a fake offset
274 passed through the mmap offset argument. Prior to being mapped, a GEM
275 object must thus be associated with a fake offset. To do so, drivers
276 must call :c:func:`drm_gem_create_mmap_offset()` on the object.
277
278 Once allocated, the fake offset value must be passed to the application
279 in a driver-specific way and can then be used as the mmap offset
280 argument.
281
282 The GEM core provides a helper method :c:func:`drm_gem_mmap()` to
283 handle object mapping. The method can be set directly as the mmap file
284 operation handler. It will look up the GEM object based on the offset
285 value and set the VMA operations to the :c:type:`struct drm_driver
286 <drm_driver>` gem_vm_ops field. Note that
287 :c:func:`drm_gem_mmap()` doesn't map memory to userspace, but
288 relies on the driver-provided fault handler to map pages individually.
289
290 To use :c:func:`drm_gem_mmap()`, drivers must fill the struct
291 :c:type:`struct drm_driver <drm_driver>` gem_vm_ops field
292 with a pointer to VM operations.
293
294 The VM operations is a :c:type:`struct vm_operations_struct <vm_operations_struct>`
295 made up of several fields, the more interesting ones being:
296
297 .. code-block:: c
298
299         struct vm_operations_struct {
300                 void (*open)(struct vm_area_struct * area);
301                 void (*close)(struct vm_area_struct * area);
302                 int (*fault)(struct vm_fault *vmf);
303         };
304
305
306 The open and close operations must update the GEM object reference
307 count. Drivers can use the :c:func:`drm_gem_vm_open()` and
308 :c:func:`drm_gem_vm_close()` helper functions directly as open
309 and close handlers.
310
311 The fault operation handler is responsible for mapping individual pages
312 to userspace when a page fault occurs. Depending on the memory
313 allocation scheme, drivers can allocate pages at fault time, or can
314 decide to allocate memory for the GEM object at the time the object is
315 created.
316
317 Drivers that want to map the GEM object upfront instead of handling page
318 faults can implement their own mmap file operation handler.
319
320 For platforms without MMU the GEM core provides a helper method
321 :c:func:`drm_gem_cma_get_unmapped_area`. The mmap() routines will call
322 this to get a proposed address for the mapping.
323
324 To use :c:func:`drm_gem_cma_get_unmapped_area`, drivers must fill the
325 struct :c:type:`struct file_operations <file_operations>` get_unmapped_area
326 field with a pointer on :c:func:`drm_gem_cma_get_unmapped_area`.
327
328 More detailed information about get_unmapped_area can be found in
329 Documentation/nommu-mmap.txt
330
331 Memory Coherency
332 ----------------
333
334 When mapped to the device or used in a command buffer, backing pages for
335 an object are flushed to memory and marked write combined so as to be
336 coherent with the GPU. Likewise, if the CPU accesses an object after the
337 GPU has finished rendering to the object, then the object must be made
338 coherent with the CPU's view of memory, usually involving GPU cache
339 flushing of various kinds. This core CPU<->GPU coherency management is
340 provided by a device-specific ioctl, which evaluates an object's current
341 domain and performs any necessary flushing or synchronization to put the
342 object into the desired coherency domain (note that the object may be
343 busy, i.e. an active render target; in that case, setting the domain
344 blocks the client and waits for rendering to complete before performing
345 any necessary flushing operations).
346
347 Command Execution
348 -----------------
349
350 Perhaps the most important GEM function for GPU devices is providing a
351 command execution interface to clients. Client programs construct
352 command buffers containing references to previously allocated memory
353 objects, and then submit them to GEM. At that point, GEM takes care to
354 bind all the objects into the GTT, execute the buffer, and provide
355 necessary synchronization between clients accessing the same buffers.
356 This often involves evicting some objects from the GTT and re-binding
357 others (a fairly expensive operation), and providing relocation support
358 which hides fixed GTT offsets from clients. Clients must take care not
359 to submit command buffers that reference more objects than can fit in
360 the GTT; otherwise, GEM will reject them and no rendering will occur.
361 Similarly, if several objects in the buffer require fence registers to
362 be allocated for correct rendering (e.g. 2D blits on pre-965 chips),
363 care must be taken not to require more fence registers than are
364 available to the client. Such resource management should be abstracted
365 from the client in libdrm.
366
367 GEM Function Reference
368 ----------------------
369
370 .. kernel-doc:: drivers/gpu/drm/drm_gem.c
371    :export:
372
373 .. kernel-doc:: include/drm/drm_gem.h
374    :internal:
375
376 GEM CMA Helper Functions Reference
377 ----------------------------------
378
379 .. kernel-doc:: drivers/gpu/drm/drm_gem_cma_helper.c
380    :doc: cma helpers
381
382 .. kernel-doc:: drivers/gpu/drm/drm_gem_cma_helper.c
383    :export:
384
385 .. kernel-doc:: include/drm/drm_gem_cma_helper.h
386    :internal:
387
388 VMA Offset Manager
389 ==================
390
391 .. kernel-doc:: drivers/gpu/drm/drm_vma_manager.c
392    :doc: vma offset manager
393
394 .. kernel-doc:: drivers/gpu/drm/drm_vma_manager.c
395    :export:
396
397 .. kernel-doc:: include/drm/drm_vma_manager.h
398    :internal:
399
400 PRIME Buffer Sharing
401 ====================
402
403 PRIME is the cross device buffer sharing framework in drm, originally
404 created for the OPTIMUS range of multi-gpu platforms. To userspace PRIME
405 buffers are dma-buf based file descriptors.
406
407 Overview and Driver Interface
408 -----------------------------
409
410 Similar to GEM global names, PRIME file descriptors are also used to
411 share buffer objects across processes. They offer additional security:
412 as file descriptors must be explicitly sent over UNIX domain sockets to
413 be shared between applications, they can't be guessed like the globally
414 unique GEM names.
415
416 Drivers that support the PRIME API must set the DRIVER_PRIME bit in the
417 struct :c:type:`struct drm_driver <drm_driver>`
418 driver_features field, and implement the prime_handle_to_fd and
419 prime_fd_to_handle operations.
420
421 int (\*prime_handle_to_fd)(struct drm_device \*dev, struct drm_file
422 \*file_priv, uint32_t handle, uint32_t flags, int \*prime_fd); int
423 (\*prime_fd_to_handle)(struct drm_device \*dev, struct drm_file
424 \*file_priv, int prime_fd, uint32_t \*handle); Those two operations
425 convert a handle to a PRIME file descriptor and vice versa. Drivers must
426 use the kernel dma-buf buffer sharing framework to manage the PRIME file
427 descriptors. Similar to the mode setting API PRIME is agnostic to the
428 underlying buffer object manager, as long as handles are 32bit unsigned
429 integers.
430
431 While non-GEM drivers must implement the operations themselves, GEM
432 drivers must use the :c:func:`drm_gem_prime_handle_to_fd()` and
433 :c:func:`drm_gem_prime_fd_to_handle()` helper functions. Those
434 helpers rely on the driver gem_prime_export and gem_prime_import
435 operations to create a dma-buf instance from a GEM object (dma-buf
436 exporter role) and to create a GEM object from a dma-buf instance
437 (dma-buf importer role).
438
439 struct dma_buf \* (\*gem_prime_export)(struct drm_device \*dev,
440 struct drm_gem_object \*obj, int flags); struct drm_gem_object \*
441 (\*gem_prime_import)(struct drm_device \*dev, struct dma_buf
442 \*dma_buf); These two operations are mandatory for GEM drivers that
443 support PRIME.
444
445 PRIME Helper Functions
446 ----------------------
447
448 .. kernel-doc:: drivers/gpu/drm/drm_prime.c
449    :doc: PRIME Helpers
450
451 PRIME Function References
452 -------------------------
453
454 .. kernel-doc:: drivers/gpu/drm/drm_prime.c
455    :export:
456
457 DRM MM Range Allocator
458 ======================
459
460 Overview
461 --------
462
463 .. kernel-doc:: drivers/gpu/drm/drm_mm.c
464    :doc: Overview
465
466 LRU Scan/Eviction Support
467 -------------------------
468
469 .. kernel-doc:: drivers/gpu/drm/drm_mm.c
470    :doc: lru scan roster
471
472 DRM MM Range Allocator Function References
473 ------------------------------------------
474
475 .. kernel-doc:: drivers/gpu/drm/drm_mm.c
476    :export:
477
478 .. kernel-doc:: include/drm/drm_mm.h
479    :internal:
480
481 DRM Cache Handling
482 ==================
483
484 .. kernel-doc:: drivers/gpu/drm/drm_cache.c
485    :export: